福建省福清市2020-2021年人教版七年级下期中考试数学试题及答案(A卷全套)
【精品】2020-2021学年人教版七年级下册期中考试数学试卷(含解析)
2020-2021学年人教版七年级下册期中考试数学试卷一.选择题(共10小题)1.下列叙述,其中不正确的是()A.过一点有且只有一条直线与已知直线平行B.同角(或等角)的余角相等C.两点确定一条直线D.两点之间的所有连线中,线段最短2.若xy>0,则关于点P(x,y)的说法正确的是()A.在一或二象限B.在一或四象限C.在二或四象限D.在一或三象限3.马龙同学沿直线将一三角形纸板剪掉一个角,发现剩下纸板的周长比原纸板的周长要小,能正确解释这一现象的数学知识是()A.经过一点有无数条直线B.两点之间,线段最短C.经过两点,有且仅有一条直线D.垂线段最短4.±的值等于()A.±8 B.8 C.﹣8 D.5.给出下列四个说法:①一个数的平方等于1,那么这个数就是1;②4是8的算术平方根;③平方根等于它本身的数只有0;④8的立方根是±2.其中,正确的是()A.①②B.①②③C.②③D.③6.下列说法正确的有()(1)﹣π<﹣3.14;(2)两个数比较大小,绝对值大的数反而小;(3)﹣a不一定是负数;(4)符号不同的两个数互为相反数A.1个B.2个C.3个D.4个7.在﹣,﹣π,0,3.14,﹣,0.,﹣7,﹣3中,无理数有()A.1个B.2个C.3个D.4个8.将一把直尺和一块含30°角的三角板ABC按如图所示的位置放置,如果∠CED=46°,那么∠BAF的度数为()A.48°B.16°C.14°D.32°9.如图,△DEF是△ABC经过平移得到的.已知∠A=54°,∠ABC=36°,则下列结论不一定成立的是()A.∠D=54°B.∠BED=∠FED C.BC⊥DF D.DF∥AC10.下列各图形中均有直线m∥n,则能使结论∠A=∠1﹣∠2成立的是()A.B.C.D.二.填空题(共8小题)11.27的立方根为.12.如图所示,已知∠ACB=90°,若BC=8cm,AC=6cm,AB=10cm,则点A到BC的距离是,点C到AB的距离是.13.我国古代数学著作《增删算法统综》中有如下一道题:“直田七亩半,忘了长和短,记得立契时,长阔争一半,今特问高明,此法如何算”.意思是:有一块7亩半(即1800平方步)的矩形田,忘了长和宽各是多少,记得在立契约的时候,宽是长的一半,现在请问高明能算者,怎样计算出他的长与宽.若设此矩形田的宽为x步,依据题意,可列方程为.14.如果点P(x,y)的坐标满足x+y=xy,那么称点P为“和谐点”,若某个“和谐点”到x轴的距离为3,则P点的坐标为.15.如图,请填写一个条件,使结论成立:∵,∴a∥b.16.如图,在三角形ABC中,∠ABC=90°,BC=11,把三角形ABC向下平移至三角形DEF后,AD=CG=6,则图中阴影部分的面积为.17.写出一个比2大且比小的整数.18.如图,将一张长方形纸片如图所示折叠后,再展开.如果∠1=66°,那么∠2=.三.解答题(共8小题)19.计算题:(1)﹣×;(2)|2﹣|+(﹣2).20.求下列各式中x的值.(1)(4x﹣1)2=225.(2)27x3+1000=0.21.如图,在平面直角坐标系中,(1)确定点A、B的坐标;(2)描出点C(﹣1,﹣2),点D(2,﹣3).22.已知一个正数m的两个不同的平方根是a﹣1与5﹣2a,求a和m的值.23.如图,已知点E在BD上,AE⊥CE且EC平分∠DEF.(1)求证:EA平分∠BEF;(2)若∠1=∠A,∠4=∠C,求证:AB∥CD.24.如图,在正方形网格中建立平面直角坐标系,已知点A(0,﹣2),B(2,﹣5),C(5,﹣3),请按下列要求操作:(1)请在图中画出△ABC;(2)将△ABC向上平移5个单位长度,再向左平移4个单位长度,得到△A1B1C1.在图中画出△A1B1C1,并直接写出点A1、B1、C1的坐标.25.(1)把图(1)中的图形平移后,“顶点”A(4,4)的对应点是A'(4,0),写出另外6个“顶点”的对应点的坐标;(2)图(2)与图(1)对应“顶点”的坐标之间有什么样的关系?它可以由图(1)如何变化而来?(3)图(3)与图(1)对应“顶点”的坐标之间有什么样的关系?它可以由图(1)如何变化而来?26.如图,有三个论断:①∠1=∠2;②∠B=∠C;③∠A=∠D,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.已知:.结论:.理由:.参考答案与试题解析一.选择题(共10小题)1.【分析】根据平行公理,线段的性质,直线的性质,余角的性质,可得答案.【解答】解:A、过直线外一点有且只有一条直线与已知直线平行,错误;B、同角(或等角)的余角相等,正确;C、两点确定一条直线,正确;D、两点之间的所有连线中,线段最短,正确;故选:A.【点评】本题考查平行线的判定定理以及平行线的性质.注意过直线外一点有且只有一条直线与已知直线平行.2.【分析】根据xy>0,可得x>0,y>0或x<0,y<0,再根据各象限内点的坐标的符号特征判断即可.【解答】解:∵xy>0,∴x>0,y>0或x<0,y<0,∴点P(x,y)在一或三象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.【分析】根据两点之间,线段最短进行解答.【解答】解:某同学用剪刀沿虚线将三角形剪掉一个角,发现四边形的周长比原三角形的周长要小,能正确解释这一现象的数学知识是:两点之间,线段最短.故选:B.【点评】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.4.【分析】根据平方根的定义即可求解.【解答】解:±的值等于±8.故选:A.【点评】本题考查了平方根,关键是熟练掌握平方根的定义.5.【分析】分别根据算术平方根的定义、立方根的定义及平方根的定义对各小题进行逐一判断即可.【解答】解:①∵(±1)2=1,∴一个数的平方等于1,那么这个数就是1,故①错误;②∵42=16,∴4是16的算术平方根,故②错误,③平方根等于它本身的数只有0,故③正确,④8的立方根是2,故④错误.故选:D.【点评】本题考查了立方根,平方根和算术平方根的定义,熟知算术平方根的定义、立方根的定义及平方根的定义是解答此题的关键.6.【分析】根据实数比较大小的法则、绝对值的性质、正负数的定义、相反数的定义回答即可.【解答】解:(1)﹣π<﹣3.14是正确的;(2)两个负数比较大小,绝对值大的数反而小,原来的说法错误;(3)﹣a不一定是负数是正确的;(4)只有符号不同的两个数互为相反数,原来的说法错误.故选:B.【点评】本题主要考查的是有正负数、绝对值、相反数、比较实数的大小,掌握相关知识是解题的关键.7.【分析】理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:在﹣,﹣π,0,3.14,﹣,0.,﹣7,﹣3中,无理数有﹣π,,共2个.故选:B.【点评】本题主要考查了无理数.解题的关键是掌握无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.【分析】根据平行线的性质和三角板的角度解答即可.【解答】解:∵DE∥AF,∴∠CED=∠EAF=46°,∵∠BAC=90°﹣30°=60°,∴∠BAF=∠BAC﹣∠EAF=60°﹣46°=14°,故选:C.【点评】此题考查平行线的性质,关键是根据两直线平行,同位角相等解答.9.【分析】根据三角形的内角和定理求出∠C=90°,再根据平移的性质对各选项分析判断后利用排除法求解.【解答】解:∵∠A=54°,∠ABC=36°,∴∠C=180°﹣∠A﹣∠ABC=180°﹣54°﹣36°=90°,由平移可得:∠D=∠A=54°,A、∠D=54°,故本选项错误;B、∠BED=∠FED不一定成立,故本选项正确;C、由平移的性质,AC∥DF,∴BC⊥DF,故本选项错误;D、由平移的性质,AC∥DF,故本选项错误.故选:B.【点评】本题考查了平移的性质,主要利用了平移只改变图形的位置不改变图形的形状与大小,对应相等互相平行,熟记性质是解题的关键.10.【分析】根据平行线的性质解答即可.【解答】解:A、∵m∥n,∴∠2=∠1+∠A,∴∠A=∠2﹣∠1,不符合题意;B、∵m∥n,∴∠1=∠2+∠A,∴∠A=∠1﹣∠2,符合题意;C、∵m∥n,∴∠1+∠2+∠A=360°,∴∠A=360°﹣∠2﹣∠1,不符合题意;D、∵m∥n,∴∠A=∠1+∠2,不符合题意;故选:B.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.二.填空题(共8小题)11.【分析】找到立方等于27的数即可.【解答】解:∵33=27,∴27的立方根是3,故答案为:3.【点评】考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算.12.【分析】直接利用点到直线的距离以及三角形面积求法分别得出答案.【解答】解:∠ACB=90°,即AC⊥BC,若BC=8cm,AC=6cm,AB=10cm,那么A 到BC 的距离是:6cm ,C 到AB 的距离是:=4.8(cm ).故答案为:6cm ,4.8cm .【点评】此题主要考查了点到直线的距离,正确结合三角形面积求出C 到AB 的距离是解题关键.13.【分析】根据题意列出方程即可求出答案.【解答】解:由题意可知:x •2x =1800,故答案为:x •2x =1800,【点评】本题考查列方程,解题的关键是正确找出等量关系,本题属于基础题型.14.【分析】直接利用某个“和谐点”到x 轴的距离为3,得出y 的值,进而求出x 的值求出答案.【解答】解:∵某个“和谐点”到x 轴的距离为3,∴y =±3,∵x +y =xy ,∴x ±3=±3x ,解得:x =或x =.则P 点的坐标为:(,3)或(,﹣3). 故答案为:(,3)或(,﹣3).【点评】此题主要考查了点的坐标,正确分类讨论是解题关键.15.【分析】要使得a ∥b ,判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;依此即可求解.【解答】解:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a ∥b .故答案为:∠1=∠4或∠2=∠4或∠3+∠4=180°.【点评】考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.16.【分析】先根据平移的性质得到AD =BE =6,EF =BC =11,S △ABC =S △DEF ,则BG =5,由于S 阴影部分=S 梯形BEFG ,所以利用梯形的面积公式计算即可.【解答】解:∵三角形ABC 向下平移至三角形DEF ,∴AD =BE =6,EF =BC =11,S △ABC =S △DEF ,∵BG =BC ﹣CG =11﹣6=5,∴S梯形BEFG=(5+11)×6=48,∵S阴影部分+S△DBG=S△DBG+S梯形BEFG,∴S阴影部分=S梯形BEFG=48.故答案为48.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.17.【分析】估算出2和的大小,即可得出答案.【解答】解:∵2=,而<<<,∴2<3<4<,故答案为:3或4.【点评】本题考查无理数的估算和大小比较,掌握无理数估算的方法是正确解答的关键.18.【分析】根据折叠的性质和平行线的性质,可以得到∠2的度数,从而可以解答本题.【解答】解:由折叠的性质可知,∠1=∠3,∵∠1=66°,∴∠3=66°,∵长方形的两条长边平行,∴∠2+∠1+∠3=180°,∴∠2=48°,故答案为:48°.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.三.解答题(共8小题)19.【分析】(1)依据算术平方根以及立方根的意义,即可得到计算结果;(2)依据绝对值的性质以及合并同类二次根式的法则,即可得到结果.【解答】解:(1)﹣×=4﹣4×(﹣2)=4+8=12;(2)|2﹣|+(﹣2)=﹣2+﹣2=﹣2.【点评】本题主要考查了算术平方根以及立方根的意义,在进行实数运算时,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.20.【分析】(1)根据直接开平方法可以解答此方程;(2)先移项,然后根据直接开立方法可以解答此方程.【解答】解:(1)(4x﹣1)2=225,4x﹣1=±15,解得x1=﹣3.5,x2=4;(2)27x3+1000=0,27x3=﹣1000,x3=﹣,x=﹣.【点评】本题考查立方根、平方根、解方程,解答本题的关键是明确解方程的方法.21.【分析】(1)直接利用平面直角坐标系得出A,B点坐标;(2)直接利用C,D点坐标在坐标系中确定即可.【解答】解:(1)A(﹣1,2),B(2,0);(2)如图所示:C,D点即为所求.【点评】此题主要考查了点的坐标,正确理解点的坐标意义是解题关键.22.【分析】直接利用平方根的定义得出a的值,进而得出答案.【解答】解:∵一个正数m的两个不同的平方根是a﹣1与5﹣2a,∴a﹣1+5﹣2a=0,解得:a=4,则a﹣1=3,故m=32=9.【点评】此题主要考查了平方根,正确掌握平方根的定义:一个正数有两个平方根,这两个平方根互为相反数是解题关键.23.【分析】(1)根据垂直的定义,角平分线的定义解答即可;(2)根据平行线的判定解答即可.【解答】证明:(1)∵AE⊥CE,∴∠AEC=90°,∴∠2+∠3=90°且∠1+∠4=90°,又∵EC平分∠DEF,∴∠3=∠4,∴∠1=∠2,∴EA平分∠BEF;(2)∵∠1=∠A,∠4=∠C,∴∠1+∠A+∠4+∠C=2(∠1+∠4)=180°,∴∠B+∠D=(180°﹣2∠1)+(180°﹣2∠4)=360°﹣2(∠1+∠4)=180°,∴AB∥CD.【点评】此题考查平行线的判定和角平分线的定义,关键是根据平行线的判定定理解答.24.【分析】(1)根据点A(0,﹣2),B(2,﹣5),C(5,﹣3),即可画出△ABC;(2)根据平移的性质即可将△ABC向上平移5个单位长度,再向左平移4个单位长度,得到△A1B1C1并写出点A1、B1、C1的坐标.【解答】解:(1)如图,△ABC即为所求;(2)如图,△A1B1C1即为所求,A1(﹣4,3),B1(﹣2,0),C1(1,2).【点评】本题考查了作图﹣平移变换,解决本题的关键是掌握平移的性质.25.【分析】(1)根据图(1)中的图形平移后,“顶点”A(4,4)的对应点是A'(4,0),即可写出另外6个“顶点”的对应点的坐标;(2)根据平移过程即可得到图(2)与图(1)对应“顶点”的坐标之间的关系,进而可得它由图(1)如何变化而来的;(3)根据平移过程即可得到图(3)与图(1)对应“顶点”的坐标之间的关系,进而可得它由图(1)如何变化而来的.【解答】解:(1)把图(1)中的图形平移后,“顶点”A(4,4)的对应点是A'(4,0),即图形向下平移4个单位,所以另外6个“顶点”的对应点的坐标分别为:(1,﹣2),(2,﹣2)(2,﹣4),(6,﹣4),(6,﹣2),(7,﹣2);(2)图(2)与图(1)对应“顶点”的坐标之间关系为:横坐标不变,纵坐标减少5,它可以由图(1)向下平移5个单位得到;(3)图(3)与图(1)对应“顶点”的坐标之间关系为:横坐标减去8,纵坐标不变,它可以由图(1)向左平移8个单位得到.【点评】本题考查了坐标与图形变化﹣平移,解决本题的关键是掌握平移的性质.26.【分析】根据题意,请从中任选两个作为条件,另一个作为结论构成一个命题,根据平行线的判定和性质及对顶角相等进行证明.【解答】解:已知:∠1=∠2,∠B=∠C;求证:∠A=∠D;证明:∵∠1=∠3,又∵∠1=∠2,∴∠3=∠2,∴EC∥BF,∴∠AEC=∠B,又∵∠B=∠C,∴∠AEC=∠C,∴AB∥CD,∴∠A=∠D.故答案为:∠1=∠2,∠B=∠C;∠A=∠D;∵∠1=∠3,又∵∠1=∠2,∴∠3=∠2,∴EC∥BF,∴∠AEC=∠B,又∵∠B=∠C,∴∠AEC=∠C,∴AB∥CD,∴∠A=∠D.【点评】此题考查平行线的判定和性质题,证明的一般步骤:写出已知,求证,画出图形,再证明.。
福建省福州市2020-2021学年七年级下学期期中数学试题(word版 含答案)
福建省福州市2020-2021学年七年级下学期期中数学试题 学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列实数是无理数的是( )A B .13 C .3.1415 D .﹣5 2.下列各式计算正确的是( )A B 2 C = ±2 D .3.如图,直线AB 与直线CD 相交于点O ,OE ⊥AB ,垂足为O ,∠EOD=30°,则∠BOC=( )A .150°B .140°C .130°D .120° 4.如图,若在象棋盘上建立平面直角坐标系,使棋子“车”的坐标为(﹣2,2),“马”的坐标为(1,2),则棋子“炮”的坐标为( )A .(3,2)B .(3,1)C .(2,2)D .(﹣2,2) 5.表格中上下每对x 、y 的值都是同一个二元一次方程的解,则这个方程为( )A .5x +y =3B .x +y =5C .2x ﹣y =0D .3x +y =5 6.如果m n >,则下列不等式不成立的是( )A .33m n +>+B .33m n ->-C .33m n >D .22m n ->- 7x 人,分y 组活动,若每组7人,则余下3人;每组8人,则有一组差5人,根据题意下列方程组正确的是( )A .7385y x y x =+⎧⎨=+⎩B .7385y x y x =-⎧⎨=+⎩C .7385x y x y =+⎧⎨=-⎩D .7385x y x y =-⎧⎨=+⎩ 8.有下列命题,其中假命题有( )①内错角相等.②在同一平面内,垂直于同一条直线的两直线平行.③相等的角是对顶角.④经过直线外一点,有且只有一条直线与已知直线平行.A .①②B .①③C .②④D .③④ 9.已知15x m =+,52y m =-,若3m >-,则x 与y 的关系为( ) A .x y = B .x y > C .x y < D .不能确定 10.在平面直角坐标系xOy 中,对于点P (x ,y )我们把点P (﹣y +1,x +1)叫做点P 伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(2,4),点A 2021的坐标为( )A .(﹣3,3)B .(﹣2,﹣2)C .(3,﹣1)D .(2,4)二、填空题11.__________.12.点p(5,-6)到x 轴的距离为______.13.将“a 与2的和是负数”用不等式表示为____.14.若点A (a ,b )在第二象限,则点B (b ,a )在第_____象限. 15.已知关于x 、y 的方程组3522x y x y +=⎧⎨-=⎩,则2x +3y 的值是_____. 16.平面直角坐标系中,点A (a,B (﹣1,),则线段AB 的最小值为_____.三、解答题17.(1)计算:|2|;(2)解方程:x 2﹣25=0.18.解方程组:3435x y x y -=⎧⎨+=⎩①②.19.求当x 为何值时,代数式4115-x 的值不小于代数式4x +1的值?在数轴上表示其解20.已知21a -的算术平方根是3,1b -2+a b 的值. 21.已知三角形A 1B 1C 1是由三角形ABC 经过平移得到的,其中A 、B 、C 三点的对应点分别是A 1、B 1、C 1,它们在平面直角坐标系中的坐标如表所示:(1)观察表中各对应点坐标的变化,填空a = ,b = ;(2)在图中的平面直角坐标系中画出三角形ABC 及三角形A 1B 1C 1;(3)P (m ,n )为三角形ABC 中任意一点,则平移后对应点P '的坐标为 .22.已知:如图EF ∥CD ,∠1+∠2=180°.(1)试说明GD ∥CA ;(2)若CD 平分∠ACB ,DG 平分∠CDB ,且∠A =40°,求∠ACB 的度数.23.学校准备为“趣味数学”比赛购买奖品.已知在商场购买3个甲种奖品和2个乙种奖品共需130元;购买6个甲种奖品和5个乙种奖品共需280元.(1)求甲、乙两种奖品的单价;(2)学校计划购买甲、乙两种奖品共100个,且此次购买奖品的费用不超过2000元.正逢商场促销,所有商品一律八折销售,求学校在商场最多能购买多少个甲种奖品?24.阅读材料:善于思考的小军在解方程组2534115?x y x y +=⎧⎨+=⎩①②时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5,即2(2x+5y)+y=5③把方程①代入③得:2×3+y=5,∴y=﹣1,所以y=﹣1代入①得x=4,∴方程组的解为41 xy=⎧⎨=-⎩,请你解决以下问题:(1)模仿小军的“整体代换”法解方程组325 9419?x yx y-=⎧⎨-=⎩①②,(2)已知x,y满足方程组2222321247?2836?x xy yx xy y⎧-+=⎨++=⎩①②,求x2+4y2的值与xy的值;(3)在(2)的条件下,写出这个方程组的所有整数解.25.如图,在平面直角坐标系xOy中,点A(a,0),B(c,c),C(0,c),且满足(a+10)20,P点从A点出发沿x轴正方向以每秒2个单位长度的速度匀速移动,Q点从O点出发沿y轴负方向以每秒1个单位长度的速度匀速移动.(1)直接写出点C的坐标,AO和BC位置关系是;(2)在P、Q的运动过程中,连接PB,QB,使S△P AB=S△QBC,求出点P的坐标;(3)在P、Q的运动过程中,请探究∠CBQ、∠OPQ和∠PQB的数量关系,并说明理由.参考答案1.A2.A3.D4.B5.D6.B7.B8.B9.B10.D1112.613.a+2<014.四15.31617.(1)6--(2)x1=5,x2=-5【详解】解:(1)原式=325-+=6-;(2)x2﹣25=0,移项得:x2=25,解得:x1=5,x2=-5.18.21 xy=⎧⎨=-⎩【详解】解:3435x y x y -=⎧⎨+=⎩①②, ①3⨯+②,得714x =,解得2x =,把2x =代入①,得23y -=,解得1y =-.故方程组的解为21x y =⎧⎨=-⎩.19.x ≤−1,数轴见详解,满足条件的最大整数为−1.【详解】 解:根据题意,得:4115-x ≥4x +1, 去分母,得:4x −11≥20x +5,移项、合并,得:−16x ≥16,系数化为1,得:x ≤−1,将解集表示在数轴上如下:则满足条件的最大整数为−1.20.11【详解】∵21a -的算术平方根是3,∴219a -=,解得:5a =,∵1b -∴12-=b ,解得:3b =,∴252311a b +=+⨯=.21.(1)5,4;(2)答案见解析;(3)(m +5,n +2).【详解】(1)由B 点横坐标的变化可得,△ABC 向右平移5个单位,由A 点的纵坐标变化可得向上平移了2个单位,∴ 5,4a b ==(2)如图所示,ABC 和111A B C △即为所求:(3)平移后对应点P '的坐标为()5,2m n ++.22.(1)见解析;(2)∠ACB =80°【详解】解:(1)∵EF ∥CD∴∠1+∠ECD =180°又∵∠1+∠2=180°∴∠2=∠ECD∴GD ∥CA ;(2)由(1)得:GD ∥CA ,∴∠BDG =∠A =40°,∠ACD =∠2,∵DG 平分∠CDB ,∴∠2=∠BDG =40°,∴∠ACD =∠2=40°,∵CD 平分∠ACB ,∴∠ACB =2∠ACD =80°.23.(1)甲种奖品的单价为30元,乙种奖品的单价20元;(2)学校在商场最多能购买50个甲种奖品.解:(1)设甲的单价为种奖品x 元,乙种奖品的单价为y 元.根据题意,得3213065280x y x y +⎧⎨+⎩==,解得:3020x y ⎧⎨⎩==, 答:甲种奖品的单价为30元,乙种奖品的单价20元;(2)设学校购买a 个甲种奖品,则购买(100−a )个乙种奖品,根据题意,得0.8×[30a +20(100−a )]≤2000, 解得a ≤50,∴学校最多能购买50个甲种奖品.答:学校在商场最多能购买50个甲种奖品.24.(1)32x y ⎧⎨⎩==;(2)x 2+4y 2=17,xy =2;(3)12x y =⎧⎨=⎩或12x y =-⎧⎨=-⎩ 解:(1)3259419x y x y -=⎧⎨-=⎩①②,把②变形为9x −6y +2y =19,即3(3x −2y )+2y =19③.把①代入③,得3×5+2y =19, ∴y =2.把y =2代入①,得3x −2×2=5, ∴x =3.∴方程组的解为32x y ⎧⎨⎩==; (2)2222321247?2836?x xy y x xy y ⎧-+=⎨++=⎩①②, 把②变形为:22421672x xy y ++=③,由①+③得:22728119x y +=,解得:x 2+4y 2=17,把x 2+4y 2=17,代入②得:2×17+xy =36,解得:xy =2, 综上所述:x 2+4y 2=17,xy =2;(3)在(2)的条件下:x ,y 同号,∵x ,y 为整数,∴12x y =⎧⎨=⎩或12x y =-⎧⎨=-⎩.25.(1)(0,−5),BC∥AO;(2)20,03⎛⎫-⎪⎝⎭;(3)∠PQB=∠OPQ+∠CBQ或∠BQP+∠OPQ+∠CBQ=180°,理由见详解解:(1)∵((a+10)20,∴a+10=0,c+5=0,解得,a=−10,c=−5,∴点B的坐标为(−5,−5),点C的坐标为(0,−5),∴BC∥AO,故答案为:(0,−5),BC∥AO;(2)过B点作BE⊥AO于E,设时间经过t秒,S△P AB=S△QBC,则AP=2t,OQ=t,∴CQ=5−t,∵BE=5,BC=5,∴S△P AB=12AP•BE=12×2t×5=5t,S△BCQ=12CQ•BC=12×(5−t)×5,∵S△P AB=S△QBC,∴5t=12×(5−t)×5,解得,53t=,∴AP=2t=103,∴OP=OA−AP=203,∴点P的坐标为20,03⎛⎫-⎪⎝⎭;(3)∠PQB=∠OPQ+∠CBQ或∠BQP+∠OPQ+∠CBQ=180°.理由如下:①当点Q在点C的上方时,过Q点作QH∥AO,如图2所示,∴∠OPQ=∠PQH,∵BC∥AO,QH∥AO,∴QH∥BC,∴∠HQB=∠CBQ,∴∠OPQ+∠CBQ=∠PQH+∠BQH,∴∠PQB=∠OPQ+∠CBQ;②当点Q在点C的下方时;过Q点作HJ∥AO如图3所示,∴∠OPQ=∠PQJ,∵BC∥AO,QH∥AO,∴QH∥BC,∴∠HQB=∠CBQ,∴∠HQB+∠BQP+∠PQJ=180°,∴∠BQP+∠OPQ+∠CBQ=180°,综上所述,∠PQB=∠OPQ+∠CBQ或∠BQP+∠OPQ+∠CBQ=180°.。
2020-2021学年人教版七年级数学下册期中测试卷(含答案)
七年级数学试卷- 1 -(共4页)2020-2021学年度第二学期七年级期中质量检测数 学 试 卷一、选择题(共10小题,每小题4分,满分40分,每小题只有一个正确的选项,请在答题卡的相应位置填涂) 1.9的平方根是A .9B .±9C .±3D .3 2.如图,∠1,∠2是对顶角的是3.在实数5 , 56 ,3-8 ,3.14, π 3 , 36 ,0.1010010001…中,无理数有A .2个B .3个C .4个D .5个 4.将一块直角三角板与长方形纸条如图放置.若∠1=60°,则∠2的度数为 A .30° B .45° C . 50° D . 60° 5.如图,数轴上表示实数 5 的点可能是 A .点A B .点B C .点C D .点D6.下列命题是真命题的是A .相等角是对顶角B .在同一平面内,如果a ⊥b ,b ⊥c ,则a ⊥cC .内错角相等D .如果a ∥b ,b ∥c ,则a ∥c12A21B D 2 121 第4题 —2 —1 0123 45 6 第5题21C七年级数学试卷- 2 -(共4页)7.如图所示,下列推理不正确的是 A .若∠1=∠B ,则BC ∥DE B .若∠2=∠ADE ,则AD ∥CE C .若∠A +∠ADC =180°,则AB ∥CD D .若∠B +∠BCD =180°,则BC ∥DE8.如果方程x —y =3与下面的方程组成的方程组的解为 ,那么这一个方程可以是A .2(x —y )=6yB .3x —4y =16C . 1 4 x +2y =5D . 12x +3y =89.某运输队接到给武汉运输物资的任务,该队有A 型卡车和B 型卡车,A 型卡车每次可运输6t 物资,每天可来回6次,B 型卡车每次可运输10t 物资,每天可来回4次,若每天派出20辆卡车,刚好运输860t 物资,设该运输队每天派出A 型卡车x 辆,B 型卡车y 辆,则所列方程组正确的是10.若有3 x + 3y =0,则x 和y 的关系是A . x =y =0B . x -y =0C . xy =1D . x+y =0二、填空题(共6小题,每小题4分,满分24分,请将答案填写在答题卡相应位置)11.计算: 64 = ;3- 18 = .12.已知x =1,y =-8是方程3ax -y =-1的解,则a 的 值为 .13.如图,为了把河中的水引到A 处,可过点A 作AB ⊥CD 于B ,然后沿AB 开渠,这样做可使所开的渠道最短,这种设计的依据是 .14.把命题改写成“如果……,那么……”的形式:两直线平行,同位角相等. .15.已知∠α与∠β互补,且∠α与∠β的差是70°,则∠α= ,∠β= .小河A B CD第13题x + y =20 6•6x + 4•10y =860 B.6x +4 y =20 6x + 10y =860 A. x + y =20 6x + 10y =860C.6x + 4y =20 6•6x + 4•10y =860D. ABE C D 321 第7题x =4y =1七年级数学试卷- 3 -(共4页)16.一束光线照射到平面镜AB 上,然后在平面镜 AB 和CD 之间来回反射,这时光线的入射角等于反射角, 即∠1=∠2,∠3=∠4,∠5=∠6. 若已知∠1=50°, ∠6=65°,那么∠3的度数为 . 三、解答题(共9小题,满分86分)17.(每小题4分,共8分)计算:(1)|5 -7 |+5 ; (2)0.09 + 3-8- 1 418.(本题6分)解下列方程组:19.(本题8分)某小组去看电影,甲种票每张24元,乙种票每张20元.如果40人购票恰好用去920元,甲乙两种票各买了多少张?20.(本题8分)完成下列证明:已知CD ⊥AB ,FG ⊥AB ,垂足分别为D 、F ,且∠1=∠2,求证DE ∥BC . 证明:∵ AB ⊥CD ,FG ⊥AB (已知),∴∠BDC =∠BFG =90°() ∴CD ∥GF ( ) ∴∠2=∠3( ) 又∵∠1=∠2(已知) ∴∠1=∠3 (等量代换)∴DE ∥BC ( )21.(本题10分)已知4a + 7的立方根是3,2a + 2b + 2的算术平方根是4. (1)求a ,b 的值;(2)求6a + 3b 的平方根.22.(本题10分)如图,已知AC ⊥BC 于点C ,∠DAB =70°,AC 平分∠DAB ,∠DCA =35°.求∠B 的度数.2x +3y =4 3x -2y =-7ABC D EFG12 3第20题ABCD第22题第16题七年级数学试卷- 4 -(共4页)23.(本题10分)某电器超市销售每台进价分别为2000元、1700元A 、B 两种型号的空调,如表是近两周的销售情况:(1)求A 、B 两种型号的空调的销售单价; (2)求近两周的销售利润.24.(本题12分)先阅读下面材料,再解答问题:材料:已知a ,b 是有理数,并且满足等式5- 7 a = 2b + 23 7 -a ,求a ,b 的值. 解:∵ 5- 7 a =2b + 23 7 -a ∴ 5- 7 a =(2b -a )+ 23 7 ∵ a ,b 是有理数∴ 解得问题:(1)已知a ,b 是有理数,a+ 3 2 =5 + 2 b ,则a = ,b = . (2)已知x ,y 是有理数,并且满足等式7x -9+ 2 x =-5y + 2 y + 3 2 ,求x ,y 的值.25.(本题14分)如图1,AM ∥CN ,点B 为平面内一点,AB ⊥BC 于B ,过B 作BD ⊥CN ,垂足为D .(1)求证:∠BAM =∠CBD ;(2)如图2,分别作∠CBD 、∠ABD 的平分线交DN 于E 、F ,连接AF ,若∠CBF = 5 4∠CBE ,①求∠CBE 的度数; ②求证:∠CBF =∠CFB.2b -a =5 -a = 23a =- 23 b = 13 6 第25题图1ABCD MN 图2ABCD E FMN七年级数学试卷- 5 -(共4页)数学参考答案及评分细则一、选择题(有10小题,每小题4分,共40分)1. C2. C3. B4.A5. A6. D7. D8. A9. B 10. D 二、填空题(每小题4分,共24分)11. 8 - 1212. -3 13. 垂线段最短14. 如果两条直线互相平行,那么这两条直线被第三条直线所截形成的同位角相等. (注:“如果两条直线平行,那么同位角相等”也给分) 15. 125° 55° 16. 57.5°三、解答题(有9道题,共86分)17.(1)解:原式= 7 - 5 +5 …………………………………………2分= 7 +(- 5 +5 )=7 ………………………………………………………………4分(2)解:原式=0.3 +(-2)- 12……………………………………………3分=-115…………………………………………………………4分 18. 解:将①×3得……………………………………………………………1分②×2得………………………………………………………2分 将③-④得 13y =26y =2 ……………………………………………………………………3分将y =2 代入①中,得2x +3×2=4 ………………………………………………………………4分 x =1 ………………………………………………………………5分 ∴ 这个方程组的解是 ………………………………………………6分19. 解:设甲种票买了x 张,乙种票买了y 张,依题意可得 ………………………1分………………………………………………………5分解得…………………………………………………………7分答:甲种票买了30张,乙种票买了10张.…………………………………8分20.证明:∵AB⊥CD,FG⊥AB(已知),∴∠BDC=∠BFG=90°(垂直的定义)∴CD∥GF (同位角相等,两直线平行)∴∠2=∠3(两直线平行,同位角相等)又∵∠1=∠2(已知)∴∠1=∠3 (等量代换)∴DE∥BC (内错角相等,两直线平行)(注:每空2分)21. 解:(1)∵4a + 7的立方根是3,2a + 2b + 2的算术平方根是4∴4a + 7=27,2a + 2b + 2=16 …………………………………………4分∴a=5,b=2 ……………………………………………………………6分(2)由(1)知a=5,b=2∴6a + 3b=6×5+3×2=36 ……………………………………………8分∴6a + 3b的平方根为±6 ………………………………………………10分22.解:∵∠DAB=70°,AC平分∠DAB∴∠DAC=∠BAC=35°……………………………………………………1分又∵∠DCA=35°∴∠DCA=∠BAC ……………………………………………………3分∴DC//AB ……………………………………………………………5分∴∠DCB+∠B=180°……………………………………………………6分又∵AC⊥BC∴∠ACB=90°……………………………………………………………7分∴∠DCB=∠DCA+∠ACB=125°………………………………………8分∴∠B=180°-∠DCB=55°………………………………………………10分23. 解:(1)设A型号空调的销售单价为x元,B型号空调的销售单价为y元,七年级数学试卷- 6 -(共4页)依题意可得………………………………………………………………1分…………………………………………………5分解得………………………………………………6分答:A型号空调的销售单价为2500元,B型号空调的销售单价为2100元.……7分(2)由(1)题知A型号空调的销售单价为2500元,B型号空调的销售单价为2100元,则销售总利润为(2500-2000)(4+5)+(2100-1700)(5+10)…………………………8分=4500+6000=10500(元)………………………………………………………………9分答:近两周的销售利润为10500元. ………………………………………10分24.解:(1)a=5 ,b=3;………………………………………………………………4分(2)∵7x-9+ 2 x=-5y + 2 y + 3 2∴7x-9+ 2 x=-5y + 2(y + 3)………………………………6分∵a,b是有理数∴……………………………………………………10分解得……………………………………………………12分25. 解:(1)过点B作BG//AM ………………………………………………………1分∴∠BAM=∠ABG ……………………………………………………2分∵AB⊥BC∴∠ABG=90°-∠CBG∴∠BAM=90°-∠CBG ……………………3分∵BG//AM,AM//CN∴BG//CN∵BD⊥CN∴∠DBG=90°=∠D∴∠CBD=90°-∠CBG ………………………………………………4分七年级数学试卷- 7 -(共4页)七年级数学试卷- 8 -(共4页)∴ ∠BAM =∠CBD ………………………………………………5分(2)如图2,∵ BE 为∠CBD 的平分线∴ ∠DBE =∠CBE …………………6分 设∠DBE =∠CBE =x ,则∠BAM =2x , ∠CBF = 54 x ……………………8分①∵ BF 为∠ABD 的平分线 ∴ ∠ABF =∠DBF = 134x∴ ∠ABC = 13 4 x + 5 4 x = 184 x …………………………………………9分∵ AB ⊥BC∴ ∠ABC =90°,即 184 x =90° ………………………………………10分∴ x =20°,即∠CBE =20° …………………………………………11分 ②∵ BG //AM ,AM //CN ∴ ∠ABG =∠BAM ,BG //CN ∴ ∠CFB =∠FBG∴ ∠CFB +∠BAM =∠FBG +∠ABG即∠CFB +∠BAM =∠ABF …………………………………………12分 ∴ ∠CFB =∠ABF -∠BAM = 13 4 x - 2x = 54 x ……………………13分∴ ∠CBF =∠CFB ……………………………………14分七年级数学试卷- 9 -(共4页)。
2020-2021学年人教版七年级下册数学期中试卷(有答案)
人教版七年级下册数学期中试卷一.选择题(共10小题,满分40分,每小题4分)1.一个数的两个平方根分别是2a﹣1与﹣a+2,则这个数是()A.﹣1B.3C.9D.﹣32.在,0,,﹣,0.1010010001…(相邻两个1之间的0的个数逐渐增加1)这五个数中,无理数的个数共有()A.2个B.3个C.4个D.5个3.下列不等式变形错误的是()A.若a>b,则1﹣a<1﹣bB.若a<b,则ax2≤bx2C.若ac>bc,则a>bD.若m>n,则>4.若xy>0,则关于点P(x,y)的说法正确的是()A.在一或二象限B.在一或四象限C.在二或四象限D.在一或三象限5.不等式组的解集在数轴上表示为()A.B.C.D.6.如图,点Q(m,n)是第二象限内一点,则点Q到y轴的距离是()A.m B.n C.﹣m D.﹣n7.将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是()A.将原图向左平移两个单位B.关于原点对称C.将原图向右平移两个单位D.关于y轴对称8.估计的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间9.下列说法中正确的是()A.立方根是它本身的数只有1和0B.算术平方根是它本身的数只有1和0C.的算术平方根是4D.绝对值是它本身的数只有1和010.如图,数轴上的点A表示的数是1,OB⊥OA,垂足为O,且BO=1,以点A为圆心,AB 为半径画弧交数轴于点C,则C点表示的数为()A.﹣0.4B.﹣C.1﹣D.﹣1二.填空题(共8小题,满分16分,每小题2分)11.的相反数是,绝对值是.12.疫情期间全国“停课不停学”初中生来清网上听课每节课a分钟,每天六节课,每天上网课总时长小于240分钟,可列不等式.13.若点(3+m,a﹣2)关于y轴对称点的坐标是(3,2),则m+a的值为.14.不等式﹣x+1<0的解集是.15.的值是;的立方根是.16.如果点P(x,y)的坐标满足x+y=xy,那么称点P为“和谐点”,若某个“和谐点”到x轴的距离为3,则P点的坐标为.17.若|a﹣2|+b2+4b+4+=0,则=.18.已知不等式6x+1>5x﹣2的最小整数解是方程2x﹣kx=4﹣2k的解,则k=.三.解答题(共10小题,满分64分)19.解方程:2x2﹣8=0.20.计算:5﹣.21.计算:﹣22+﹣﹣|﹣2|.22.解不等式+1≥.并把此不等式的解表示在数轴上.23.解不等式x﹣4<3(x﹣2),并把解集在数轴上表示出来.24.解不等式组.25.(1)计算:++|1﹣|;(2)解方程组;(3)解不等式组,并写出它的所有整数解..26.如图,三角形ABC的顶点坐标分别为A(﹣2,4),B(﹣3,1),C(0,1),BC上的一点P的坐标为(﹣2,1),将三角形ABC向右平移4个单位长度,再向上平移1个单位长度,得到三角形A1B1C1,其中点A,B,C,P分别对应点A1,B1,C1,P1.(1)在图中画出三角形A1B1C1和点P1;(2)连接P1A,P1B,直接写出三角形P1AB的面积.27.平面直角坐标系中,直线y=2x+4与x轴、y轴分别交于点B、A.(1)直接写出直线AB关于x轴对称的直线BC的解析式;(2)如图1,直线BC与直线y=﹣x交于E点,点P为y轴上一点,PE=PB,求P点坐标;(3)如图2,点P为y轴上一点,∠OEB=∠PEA,直线EP与直线AB交于点M,求M点的坐标.28.放假了,学生王东准备利用假期到某工厂打工,该工厂的工作时间:每月25天,每天上午:8:00﹣12:00,下午:14:00﹣18:00.待遇:按件计酬,另每月加奖金100元.生产甲、乙两种产品,规定每月生产甲种产品不少于100件,每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元.下表是生产甲、乙产品件数与所用时间之间的关系:所用总时间(分)生产甲产品的件数(件)生产乙种产品的件数(件)215065190(1)王东每生产一件甲种产品和每生产一件乙种产品分别需要多少分钟?(2)王东这个月最多能得多少工资?此时生产甲乙两种产品各多少件?参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:由题意得,2a﹣1﹣a+2=0,解得a=﹣1,所以2a﹣1=﹣3,﹣a+2=3,即一个数的两个平方根分别是3与﹣3,所以这个数是9,故选:C.2.解:在,0,,﹣,0.1010010001…(相邻两个1之间的0的个数逐渐增加1)这六个数中,无理数有:,0.1010010001…(相邻两个1之间的0的个数逐渐增加1)共2个.故选:A.3.解:A、∵a>b,∴﹣a<﹣b,∴1﹣a<1﹣b,正确,故本题选项不符合题意;B、∵a<b,∴ax2≤bx2,正确,故本题选项不符合题意;C、当c<0时,根据ac>bc不能得出a>b,错误,故本题选项不符合题意;D、∵m>n,∴>,正确,故本题选项不符合题意;故选:C.4.解:∵xy>0,∴x>0,y>0或x<0,y<0,∴点P(x,y)在一或三象限.故选:D.5.解:,由①得,x>1,由②得,x≥2,故此不等式组的解集为:x≥2.在数轴上表示为:.故选:A.6.解:因为Q(m,n)是第二象限内一点,所以m<0,所以点Q到y轴的距离是|m|=﹣m.故选:C.7.解:∵将三角形三个顶点的横坐标都减2,纵坐标不变,∴所得三角形与原三角形的关系是:将原图向左平移两个单位.故选:A.8.解:∵49<63<64,∴7<<8,故选:A.9.解:A、立方根是它本身的数只有1和0、﹣1,故此选项错误;B、算术平方根是它本身的数只有1和0,故此选项正确;C、=4的算术平方根是2,故此选项错误;D、绝对值是它本身的数是非负数,故此选项错误.故选:B.10.解:在Rt△AOB中,AB==,∴AB=AC=,∴OC=AC﹣OA=﹣1,∴点C表示的数为1﹣.故选:C.二.填空题(共8小题,满分16分,每小题2分)11.解:的相反数是﹣;∵>0,∴||=.故答案为:﹣,.12.解:依题意,得6a<240.故答案为:6a<240.13.解:∵点(3+m,a﹣2)关于y轴对称点的坐标是(3,2),∴3+m=﹣3,a﹣2=2,解得:m=﹣6,a=4,则m+a的值为:﹣6+4=﹣2.故答案为:﹣2.14.解:不等式两边同时乘以﹣3得:x﹣3>0,移项得:x>3,即不等式的解集为:x>3.故答案为:x>3.15.解:∵42=16,∴=4,=8,=2,故答案为:4,2.16.解:∵某个“和谐点”到x轴的距离为3,∴y=±3,∵x+y=xy,∴x±3=±3x,解得:x=或x=.则P点的坐标为:(,3)或(,﹣3).故答案为:(,3)或(,﹣3).17.解:根据题意得|a﹣2|+(b+2)2+=0,∴a﹣2=0,b+2=0,c﹣=0,解得a=2,b=﹣2,c=,所以原式=××=2×=2×1=2.故答案为2.18.解:6x+1>5x﹣2,解得:x>﹣3,∵x是不等式5x﹣2<6x+1的最小整数解,∴x=﹣2,把x=﹣2代入方程2x﹣kx=4﹣2k中得:2×(﹣2)﹣(﹣2)×k=4﹣2k,解得:k=2,故答案为:2.三.解答题(共10小题,满分64分)19.解:x2=4,所以x1=2,x2=﹣2.20.解:原式=5﹣2﹣2=1.21.解:原式=﹣4+6+3﹣(﹣2)=﹣4+6+3﹣+2=7﹣.22.解:去分母得:3(x﹣1)+6≥2(2x+1),去括号得:3x﹣3+6≥4x+2,移项合并同类项得:﹣x≥﹣1,故不等式的解集为:x≤1,在数轴上表示不等式的解集,如图所示:.23.解:去分母得:x﹣4<3x﹣6,移项得:x﹣3x<﹣6+4,合并得:﹣2x<﹣2,解得:x>1,表示在数轴上,如图所示:.24.解:,解不等式①得:x≥4,解不等式②得:x>,所以不等式组的解集是x≥4.25.解:(1)原式=3﹣4+﹣1,=﹣2+.(2),①×2﹣②得,﹣9n=﹣18,解得n=2,把n=2代入①得,m=7,∴方程组的解为;(3),解①得:x≤3;解②得:x>﹣1;则不等式组的解集为﹣1<x≤3,∴这个不等式组的整数解为0,1,2,3.26.解:(1)如图所示:△A1B1C1和点P1,即为所求;(2)三角形P1AB的面积为:3×5﹣×2×4﹣×1×3﹣×1×5=7.27.解:(1)∵直线y=2x+4与x轴、y轴分别交于点B、A.∴A(0,4),B(﹣2,0),∵直线AB与直线BC关于x轴对称,∴C(0,﹣4),设直线BC的解析式为y=kx+b,∴,解得,;∴直线BC的解析式为y=﹣2x﹣4;故答案为:y=﹣2x﹣4;(2)∵,∴,∴E(﹣4,4),∴AE⊥AO,设OP=a,AP=4﹣a,在Rt△BOP和Rt△EAP中,BP2=4+a2,PE2=16+(4﹣a)2,∵PE=PB,∴4+a2=16+(4﹣a)2,解得a=3.5.∴P(0,3.5).(3)①如图,当点P在点A的下方,∵∠OEB=∠PEA,∠AEO=45°,∴∠PEB=45°,过点B作BN⊥BE交直线EP于点N,过点N作NQ⊥OB于Q,过点E作EH⊥OB于点H,∴△EBN为等腰直角三角形,∴EB=BN,∵∠BEH+∠EBH=90°,∠EBH+∠NBQ=90°,∴∠BEH=∠NBQ,又∵∠EHB=∠BQN=90°,∴△EHB≌△BQN(AAS),∴NQ=BH=2,BQ=EH=4,∴N(2,2),设直线EN的解析式为y=kx+b,∴,解得,∴直线EN的解析式为y=﹣x+,∴,解得,即M(﹣,);②P点在A点的上方,由①知图1中OP=,则AP=,∴OP=,设直线EP的解析式为y=mx+,∵E(﹣4,4),∴﹣4m+=4,解得m=,∴直线EP的解析式为y=x+,∴,解得,∴M(0.8,5.6).综合以上可得点M的坐标为(﹣,)或(0.8,5.6).28.解:(1)设生产一件甲种产品需x分钟,生产一种乙种产品需y分钟,由题意得,解得:x=15,y=20,答:生产一件甲种产品需15分钟,生产一件乙种产品需20分钟;(2)设生产甲种产品a件,工资为w元,w=1.5a+2.8(25×8×60﹣15a)÷20+100,=﹣0.6a+1780,∵a≥100,∴由一次函数性质知,当a=100时,w取最大值为1720元.答:王东该月最多工资为1720元,此时生产甲种产品100件,乙种产品525件.。
2020-2021福州市七年级数学下期中试题(含答案)
)
B. 2x 2y
C. x y 22
D. 3 2x 3 2y
9.如图,数轴上表示 2、 5 的对应点分别为点 C,B,点 C 是 AB 的中点,则点 A 表示
的数是( )
A. 5
B. 2 5
C. 4 5
D. 5 2
10.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2 的度数是( )
A.40°
B.50°
C.60°
D.70°
11.已知
x
y
3 2
是方程组
ax cx
cy by
1 2
的解,则
a、b
间的关系是(
)
A. 4b 9a 1
B. 3a 2b 1
C. 4b 9a 1
D. 9a 4b 1
a
12.我们定义
c
b
2
d
ad
bc
,例如:
4
3 5
2
5
3
4
2
,若
x
满足
2
n 1 x n 1 ,则 x n ,如 0.46 0, 3.67 4,给出下列关于 x 的结论:
2
2
① 1.493 1;
② 2x 2 x ; ③若 1 x 1 4 ,则实数 x 的取值范围是 9 x 11;
2 ④当 x 0 , m 为非负整数时,有 m 2018x m 2018x ; ⑤ xy x y ;
19.根据不等式的基本性质,可将“mx<2”化为“x> 2 ”,则 m 的取值范围是_____. m
20.如图,已知 AB∥CD,∠B=25°,∠D=45°,则∠E=__度.
三、解答题
21.某市教育行政部门为了了解初一学生每学期参加综合实践活动的情况,随机抽样调查 了某校初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完 整的统计图(如图)
人教版数学七年级下学期《期中考试卷》(带答案解析)
2020-2021学年度第二学期期中测试人教版七年级数学试题一、选择题1.下列方程中:①246x +=,②11x x-=,③232x x -,④57x <,⑤322x y -=,⑥3x =其中是一元一次方程的有( )A. 5个B. 4个C. 3个D. 2个 2.在下列数学表达式:①-20<,②2-50x ≥,③1x =,④2-x x ,⑤-2x ≠,⑥2-1x x +<中,是不等式的有( )A. 2个B. 3个C. 4个D. 5个 3.下列说法不正确的是( )A. 若x y =,则+=+x a y aB. 若x y =,则--x b y b =C. 若x y =,则55x y =D. 若x y =,则x y a a = 4.已知231x y -=,用含x的代数式表示y 正确的是( ) A. 23y x =B. 312y x +=C. 213x y -=D. 1233y x =-- 5.方程1126x x --=,去分母正确的是( ) A. 6(1)6x x --=B. 3(1)1x x --=C. 3(1)6x x --=D. 316x x --= 6.解方程组327413x y x y +=⎧⎨-=⎩①②比较简单的解法是( ) A. ①×2-②,消去xB. ①-②×2,消去yC. ①×2+②,消去xD. ①+②×2,消去y7.方程12110.30.7x x +--=中小数化为整数,可变形为( ) A. 101021130.7x x +--= B. 101201137x x +--= C. 1012011037x x +--= D. 10102010137x x +--=8.已知方程组221x y k x y +=⎧⎨+=⎩的解满足3x y -=,则k 的值为( ) A. 2 B. 2- C. 1 D. 1-9.“x 的2倍与x 的相反数的差不小于1”,用不等式表示为( )A. 21x x -≥B. 2-(-)1x x ≥C. 21x x ->D. 2()1x x --> 10.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A. 2×1000(26﹣x )=800x B. 1000(13﹣x )=800xC. 1000(26﹣x )=2×800xD. 1000(26﹣x )=800x二、填空题11.方程1--22x =的解是________ 12.已知3x =是方程3-25x a =的解,则a =_________ 13.若7x 3a y 4b 与﹣2x 3y 3b +a 是同类项,则a =_____,b =_____. 14.已知21x y =⎧⎨=-⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a ﹣b 的值为_____. 15.在公式1()2s a b h =+中,120,12,8S b h ===,则a =_______ 16.二元一次方程组2223x y x y x +-==+的解是____. 17.解方程3121226x x +-=-,有下列步骤:①3(31)12(21)x x +=--,②9312-21x x +=+,③921213x x -=++,④716x =,⑤167x =,其中首先发生错误的一步是_________. 18.a b c d ,,,为有理数,现规定一种运算:a c b d =ad bc -, 那么当2(1)x - 4518=时x 的值为__________. 19.中国古代的数学专著《九章算术》有方程组问题“五只雀六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重.”设每只雀、燕的重量各为x 两、y 两,则根据题意,可列方程组为_________. 20.某商店连续两次降价10%后商品的价格是81元,则该商品原来的价格是_______元 三、解答题21.解方程或方程组(1)213x +=(2)5234x x -=+()(3)321123x x -+-= (4)8423x y x y +=⎧⎪⎨+=⎪⎩ (5)1225224x y z x y z x y ++=⎧⎪++=⎨⎪=⎩22.当x 为何值时,整式31x +的值是整式74x +的5倍?23.已知关于x 、y 的二元一次方程组26322x y m x y m +=⎧⎨-=⎩的解满足二元一次方程5360x y -=,求m 的值? 24. 某地为了打造风光带,将一段长为360m 的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m ,乙工程队每天整治16m .求甲、乙两个工程队分别整治了多长的河道.四、填空或选择题25.若437ax y x +=-是关于,x y 的二元一次方程,则a 的取值范围是A. 2a ≠-B. 0a ≠C. 3a ≠D. -1a ≠26.已知215x +=,则x =_________27.若0x <,则下列不等式成立的是:①0x >,②20x >,③10x +>,④-0x >_________A .①②③B .①②④C .③④D .①③28.若14,2a b a c +=+=,则23()2()4b c b c ---+=________ 29.不论x 取何值时,等式34ax b x --=恒成立,则a b +=________30.对有理数x ,y 定义一种新运算“*”:x *y =ax +by ,其中a ,b 为常数.等式右边是通常加法和乘法运算.已知3*5=15,4*7=28,那么a +b =________.31.已知::1:2:3x y z =,且234x y z -+=,则-x y z +=________五、解答下列各题32.小明在解方程21152x x a -++=时,方程左边的“+1”没有乘以10,因此求得方程的解为4x =,试求a 的值及方程的正确解?33.已知关于x 、y 的方程22(4)(2)(6)8k x k x k y k -+++-=+,试问:①当k 为何值时此方程为一元一次方程? ②当k 为何值时此方程为二元一次方程?34.随着“低碳生活、绿色出行”理念的普及,新能源汽车在逐渐成为人们喜爱的交通工具,某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解,2辆A 型汽车,3辆B 型汽车的进价共计80万元;3两A 型汽车,2两B 型汽车的进价共计95万元.(1)问A 、B 两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买)请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A 型汽车可获利800元,销售1辆B 型汽车可获利500元;在②的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润多少元?答案与解析一、选择题1.下列方程中:①246x +=,②11x x-=,③232x x -,④57x <,⑤322x y -=,⑥3x =其中是一元一次方程的有( )A. 5个B. 4个C. 3个D. 2个 【答案】D【解析】【分析】根据一元一次方程的定义对每一项进行判断即可.【详解】①式中含有一个未知数且次数是1,故①是;②式中含有一个未知数但最高次数不是1,故②不是;③式不是方程,故③不是;④式是不等式,故④不是;⑤式含有两个未知数,故⑤不是;⑥式中含有一个未知数且次数是1,故⑥是;综上,①⑥是一元一次方程,故选:D .【点睛】本题考查了一元一次方程的定义,掌握知识点是解题关键.2.在下列数学表达式:①-20<,②2-50x ≥,③1x =,④2-x x ,⑤-2x ≠,⑥2-1x x +<中,是不等式的有( )A. 2个B. 3个C. 4个D. 5个 【答案】C【解析】【分析】根据不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式进行判断即可得.【详解】根据不等式的定义可知①-2<0;②2x-5>0;⑤x≠-2;⑥x+2>x-1为不等式,共4个,故选:C .【点睛】本题考查了不等式,一般地,用不等号表示不相等关系的式子叫不等式,解答此类题关键是要识别常见不等号:>、<、≤、≥、≠.3.下列说法不正确的是( )A. 若x y =,则+=+x a y aB. 若x y =,则--x b y b =C. 若x y =,则55x y =D. 若x y =,则x y a a = 【答案】D【解析】【分析】根据等式的基本性质对四个选项进行逐一分析即可.【详解】解:A 、由等式的基本性质1可知,若x y =,则+=+x a y a ,故本项正确;B 、由等式的基本性质1可知,若x y =,则--x b y b =,故本项正确;C 、由等式的基本性质2可知,若x y =,则55x y =,故本项正确;D 、当a=0时,x y a a =无意义,故本项错误; 故选:D .【点睛】本题主要考查了等式的基本性质,解题的关键是掌握等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.4.已知231x y -=,用含x 的代数式表示y 正确的是( ) A. 23y x = B. 312y x += C. 213x y -= D. 1233y x =-- 【答案】C【解析】【分析】把x 看做已知数求解即可.【详解】∵2x ﹣3y =1,∴2x ﹣1=3y ,∴21=3x y -, 故选:C .【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .5.方程1126x x --=,去分母正确的是( ) A. 6(1)6x x --=B. 3(1)1x x --=C. 3(1)6x x --=D. 316x x --= 【答案】C【解析】【分析】先找出分母的最小公倍数,然后给等式两边同时乘以分母的最小公倍数,即可求解; 【详解】 1126x x --= ∴ 给等式两边同时乘以6可得:()316x x --=故选:C.【点睛】本题主要考查一元一次方程中的去分母问题,熟练掌握去分母的方法是求解本题的关键.6.解方程组327413x y x y +=⎧⎨-=⎩①②比较简单的解法是( ) A. ①×2-②,消去xB. ①-②×2,消去yC. ①×2+②,消去xD. ①+②×2,消去y【答案】D【解析】【分析】应用加减消元法,判断出解法不正确的是哪一个即可. 【详解】解:327413x y x y +=⎧⎨-=⎩①② ①×2-②,不能消去x ,A 不符合题意; ①-②×2,不能消去y ,B 不符合题意; ①×2+②,不可以消去x ,C 不符合题意;①+②×2,可以消去y,D符合题意;故选:D【点睛】本题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.7.方程12110.30.7x x+--=中小数化为整数,可变形为()A. 101021130.7x x+--= B.101201137x x+--=C. 1012011037x x+--= D.10102010137x x+--=【答案】D【解析】【分析】根据分数的基本性质,给分子、分母同乘以10化简即可.【详解】∵1211 0.30.7x x+--=,∴(1)10(21)101 0.3100.710x x+⨯-⨯-=⨯⨯,即101020101 37x x+--=,故选D【点睛】本题考查了解一元一次方程,根据分数的基本性质给分子、分母同乘以10将方程化简是解答本题的关键.8.已知方程组221x y kx y+=⎧⎨+=⎩的解满足3x y-=,则k的值为()A. 2B. 2-C. 1D. 1-【答案】B【解析】【分析】将方程组中两方程相减可得x-y=1-k,根据x-y=3可得关于k的方程,解之可得.【详解】解:2? 21? x y kx y+=⎧⎨+=⎩①②②-①,得:x-y=1-k,∵x-y=3,∴1-k=3,解得:k=-2,故选:B .【点睛】本题考查了二元一次方程组的解及解法:同时满足二元一次方程组的两个方程的未知数的值叫二元一次方程组的解.本题用整体代入的方法达到了简便计算的目的.9.“x 的2倍与x 的相反数的差不小于1”,用不等式表示为( )A. 21x x -≥B. 2-(-)1x x ≥C. 21x x ->D. 2()1x x -->【答案】B【解析】【分析】 x 的2倍与x 的相反数的差表示为2-(-)x x ,不小于表示的意思是大于或等于,从而可得出不等式.【详解】解:“x 的2倍与x 的相反数的差不小于1”,用不等式表示为2-(-)1x x ≥.故选:B .【点睛】本题主要考查了列不等式,解决本题的关键是理解“不小于1”用数学符号表示为:“≥1”. 10.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A. 2×1000(26﹣x )=800x B. 1000(13﹣x )=800x C. 1000(26﹣x )=2×800x D. 1000(26﹣x )=800x【答案】C【解析】【分析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可【详解】.故选C.解:设安排x 名工人生产螺钉,则(26-x )人生产螺母,由题意得1000(26-x )=2×800x ,故C 答案正确,考点:一元一次方程. 二、填空题11.方程1--22x =的解是________ 【答案】1【解析】【分析】直接系数化1,将方程化为x=a 的形式,即可得解.【详解】解:系数化1得:x=1 ,方程的解为:x=1,故答案为:x=1【点睛】本题考查解一元一次方程,解一元一次方程,就是利用等式的性质将方程化为x=a 的形式. 12.已知3x =是方程3-25x a =的解,则a =_________【答案】2【解析】【分析】把x=3代入方程计算即可求出a 的值.【详解】解:把x=3代入方程得:9-2a=5,解得:a=2.故答案为:2.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.13.若7x 3a y 4b 与﹣2x 3y 3b +a 是同类项,则a =_____,b =_____.【答案】 (1). 1, (2). 1.【解析】【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【详解】由题意,得3a =3,3b +a =4b ,解得a =1,b =1,故答案为1,1.【点睛】考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.14.已知21x y =⎧⎨=-⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a ﹣b 的值为_____. 【答案】5【解析】【分析】把方程组的解代入方程组,得出关于a 、b 的方程组,求出方程组的解,再代入求出即可.【详解】解:根据题意得,2-72+1a b a b =⎧⎨=⎩①② , ①+②,得:4a =8,解得:a =2,②﹣①,得:2b =﹣6,解得:b =﹣3,∴a ﹣b =2﹣(﹣3)=5,故答案为5.【点睛】此题考查二元一次方程组的解,解题关键在于掌握解二元一次方程组的方法.15.在公式1()2s a b h =+中,120,12,8S b h ===,则a =_______ 【答案】18【解析】【分析】把s=120,b=12,h=8代入公式,即可得出关于a 的方程,求出方程的解即可.【详解】解:把s=120,b=12,h=8代入公式1()2s a b h =+ 得:120=12×(a+12)×8, 解得:a=18,故答案为:18.【点睛】本题考查了解一元一次方程,能得出关于a 的一元一次方程是解此题的关键.16.二元一次方程组2223x y x y x +-==+的解是____. 【答案】51x y =-⎧⎨=-⎩; 【解析】 解:原方程可化为:22223x y x x y x +⎧=+⎪⎪⎨-⎪=+⎪⎩,化简为:46x y x y -=-⎧⎨+=-⎩,解得:51x y =-⎧⎨=-⎩.故答案为51x y =-⎧⎨=-⎩. 点睛:本题考查二元一次方程的解法,解题的关键是将原方程化为方程组,本题属于基础题型.17.解方程3121226x x +-=-,有下列步骤:①3(31)12(21)x x +=--,②9312-21x x +=+,③921213x x -=++,④716x =,⑤167x =,其中首先发生错误的一步是_________. 【答案】③【解析】【分析】方程去分母,去括号,移项合并,把x 系数化为1,得到结果,即可做出判断.【详解】解:去分母得:3(3x+1)=12-(2x-1),去括号得:9x+3=12-2x+1,移项得:9x+2x=12+1-3,合并得:11x=10,解得:x=1011, 其中首先发生错误的是③.故答案为:③.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.a b c d ,,,为有理数,现规定一种运算:a c b d=ad bc -, 那么当2(1)x - 4518=时x 的值为__________.【答案】3【解析】【分析】根据新定义的运算即可求出答案.【详解】∵()254118x ⨯--=,∴解得:3x =,故答案为:3. 【点睛】本题考查了一元一次方程的应用,解题的关键是能将已知中规定的运算法则运用于所求的等式中.19.中国古代的数学专著《九章算术》有方程组问题“五只雀六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重.”设每只雀、燕的重量各为x 两、y 两,则根据题意,可列方程组为_________.【答案】561645x y x y y x +=⎧⎨+=+⎩【解析】【分析】设雀重x 两,燕重y 两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.【详解】解:设雀重x 两,燕重y 两,由题意得,561645x y x y y x+=⎧⎨+=+⎩, 故答案为:561645x y x y y x +=⎧⎨+=+⎩【点睛】本题考查了有实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.20.某商店连续两次降价10%后商品的价格是81元,则该商品原来的价格是_______元【答案】100【解析】【分析】可设该商品原来的价格是x 元,根据等量关系式:原价×(1-降低率)2=81,列出方程即可求解.【详解】解:设原价为x .x(1-10%)2=81,解得x=100.故答案为:100【点睛】考查一元一次方程的应用;解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.三、解答题21.解方程或方程组(1)213x +=(2)5234x x -=+()(3)321123x x -+-= (4)8423x y x y +=⎧⎪⎨+=⎪⎩ (5)1225224x y z x y z x y ++=⎧⎪++=⎨⎪=⎩【答案】(1) 1x =; (2) 7x =; (3) 17x =-; (4) 80x y =⎧⎨=⎩; (5) 822x y z =⎧⎪=⎨⎪=⎩【解析】【分析】(1)先移项,再系数化为1即可得到答案;(2)先去括号再移项合并,最后系数化为1即可得到答案;(3)先通分,再去括号移项合并即可得到答案;(4)②式×2-①式可以求出y 的值,再计算x 的值即可得到答案;(5)先消x ,得到关于z 、y 的二元一次方程组,求解得到z 、y 的值,再求解x 的值即可得到答案;【详解】解:(1)213x +=即:2312x =-=,解得:1x =;(2) 5234x x -=+()去括号得:52312x x -=+,移项得:214x =,解得:7x =;(3)321123x x -+-= 等式两边同时×6得:3(3)2(21)6x x --+= , 去括号移项得:34629x x -=++,即:17x =-;(4)8423x y x y +=⎧⎪⎨+=⎪⎩①②, ②式×2得:2283x y +=③, ③式-①式得:103y -=, 解得:0y = ,把0y =代回①式得:8x =,所以解为:80x y =⎧⎨=⎩; (5)1225224x y z x y z x y ++=⎧⎪++=⎨⎪=⎩①②③,把③式3分别代到①②式消去x 得到:41242522y y z y y z ++=⎧⎨++=⎩, 化简得:5126522y z y z +=⎧⎨+=⎩ 即:255606522y z y z +=⎧⎨+=⎩, 解得:22y z =⎧⎨=⎩, 把y=2代到③式得到:8x =,故三元一次方程组的解集为:822x y z =⎧⎪=⎨⎪=⎩【点睛】本题主要考查了解一元一次方程、二元一次方程组、三元一次方程组,掌握用消元法求解二元一次方程组以及三元一次方程组是解题的关键;22.当x 为何值时,整式31x +的值是整式74x +的5倍?【答案】-2【解析】【分析】根据题意,列出关于x 的一元一次方程,即可求解.【详解】由题意得:31x +=5(74x +),31x +=3520x +,∴x=-2.答:当x =-2时,整式31x +的值是整式74x +的5倍.【点睛】本题主要考查解一元一次方程,根据题意,列出一元一次方程,是解题的关键.23.已知关于x 、y 的二元一次方程组26322x y m x y m+=⎧⎨-=⎩的解满足二元一次方程5360x y -=,求m 的值? 【答案】15【解析】【分析】通过加减消元法,用含m 的代数式表示x ,y ,再结合5360x y -=,即可求解.【详解】26322x y m x y m +=⎧⎨-=⎩①②, ①×2+②,得:42+3212+2x y x y m m +-=,解得:2x m =,把2x m =代入①,得:46m y m +=,解得:2y m =.把2x m =,2y m =代入5360x y -=,得:10660m m -=,解得:m=15.【点睛】本题主要考查解二元一次方程以及解的定义,熟练掌握加减消元法,是解题的关键.24. 某地为了打造风光带,将一段长为360m 的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24m ,乙工程队每天整治16m .求甲、乙两个工程队分别整治了多长的河道.【答案】甲、乙两个工程队分别整治了120m ,240m【解析】【分析】设甲队整治了x 天,则乙队整治了20-x 天,由两队一共整治了360m 为等量关系建立方程求出其解即可.【详解】设甲队整治了x 天,则乙队整治了天,由题意,得24x+16(20-x)=360,解得:x=5,∴乙队整治了20-5=15天,∴甲队整治的河道长为:24×5=120m ;乙队整治的河道长为:16×15=240m . 【点睛】:本题考查一元一次方程的应用.能正确理解题中的等量关系是解题关键四、填空或选择题25.若437ax y x +=-是关于,x y 的二元一次方程,则a 的取值范围是A. 2a ≠-B. 0a ≠C. 3a ≠D. -1a ≠【答案】C【解析】【分析】根据二元一次方程的定义,即可得到答案.【详解】∵437ax y x +=-是关于,x y 的二元一次方程,∴(3)47a x y -+=-是关于,x y 的二元一次方程,∴3a ≠.故选C .【点睛】本题主要考查二元一次方程的定义,熟练掌握“含两个未知数,未知数的次数为1,且等号两边都是整式的方程,式二元一次方程”是解题的关键.26.已知215x +=,则x =_________【答案】2或-3【解析】【分析】根据绝对值的意义,可知215x +=±,进而即可求解. 【详解】∵215x +=,∴215x +=±, ∴2x =或3x =-.故答案是:2或-3.【点睛】本题主要考查绝对值定义,熟练掌握绝对值的定义,是解题的关键.27.若0x <,则下列不等式成立的是:①0x >,②20x >,③10x +>,④-0x >_________ A .①②③ B .①②④ C .③④ D .①③【答案】B【解析】【分析】根据求绝对值的法则,即可判断①;根据平方的意义,即可判断②;根据不等式的性质,即可判断③;根据不等式的性质,即可判断④.【详解】①∵0x <, ∴0=->x x ,故①正确;②∵0x <,∴20x >,故②正确;③∵0x <,10x +>不一定成立,故③错误;④∵0x <,∴-0x >,故④正确.综上所述:不等式成立的是:①②④.故选B .【点睛】本题主要考查不等式的基本性质以及求绝对值的法则,熟练掌握不等式的性质是解题的关键. 28.若14,2a b a c +=+=,则23()2()4b c b c ---+=________ 【答案】6【解析】【分析】由条件可得b c -的值,然后代入求值,即可. 【详解】∵14,2a b a c +=+=, ∴7()()2b c a b a c -=+-+=, ∴23()2()4b c b c ---+=2773()2224-⨯+=6. 故答案是:6.【点睛】本题主要考查代数式的值,掌握整体代入的思想方法,是解题的关键.29.不论x 取何值时,等式34ax b x --=恒成立,则a b +=________【答案】1【解析】【分析】根据等式恒成立的条件可知,当x 取特殊值0或1时都成立,可将条件代入,即可求出a 与b 的值.【详解】∵不论x 取何值等式3=4ax b x --恒成立,∴x=0时,b=-3,x=1时,a=4,即a=4,b=-3,∴a+b=4+(-3)=1,故答案为:1.【点睛】本题主要考查等式的性质,解题的关键是需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.30.对有理数x ,y 定义一种新运算“*”:x *y =ax +by ,其中a ,b 为常数.等式右边是通常的加法和乘法运算.已知3*5=15,4*7=28,那么a +b =________.【答案】-11【解析】【分析】根据新定义运算规律可列出关于a ,b 的一元二次方程组,然后求解方程组即可.【详解】根据题意,得35154728a b a b +=⎧⎨+=⎩, 解得3524a b =-⎧⎨=⎩, 则a +b =-35+24=-11.故答案为﹣11.【点睛】本题主要考查解一元二次方程组.31.已知::1:2:3x y z =,且234x y z -+=,则-x y z +=________ 【答案】43【解析】【分析】设x=k ,y=2k ,z=3k (k ≠0),结合234x y z -+=,求出k 的值,进而即可求解.【详解】∵::1:2:3x y z =,∴设x=k ,y=2k ,z=3k (k ≠0),∵234x y z -+=,∴2(2)3(3)4k k k -⨯+⨯=,解得:k=23, ∴-x y z +=-232k k k k +==43. 故答案是:43. 【点睛】本题主要考查代数式求值,掌握设k 值法,是解题的关键.五、解答下列各题32.小明在解方程21152x x a -++=时,方程左边的“+1”没有乘以10,因此求得方程的解为4x =,试求a 的值及方程的正确解?【答案】a=-1,方程的正确解为:x=13.【解析】【分析】根据题意求出a 的值,再把a 的值代入原方程,即可求解.【详解】由题意得:2(21)15()x x a -+=+的解是:4x =,把4x =代入2(21)15()x x a -+=+得:2(241)15(4)a ⨯⨯-+=⨯+,解得:a=-1, ∴原方程为:211152x x --+=, ∴2(21)105(1)x x -+=-,解得:x=13.综上所述:a=-1,方程的正确解为:x=13.【点睛】本题主要考查解一元一次方程,熟练掌握去分母,去括号,移项,合并同类项,未知数系数化为1,是解题的关键.33.已知关于x 、y 的方程22(4)(2)(6)8k x k x k y k -+++-=+,试问:①当k 为何值时此方程为一元一次方程? ②当k 为何值时此方程为二元一次方程?【答案】①当k=-2时,此方程为一元一次方程;②当k=2时,此方程为二元一次方程.【解析】【分析】①根据一元一次方程的定义,即可求解;②根据二元一次方程的定义,即可求解.【详解】①∵当240k -=且20k +=时,即:k=-2时,方程22(4)(2)(6)8k x k x k y k -+++-=+变为:86y -=,∴当k=-2时,此方程为一元一次方程;②∵当240k -=且20k +≠且60k -≠时,即:k=2时,方程22(4)(2)(6)8k x k x k y k -+++-=+变为:4410x y -=,∴当k=2时,此方程为二元一次方程.【点睛】本题主要考查一元一次方程和二元一次方程的定义,熟练掌握它们的定义,是解题的关键.34.随着“低碳生活、绿色出行”理念的普及,新能源汽车在逐渐成为人们喜爱的交通工具,某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解,2辆A型汽车,3辆B型汽车的进价共计80万元;3两A型汽车,2两B型汽车的进价共计95万元.(1)问A、B两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买)请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A型汽车可获利800元,销售1辆B型汽车可获利500元;在②的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润多少元?【答案】(1)A型汽车每辆进价为25万元,B型汽车每辆进价为10万元;(2)一共有三种购买方案:购进A型汽车2辆,购进B型汽车15辆;购进A型汽车4辆,购进B型汽车10辆;购进A型汽车6辆,购进B型汽车5辆;(3)购进A型汽车2辆,购进B型汽车15辆,可获得最大利润,利润为9100元.【解析】【分析】(1)设A型汽车每辆进价为a万元,B型汽车每辆进价为b万元,根据“2辆A型汽车,3辆B型汽车的进价共计80万元;3两A型汽车,2两B型汽车的进价共计95万元”列出二元一次方程组,即可求解;(2)设A型汽车购进x辆,B型汽车购进y辆,列出二元一次方程,结合x,y为正整数,即可求解;(3)列出利润的表达式,分别求出(2)小题三种方案的利润,进行比较,即可可得结论.【详解】(1)设A型汽车每辆进价为a万元,B型汽车每辆进价为b万元,由题意得:23803295a ba b+=⎧⎨+=⎩,解得:2510ab=⎧⎨=⎩,答:A型汽车每辆进价为25万元,B型汽车每辆进价为10万元;(2)设A型汽车购进x辆,B型汽车购进y辆,由题意得:25x+10y=200,∵x,y为正整数,∴215xy=⎧⎨=⎩或410xy==⎧⎨⎩或65xy=⎧⎨=⎩,答:一共有三种购买方案:购进A型汽车2辆,购进B型汽车15辆;购进A型汽车4辆,购进B型汽车10辆;购进A型汽车6辆,购进B型汽车5辆;(3)由题意可得:利润=800x+500y,购进A型汽车2辆,购进B型汽车15辆,利润为9100元;购进A型汽车4辆,购进B型汽车10辆,利润为8200元;购进A型汽车6辆,购进B型汽车5辆,利润为7300元.答:购进A型汽车2辆,购进B型汽车15辆,可获得最大利润,利润为9100元.【点睛】本题主要考查二元一次方程(组)的实际应用,找出数量关系,列出二元一次方程组或代数式,是解题的关键.。
【精品】2020-2021学年人教版七年级下册期中考试数学试卷(解析版)
2020-2021学年人教版七年级下册期中考试数学试卷一.选择题(共10小题)1.下列结论中,不正确的是()A.两点之间的连线中,线段最短B.两点确定一条直线C.过一点有且只有一条直线与已知直线平行D.等角的余角相等2.点P(a,b)在第四象限,且|a|>|b|,那么点Q(a+b,a﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,某单位要在河岸l上建一个水泵房引水到C处,他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是()A.两点之间,线段最短B.在同一平面内,过一点有且只有一条直线与已知直线垂直C.两点确定一条直线D.直线外一点与直线上所有点的连线中,垂线段最短4.下列叙述中正确的是()A.﹣3是9的平方根B.9的平方根是﹣3C.﹣3是(﹣3)2的算术平方根D.±3是(﹣3)2的算术平方根5.下列各式中,正确的是()A.=﹣4 B.=2 C.﹣=4 D.±=46.下列说法:①在1和3之间的无理数有且只有,,,这4个;②近似数7.30所表示的准确数a的范围是:7.295≤a<7.305;③一个数的绝对值必大于这个数的相反数;④大于﹣2.5而小于π的整数共有6个;⑤平方根是本身的数是1和0;⑥有理数可以分为正数和负数;⑦的值是3或﹣3.其中正确的是()A.5个B.4个C.3个D.2个7.下列各数中,是无理数的是()A.0 B.﹣C.D.π8.如图,将直尺与30°角的三角尺叠放在一起,若∠2=70°,则∠1的大小是()A.45°B.50°C.55°D.40°9.如图,在△ABC中,BC=5,∠A=80°,∠B=70°,把△ABC沿RS的方向平移到△DEF的位置,若CF=4,则下列结论中错误的是()A.BE=4 B.∠F=30°C.AB∥DE D.DF=510.如图,AB∥CD,∠A=30°,∠F=40°,则∠C=()A.65°B.70°C.75°D.80°二.填空题(共8小题)11.若x,y为实数,且|x﹣2|+(y+4)2=0,则xy的立方根为.12.如图,∠C=90°,线段AB=10cm,线段AD=8cm,线段AC=6cm,则点A到BC的距离为cm.13.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“”表示算术平方根.我国使用根号是由李善兰(1811﹣1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为:=?则图2所示题目(字母代表正数)翻译为,计算结果为.14.若点M(a+3,2a﹣1)在y轴上,则a的值是.15.如图,将木条a,b和c钉在一起,∠1=50°,∠2=75°,要使木条a和b平行,木条a至少要旋转的度数为.16.如图,将周长为10的△ABC沿BC边向右平移3个单位,得到△DEF,则四边形ABFD的周长为.17.已知:a,b是两个连续的整数,且a<﹣<b,则a﹣b=.18.如图,已知a∥b,∠2=95°,∠3=140°,则∠1的度数为.三.解答题(共8小题)19.计算:(1)±;(2);(3)﹣.20.求下列各式中的x的值.(1)4x2﹣9=0;(2)(x﹣1)3=64.21.写出图中A,B,C,D,E,F,O各点的坐标.22.若2a﹣1与﹣a+2都是正数x的平方根,求a的值和这个正数的值.23.如图,AB⊥AD,CD⊥AD,∠1=∠2.求证:DE∥AF.24.如图,在△ABC中;(1)画△ABC向右平移4个单位,再向下平移3个单位得到的△A′B′C′;(2)写出平移后A′、B′、C′三点的坐标.(3)求三角形ABC的面积.25.四边形ABCD的顶点坐标分别为A(﹣5,﹣1),B(﹣1,﹣1),C(﹣3,﹣4),D(﹣7,﹣4),将四边形ABCD先向上平移5个单位长度,再向右平移8个单位长度,请你直接写出第二次平移后四个对应顶点的坐标.26.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.(3)说出在第(1)、(2)两小问的推理中,应用了哪两个互逆的真命题.参考答案与试题解析一.选择题(共10小题)1.【分析】分别利用直线的性质以及线段的性质和平行公理及推论和余角的性质分析求出即可.【解答】解:A、两点之间的所有连线中,线段最短,正确,不合题意;B、两点确定一条直线,正确,不合题意;C、过直线外一点有且只有一条直线与已知直线平行,故此选项错误,符合题意;D、等角的余角相等,正确,不合题意;故选:C.【点评】此题主要考查了直线的性质以及线段的性质和平行公理及推论和余角的性质等知识,正确把握相关性质是解题关键.2.【分析】直接利用各象限内点的坐标特点得出a,b的符号,进而结合绝对值的性质得出a+b,a ﹣b的符号即可得出答案.【解答】解:∵点P(a,b)在第四象限,且|a|>|b|,∴a>0,b<0,a+b>0,a﹣b>0,∴点Q(a+b,a﹣b)在第一象限.故选:A.【点评】此题主要考查了点的坐标,正确得出a+b,a﹣b的符号是解题关键.3.【分析】根据垂线段最短矩形判断.【解答】解:因为CD⊥l于点D,根据垂线段最短,所以CD为C点到河岸l的最短路径.故选:D.【点评】本题考查了垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段.4.【分析】根据算术平方根,平方根的定义对各选项分析判断后利用排除法求解.【解答】解:A、﹣3是9的平方根,故本选项正确;B、9的平方根是±3,故本选项错误;C、3是(﹣3)2的算术平方根,故本选项错误;D、3是(﹣3)2的算术平方根,故本选项错误.故选:A.【点评】本题考查了平方根,算术平方根的定义,是基础题,熟记概念是解题的关键.5.【分析】根据平方根、立方根的意义,逐个进行计算,得出判断即可.【解答】解:=4,因此选项A不正确;=2,因此选项B正确;﹣=﹣4,因此选项C不正确;±=±4,因此选项D不正确;故选:B.【点评】考查平方根、立方根的意义和计算方法,掌握平方根、立方根的意义是正确计算的前提.6.【分析】根据实数与数轴的一一对应关系,有理数、近似数与有效数字、无理数的定义作答.【解答】解:①在1和3之间的无理数有无数个,故说法错误;②近似数7.30所表示的准确数a的范围是:7.295≤a<7.305,故说法正确.③一个数的绝对值不一定大于这个数的相反数,比如负数的绝对值就等于它的相反数,故说法错误;④大于﹣2.5而小于π的整数共有6个,分别是﹣2,﹣1,0,1,2,3,故本说法正确;⑤平方根是本身的数是0,故说法错误;⑥有理数可以分为正数、零和负数,故说法错误;⑦的值是3,故说法错误;故选:D.【点评】此题主要考查了数轴、有理数近似数与有效数字、无理数等定义,解答本题要熟记有理数、无理数的定义以及实数与数轴的一一对应关系.7.【分析】理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、0是整数,属于有理数,故本选项不合题意;B、,是整数,属于有理数,故本选项不合题意;C、是分数,属于有理数,故本选项不合题意;D、π是无理数,故本选项符合题意.故选:D.【点评】本题主要考查了无理数.解题的关键是掌握无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.【分析】根据平角的定义和平行线的性质即可得到结论.【解答】解:由题意得,∠4=60°,∵∠2=70°,AB∥CD,∴∠3=∠2=70°,∴∠1=180°﹣60°﹣70°=50°,故选:B.【点评】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.9.【分析】根据平移的性质,平移只改变图形的位置,不改变图形的大小与形状,平移后对应点的连线互相平行,对各选项分析判断后利用排除法.【解答】解:∵把△ABC沿RS的方向平移到△DEF的位置,BC=5,∠A=80°,∠B=70°,∴CF=BE=4,∠F=∠ACB=180°﹣∠A﹣∠B=180°﹣80°﹣70°=30°,AB∥DE,∴A、B、C正确,D错误,故选:D.【点评】本题考查了平移的性质,熟练掌握平移性质是解题的关键.10.【分析】根据三角形外角性质得出∠FEB,再利用平行线的性质解答即可.【解答】解:∵∠A=30°,∠F=40°,∴∠FEB=∠A+∠F=30°+40°=70°,∵AB∥CD,∴∠C=∠FEB=70°,故选:B.【点评】此题考查平行线的性质,关键是根据两直线平行,同位角相等解答.二.填空题(共8小题)11.【分析】直接利用绝对值的性质以及偶次方的性质得出x,y的值,进而得出答案.【解答】解:∵|x﹣2|+(y+4)2=0,∴x﹣2=0,y+4=0,解得:x=2,y=﹣4,则xy=﹣8,故xy的立方根为:﹣2.故答案为:﹣2.【点评】此题主要考查了立方根以及非负数的性质,正确得出x,y的值是解题关键.12.【分析】根据点到直线的距离的定义,可得答案.【解答】解:因为∠C=90°,所以AC⊥BC,所以A到BC的距离是AC,因为线段AC=6cm,所以点A到BC的距离为6cm.故答案为:6.【点评】本题考查了点到直线的距离.解题的关键是掌握点到直线的距离的定义:直线外一点到直线的垂线段的长度,叫做点到直线的距离.13.【分析】根据算术平方根的定义解答即可.【解答】解:根据题意,得图2所示题目(字母代表正数)翻译为,计算结果为a+3.故答案为:,a+3.【点评】此题主要考查了算术平方根.解题的关键是掌握算术平方根的定义.14.【分析】直接利用y轴上点的坐标特点得出a+3=0,进而得出答案.【解答】解:∵若点M(a+3,2a﹣1)在y轴上,∴a+3=0,解得:a=﹣3.故答案为:﹣3.【点评】此题主要考查了点的坐标,正确掌握坐标轴上点的坐标特点是解题关键.15.【分析】根据同位角相等两直线平行,求出旋转后∠2的同位角的度数,然后用∠2减去∠1即可得到木条a旋转的度数.【解答】解:∵∠AOC=∠1=50°时,AB∥b,∴要使木条a与b平行,木条a旋转的度数至少是75°﹣50°=25°.故答案是:25°.【点评】本题考查了旋转的性质,平行线的判定,根据同位角相等两直线平行求出旋转后∠2的同位角的度数是解题的关键.16.【分析】利用平移的性质得到AD=BE=CF=3,AC=DF,然后利用等量代换得到四边形ABFD 的周长=AB+BC+AC+2AD.【解答】解:∵△ABC沿BC边向右平移3个单位,得到△DEF,∴AD=BE=CF=3,AC=DF,∵△ABC的周长为10,∴AB+BC+AC=10,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+2AD=10+2×3=16.故答案为16.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.17.【分析】先求出,得出a=﹣4,b=﹣3,代入求值即可.【解答】解:∵,∴,∵,且a,b是两个连续的整数,∴a=﹣4,b=﹣3,∴a﹣b=﹣4﹣(﹣3)=﹣1,故答案为:﹣1.【点评】本题主要考查了估计无理数的大小的应用,解题的关键是确定的范围.18.【分析】根据三角形的内角和外角的关系,可以求得∠5的度数,再根据平行线的性质,即可得到∠1的度数,本题得以解决.【解答】解:∵∠3=140°,∠3+∠4=180°,∴∠4=40°,∵∠2=95°,∠2=∠5+∠4,∴∠5=55°,∵a∥b,∴∠1+∠5=180°,∴∠1=125°,故答案为:125°.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.三.解答题(共8小题)19.【分析】(1)根据平方根的求法计算即可.(2)根据立方根的求法计算即可.(3)首先计算开方,然后计算减法即可.【解答】解:(1)±=±11.(2)=﹣4.(3)﹣=2﹣(﹣2)=4.【点评】此题主要考查了平方根、立方根的含义和求法,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.【分析】(1)先移项,然后根据直接开平方法可以解答此方程;(2)根据直接开立方法可以解答此方程.【解答】解:(1)4x2﹣9=0,4x2=9,x2=,解得x=±;(2)(x﹣1)3=64,x﹣1=4,解得x=5.【点评】本题考查平方根、立方根、解方程,解答本题的关键是明确解方程的方法.21.【分析】根据点的坐标的定义,观察平面直角坐标系写出各点的坐标即可.【解答】解:A(2,3),B(3,2),C(﹣2,1),D(﹣1,﹣2),E(2.5,0),F(0,﹣2),O(0,0).【点评】本题考查了点的坐标,是基础题,熟练掌握平面直角坐标系中点的坐标的表示是解题的关键.22.【分析】根据平方根的定义,一个正数有两个平方根,它们互为相反数,然后分类讨论即可得到结果.【解答】解:∵2a﹣1与﹣a+2都是正数x的平方根,而正数x的平方根有两个:一正一负,∴分两种情况:①2a﹣1与﹣a+2表示的是同一个平方根,则:2a﹣1=﹣a+2,∴a=1,这个正数为:x=(2a﹣1)2=1;②2a﹣1与﹣a+2表示的是不同的平方根,则:2a﹣1+(﹣a+2)=0,∴a=﹣1,这个正数为:x=(2a﹣1)2=9.【点评】本题考查了平方根的定义,分类讨论是本题的关键.23.【分析】由AB⊥AD,CD⊥AD,根据平行线的判定可得CD∥AB,则∠CDA=∠BAD,又因为∠1=∠2,所以可得到∠EDA=∠FAD,即可根据平行线的判定得到DE∥AF.【解答】证明:∵AB⊥AD,CD⊥AD,∴CD∥AB,∴∠CDA=∠BAD,又∵∠1=∠2,∴∠EDA=∠FAD,∴DE∥AF.【点评】本题主要考查了平行线的判定与性质,在看懂图形并根据题意,找到两直线平行的条件,是解答本题的关键.24.【分析】(1)根据平移的性质即可画出△ABC向右平移4个单位,再向下平移3个单位得到的△A′B′C′;(2)根据(1)所画图形即可写出平移后A′、B′、C′三点的坐标;(3)根据割补法即可求三角形ABC的面积.【解答】解:(1)如图所示,△A′B′C′即为所求;(2)由图可知,A′(3,1)、B′(5,﹣2)、C′(0,﹣4);(3)三角形ABC的面积为:5×5﹣3×5﹣2×3﹣2×5=.【点评】本题考查了作图﹣平移变换,解决本题的关键是掌握平移的性质.25.【分析】根据平移的性质可得,将四边形ABCD先向上平移5个单位长度,再向右平移8个单位长度,即为各点的横坐标加上8,纵坐标加上5,即可写出第二次平移后四个对应顶点的坐标.【解答】解:四边形ABCD的顶点坐标分别为:A(﹣5,﹣1),B(﹣1,﹣1),C(﹣3,﹣4),D(﹣7,﹣4),将四边形ABCD先向上平移5个单位长度,再向右平移8个单位长度,即为各点的横坐标加上8,纵坐标加上5,所以第二次平移后四个对应顶点的坐标分别为:(3,4),(7,4),(5,1),(1,1).【点评】本题考查了坐标与图形变化﹣平移,解决本题的关键是掌握平移的性质.26.【分析】(1)根据同位角相等,两直线平行进行解答即可;(2)根据平行线的判定和性质解答即可.【解答】解:(1)CD∥EF,理由如下:∵CD⊥B,EF⊥AB,∴∠CDB=∠EFB=90°,∴CD∥EF;(2)∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB=∠3,∵∠3=115°,∴∠ACB=115°;(3)第(1)、(2)两小问的推理中,应用了同位角相等,两直线平行和两直线平行,同位角相等这两个互逆的真命题.【点评】此题考查平行线的判定和性质,关键是根据两直线平行,同位角相等和同位角相等,两直线平行解答.。
人教版2020-2021学年度下学期七年级数学期中测试题(含答案)
人教版2021年七年级(下)数学第一次月考测试题(含答案)一、选择题:(本大题共12个小题,每小题3分,共36分)1.如图,AB ∥CD ,直线l 交AB 于点E ,交CD 于点F ,若∠2=80°,则∠1等于( ) A .120° B .110° C .100° D .80°(第1题图) (第2题图) (第3题图)2.点A 的位置如图所示,则关于点A 的位置下列说法中正确的是( ) A .距点O 的4km 处 B .北偏东40°方向上的4km 处 C .在点O 北偏东50°方向上的4km 处 D .在点O 北偏东40°方向上的4km 处3.如图,直线a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=55°,那么∠2的度数是( ) A .20°B .30°C .35°D .50°4.下列实数中,无理数有( )个7,0,722,3.1415926,π,0.1010010001…(每两个1之间0的个数依次加1) A .4 B .3 C .2 D .1 5.下列说法中正确的是( ) A .81的平方根是±9 B .﹣9没有立方根 C .36的平方根是6D .﹣5的立方根是356.如果P (a +b ,ab )在第二象限,那么点Q (a ,-b )在第( )象限. A .一 B .二 C .三 D .四7.如图,直线a ∥b ,∠1=85°,∠2=35°,则∠3=( )A .85°B .60°C .50°D .35°(第7题图)8.两条直线被第三条直线所截,内错角的角平分线( )A .无法确定B .平行C .相交成45°D .垂直9.点P 为直线l 外一点,点A 、B 、C 在直线l 上,若P A =8cm ,PB =9cm ,PC =6 cm ,则点P 到直线l 的距离( )A .8 cmB .9 cmC .小于6 cmD .不大于6 cm 10.已知8.622=74.3044,若x 2=0.743044,则x 的值( )A .86.2B .0.862C .±0.862D .±86.214.11.对于有序数对(a ,b )定义新运算”⊗”:(a ,b )⊗(c ,d )=(ac +bd ,ad ﹣bc ),那么(a ,b )⊗(0,1)等于( )A .(b ,a )B .(-b ,-a )C .(a ,-b )D .(-a ,b ) 12.将四张边长各不相同的正方形纸片按如图方式放入矩形ABCD 内(相邻纸片之间互不重叠也无缝隙),未被四张正方形纸片覆盖的部分用阴影表示.设右上角与左下角阴影部分的周长的差为l .若知道l 的值,则不需测量就能知道周长的正方形的标号为( ) A .① B .② C .③ D .④(第12题图)二、填空题:本大题共6个小题,每小题3分,共18分. 13.若()0432=++-b a ,则a +b 的立方根是 .14.把命题“内错角相等”改写成“如果……那么……”的形式: .15.如图,在直角坐标系中,A (﹣1,2),B (3,﹣2),则△AOB 的面积为 .(第15题图) (第16题图) (第18题图)16.如图,已知AB ∥CD ,BC ∥DE .若∠A =20°,∠C =120°,则∠AED 的度数是 . 17.已知点P 的坐标是(a +2,3a -6),且点P 到两坐标轴的距离相等,则点P 的坐标是 . 18.如图,在坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2021个点的坐标为 .三、解答题:本大题共6个小题,共46分,解答题应写出文字说明、证明过程或演算步骤. 19.(8分)计算: (1)()33643216911+--+- (2)3227642-++-20.(7分)如图所示,三角形ABC (记作)ABC ∆在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是(2,1)A -,(3,2)B --,(1,2)C -,先将ABC ∆向上平移3个单位长度,再向右平移2个单位长度,得到111A B C . (1)在图中画出△111A B C ;(2)点1A ,1B ,1C 的坐标分别为 、 、 ;(3)若y 轴有一点P ,使PBC ∆与ABC ∆面积相等,求出P 点的坐标.21.(7分)在数轴上点A 表示a ,点B 表示b ,且a ,b 满足077=-+-b a . (1)a = ,b= . (2)若b <x <a ,则32++-x x 取最小整数值为 ;(3)x 表示a +b 的整数部分,y 表示a +b 的小数部分,求x-y 的相反数.22.(8分)如图,直线AB 、CD 相交于点O ,OE 是COB ∠的平分线,90EOF ∠=︒,70AOD ∠=︒. (1)求BOE ∠的度数;(2)OF 是AOC ∠的平分线吗?为什么?23.(8分)如图,直线AB 与CD 相交于O ,OE 是AOC ∠的平分线,OF CD ⊥,OG OE ⊥,52BOD ∠=︒. (1)求AOF ∠的度数;(2)求EOF ∠与BOG ∠是否相等?请说明理由.24.(8分)如图,已知射线//∠=∠,CB OA,100∠=∠=︒,E、F在CB上,且满足FOB AOBC OAB∠.OE平分COF(1)求EOB∠的度数(2)若在OC右侧左右平行移动AB,那么:OBC OFC∠∠的值是否随之发生变化?若变化,请找出变化规律;若不变,请求出这个比值.(3)在OC右侧左右平行移动AB的过程中,是否存在使OEC OBA∠=∠的情况?若存在,请直接写出OEC∠度数;若不存在,请说明理由.参考答案一、选择题(每题3分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CDCBDBCADBAD13.-1; 14.如果两个角是内错角,那么这两个角相等; 15.2; 16.80; 17.(6,6)或(3,-3); 18.(45,4); 三、解答题(共46分) 19.(8分)(1)1.5 (2)1 20.(7分)解:(1)如图所示:(2)由图可得:1(0,4)A 、1(1,1)B -;1C (3,1), 故答案为:(0,4)、(1,1)-、(3,1);(3)设(0,)P y ,再根据三角形的面积公式得: 14||62PBC S h ∆=⨯⨯=,解得||3h =,求出y 的值为(0,1)或(0,5)-.21.(7分)解:(1)a ,b 满足077=-+-b a . 7a ∴=,7b =,(2)由77x <<可知,x 可取3,4,5,6 当x =6时,32++-x x 取最小整数值为5(3)77a b +=+;x 表示a b +的整数部分,y 表示a b +的小数部分,9x ∴=,779=72y =+-- 117x y ∴-=-∴x-y 的相反数711-22.(8分)解:(1)70COB AOD ∠=∠=︒, OE 是COB ∠的平分线,1352BOE COB ∴∠=∠=︒;(2)OF 是AOC ∠的平分线, 理由:90EOF ∠=︒,35COE ∠=︒, 903555COF ∴∠=︒-︒=︒, 180903555AOF ∠=︒-︒-︒=︒, COF AOF ∴∠=∠,即OF 是AOC ∠的平分线.23.(8分) 解:(1)OF CD ⊥,90COF ∴∠=︒,又AOC ∠与BOD ∠是对顶角,52AOC BOD ∴∠=∠=︒,905238AOF COF AOC ∴∠=∠-∠=︒-︒=︒;(2)相等, 理由:AOC ∠与BOD ∠是对顶角,52AOC BOD ∴∠=∠=︒, OE 是AOC ∠的平分线,1262AOE AOC ∴∠=∠=︒,又OG OE ⊥,90EOG ∴∠=︒,18064BOG AOE EOG ∴∠=︒-∠-∠=︒,而382664EOF AOF AOE ∠=∠+∠=︒+︒=︒,EOF BOG ∴∠=∠.24.(8分)解:(1)FOB AOB ∠=∠, OB ∴平分AOF ∠,又OE 平分COF ∠,11804022EOB EOF FOB COA ∴∠=∠+∠=∠=⨯︒=︒;故答案为:40︒;(2)不变因为FOB AOB ∠=∠所以12AOB FOA ∠=∠,因为//CB OA所以OBC AOB∠=∠,OFC FOA∠=∠所以12OBC OFC∠=∠,即1:2OBC OFC∠∠=;(3)存在,60 OEC∠=︒。
人教版七年级下册数学《期中检测试题》(附答案解析)
A.a= bB. a=3bC.a= bD. a=4b
∴阴影部分面积之差 .
∵S始终保持不变,∴3b﹣a=0,即a=3b.
故选B.
【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
二、填空题(本题有8小题,每小题3分,共24分)
11. =______.
【答案】
【解析】
【分析】
根据整式的混合运算法则进行计算即可.
【详解】
故答案为: .
【点睛】本题考查了整式的运算问题,掌握整式的混合运算法则是解题的关键.
A.a= bB. a=3bC.a= bD. a=4b
二、填空题(本题有8小题,每小题3分,共24分)
11. =______.
12.已知 是方程ax-y=3的解,则a的值为________.
13.已知方程 ,用含x的代数式表示y,则 _______.
14.若已知公式.若二元一次方程3x﹣y=7,2x+3y=1,y=kx﹣9有公共解,则k的取值为______.
A.(x﹣y)2=x2﹣y2B.(a+2)(a﹣3)=a2﹣6
C.(a+2b)2=a2+4ab+4b2D.(2x﹣y)(2x+y)=2x2﹣y2
8.如图,从边长为( )cm的正方形纸片中剪去一个边长为( )cm的正方形( ),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )
A. B. C. D.
2021年福建省七年级(下)期中数学试卷.doc
福建省七年级(下)期中数学试卷一、选择题:(每小题4分,共32分)1.如图,四个图形中的∠1和∠2,不是同位角的是()A.B.C.D.2.在直角坐标系中,点(2,1)在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,A、B、C、D中的图案()可以通过如图平移得到.A.B.C.D.4.在实数:3.14159,,1.010010001…,4.,π,0中,无理数有()A.1个B.2个C.3个D.4个5.如图,a∥b,∠1=120°,则∠2等于()A.30° B.90° C.60° D.50°6.下列各组数中,互为相反数的组是()A.﹣2与B.﹣2和C.﹣与2 D.|﹣2|和27.在平面直角坐标系中,点P(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限8.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是和﹣1,则点C所对应的实数是()A.1+B.2+C.2﹣1 D.2+1二、填空题(本大题共8小题,每小题4分,共32分)9.如果用(7,8)表示七年级八班,那么八年级七班可表示成.10.的算术平方根是.11.P(m﹣4,1﹣m)在x轴上,则m=.12.若=0.7160,=1.542,则=.13.如图,要把池中的水引到CD处,可过A点引AB⊥CD于B,然后沿AB开渠,可使所开渠道最短,试说明设计的依据:.14.如果甲图形上的点P(﹣2,4)经平移变换后是Q(3,2),则甲图上的点M(1,﹣2)经这样平移后的对应点的坐标是.15.如图,已知AB∥ED,则∠B+∠C+∠D的度数是.16.点P(m,5)在第一象限角平分线上,点Q(8,n)在第四象限的角平分线上,则3m ﹣2n的值为.三、解答题(86分)17.计算:(1);(2).18.求x值(1)x2﹣24=25.(2)3(x﹣4)3=﹣375.19.完成下面推理过程:如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:∵DE∥BC(已知)∴∠ADE=.()∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=,∠ABE=.()∴∠ADF=∠ABE∴DF∥.()∴∠FDE=∠DEB.()20.一个正数的平方根是2a﹣7和a+4,求这个正数.21.如图,在平面直角坐标系中,将三角形△ABC向下平移5个单位长度,再向右平移3个单位长度,请画出图形△A1B1C1,并写出A1,B1,C1的坐标.22.(10分)(202X春•莆田校级期中)在如图所示的直角坐标系中,四边形ABCD的各个顶点的坐标分别是A(0,0)、B(2,5)、C(9,8)、D(9,0),求出这个四边形的面积.23.(10分)(2013春•东莞期末)如图,AD∥BC,∠D=100°,AC平分∠BCD,求∠DAC 的度数.24.(12分)(202X春•莆田校级期中)如图①②所示,将两个相同三角板的两个直角顶点O重合在一起,像图①②那样放置.(1)若∠BOC=60°,如图①,猜想∠AOD的度数;(2)若∠BOC=70°,如图②,猜想∠AOD的度数;(3)猜想∠AOD和∠BOC的关系,并写出理由.25.(14分)(202X春•莆田校级期中)如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即:沿着长方形移动一周).(1)写出点B的坐标().(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标.(3)在移动过程中,当点P到x轴距离为5个单位长度时,求点P移动的时间.福建省七年级(下)期中数学试卷参考答案与试题解析一、选择题:(每小题4分,共32分)1.如图,四个图形中的∠1和∠2,不是同位角的是()A.B.C.D.考点:同位角、内错角、同旁内角.分析:根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.解答:解:∵C中∠1和∠2是由四条直线组成,∴∠1和∠2不是同位角.故选:C.点评:本题主要考查的是同位角的定义,掌握同位角的定义是解题的关键.2.在直角坐标系中,点(2,1)在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:应先判断出所求的点的横纵坐标的符号,进而判断点所在的象限.解答:解:因为点P(2,1)的横坐标是正数,纵坐标也是正数,所以点在平面直角坐标系的第一象限.故选A.点评:解决本题的关键是牢记平面直角坐标系中四个象限的点的坐标的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.3.如图,A、B、C、D中的图案()可以通过如图平移得到.A.B.C.D.考点:生活中的平移现象.分析:根据平移昰图形沿某一方向移动一定的距离,平移不改变图形的形状和大小,可得答案.解答:解:观察图形可知图案D通过平移后可以得到.故选D.点评:本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,4.在实数:3.14159,,1.010010001…,4.,π,0中,无理数有()A.1个B.2个C.3个D.4个考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:3.14159,,4.,0是有理数,1.010010001…,π是无理数.故选:B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.如图,a∥b,∠1=120°,则∠2等于()A.30° B.90° C.60° D.50°考点:平行线的性质.分析:根据平行线的性质求出∠3,根据对顶角相等得出即可.解答:解:∵a∥b,∠1=120°,∴∠1+∠3=180°,∴∠3=60°,∴∠2=∠3=60°,故选C.点评:本题考查了对顶角相等,平行线的性质的应用,能求出∠1+∠3=180°是解此题的关键,注意:两直线平行,同旁内角互补.6.下列各组数中,互为相反数的组是()A.﹣2与B.﹣2和C.﹣与2 D.|﹣2|和2考点:实数的性质.分析:根据相反数的概念及性质逐项分析得出答案即可.解答:解:A、﹣2与=2,符合相反数的定义,故选项正确;B、﹣2与=﹣2不互为相反数,故选项错误;C、﹣与2不互为相反数,故选项错误;D、|﹣2|=2,2与2不互为相反数,故选项错误.故选:A.点评:此题主要考查了相反数的定义,只有符号不同的两个数互为相反数,在本题中要注意理解求|﹣2|的相反数就是求2的相反数,不要受绝对值中的符号的影响.7.在平面直角坐标系中,点P(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:根据平方数非负数判断出点P的纵坐标是正数,再根据各象限内点的坐标特征解答.解答:解:∵m2≥0,∴m2+1≥1,∴点P(﹣1,m2+1)一定在第二象限.故选B.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).8.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是和﹣1,则点C所对应的实数是()A.1+B.2+C.2﹣1 D.2+1考点:实数与数轴.分析:设点C所对应的实数是x.根据中心对称的性质,即对称点到对称中心的距离相等,即可列方程求解即可.解答:解:设点C所对应的实数是x.则有x﹣=﹣(﹣1),解得x=2+1.故选D.点评:本题考查的是数轴上两点间距离的定义,根据题意列出关于x的方程是解答此题的关键.二、填空题(本大题共8小题,每小题4分,共32分)9.如果用(7,8)表示七年级八班,那么八年级七班可表示成(8,7).考点:坐标确定位置.分析:根据(年级,班)的有序数对确定点的位置,可得答案.解答:解:用(7,8)表示七年级八班,那么八年级七班可表示成(8,7),故答案为:(8,7).点评:本题考查了坐标确定位置,在有序数对中年级在前,班在后.10.的算术平方根是3.考点:算术平方根.分析:首先根据算术平方根的定义求出的值,然后即可求出其算术平方根.解答:解:∵=9,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.即的算术平方根是3.故答案为:3.点评:此题主要考查了算术平方根的定义,解题的关键是知道,实际上这个题是求9的算术平方根是3.注意这里的双重概念.11.P(m﹣4,1﹣m)在x轴上,则m=1.考点:点的坐标.分析:根据x轴上的点的纵坐标为0列式计算即可得解.解答:解:∵P(m﹣4,1﹣m)在x轴上,∴1﹣m=0,解得m=1.故答案为:1.点评:本题考查了点的坐标,熟记x轴上的点的纵坐标为0是解题的关键.12.若=0.7160,=1.542,则=7.160.考点:立方根.分析:被开方数367由0.367小数点向右移动3位得到,故开立方的结果向右移动1位即可得到结果.解答:解:∵=0.7160,则=7.160.故答案为:7.160.点评:此题考查了立方根,熟练掌握立方根的定义是解本题的关键.13.如图,要把池中的水引到CD处,可过A点引AB⊥CD于B,然后沿AB开渠,可使所开渠道最短,试说明设计的依据:垂线段最短.考点:垂线段最短.专题:应用题.分析:过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.据此作答.解答:解:其依据是:连接直线外一点与直线上各点的所有线段中,垂线段最短.故答案为:垂线段最短.点评:本题考查了垂线的性质在实际生活中的运用,关键是掌握垂线段的性质:垂线段最短.14.如果甲图形上的点P(﹣2,4)经平移变换后是Q(3,2),则甲图上的点M(1,﹣2)经这样平移后的对应点的坐标是(6,﹣4).考点:坐标与图形变化-平移.分析:先由P与Q的坐标得出对应点之间的关系是横坐标加5,纵坐标减6,那么让点M 的横坐标加5,纵坐标减6即为所求点的坐标.解答:解:∵甲图形上的点P(﹣2,4)经平移变换后是Q(3,2),∴将甲图形上的点横坐标加5,纵坐标减6,可得对应点的坐标.∴甲图上的点M(1,﹣2)经这样平移后的对应点的坐标是(1+5,2﹣6),即(6,﹣4).故答案为:(6,﹣4).点评:本题考查图形的平移变换,解决本题的关键是根据已知对应点找到各对应点之间的变化规律.15.如图,已知AB∥ED,则∠B+∠C+∠D的度数是360°.考点:平行线的性质.专题:探究型.分析:过点C作直线MN∥AB,则MN∥ED,在根据平行线的性质进行解答.解答:解:过点C作直线MN∥AB,∵AB∥ED,MN∥AB,∴MN∥ED∥AB,∴∠MCB+∠B=180°,∠MCD+∠D=180°.∴∠B+∠BCD+∠D=∠MCB+∠MCD+∠B+∠D=180°+180°=360°.故答案为:360°.点评:本题考查的是平行线的性质,根据题意作出辅助线是解答此题的关键.16.点P(m,5)在第一象限角平分线上,点Q(8,n)在第四象限的角平分线上,则3m ﹣2n的值为31.考点:点的坐标.分析:根据第一象限角平分线上的点的横坐标等于纵坐标,可得m的值,根据第四象限角平分线上的点的横坐标与纵坐标互为相反数,可得n的值,根据整式的化简求值,可得答案.解答:解:由P(m,5)在第一象限角平分线上,点Q(8,n)在第四象限的角平分线上,得m=5,n=﹣8.3m﹣2n=3×5﹣2×(﹣8)=15+16=31.故答案为:31.点评:本题考查了点的坐标,利用第一象限角平分线上的点的横坐标等于纵坐标,第四象限角平分线上的点的横坐标与纵坐标互为相反数得出m、n的值是解题关键.三、解答题(86分)17.计算:(1);(2).考点:实数的运算.分析:(1)先进行开立方、二次根式的化简,然后合并;(2)先进行绝对值的化简,然后合并.解答:解:(1)原式=2+0﹣=;(2)原式=﹣+﹣1﹣3+=2﹣4.点评:本题考查了实数的运算,涉及了开立方、二次根式的化简、绝对值的化简等知识,掌握运算法则是解答本题的关键.18.求x值(1)x2﹣24=25.(2)3(x﹣4)3=﹣375.考点:立方根;平方根.分析:(1)先移项再开平方即可求解.(2)先两边除以3,再开立方,然后移项即可求解.解答:解:(1)x2﹣24=25,x2=49,x=±7;(2)3(x﹣4)3=﹣375,(x﹣4)3=﹣125,x﹣4=﹣5,x=﹣1.点评:本题主要考查了平方根和立方根的计算能力,比较简单.19.完成下面推理过程:如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:∵DE∥BC(已知)∴∠ADE=∠ABC.(两直线平行,同位角相等)∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=∠ADE,∠ABE=∠ABC.(角平分线定义)∴∠ADF=∠ABE∴DF∥BE.(同位角相等,两直线平行)∴∠FDE=∠DEB.(两直线平行,内错角相等)考点:平行线的判定与性质.专题:推理填空题.分析:根据平行线的性质得出∠ADE=∠ABC,根据角平分线定义得出∠ADF=∠ADE,∠ABE=∠ABC,推出∠ADF=∠ABE,根据平行线的判定得出DF∥BE即可.解答:解:理由是:∵DE∥BC(已知),∴∠ADE=∠ABC(两直线平行,同位角相等),∵DF、BE分别平分ADE、∠ABC,∴∠ADF=∠ADE,∠ABE=∠ABC(角平分线定义),∴∠ADF=∠ABE,∴DF∥BE(同位角相等,两直线平行),∴∠FDE=∠DEB(两直线平行,内错角相等),故答案为:∠ABC,两直线平行,同位角相等,∠ADE,∠ABC,角平分线定义,BE,同位角相等,两直线平行,两直线平行,内错角相等.点评:本题考查了平行线的性质和判定的应用,能熟记平行线的性质和判定定理是解此题的关键.20.一个正数的平方根是2a﹣7和a+4,求这个正数.考点:平方根.专题:计算题.分析:根据正数的平方根互为相反数列式求出a的值,再求出a+4,然后平方即可得解.解答:解:由题意,得2a﹣7+a+4=0,解得a=1,a+4=5,所以,这个数为25.点评:本题考查了平方根的定义,一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.21.如图,在平面直角坐标系中,将三角形△ABC向下平移5个单位长度,再向右平移3个单位长度,请画出图形△A1B1C1,并写出A1,B1,C1的坐标.考点:作图-平移变换.专题:作图题.分析:先根据点平移的规律写出点A、B、C的对应点A1,B1,C1的坐标,从而可得到△A1B1C1.解答:解:如图,A1(1,﹣2),B1,(0,﹣3),C1(2,﹣4).点评:本题考查了作图﹣平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.22.(10分)(202X春•莆田校级期中)在如图所示的直角坐标系中,四边形ABCD的各个顶点的坐标分别是A(0,0)、B(2,5)、C(9,8)、D(9,0),求出这个四边形的面积.考点:坐标与图形性质;三角形的面积.分析:过点B作BE⊥AD于点E,根据S四边形=S矩形BEDC+S△ABE即可得出结论.解答:解:过点B作BE⊥AD于点E,S四边形=S矩形BEDC+S△ABE=(5+8)×7+×2×5=+5=50.5.点评:本题考查的是坐标与图形性质,根据题意作出辅助线,构造出三角形及梯形是解答此题的关键.23.(10分)(2013春•东莞期末)如图,AD∥BC,∠D=100°,AC平分∠BCD,求∠DAC 的度数.考点:平行线的性质.分析:根据两直线平行,同旁内角互补求出∠BCD,再根据角平分线的定义求出∠ACB,然后根据两直线平行,内错角相等解答即可.解答:解:∵AD∥BC,∠D=100°,∴∠BCD=180°﹣∠D=180°﹣100°=80°,∵AC平分∠BCD,∴∠ACB=∠BCD=×80°=40°,又∵AD∥BC,∴∠DAC=∠ACB=40°.点评:本题主要考查了平行线的性质,角平分线的定义,熟记性质并理清各角度之间的关系是解题的关键.24.(12分)(202X春•莆田校级期中)如图①②所示,将两个相同三角板的两个直角顶点O重合在一起,像图①②那样放置.(1)若∠BOC=60°,如图①,猜想∠AOD的度数;(2)若∠BOC=70°,如图②,猜想∠AOD的度数;(3)猜想∠AOD和∠BOC的关系,并写出理由.考点:垂线.专题:探究型.分析:此题利用余角、周角性质即可求出角的度数.应按照题目的要求,逐步计算.解答:解:(1)∵∠AOB=90°,∠BOC=60°,∴∠AOC=∠AOB﹣∠BOC=90°﹣60°=30°.又∵∠COD=90°,∴∠AOD=∠AOC+∠COD=30°+90°=120°.(2)∵∠AOB+∠COD+∠BOC+∠AOD=360°,∠AOB=90°,∠COD=90°,∠BOC=70°,∴∠AOD=360°﹣∠AOB﹣∠COD﹣∠BOC=360°﹣90°﹣90°﹣70°=110°.(3)猜想:∠AOD+∠BOC=180°.理由:如图①∵∠AOD=∠AOC+∠COD=∠AOC+90°,∠BOC=∠COD﹣∠BOD=90°﹣∠BOD,∠AOC=∠BOD,∴∠AOD+∠BOC=180°.点评:此题主要考查了学生余角、周角的性质.25.(14分)(202X春•莆田校级期中)如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即:沿着长方形移动一周).(1)写出点B的坐标(4,6).(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标.(3)在移动过程中,当点P到x轴距离为5个单位长度时,求点P移动的时间.考点:坐标与图形变化-平移.分析:(1)根据长方形的性质,易得P得坐标;(2)根据题意,P的运动速度与移动的时间,可得P运动了8个单位,进而结合长方形的长与宽可得答案;(3)根据题意,当点P到x轴距离为5个单位长度时,有P在AB与OC上两种情况,分别求解可得答案.解答:解:(1)根据长方形的性质,可得AB与y轴平行,BC与x轴平行;故B的坐标为(4,6);(2)根据题意,P的运动速度为每秒2个单位长度,当点P移动了4秒时,则其运动了8个长度单位,此时P的坐标为(4,4),位于AB上;(3)根据题意,点P到x轴距离为5个单位长度时,有两种情况:P在AB上时,P运动了4+5=9个长度单位,此时P运动了4.5秒;P在OC上时,P运动了4+6+4+1=15个长度单位,此时P运动了=7.5秒.点评:根据题意,注意P得运动方向与速度,分析各段得时间即可.。
人教版2020-2021学年第二学期七年级下册期中考试数学试卷及答案
2020-2021学年七年级(下)期中数学试卷一.选择题(共10小题)1.下列四个命题中,真命题有()个①若a>0,b>0,则a+b>0②同位角相等③有两边和一个角分别对应相等的两个三角形全等④三角形的最大角不小于60°A.1B.2C.3D.42.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含45°角的直角三角板的斜边与纸条一边重合,含30°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.10°B.15°C.20°D.25°3.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.B.C.D.4.如图,四边形ABCD中,∠A=90°,∠C=110°,点E,F分别在AB,BC上,将△BEF沿EF翻折,得△GEF,若GF∥CD,GE∥AD,则∠D的度数为()A.60°B.70°C.80°D.90°5.某商场推出A、B、C三种特价玩具,若购买A种2件、B种1件、C种3件,共需24元;若购买A种3件、B种4件、C种2件,共需36元.那么小明购买A种1件、B种1件、C种1件,共需付款()A.11元B.12元C.13元D.不能确定6.如图,若直线a∥b,那么∠x=()A.64°B.68°C.69°D.66°7.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为()A.B.3C.1D.8.如图,在等边△ABC中,AD是BC边上的高,∠BDE=∠CDF=30°,在下列结论中:①△ABD≌△ACD;②2DE=2DF=AD;③△ADE≌△ADF;④4BE=4CF=AB.正确的个数是()A.1B.2C.3D.49.设==,则的值为()A.B.C.D.10.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD 等于()A.40°B.45°C.50°D.55°二.填空题(共4小题)11.已知关于x,y的方程组与方程x+y=3的解相同,则k的值为.12.如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为.13.长方形ABCD中放置了6个形状、大小都相同的小长方形,所标尺寸如图所示,则图中阴影部分的面积是cm2.14.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正确的结论有(填序号).三.解答题(共6小题)15.解二元一次方程组(1);(2);(3).16.网络商店(简称网店)是近年来迅速兴起的一种电子商务形式,小明的网店销售红枣、小米两种商品的相关信息如下表:商品红枣小米规格1kg/袋2kg/袋成本(元/袋)4038售价(元/袋)6054根据上表提供的信息,解答下列问题(1)已知今年前四个月,小明的网店销售上表中规格的红枣和小米共2000kg,获得利润2.8万元,求这前四个月小明的网店销售这种规格的红枣和小米各多少袋?(2)根据之前的销售情况,估计今年5月到12月这后八个月,小明的网店还能销售同规格的红枣和小米共4000kg,其中,红枣的销售量不低于1200kg.假设这后八个月,销售红枣x(kg),销售红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求出这后八个月,小明的网店销售这种规格的红枣和小米至少获得总利润多少元?17.如图,A、B两村在一条小河的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请用尺规作图,将上述两种情况下的自来水厂厂址分别在图(1)(2)中标出,并保留作图痕迹.18.某种动物的身高y(dm)是其腿长x(dm)的一次函数.当动物的腿长为6dm时,身高为45.5dm;当动物的腿长为14dm时,身高为105.5dm.(1)写出y与x之间的关系式;(2)当该动物腿长10dm时,其身高为多少?19.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.20.如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.参考答案与试题解析一.选择题(共10小题)1.下列四个命题中,真命题有()个①若a>0,b>0,则a+b>0②同位角相等③有两边和一个角分别对应相等的两个三角形全等④三角形的最大角不小于60°A.1B.2C.3D.4【分析】根据不等式、平行线的性质、三角形全等和三角形的内角和判断即可.【解答】解:①若a>0,b>0,则a+b>0,是真命题;②两直线平行,同位角相等,原命题是假命题,③有两边和其夹角分别对应相等的两个三角形全等,原命题是假命题,④三角形的最大角不小于60°,是真命题;故选:B.2.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含45°角的直角三角板的斜边与纸条一边重合,含30°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.10°B.15°C.20°D.25°【分析】先根据平行线的性质得出∠BCD的度数,进而可得出结论.【解答】解:∵AB∥CD,∴∠BCD=∠ABC=45°,∴∠1=∠BCD﹣∠BCE=45°﹣30°=15°.故选:B.3.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.B.C.D.【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此本题应先用待定系数法求出两条直线的解析式,联立两个函数解析式所组成的方程组即为所求的方程组.【解答】解:根据给出的图象上的点的坐标,(0,﹣1)、(1,1)、(0,2);分别求出图中两条直线的解析式为y=2x﹣1,y=﹣x+2,因此所解的二元一次方程组是.故选:D.4.如图,四边形ABCD中,∠A=90°,∠C=110°,点E,F分别在AB,BC上,将△BEF沿EF翻折,得△GEF,若GF∥CD,GE∥AD,则∠D的度数为()A.60°B.70°C.80°D.90°【分析】依据平行线的性质,即可得到∠BEG=∠A=90°,∠BFG=∠C=110°,再根据四边形内角和为360°,即可得到∠D的度数.【解答】解:∵GF∥CD,GE∥AD,∴∠BEG=∠A=90°,∠BFG=∠C=110°,由折叠可得:∠B=∠G,∴四边形BEGF中,∠B==80°,∴四边形ABCD中,∠D=360°﹣∠A﹣∠B﹣∠C=80°,故选:C.5.某商场推出A、B、C三种特价玩具,若购买A种2件、B种1件、C种3件,共需24元;若购买A种3件、B种4件、C种2件,共需36元.那么小明购买A种1件、B种1件、C种1件,共需付款()A.11元B.12元C.13元D.不能确定【分析】设A种玩具的单价为x元,B种玩具的单价为y元,C种玩具的单价为z元,由“若购买A种2件、B种1件、C种3件,共需24元;若购买A种3件、B种4件、C 种2件,共需36元”,即可得出关于x,y,z的三元一次方程组,由(①+②)÷5可求出(x+y+z)的值,此题得解.【解答】解:设A种玩具的单价为x元,B种玩具的单价为y元,C种玩具的单价为z 元,依题意,得:,(①+②)÷5,得:x+y+z=12.故选:B.6.如图,若直线a∥b,那么∠x=()A.64°B.68°C.69°D.66°【分析】两平行线间的折线所成的角之间的关系是﹣﹣﹣﹣奇数角,由∠1与130°互补可以得知∠1=50°,由a∥b,结合规律“两平行线间的折线所成的角之间的关系﹣左边角之和等于右边角之和”得出等式,代入数据即可得出结论.【解答】解:令与130°互补的角为∠1,如图所示.∵∠1+130°=180°,∴∠1=50°.∵a∥b,∴x+48°+20°=∠1+30°+52°,∴x=64°.故选:A.7.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为()A.B.3C.1D.【分析】首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED =x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可.【解答】解:∵AB=3,AD=4,∴DC=3,∴AC==5,根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,22+x2=(4﹣x)2,解得:x=,故选:A.8.如图,在等边△ABC中,AD是BC边上的高,∠BDE=∠CDF=30°,在下列结论中:①△ABD≌△ACD;②2DE=2DF=AD;③△ADE≌△ADF;④4BE=4CF=AB.正确的个数是()A.1B.2C.3D.4【分析】结合角平分线的性质结合全等三角形的判定与性质分析得出答案.【解答】解:∵等边△ABC中,AD是BC边上的高,∴BD=DC,AB=AC,∠B=∠C=60°,在△ABD与△ACD中,∴△ABD≌△ACD,故①正确;在△ADE与△ADF中,∴△ADE≌△ADF,故③正确;∵在Rt△ADE与Rt△ADF中,∠EAD=∠F AD=30°,∴2DE=2DF=AD,故②正确;同理2BE=2CF=BD,∵AB=2BD,∴4BE=4CF=AB,故④正确;故选:D.9.设==,则的值为()A.B.C.D.【分析】设已知等式等于k,表示出x,y,z,代入原式计算即可得到结果.【解答】解:设===k,得到x=2k,y=3k,z=4k,则原式==.故选:C.10.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD 等于()A.40°B.45°C.50°D.55°【分析】根据三角形外角性质求出∠ACD,根据角平分线定义求出即可.【解答】解:∵∠A=60°,∠B=40°,∴∠ACD=∠A+∠B=100°,∵CE平分∠ACD,∴∠ECD=∠ACD=50°,故选:C.二.填空题(共4小题)11.已知关于x,y的方程组与方程x+y=3的解相同,则k的值为11.【分析】把k看做已知数表示出方程组的解,代入已知方程计算即可求出k的值.【解答】解:,①×2﹣②得:x=k+5,把x=k+5代入①得:3k+15+2y=2k,解得:y=﹣,代入x+y=3得:k+5﹣=3,去分母得:2k+10﹣k﹣15=6,解得:k=11,故答案为:1112.如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为13.【分析】根据线段的垂直平分线的性质得到EA=EB,根据三角形的周长公式计算即可.【解答】解:∵DE是AB的垂直平分线,∴EA=EB,则△BCE的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,故答案为:13.13.长方形ABCD中放置了6个形状、大小都相同的小长方形,所标尺寸如图所示,则图中阴影部分的面积是67cm2.【分析】设小长方形的长为xcm,宽为ycm,根据图中给定的数据可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再利用阴影部分的面积=大长方形的面积﹣6×小长方形的面积,即可求出结论.【解答】解:设小长方形的长为xcm,宽为ycm,依题意,得:,解得:,∴图中阴影部分的面积=19×(7+2×3)﹣6×10×3=67(cm2).故答案为:67.14.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正确的结论有①②④(填序号).【分析】易证△ABD≌△EBC,可得∠BCE=∠BDA,AD=EC可得①②正确,再根据角平分线的性质可求得∠DAE=∠DCE,即AD=AE=EC,根据AD=AE=EC可求得④正确.【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),∴①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,∴②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC,∵BD为△ABC的角平分线,EF⊥AB,而EC不垂直与BC,∴EF≠EC,∴③错误;④过E作EG⊥BC于G点,∵E是BD上的点,∴EF=EG,在RT△BEG和RT△BEF中,,∴RT△BEG≌RT△BEF(HL),∴BG=BF,在RT△CEG和RT△AFE中,,∴RT△CEG≌RT△AEF(HL),∴AF=CG,∴BA+BC=BF+F A+BG﹣CG=BF+BG=2BF,∴④正确.故答案为:①②④.三.解答题(共6小题)15.解二元一次方程组(1);(2);(3).【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可;(3)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),②×2﹣①得:5y=10,解得:y=2,把y=2代入②得:x=5,则方程组的解为;(2)方程组整理得:,②×2﹣①得:x=370,把x=370代入②得:y=110,则方程组的解为;(3)方程组整理得:,①﹣②得:y=10,把y=10代入①得:x=6,则方程组的解为.16.网络商店(简称网店)是近年来迅速兴起的一种电子商务形式,小明的网店销售红枣、小米两种商品的相关信息如下表:商品红枣小米规格1kg/袋2kg/袋成本(元/袋)4038售价(元/袋)6054根据上表提供的信息,解答下列问题(1)已知今年前四个月,小明的网店销售上表中规格的红枣和小米共2000kg,获得利润2.8万元,求这前四个月小明的网店销售这种规格的红枣和小米各多少袋?(2)根据之前的销售情况,估计今年5月到12月这后八个月,小明的网店还能销售同规格的红枣和小米共4000kg,其中,红枣的销售量不低于1200kg.假设这后八个月,销售红枣x(kg),销售红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求出这后八个月,小明的网店销售这种规格的红枣和小米至少获得总利润多少元?【分析】(1)设未知数,列二元一次方程组解答即可,(2)根据利润与销售量的关系,得出y与x之间的函数关系式,再根据函数的增减性,得出何时利润最少.【解答】解:(1)设销售这种规格的红枣x袋,小米y袋,由题意得,解得,x=1000,y=500,答:销售这种规格的红枣1000袋,小米500袋.(2)由题意得,y=(60﹣40)x+(54﹣38)=12x+32000,∴y随x的增大而增大,∵x≥1200,当x=1200时,y最小=12×1200+32000=46400元,答:y与x之间的函数关系式为y=12x+32000,后八个月,小明的网店销售这种规格的红枣和小米至少获得总利润46400元.17.如图,A、B两村在一条小河的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请用尺规作图,将上述两种情况下的自来水厂厂址分别在图(1)(2)中标出,并保留作图痕迹.【分析】根据中垂线和轴对称及轴对称的最短路线求解.【解答】解:(1)根据中垂线的性质:中垂线上的点到线段两个端点的距离相等知,作出AB的中垂线与河岸交于点P,则点P满足到两村A、B的距离相等,即厂址应选在点P处;(2)作出点A关于河岸的对称点C,连接CB,交于河岸于点P,连接AP,则点P能满足AP+PB最小,即厂址应选在点P处;理由:AP=PC,三角形的任意两边之和大于第三边,当点P在CB的连线上时,CP+BP 是最小的.18.某种动物的身高y(dm)是其腿长x(dm)的一次函数.当动物的腿长为6dm时,身高为45.5dm;当动物的腿长为14dm时,身高为105.5dm.(1)写出y与x之间的关系式;(2)当该动物腿长10dm时,其身高为多少?【分析】(1)根据题意,可以先设出y与x的函数关系式为y=kx+b,然后再根据当动物的腿长为6dm时,身高为45.5dm;当动物的腿长为14dm时,身高为105.5dm,即可求得该函数的解析式;(2)将x=10代入(1)中的函数解析式,即可得到相应的身高.【解答】解:(1)设y与x之间的关系式为y=kx+b,,得,即y与x之间的关系式是y=7.5x+0.5;(2)当x=10时,y=7.5×10+0.5=75.5,答:当该动物腿长10dm时,其身高为75.5dm.19.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.【分析】(1)在Rt△ADE中,求出∠EAD即可解决问题;(2)只要证明AE=AC,利用等腰三角形的性质即可证明;【解答】(1)解:∵∠BAC=50°,AD平分∠BAC,∴∠EAD=∠BAC=25°,∵DE⊥AB,∴∠AED=90°,∴∠EDA=90°﹣25°=65°.(2)证明∵DE⊥AB,∴∠AED=90°=∠ACB,又∵AD平分∠BAC,∴∠DAE=∠DAC,∵AD=AD,∴△AED≌△ACD,∴AE=AC,∵AD平分∠BAC,∴AD⊥CE,即直线AD是线段CE的垂直平分线.20.如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.【分析】(1)根据等边三角形的性质和全等三角形的判定证明即可;(2)根据全等三角形的性质解答即可;(3)根据全等三角形的性质解答即可.【解答】(1)证明:∵△ABD,△ACE都是等边三角形∴AB=AD,AE=AC∠DAB=∠EAC=60°∴∠DAC=∠BAE,在△ABE和△ADC中∴,∴△ABE≌△ADC;(2)由(1)知△ABE≌△ADC∴∠AEB=∠ACD∵∠ACD=15°∴∠AEB=15°;(3)同上可证:△ABE≌△ADC ∴∠AEB=∠ACD又∵∠ACD=60°∴∠AEB=60°∵∠EAC=60°∴∠AEB=∠EAC∴AC∥BE.1、三人行,必有我师。
人教版2020-2021学年第二学期期中考试试卷七年级数学试题及答案
2020-2021学年第二学期期中考试试卷七年级 数学满分120分,考试时间120分一.选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求)1.下列说法中,不正确的是( )A.如果两条直线都和第三条直线平行,那么这两条直线也互相平行B.过直线外一点,有且只有一条直线和已知直线相交C.同一平面内的两条不相交直线平行D.过直线外一点,有且只有一条直线与已知直线平行 2.某数的立方根是它本身,这样的数有( )A . 1个B . 2个C . 3个D . 4个 3.下列图形中,由AB CD ∥,能得到12∠=∠的是( )ABCD 4.一个正方体水晶砖,体积为1002cm ,它的棱长大约在 ( )A .4~5cm 之间B .5~6cm 之间C .6~7cm 之间D .7~8cm 之间5.数学课上, 老师要求同学们利用三角板画两条平行线.小明的画法如下:①将含30角的三角尺的最长边与直线a 重合,另一块三角尺最长边与含30角的三角尺的最短边紧贴;②将含30角的三角尺沿贴合边平移一段距离,画出最长边所在直线b ,则//.b a 小明这样画图的依据是( )A .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .两直线平行,同位角相等DCBA DCBA ABCDDC BA21122112A B C D6.下列实数317,π-,3.14159,8,327-,21中无理数有( ). A .个 B .个 C .个 D .个7.方程310x y +=的正整数解有( )A.1组B.3组C.4组D.无数组 8.方格纸上有A 、B 两点,若以B 点为原点建立直角坐标系,则A 点坐标为(3,4),若以A 点为原点建立直角坐标系,则B 点坐标是( )A. (3,4)B. (4,3)C. (3,4)--D. (4,3)-9.《孙子算经》有一道题.大概意思是:用一根绳子去量一根木头的长,绳子还余 4.5 尺, 将绳子对折再量木头,则木头还剩余 1 尺,问木头长多少尺?可设木头为 x 尺,绳长为y 尺,则所列方程组正确的是( )A. 4.521y x y x =-⎧⎨=-⎩B. 4.521y x y x =+⎧⎨=-⎩C. 4.50.5+1y x y x =-⎧⎨=⎩D. 4.50.51y x y x =+⎧⎨=-⎩10如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用1A ,2A ,3A ,4A ,…表示,则顶点55A 的坐标是( )A.(1313),B.(1313)--,C.(1414),D.(1414)--,二.填空题(本大题共8小题,每小题3分,共24分)11.√81的算术平方根是 .12.若(m −2)x n +y |m−1|=0是二元一次方程,则m −n 的值为 .13.如图所示,直线AB 与CD 相交于点O ,:2:3AOC AOD ∠∠= ,则BOD ∠的度数为 .第13题图 第14题图 第15题图14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.15.如图,已知90ACB ∠=°.CD AB ⊥,垂足为D ,则点A 到直线CB 的距离为线段 的长.2345ODC B A图1DCBAA 11A 12A 10A 9A 8A 7A 6A 5A 4A 3A 2A 1yx16.52-+的绝对值是 .17.如图,AB ∥CD ,直线l 分别与直线AB 、CD 相交于点E 、F ,EG 平分BEF ∠交直线CD 于点G ,若112GFE ∠=︒,则EGF ∠的度数为第17题图 第18题图18.如图是某种电子产品的主板示意图,每一个转角处都是直角.已知AB=75mm ,BC=90mm ,则该主板的周长是_____mm .三.解答题(本大题共9小题,共66分)19.(8分)(1)计算:(﹣2)2×14+38-+2×(﹣1)2019 (2)解方程:3(x ﹣2)2=27 20.(8分)解下列二元一次方程组⑴25342x y x y -=⎧⎨+=⎩ ⑵2-3-3-3+42x y x y =⎧⎨=⎩21.(5分) 完成下面的证明.(在序号后面横线上填写合适的内容) 已知:如图,AC⊥BD,EF⊥BD,∠A=∠1.求证:EF 平分∠BED. 证明:∵AC⊥BD,EF⊥BD,∴∠ACB=90°,∠EF D =90°(① ) ∴∠ACB +∠EF D=180°∴② (③ ) ∴∠A=∠2.∠3=∠1.(④ ) 又∵∠A=∠1,∴∠2=∠3(⑤ ) ∴EF 平分∠BED.22. (6分)已知一个正数x 的两个不同的平方根为23a -和5a -.求a 和x 的值.23.(6分)方程组3522710x y ax y -=⎧⎨+=-⎩的解x 、y 的值互为相反数,求a 的值.24.(6分)如图1是由8个同样大小的小正方体组成的正方体魔方,体积为8. (1)求出这个魔方的棱长;(2)图1中阴影部分是一个正方形ABCD ,求出阴影部分的面积及其边长.(3)把正方形ABCD 放到数轴上,如图2,使得点A 与1-重合,那么点D 在数轴上表示的数为多少.25.(7分)七年级(2)班的同学组织到人民公园游玩,张明、王励、李华三位同学和其他同学走散了,同学们已到中心广场,他们三个对着景区示意图在电话中向在中心广场的同学们说他们的位置,张明说他的坐标是(200,200)-,王励说他的坐标是(200,100)--,李华说他的坐标是(300,200)-.(1)请你根据题目条件,在图中画出平面直角坐标系; (2)写出这三位同学所在位置的景点名称;(3)写出除了这三位同学所在位置外,图中其余两个景点的坐标.26.(8分)疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与3辆小货车可以一次运货多少吨?27 (12分)在平面直角坐标系中,点A 、B 在坐标轴上,其中A(0,a )、B(b ,0)满足:21280a b a b --++-=(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为C(-2,t), 如图所示.若三角形ABC 的面积为9,求点D 的坐标.2020-2021学年第二学期期中考试试卷七年级 数学满分120分,考试时间120分一.选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求)1.下列说法中,不正确的是( )A.如果两条直线都和第三条直线平行,那么这两条直线也互相平行B.过直线外一点,有且只有一条直线和已知直线相交C.同一平面内的两条不相交直线平行D.过直线外一点,有且只有一条直线与已知直线平行 【答案】B2.某数的立方根是它本身,这样的数有( )A . 1个B . 2个C . 3个D . 4个 【答案】C ;3.下列图形中,由AB CD ∥,能得到12∠=∠的是( )ABCD 【答案】B ;4.一个正方体水晶砖,体积为1002cm ,它的棱长大约在 ( )A .4~5cm 之间B .5~6cm 之间C .6~7cm 之间D .7~8cm 之间【答案】A5.数学课上, 老师要求同学们利用三角板画两条平行线.小明的画法如下:①将含30角的三角尺的最长边与直线a 重合,另一块三角尺最长边与含30角的三角尺的最短边紧贴;②将含30角的三角尺沿贴合边平移一段距离,画出最长边所在直线b ,则//.b a 小明这样画图的依据是( )DCBA DCBA ABCDDC BA21122112A B C DA .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .两直线平行,同位角相等 【答案】A 6.下列实数317,π-,3.14159,8,327-,21中无理数有( ). A .个 B .个 C .个 D .个【答案】A7.方程310x y +=的正整数解有( )A.1组B.3组C.4组D.无数组 【答案】B8.方格纸上有A 、B 两点,若以B 点为原点建立直角坐标系,则A 点坐标为(3,4),若以A 点为原点建立直角坐标系,则B 点坐标是( )A. (3,4)B. (4,3)C. (3,4)--D. (4,3)-【答案】C9.《孙子算经》有一道题.大概意思是:用一根绳子去量一根木头的长,绳子还余 4.5 尺, 将绳子对折再量木头,则木头还剩余 1 尺,问木头长多少尺?可设木头为 x 尺,绳长为y 尺,则所列方程组正确的是( )A. 4.521y x y x =-⎧⎨=-⎩B. 4.521y x y x =+⎧⎨=-⎩C. 4.50.5+1y x y x =-⎧⎨=⎩D. 4.50.51y x y x =+⎧⎨=-⎩【答案】D10如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用1A ,2A ,3A ,4A ,…表示,则顶点55A 的坐标是( )A.(1313),B.(1313)--,C.(1414),D.(1414)--,【答案】C2345A 11A 12A 10A 9A 8A 7A 6A 5A 4A 3A 2A 1yx二.填空题(本大题共8小题,每小题3分,共24分)11.√81的算术平方根是 . 【答案】312.若(m −2)x n +y |m−1|=0是二元一次方程,则m −n 的值为 . 【答案】-113.如图所示,直线AB 与CD 相交于点O ,:2:3AOC AOD ∠∠= ,则BOD ∠的度数为 .第13题图 第14题图 第15题图【答案】72︒14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____. 【答案】(-2,-2)15.如图,已知.,垂足为,则点到直线的距离为线段 的长;【答案】AC16.52-+的绝对值是 . 【答案】5-217.如图,AB ∥CD ,直线l 分别与直线AB 、CD 相交于点E 、F ,EG 平分BEF ∠交直线CD 于点G ,若112GFE ∠=︒,则EGF ∠的度数为第17题图 第18题图 【答案】34°18.如图是某种电子产品的主板示意图,每一个转角处都是直角.已知AB=75mm ,BC=90mm ,90ACB ∠=°CD AB ⊥D A CB ODC B A图1DCBA则该主板的周长是_____mm . 【答案】330三.解答题(本大题共9小题,共66分)19.(8分)(1)计算:(﹣2)2×14+38-+2×(﹣1)2019 (2)解方程:3(x ﹣2)2=27 =4×12+(−2)+(−√2) (x-2)2=9=2−2−√2 x-2=3或x-2=-3 =−√2 x=5或x=-1 20.(8分)解下列二元一次方程组⑴25342x y x y -=⎧⎨+=⎩ ⑵2-3-3-3+42x y x y =⎧⎨=⎩ 【答案】(1){x =2y =−1 (2){x =6y =521.(5分) 完成下面的证明.已知:如图,AC⊥BD,EF⊥BD,∠A=∠1.求证:EF 平分∠BED. 证明:∵AC⊥BD,EF⊥BD,∴∠ACB=90°,∠EF D =90°(①垂直的定义) ∴∠ACB +∠EF D=180°∴②EF ∥AC .(③同旁内角互补,两直线平行) ∴∠A=∠2.∠3=∠1.(④两直线平行,内错角相等) 又∵∠A=∠1, ∴∠2=∠3(⑤等量代换) ∴EF 平分∠BED.22. (6分)已知一个正数x 的两个不同的平方根为23a -和5a -.求a 和x 的值. 解:由题意得:(2a-3)+(5-a)=0,解得:a=-2;x=49. 所以 x=(2a-3)2=(-7)2=49 23.(6分)方程组3522710x y ax y -=⎧⎨+=-⎩的解x 、y 的值互为相反数,求a 的值.解:由题意得:x+y=0,联立方程组{2x +7y =−10x +y =0,解得:{x =2y =−2, 把{x =2y =−2代入3x-5y=2a, 得:2a=16,解得:a=8 24.(6分)如图1是由8个同样大小的小正方体组成的正方体魔方,体积为8.(1)求出这个魔方的棱长;(2)图1中阴影部分是一个正方形ABCD ,求出阴影部分的面积及其边长.(3)把正方形ABCD 放到数轴上,如图2,使得点A 与1-重合,那么点D 在数轴上表示的数为________. 【答案】(1)设魔方的棱长为x,由x 3=8,解得x=2, 所以魔方的棱长为2;(2)因为魔方的棱长为2,所以魔方每个面的面积为4,正方形ABCD 的面积为魔方每个面的面积的一半,所以阴影部分的面积为2,正方形ABCD 的边长为√2;(3)正方形ABCD 的边长为√2,点A 与1-重合,所以点D 在数轴上表示的数为−1−√2 25.(7分)七年级(2)班的同学组织到人民公园游玩,张明、王励、李华三位同学和其他同学走散了,同学们已到中心广场,他们三个对着景区示意图在电话中向在中心广场的同学们说他们的位置,张明说他的坐标是(200,200)-,王励说他的坐标是(200,100)--,李华说他的坐标是(300,200)-.(1)请你根据题目条件,在图中画出平面直角坐标系; (2)写出这三位同学所在位置的景点名称;(3)写出除了这三位同学所在位置外,图中其余两个景点的坐标.【答案】(1)根据题意,他们以中心广场为坐标原点,100m 为单位长度建立直角坐标系: y y(2) 张明在游乐园,王励在望春亭,李华在湖心亭; (3)中心广场(0,0),牡丹亭(300,300)26.(8分)疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与3辆小货车可以一次运货多少吨? 【答案】解:设1辆大货车可以一次运货x 吨, 1辆小货车可以一次运货y 吨. {3x +2y =175x +4y =29 解得:{x =5y =1 2x +y =2×5+1×3=13(吨)所以2辆大货车与3辆小货车可以一次运货13吨.27 (12分)在平面直角坐标系中,点A 、B 在坐标轴上,其中A(0,a )、B(b ,0)满足:21280a b a b --++-=(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为C(-2,t),如图所示.若三角形ABC 的面积为9,求点D 的坐标.xy【答案】(1)根据题意{2a −b −1=0a +2b −8=0解得:{a =2b =3 所以A 、B 两点的坐标分别为(0,2),(3,0);(2)如图所示,过A 点作x 轴平行线,过B 点作y 轴平行线,过C 点作x 轴,y 轴平行线,交点为P ,Q,R ,根据题意,点C 在第三象限,所以t<0, P(3,t),R(3,2),Q(-2,2),CP=5,CQ=2-t,AQ=2,AR=3,BR=2,BP=- tS ∆ABC =5(2−t )−12×2(2−t )−12×2×3−12×5×(−t )=9, 解得:t =−83所以线段CD 是由线段AB 向左平移2个单位,向下平移143个单位得到的; 所以D 点坐标为(1,-143)PQ1、三人行,必有我师。
最新人教版七年级下学期数学《期中检测试卷》附答案
2020-2021学年度第二学期期中测试人教版七年级数学试题一、选择题(共40分)1. 已知a 的值不大于3-,用不等式表示a 的范围是( ) A. 3a >-B. 3a <-C. 3a ≥-D. 3a ≤-2. 若代数式31x -的值为4-,则x 的值为( ) A. 1B. 1-C. 53-D.353. 下列各组中,不是二元一次方程37x y +=的解的是( )A. 14x y =⎧⎨=⎩B. 07x y =⎧⎨=⎩C. 32x y =⎧⎨=-⎩D. 1.53.5x y =⎧⎨=⎩4. 若a b >,则下列不等式中错误的是( )A. 22a b +>+B.22a b> C. 22a b -<- D. 22a b >5.将方程3213123x x x -++=-去分母,正确的是( ) A. ()()18336221x x x +-=-+ B. ()()3331221x x x +-=-+ C. ()()93321x x x +-=-+D. ()()33121x x x +-=-+6. 某文具店开展促销活动,某种笔记本原价每本x 元,第一次每本按原价打“六折”,第二次每本再降1元,经两次降价后售价为8元,依题意,可列方程为( ) A. 0.68x x -=B. 0.0618x -=C. 80.61x -=D. 0.618x -=7. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A. x y 50{x y 180=-+=B. x y 50{x y 180=++=C. x y 50{x y 90=++=D. x y 50{x y 90=-+= 8. 《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八盈三;人出七,不足四.问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱.问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,则下列方程组正确的是( )A. 8374x y y x -=⎧⎨-=⎩B. 8374y x y x -=⎧⎨-=⎩C. 8374y x x y -=⎧⎨-=⎩D. 8374x y x y -=⎧⎨-=⎩9. 若关于x ,y 的方程组2315x y m x y +=+⎧-=-⎨⎩的解满足x +y =-3,则m 的值为( )A. 2-B. 2C. 1-D. 110. 已知关于,x y 的二元一次方程组43335x y mx y m +=-⎧⎨-=-⎩,则关于代数式x y -的值的说法正确的是( ).A. 随m 增大而增大B. 随m 减小而减小C. 既可能随m 增大而增大,也可能随m 减小而减小D. 与m 的大小无关二、填空题(共24分)11. 若2x =-是方程520x k +=的解,则k =__________.12. 已知二元一次方程235x y +=,若用含x 的代数式表示,则y =_______. 13. 已知关于x 的不等式()15m x ->的解集为51x m <-,则m 的取值范围是_________. 14. 已知320a b --=,那么261a b -+=_________.15. 方程组457x y y z x z +=⎧⎪+=⎨⎪+=⎩的解是_____________.16. 若不等式组24x x m-≤⎧⎨<⎩无解,则m 的取值范围是____________.三、解答题(共86分)17. 解方程:()()103421x x x --=+.18. 解不等式组:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩,并把它解集在数轴上表示出来.19. 在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18-,求,a b 的值.20. 一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,求这个两位数.21. 已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,求a +b 的值. 22. 某商店需要购进甲、乙两种商品共1000件,其进价和售价如下表所示:(1)若商店计划销售完这批商品后能获利4200元,则甲、乙两种商品应分别购进多少件; (2)若该商店销售完这批商品后获利要多于5000元,则至少应购进乙种商品多少件? 23. 在等式y =kx +b (k ,b 为常数)中,当x =2时,y =﹣5;当x =﹣1时,y =4. (1)求k 、b 的值;(2)若不等式5﹣2x >m +4x 的最大整数解是k ,求m 的取值范围. 24. 一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求b 的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由; (3)已知(),m n “相伴数对”,试说明91,4m n ⎛⎫⎪⎝+⎭-也是“相伴数对”. 25. 某体育彩票经销商计划用4500元从省体彩中心购进彩票20捆,已知体彩中心有A 、B 、C 三种不同价格的彩票,进价分别是A 彩票每捆150元,B 彩票每捆200元,C 彩票每捆250元.(1)若经销商同时购进两种不同型号的彩票20捆,刚好用去4500元,请你帮助设计进票方案; (2)若销售A 型彩票每捆获手续费20元,B 型彩票每捆获手续费30元,C 型彩票每捆获手续费50元.在问题(1)设计的购进两种彩票的方案中,为使销售完时获得的手续费最多,你选择哪种进票方案?(3)若经销商准备用4500元同时购进A、B、C三种彩票20捆,请你帮助经销商设计进票方案.答案与解析一、选择题(共40分)1. 已知a 的值不大于3-,用不等式表示a 的范围是( ) A. 3a >- B. 3a <-C. 3a ≥-D. 3a ≤-【答案】D 【解析】 【分析】a 的值不大于3-就是a 的值小于或等于3-,据此解答即可.【详解】解:a 的值不大于3-,用不等式表示a 的范围是:3a ≤-. 故选:D .【点睛】本题考查了列出问题中的不等式,解题的关键是正确理解题意、把“不大于”转化为“≤”. 2. 若代数式31x -的值为4-,则x 的值为( ) A. 1B. 1-C. 53-D.35【答案】B 【解析】 【分析】根据题意,列出关于x 的一元一次方程314x -=-,通过解该方程可以求得x 的值. 【详解】解:由题意,得314x -=-, 解得1x =-; 故选B .【点睛】本题考查一元一次方程的解法及一元一次方程的解的定义.牢记解一元一次方程的步骤及一元一次方程的解的定义是解题的关键.3. 下列各组中,不是二元一次方程37x y +=的解的是( )A. 14x y =⎧⎨=⎩B. 07x y =⎧⎨=⎩C. 32x y =⎧⎨=-⎩D. 1.53.5x y =⎧⎨=⎩【答案】D 【解析】【分析】把各选项中的x 、y 的值逐一代入计算即得答案. 【详解】解:A 、把14x y =⎧⎨=⎩代入原方程,得3147⨯+=,∴14x y =⎧⎨=⎩是方程37x y +=的解,本选项不符合题意;B 、把07x y =⎧⎨=⎩代入原方程,得3077⨯+=,∴07x y =⎧⎨=⎩是方程37x y +=的解,本选项不符合题意;C 、把32x y =⎧⎨=-⎩代入原方程,得3327⨯-=,∴32x y =⎧⎨=-⎩是方程37x y +=的解,本选项不符合题意;D 、把 1.53.5x y =⎧⎨=⎩代入原方程,得3 1.5 3.587⨯+=≠,∴ 1.53.5x y =⎧⎨=⎩不是方程37x y +=的解,本选项符合题意. 故选:D .【点睛】本题考查了二元一次方程的解的定义,属于基础题型,熟练掌握二元一次方程的解的概念是解题关键.4. 若a b >,则下列不等式中错误的是( ) A. 22a b +>+ B.22a b> C. 22a b -<- D. 22a b >【答案】D 【解析】 【分析】根据不等式的性质逐项判断即可. 【详解】解:A 、不等式a b >两边同时加上2,得22a b +>+,所以本选项变形正确,不符合题意;B 、在不等式a b >两边同时除以2,得22a b>,所以本选项变形正确,不符合题意; C 、在不等式a b >两边同时乘以﹣2,得22a b -<-,所以本选项变形正确,不符合题意; D 、由a b >不能得出22a b >,如1>﹣2,但()2212<-,所以本选项变形错误,符合题意. 故选:D .【点睛】本题考查了不等式的性质,属于基础题型,熟练掌握不等式的性质是解题关键. 5. 将方程3213123x x x -++=-去分母,正确的是( )A. ()()18336221x x x +-=-+B. ()()3331221x x x +-=-+C. ()()93321x x x +-=-+D. ()()33121x x x +-=-+【答案】A 【解析】 【分析】根据去分母的方法:原方程两边同时乘以6可得答案.【详解】解:原方程两边同时乘以6,得:()()18336221x x x +-=-+. 故选:A .【点睛】本题考查了一元一次方程的解法,属于基本题型,熟练掌握去分母的方法是解本题的关键. 6. 某文具店开展促销活动,某种笔记本原价每本x 元,第一次每本按原价打“六折”,第二次每本再降1元,经两次降价后售价为8元,依题意,可列方程为( ) A . 0.68x x -= B. 0.0618x -=C. 80.61x -=D. 0.618x -=【答案】D 【解析】 【分析】由题意可得第一次每本笔记本按原价打“六折”后售价为0.6x 元,第二次降价后的售价为()0.61x -元,进一步即可列出方程.【详解】解:根据题意可列方程为:0.618x -=. 故选:D .【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键. 7. 一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A. x y 50{x y 180=-+=B. x y 50{x y 180=++=C. x y 50{x y 90=++=D. x y 50{x y 90=-+=【答案】C 【解析】【详解】根据平角和直角定义,得方程x+y=90;根据∠1比∠2的度数大50°,得方程x=y+50.可列方程组为5090x y x y =+⎧⎨+=⎩,故选C .考点:1.由实际问题抽象出二元一次方程组;2.余角和补角.8. 《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八盈三;人出七,不足四.问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱.问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,则下列方程组正确的是( ) A. 8374x y y x -=⎧⎨-=⎩B. 8374y x y x -=⎧⎨-=⎩C. 8374y x x y -=⎧⎨-=⎩D. 8374x y x y -=⎧⎨-=⎩【答案】A 【解析】 【分析】设合伙人数为x 人,物价为y 钱,根据该物品价格不变,即可得出关于x 、y 的二元一次方程组,进而得到答案.【详解】解:设合伙人数为x 人,物价为y 钱,根据该物品价格不变,即可得出关于x 、y 的二元一次方程组为:8374x y y x -=⎧⎨-=⎩,故选:A ;【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,找出合适的等量关系,列方程求解.9. 若关于x ,y 的方程组2315x y m x y +=+⎧-=-⎨⎩的解满足x +y =-3,则m 的值为( )A. 2-B. 2C. 1-D. 1【答案】C 【解析】 【分析】先把m 看作是常数,解关于x ,y 二元一次方程组,求得用m 表示的x ,y 的值后,再代入3x+2y=19,建立关于m 的方程,解出m 的数值.【详解】x 2y 3m 1x y 5+=+⎧-=-⎨⎩①②,①-②得:y=m+2③, 把③代入②得:x=m-3, ∵x+y=-3, ∴m-3+m+2=-3, ∴m=-1. 故选C .【点睛】本题实质是解二元一次方程组,先用m 表示出x ,y 的值后,再求解关于m 的方程,解方程组关键是消元.10. 已知关于,x y 的二元一次方程组43335x y mx y m +=-⎧⎨-=-⎩,则关于代数式x y -的值的说法正确的是( ).A. 随m 增大而增大B. 随m 减小而减小C. 既可能随m 增大而增大,也可能随m 减小而减小D. 与m 的大小无关 【答案】D 【解析】 【分析】方程组中的两个方程相加,再两边同时除以2即可进行判断. 【详解】解:对方程组43335x y m x y m +=-⎧⎨-=-⎩①②,①+②,得()21x y -=-,即12x y -=-,∴代数式x y -的值与m 的大小无关. 故选:D .【点睛】本题考查了二元一次方程组的特殊解法,属于常考题型,灵活应用整体的思想方法是解题的关键.二、填空题(共24分)11. 若2x =-是方程520x k +=的解,则k =__________. 【答案】5 【解析】 【分析】将2x =-代入方程520x k +=即可求算.【详解】解:∵2x =-是方程520x k +=的解,2x =-代入方程: ∴1020k -+=,解得:5k = 故答案为:5【点睛】本题考查一元一次方程的解,掌握一元一次方程解的意义是解题关键. 12. 已知二元一次方程235x y +=,若用含x 的代数式表示,则y =_______. 【答案】523x- 【解析】 【分析】移项,把x 看做已知数求出y 即可. 【详解】解:二元一次方程235x y +=, 移项得:352y x =-,即:523xy, 故答案为:523x-;【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y . 13. 已知关于x 的不等式()15m x ->的解集为51x m <-,则m 的取值范围是_________. 【答案】1m < 【解析】 【分析】根据不等式的性质可得10m -<,解不等式即得答案. 【详解】解:由题意得:10m -<,解得:1m <. 故答案为:1m <.【点睛】本题考查了不等式的性质和一元一次不等式的解法,属于基础题型,熟练掌握不等式的性质是解题的关键14. 已知320a b --=,那么261a b -+=_________. 【答案】5 【解析】 【分析】由已知可得32a b -=,然后将所求的代数式变形为()231a b -+后再整体代入求解即可.【详解】解:∵320a b --=,∴32a b -=,∴()2612312215a b a b -+=-+=⨯+=.故答案为:5.【点睛】本题考查了代数式求值,属于基本题型,熟练掌握整体代入的思想方法是解答的关键.15. 方程组457x y y z x z +=⎧⎪+=⎨⎪+=⎩的解是_____________.【答案】314x y z =⎧⎪=⎨⎪=⎩【解析】【分析】根据解三元一次方程组的方法解答即可.【详解】解:对457x y y z x z +=⎧⎪+=⎨⎪+=⎩①②③,①+②+③,得()216x y z ++=,即8x y z ++=④,④-①,得z =4,④-②,得x =3,④-③,得y =1,∴方程组的解是:314x y z =⎧⎪=⎨⎪=⎩.故答案为:314x y z =⎧⎪=⎨⎪=⎩.【点睛】本题考查了三元一次方程组的解法,属于基本题型,熟练掌握解三元一次方程组的方法是解答的关键.16. 若不等式组24x x m-≤⎧⎨<⎩无解,则m 的取值范围是____________. 【答案】2m ≤-【解析】【分析】先求出不等式的解集,再根据无解得出m 的取值范围.【详解】解:24x x m -≤⎧⎨<⎩①② 由①得:2x ≥- 由②得:x m <∵不等式组无解,没有公共部分∴2m ≤-故答案为:2m ≤-【点睛】本题考查不等式组参数问题,掌握求解不等式组的方法是解题关键.三、解答题(共86分)17. 解方程:()()103421x x x --=+.【答案】2x =-【解析】【分析】根据解一元一次方程的方法和步骤解答即可.【详解】解:去括号,得1031222x x x -+=+,移项,得1032212x x x --=-,合并同类项,得510x =-,系数化为1,得2x =-.【点睛】本题考查了一元一次方程的解法,属于基础题型,熟练掌握解一元一次方程的方法是解题的关键.18. 解不等式组:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩,并把它的解集在数轴上表示出来.【答案】0x <,图见解析【解析】【分析】分别解出每一个不等式,再求出公共部分即可,然后在数轴上表示.【详解】解:131722755(1)x x x x ⎧+≤-⎪⎨⎪-<-⎩①②由①得:3x ≤由②得:0x <∴不等式组的解集为:0x <该不等式组解集在数轴上表示如图:【点睛】本题考查一元一次不等式组,掌握一元一次不等式组的解法是解题关键.19. 在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18-,求,a b 的值.【答案】a=5,b=-2【解析】【分析】将3x =,2y =时,ax by +的值是11;当2x =-,4y =时,ax by +的值是18-分别代入得出关于a 、b 的二元一次方程组,解方程即可.【详解】解:∵在代数式ax by +中,当3x =,2y =时,它的值是11;当2x =-,4y =时,它的值是18- ∴32112418a b a b +=⎧⎨-+=-⎩①②由②得:29a b =+ ③将③代入①得:()329211b b ++= 解得:2b =-将2b =-代入③解得:5a =∴a=5,b=-2【点睛】本题考查代数式,将已知条件代入建立关于a 、b 的二元一次方程组是解题关键.20. 一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,求这个两位数.【答案】这个两位数为45.【解析】【分析】要求这个两位数,可以转化为求个位数字与十位数字分别是多少,若设原数的个位数字是x,则十位数字是9﹣x,则原数是10(9﹣x)+x,新数是10x+(9﹣x),然后根据等量关系:新数=原数+9即可列出方程,解方程即得结果.【详解】解:设原两位数的个位数字是x,则十位数字是9﹣x.根据题意得:10x+(9-x)=10(9﹣x)+x+9解得:x=5,则9﹣x=4,答:这个两位数为45.【点睛】本题考查了一元一次方程的应用之数字问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.21. 已知方程组5354x yax y+=⎧⎨+=⎩和2551x yx by-=⎧⎨+=⎩有相同的解,求a+b的值.【答案】16【解析】【分析】根据题意列出x和y的方程组,然后进行求解,将解代入另外的两个方程求出a和b的值,进而即可求解.【详解】解方程组5325x yx y+=⎧⎨-=⎩,得12xy=⎧⎨=-⎩.把12xy=⎧⎨=-⎩代入5451ax yx by+=⎧⎨+=⎩,得142ab=⎧⎨=⎩∴a+b=16.22. 某商店需要购进甲、乙两种商品共1000件,其进价和售价如下表所示:(1)若商店计划销售完这批商品后能获利4200元,则甲、乙两种商品应分别购进多少件;(2)若该商店销售完这批商品后获利要多于5000元,则至少应购进乙种商品多少件?【答案】(1)购进甲种商品800件,购进乙种商品200件;(2)334;【解析】【分析】(1)设购进甲种商品x 件,购进乙种商品y 件,根据购进甲乙两种商品共1000件及销售完这批商品后能获利4200元,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进乙种商品a 件,则购进甲种商品(1000-a )件,根据总利润=单件利润×购进数量结合该商店销售完这批商品后获利要多于5000元,即可得出关于a 的一元一次不等式,解之取其中的最小的整数即可得出结论.【详解】解:(1)设购进甲种商品x 件,购进乙种商品y 件,根据题意得:()()1000181544354200x y x y +⎧⎨-+-⎩== , 解得:800200x y ⎧⎨⎩== , 则购进甲种商品800件,购进乙种商品200件,答:购进甲种商品800件,购进乙种商品200件;(2)设购进乙种商品a 件,则购进甲种商品(1000-a )件,根据题意得:(44-35)a+(18-15)(1000-a )>5000, 解得:10003a > , ∵a 为整数,∴a 的最小值为334.答:至少应购进乙种商品334件.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,列出关于a 的一元一次不等式.23. 在等式y =kx +b (k ,b 为常数)中,当x =2时,y =﹣5;当x =﹣1时,y =4.(1)求k 、b 的值;(2)若不等式5﹣2x >m +4x 的最大整数解是k ,求m 的取值范围.【答案】(1)31k b =-⎧⎨=⎩;(2)7≤m <13 【解析】【分析】(1)把25x y ⎧⎨⎩==﹣和14x y ⎧⎨⎩=﹣=代入y =kx +b ,可得254k b k b +=-⎧⎨-+=⎩,再解出关于k,b 的二元一次方程组即可解出k 、b 的值;(2)解不等式5﹣2x >m +4x 得x <56m -,再根据不等式的最大整数解是k =-3,来得到m 的取值范围. 【详解】解:(1)根据题意可得:254k b k b +=-⎧⎨-+=⎩解得:31k b =-⎧⎨=⎩; (2)解不等式5﹣2x >m +4x ,得:x <56m -, 因为该不等式的最大整数解是k ,即﹣3,所以﹣3<56m -≤﹣2, 解得:7≤m <13.【点睛】主要考查二元一次方程组的解与一元一次不等式的整数解.24. 一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求b 的值; (2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由; (3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对”. 【答案】(1)94b =-;(2)92,2⎛⎫- ⎪⎝⎭(答案不唯一);(3)见解析 【解析】 【分析】 (1)根据“相伴数对”的定义,将()1,b 代入2323a b a b ++=+,从而求算答案; (2)先根据“相伴数对”的定义算出a 、b 之间的关系为:94a b =-,满足条件即可; (3)将将,a m b n == 代入2323a b a b ++=+得出49m n ,再将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到491,94n n -+-⎛⎫ ⎪⎝⎭,分别去计算等式左右两边,看是否恒等即可. 【详解】解:(1)∵()1,b 为“相伴数对”,将()1,b 代入2323a b a b ++=+得: 112323b b ++=+ ,去分母得:()151061b b +=+ 解得:94b =- (2)2323a b a b ++=+化简得:94a b =- 只要满足这个等量关系即可,例如:92,2⎛⎫-⎪⎝⎭(答案不唯一) (3)∵(),m n 是“相伴数对” 将,a m b n == 代入2323a b a b ++=+: ∴2323m n m n ++=+ ,化简得:49m n 将49m n 代入91,4m n ⎛⎫ ⎪⎝+⎭-得到:491,94n n -+-⎛⎫ ⎪⎝⎭ 将:491,94a n b n =-+=- 代入2323a b a b ++=+ 左边=49149942336n n n -+--+= 右边=49149942336n n n -++--=+∴左边=右边∴当(),m n 是“相伴数对”时, 91,4m n ⎛⎫ ⎪⎝+⎭-也是“相伴数对” 【点睛】本题考查定义新运算,正确理解定义是解题关键.25. 某体育彩票经销商计划用4500元从省体彩中心购进彩票20捆,已知体彩中心有A 、B 、C 三种不同价格的彩票,进价分别是A 彩票每捆150元,B 彩票每捆200元,C 彩票每捆250元.(1)若经销商同时购进两种不同型号的彩票20捆,刚好用去4500元,请你帮助设计进票方案; (2)若销售A 型彩票每捆获手续费20元,B 型彩票每捆获手续费30元,C 型彩票每捆获手续费50元.在问题(1)设计的购进两种彩票的方案中,为使销售完时获得的手续费最多,你选择哪种进票方案?(3)若经销商准备用4500元同时购进A、B、C三种彩票20捆,请你帮助经销商设计进票方案.【答案】(1)购进A种彩票5捆,C种彩票15捆或B种彩票与C种彩票各10捆;(2)A种彩票5捆,C种彩票15捆;(3)方案1:A种1捆,B种8捆,C种11捆;方案2:A种2捆,B种6捆,C种12捆;方案3:A种3捆,B种4捆,C种13捆;方案4:A种4捆,B种2捆,C种14捆.【解析】【分析】(1)因为彩票有A,B,C三种不同型号,而经销商同时只购进两种,所以要将A,B,C两两组合,分三种情况:A,B;A,C;B,C,每种情况都可以根据下面两个相等关系列出方程,两种不同型号的彩票捆数之和=20,购买两种不同型号的彩票钱数之和=4500,然后根据实际含义即可确定他们的解;(2)根据上一问分别求出每一种情况的手续费,然后进行比较即可得出结果;(3)有两个等量关系:A彩票扎数+B彩票扎数+C彩票扎数=20,购买A彩票钱数+购买B彩票钱数+购买C彩票钱数=4500;可设三个未知数,然后用含有同一个未知数的代数式去表示另外的两个未知数,再根据三个未知数都是正整数,并结合实际意义即可求出结果.【详解】解:(1)若设购进A种彩票x捆,B种彩票y捆,根据题意得:201502004500x yx y+=⎧⎨+=⎩,解得:1030xy=-⎧⎨=⎩,∵x<0,∴此种情况不合题意;若设购进A种彩票x捆,C种彩票y捆,根据题意得:201502504500x yx y+=⎧⎨+=⎩,解得:515xy=⎧⎨=⎩,若设购进B种彩票x捆,C种彩票y捆,根据题意得:202002504500x yx y+=⎧⎨+=⎩,解得:1010xy=⎧⎨=⎩,综上所述,若经销商同时购进两种不同型号的彩票,共有两种方案:即购进A种彩票5捆,C种彩票15捆或B种彩票与C种彩票各10捆;(2)若购进A种彩票5捆,C种彩票15捆,销售完后可获手续费为:20×5+50×15=850(元);若购进B种彩票与C种彩票各10捆,销售完后可获手续费为:30×10+50×10=800(元);∴为使销售完后获得手续费最多,应选择的方案为:A种彩票5捆,C种彩票15捆;(3)设购进A种彩票m捆,B种彩票n捆,C种彩票h捆.由题意得:201502002504500m n hm n h++=⎧⎨++=⎩,解得:10210h mn m=+=-+⎧⎨⎩,∵m、n都是正整数,∴1≤m<5,∴m=1,2,3,4,所以共有4种进票方案,具体如下:方案1:A种1捆,B种8捆,C种11捆;方案2:A种2捆,B种6捆,C种12捆;方案3:A种3捆,B种4捆,C种13捆;方案4:A种4捆,B种2捆,C种14捆.【点睛】此题考查了二元一次方程组的应用,属于常考题型,正确理解题意、分三种情况求解是解第(1)小题的关键,用含有同一个未知数的代数式去表示另外的两个未知数并结合未知数的实际意义是解第(3)小题的关键.。
2020~2021学年人教版七年级下册期中测试卷【含答案】
2020--2021学年人教版七年级下册期中测试卷答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2020秋•榆次区期中)一个正数的两个平方根分别为a+3和4﹣2a,则这个正数为( )A.7B.10C.﹣10D.100【分析】利用平方根的定义得出a+3+4﹣2a=0,求出a,进而求出答案.解:∵一个正数的两个平方根分别为a+3和4﹣2a,∴a+3+4﹣2a=0,解得:a=7,则a+3=10,4﹣2a=﹣10,故这个正数是100.故选:D.此题主要考查了平方根,正确把握平方根的定义是解题关键.2.(3分)(2020春•梁溪区期中)在以下现象中,属于平移的是( )①在荡秋千的小朋友的运动;②坐观光电梯上升的过程;③钟面上秒针的运动;④生产过程中传送带上的电视机的移动过程.A.①②B.②④C.②③D.③④【分析】判断生活中的现象,是否是平移,要根据平移的定义,进行判断,图形平移前后的形状和大小没有变化,只是位置发生变化.解:①在荡秋千的小朋友,是旋转;②坐观光电梯上升的过程,是平移;③钟面上秒针的运动,是旋转;④生产过程中传送带上的电视机的移动过程,是平移,故选:B.本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.3.(3分)(2020秋•岐山县期中)在实数,,,,0.1010010001,,中,无理数有( )2277π33632个.A .1B .2C .3D .4【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:是分数,属于有理数;2270.1010010001是有限小数,属于有理数;,是整数,属于有理数;36=6无理数有,,,共3个.7π332故选:C .此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.(3分)(2020秋•平阴县期中)如图,小手盖住的点的坐标可能为( )A .(5,2)B .(﹣3,﹣3)C .(﹣6,4)D .(2,﹣5)【分析】根据各象限内点的坐标特征解答即可.解:由图得点位于第四象限,故选:D .本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(3分)(2020春•潮安区期中)如果是a 的相反数,那么a 的值是( )2‒1A .B .C .D .1‒21+2‒22【分析】根据只有符号不同的两个数互为相反数,可得答案.解:是a 的相反数,那么a 的值是1,2‒1‒2故选:A .本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.6.(3分)(2020秋•南岗区校级期中)如图,直线AB 、CD 相交于点O ,∠AOC =40°,OE 平分∠AOD ,则∠EOD =( )A .55°B .60°C .65°D .70°【分析】先根据∠AOC =40°,∠AOD 与∠AOC 是邻补角求出∠AOD 的度数,再根据角平分线的定义求∠EOD 的度数.解:∵∠AOC =40°,∴∠AOD =180°﹣∠AOC =140°.∵OE 平分∠AOD ,∴∠EOD ∠AOD =70°.=12故选:D .本题考查了角平分线,邻补角.解题的关键是掌握角平分线的定义.邻补角的性质:邻补角互补,即和为180°.7.(3分)(2020春•惠城区期中)如图,给出下列条件,①∠1=∠3;②∠2=∠4;③∠B =∠DCE ;④∠D =∠DCE .其中能推出AD ∥BC 的条件为( )A .②③④B .②④C .②③D .①④【分析】利用平行线的判定方法判断即可得到正确的选项.解:①∵∠1=∠3,∴AB ∥DC ,本选项不符合题意;②∵∠2=∠4,∴AD ∥CB ,本选项符合题意;③∵∠B=∠DCE,∴AB∥CD,本选项不符合题意;④∵∠D=∠DCE,∴AD∥BC,本选项符合题意,则符合题意的选项为②④.故选:B.此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.8.(3分)(2020秋•南岗区期中)下列说法正确的是( )①在同一平面内,过一点有且只有一条直线与已知直线垂直;②在同一平面内,过一点有且只有一条直线与已知直线平行;③P是直线a外一点,A、B、C分别是直线a上的三点,PA=1,PB=2,PC=3,则点P到直线a的距离一定是1;④相等的角是对顶角;⑤同旁内角互补.A.1个B.2个C.3个D.4个【分析】根据平行的判定、垂直的判定、对顶角以及平行线的性质判断即可.解:①在同一平面内,过一点有且只有一条直线与已知直线垂直,是真命题;②在同一平面内,过直线外一点有且只有一条直线与已知直线平行,原命题是假命题;③P是直线a外一点,A、B、C分别是直线a上的三点,PA=1,PB=2,PC=3,则点P到直线a的距离一定不大于1,原命题是假命题;④相等的角不一定是对顶角,原命题是假命题;⑤两直线平行,同旁内角互补,原命题是假命题;故选:A.此题考查了命题与定理,正确掌握平行的判定、垂直的判定、对顶角以及平行线的性质是解题关键.9.(3分)(2020秋•开福区校级期中)如图,将长方形纸片ABCD沿EF折叠后,点C,D分别落在点C′,D′处,若∠AFE=68°,则∠C′EF等于( )A.68°B.80°C.40°D.55°【分析】根据平行线的性质,可以得到∠CEF的度数,然后根据折叠的性质,即可得到∠C′EF的度数,本题得以解决.解:∵∠AFE=68°,AD∥BC,∴∠AFE=∠CEF=68°,由折叠的性质可得,∠CEF=∠C′EF,∴∠C′EF=68°,故选:A.本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.10.(3分)(2020秋•阜南县期中)如图,一个粒子在第一象限和x,y轴的正半轴上运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…),且每秒运动一个单位长度,那么2020秒时,这个粒子所处位置为( )A.(4,44)B.(5,44)C.(44,4)D.(44,5)【分析】该题显然是数列问题.设粒子运动到A1,A2,…A n时所用的时间分别为a1,a2,…a n,则a1=2,a2=6,a3=12,a4=20,…,由a n﹣a n﹣1=2n,则a2﹣a1=2×2,a3﹣a2=2×3,a4﹣a3=2×4,…,a n﹣a n﹣1=2n,以上相加得到a n﹣a1的值,进而求得a n来解.解:由题意,设粒子运动到A1,A2,…,A n时所用的间分别为a1,a2,…,a n,则a1=2,a2=6,a3=12,a4=20,…,a n﹣a n﹣1=2n,a2﹣a1=2×2,a3﹣a2=2×3,a4﹣a3=2×4,…,a n﹣a n﹣1=2n,相加得:a n﹣a1=2(2+3+4+…+n)=n2+n﹣2,∴a n=n(n+1).∵44×45=1980,故运动了1980秒时它到点A44(44,44);又由运动规律知:A1,A2,…,A n中,奇数点处向下运动,偶数点处向左运动.故达到A44(44,44)时向左运动40秒到达点(4,44),即运动了2020秒.所求点应为(4,44).故选:A.考查了规律型:点的坐标,分析粒子在第一象限的运动规律得到数列{a n}通项的递推关系式a n﹣a n﹣1=2n是本题的突破口,对运动规律的探索知:A1,A2,…A n中,奇数点处向下运动,偶数点处向左运动是解题的关键.二.填空题(共7小题,满分28分,每小题4分)9‒3‒811.(4分)(2020秋•宜阳县期中)计算的结果为 5 .【分析】直接利用立方根的性质以及二次根式的性质分别化简得出答案.解:原式=3﹣(﹣2)=3+2=5.故5.此题主要考查了实数运算,正确化简各数是解题关键.6.619=66.19=12.(4分)(2020春•长葛市期中)若利用计算器求得 2.573,8.136,则根据此值估计6619的算术平方根是 81.36 .【分析】被开方数每扩大为原来的100倍,其算术平方根相应的扩大为原来的10倍,据此依据6619=81.36.解:被开方数每扩大为原来的100倍,其算术平方根相应的扩大为原来的10倍,66.19=8.136∵,6619=81.36∴.故81.36.本题主要考查计算器﹣数的开方和数字的变化规律,解题的关键是得出被开方数每扩大为原来的100倍,其算术平方根相应的扩大为原来的10倍的规律.13.(4分)(2020秋•即墨区校级期中)已知点P在第三象限,且点P到x轴的距离为3,到y轴的距离为2,那么点P的坐标为 (﹣2,﹣3) .【分析】根据第三象限内点的横坐标与纵坐标都是负数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.解:∵点P(x,y)在第三象限,且点P到x轴的距离为3,到y轴的距离为2,∴x=﹣2,y=﹣3,∴点P的坐标是(﹣2,﹣3).故(﹣2,﹣3).本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.<19‒14.(4分)(2020秋•滦州市期中)已知x为整数,且x1<x+1,则x的值为 3 .【分析】根据题意首先求出x的取值范围,再利用估计无理数的方法得出x的取值范围,进而得出答案.<19‒解:∵x1<x+1,19‒<19‒∴2<x1,<19<∵45,<19‒<19‒∴31<4,22<3,∴x=3.故3.19此题主要考查了估计无理数的方法以及解不等式,根据题意得出的取值范围是解题关键.15.(4分)已知A (1,0),B (0,2),点P 在x 轴上,且△PAB 面积是5,则点P 的坐标是 (﹣4,0)或(6,0) .【分析】根据B 点的坐标可知AP 边上的高为2,而△PAB 的面积为5,点P 在x 轴上,说明AP =5,已知点A 的坐标,可求P 点坐标.解:∵A (1,0),B (0,2),点P 在x 轴上,∴AP 边上的高为2,又∵△PAB 的面积为5,∴AP =5,而点P 可能在点A (1,0)的左边或者右边,∴P (﹣4,0)或(6,0).故答案为(﹣4,0)或(6,0).本题考查了坐标和图形性质以及三角形的面积,根据面积求得AP 的长是解题的关键.16.(4分)(2020春•揭东区期中)如图将直角三角形ABC 沿AB 方向平移AD 距离得到△DEF ,已知∠ABC =90°,BE =5,EF =8,CG =3,则图中阴影部分的面积为 .652【分析】利用平移的性质得到S △ABC =S △DEF ,BC =EF =8,则GB =5,然后利用S 阴影部分=S 梯形BEFG 进行计算.解:∵直角三角形ABC 沿AB 方向平移AD 距离得到△DEF ,∴S △ABC =S △DEF ,BC =EF =8,∴GB =BC ﹣CG =8﹣3=5,∵S 阴影部分+S △DBG =S △BDG +S 梯形BEFG ,∴S 阴影部分=S 梯形BEFG(5+8)×5.=12×=652故答案为.652本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.17.(4分)(2020春•高新区期中)如图,若AB ∥CD ,BF 平分∠ABE ,DF 平分∠CDE ,∠BED =90°,则∠BFD = 45° .【分析】根据平行线的性质和角平分线的性质,可以求得∠BFD 的度数,本题得以解决.解:∵AB ∥CD ,∴∠ABE =∠4,∠1=∠2,∵∠BED =90°,∠BED =∠4+∠EDC ,∴∠ABE +∠EDC =90°,∵BF 平分∠ABE ,DF 平分∠CDE ,∴∠1+∠3=45°,∵∠5=∠2+∠3,∴∠5=∠1+∠3=45°,即∠BFD =45°,故45°.本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.三.解答题(共8小题,满分62分)18.(6分)(2020春•凉州区校级期中)(1)计算:(﹣2)2(﹣1)2020;×14+3‒8+2× (2)解方程:3(x ﹣2)2=27.【分析】(1)直接利用立方根的性质以及二次根式的性质分别化简得出答案;(2)直接利用平方根的定义化简得出答案.解:(1)原式=4×12+(‒2)+(‒2)=2‒2‒2;=‒2(2)(x﹣2)2=9,x﹣2=3或x﹣2=﹣3,解得:x=5或x=﹣1.此题主要考查了实数运算,正确化简各数是解题关键.19.(6分)(2020春•潮安区期中)如图,AB∥CD,BE平分∠ABC,∠DCB=140°,求∠ABD和∠EDC 的度数.【分析】根据平行线性质求出∠ABC,求出∠CBD和∠ABD,根据平行线性质求出∠CDB,即可求出答案.解:∵AB∥CD,∴∠C+∠ABC=180°,∵∠C=140°,∴∠ABC=40°,又∵BE平分∠ABC,∴∠ABD=∠EBC=20°,又∵AB∥CD,∴∠BDC=∠ABD=20°,∴∠EDC=180°﹣∠BDC=160°.本题考查了平行线的性质和角平分线定义的应用,主要考查学生的推理能力和计算能力.20.(6分)(2020春•潮安区期中)有一个边长为9cm的正方形和一个长为24cm、宽为6cm的长方形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少厘米?【分析】利用已知得出新正方形的面积,进而求出其边长.解:设正方形的边长为x厘米.依题意得:x2=9×9+24×6,即x2=225,∴x=15.答:正方形的边长为15厘米.此题主要考查了算术平方根的定义,求的这个正方形的面积是解题的关键.21.(8分)(2020春•潮安区期中)完成下面的证明过程:如图所示,直线AD与AB,CD分别相交于点A,D,与EC,BF分别相交于点H,G,已知∠1=∠2,∠B=∠C.求证:∠A=∠D.证明:∵∠1=∠2,(已知)∠2=∠AGB( 对顶角相等 )∴∠1= ∠AGB ( 等量代换 )∴EC∥BF( 同位角相等,两直线平行 )∴∠B=∠AEC( 两直线平行,同位角相等 )又∵∠B=∠C(已知)∴∠AEC= ∠C ( 等量代换 )∴ AB∥CD ( 内错角相等,两直线平行 )∴∠A=∠D( 两直线平行,内错角相等 )【分析】求出∠1=∠AGB,根据平行线的判定得出EC∥BF,根据平行线的性质得出∠B=∠AEC,求出∠AEC=∠C,根据平行线的判定得出AB∥CD即可.证明:∵∠1=∠2,(已知)∠2=∠AGB(对顶角相等)∴∠1=∠AGB(等量代换),∴EC∥BF(同位角相等,两直线平行)∴∠B=∠AEC(两直线平行,同位角相等),又∵∠B=∠C(已知)∴∠AEC=∠C(等量代换)∴AB∥CD(内错角相等,两直线平行),∴∠A=∠D(两直线平行,内错角相等),故对顶角相等,∠AGB,等量代换,同位角相等,两直线平行,两直线平行,同位角相等,∠C,等量代换,AB∥CD,内错角相等,两直线平行,两直线平行,内错角相等.本题考查了平行线的性质和判定的应用,能综合运用定理进行推理是解此题的关键.22.(8分)(2020春•新余期中)如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BAC.【分析】根据垂直可得∠ADC=∠EGC=90°,根据同位角相等两直线平行可得AD∥EG,根据平行线的性质可得∠1=∠2,∠E=∠3,再利用等量代换可得∠2=∠3,进而得到AD平分∠BAC.证明:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,∴AD∥EG,(同位角相等,两直线平行).∴∠1=∠2,(两直线平行,内错角相等).∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3,(等量代换).∴AD平分∠BAC.(角平分线的定义)本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行;两直线平行,内错角相等,同位角相等.23.(8分)(2020春•靖远县期中)如图,三角形ABO中,A(﹣2,﹣3)、B(2,﹣1),三角形A′B′O′是三角形ABO平移之后得到的图形,并且O的对应点O′的坐标为(4,3).(1)求三角形ABO的面积;(2)作出三角形ABO平移之后的图形三角形A′B′O′,并写出A′、B′两点的坐标分别为A′ (2,0) ,B′ (6,2) ;(3)P(x,y)为三角形ABO中任意一点,则平移后对应点P′的坐标为 (x+4,y+3) .【分析】(1)利用割补法求解可得;(2)由点O 及其对应点O ′的坐标得出平移的方向和距离,据此得出点A 和点B 的对应点,顺次连接可得;(3)由平移的方向和距离可得答案.解:(1)S △ABO =4×32×32×14×2=4;‒12×‒12×‒12×(2)如图所示三角形A ′B ′O ′为所求,点A ′(2,0),点B ′(6,2),故(2,0),(6,2).(3)点P ′的坐标为(x +4,y +3).故(x +4,y +3).本题主要考查作图﹣平移变换,解题的关键是根据平移变换的定义和性质得出变换后的对应点及割补法求面积.24.(10分)(2020春•马龙县校级期中)如图,在直角坐标系中,已知A (0,a ),B (b ,0),C (b ,c )三点,其中a 、b 、c 满足关系式|a ‒2|+(b ‒3)2+c ‒4=0(1)求a 、b 、c 的值;(2)如果在第二象限内有一点P (m ,),请用含m 的式子表示四边形ABOP 的面积;12(3)在(2)的条件下,是否存在点P ,使四边形ABOP 的面积为△ABC 的面积相等?若存在,求出点P 的坐标;若不存在,请说明理由.【分析】(1)用非负数的性质求解;(2)把四边形ABOP 的面积看成两个三角形面积和,用m 来表示;(3)△ABC 可求,是已知量,根据题意,方程即可.解:(1)由已知,可得:a =2,b =3,c =4;|a ‒2|+(b ‒3)2+c ‒4=0(2)∵S △ABO 2×3=3,S △APO 2×(﹣m )=﹣m ,=12×=12×∴S 四边形ABOP =S △ABO +S △APO =3+(﹣m )=3﹣m ,即S 四边形ABOP =3﹣m ;(3)因为S △ABC 4×3=6,=12×∵S 四边形ABOP =S △ABC∴3﹣m =6,则 m =﹣3,所以存在点P (﹣3,)使S 四边形ABOP =S △ABC .12本题考查了四边形综合题,属于掌握非负数的性质,三角形及四边形面积的求法,解决本题的关键是根据非负数的性质求出a ,b ,c .25.(10分)(2020春•潮安区期中)同一平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB ∥CD ,点P 在AB 、CD 内部,请写出∠BPD 、∠B 、∠D 之间的数量关系(不必说明理由);(2)如图2,将直线AB绕点B逆时针方向转一定角度交直线CD于点Q,利用(1)中的结论求∠BPD、∠B、∠D、∠BQD之间有何数量关系?并证明你的结论;(3)如图3,设BF交AC于点M,AE交DF于点N.已知∠AMB=140°,∠ANF=105°,利用(2)中的结论直接写出∠B+∠E+∠F的度数和∠A比∠F大多少度.【分析】(1)过点P作PE∥AB,根据两直线平行,内错角相等可得∠B=∠1,∠D=∠2,再根据∠BPD=∠1+∠2即可得解;(2)连接QP并延长,再根据三角形的一个外角等于与它不相邻的两个内角的和解答;(3)依据(2)中的结论、三角形的内角和及三角形的外角和即可求得.解:(1)过点P作PE∥AB,∵AB∥CD,∴AB∥EP∥CD,∴∠B=∠1,∠D=∠2,∴∠BPD=∠B+∠D;(2)如图2,连接QP并延长,结论:∠BPD=∠BQD+∠B+∠D.∠BPD=(∠BQP+∠B)+(∠DQP+∠D)=∠BQD+∠B+∠D;(3)∵∠ANF=105°,∴∠ENF=∠B+∠E+∠F=180°﹣105°=75°,∵∠A=∠AMB﹣∠B﹣∠E,∠F=180°﹣∠ANF﹣∠B﹣∠E,∴∠A﹣∠F=∠AMB+∠ANF﹣180°=65°.答:∠B+∠E+∠F的度数为:75°;∠A比∠F大65°.本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作出辅助线是解题的关键.。
福建省福清市2020-2021年人教版七年级下期中考试数学试题及答案(A卷全套)
福建省福清市2020-2021年人教版七年级下期中考试数学试题及答案(A卷全套)福清市20214-2021学年度第二学期七年级期中考试数学参考答案一、选择题(共10小题,每小题3分,共30分) 1 2 3 4 5 6 7 8 910 BBCCACCBDB二、填空题(共7题,每小题2分,共14分)11. < 12.如果两个角是对顶角,那么它们相等。
13. 35? 14. 2- 15. 0或1-或1 16. ①③④ 17. ()9,4 三、解答题(共6题,共56分) 18、(1)计算:①232+- ② 23(2)98--+-解:原式=232+-……3分解:原式=432-- ……3分=3 …………5分=1-…………5分 (2)一个数的两个不同..平方根分别为3a +与26a -,求该数. 解:根据题意可得:3260a a ++-=……………2分解得1a =……………3分34a +=,则2416=则这个数为16……………5分 19. 按图填空, 并注明理由(本题6分). 证明: ∵1=2∠∠ (已知) ∴DB ∥EC ( 内错角相等,两直线平行) ∴4E ∠=∠ ( 两直线平行,内错角相等 ) 又∵3E ∠=∠ ( 已知) ∴34∠=∠ ( 等量代换 ) ∴AD ∥BE . (每空1分)2021(本题9分) (1)1(4,7)A1(1,2)B1(6,4)C ……………3分(2)如图所示…………………5分图9(3)111111(25)523259.5222A B C S ?=+?-??-??=…7分 (4) 24,25D ?? ???或14,25D ??-……9分21.解:原绿化带的面积=2210100()m =……2分扩大后绿化带的面积=24100400()m ?=………4分40020()m =答:扩大后绿化带的边长为20m 。
…………………6分22.解:(1)猜想:AB ∥CD ,理由如下………1分AE ∥BC ,∴180A B ∠+∠=?(两直线平行,同旁内角互补) …3分A C ∠=∠∴180B C ∠+∠=?∴AB ∥CD (同旁内角互补,两直线平行) ………………5分(2)AE ∥BC∴23∠=∠(两直线平行,内错角相等)…………………6分180A ABC ∠+∠=?(两直线平行,同旁内角相等) 13∠=∠ ∴123∠=∠=∠,22ABC ∠=∠ 又22AEF ∠=∠∴22180A ABC A A AEF ∠+∠=∠+∠=∠+∠=?…8分180AEF AED ∠+∠=?∴A AED C ∠=∠=∠即AED C ∠=∠…………………………9分 (请酌情给分) 23.解:(1)正方形ABCO 的周长为24∴4OA OC BC AB ====…………………………1分则(6,6)B ,(6,0)C …………………………3分(2)设经过t 秒满足题意,则OM AN t ==,6MC NB t ==-…………………4分长方形AOMN 的周长=662122t t ++=+…………………………5分长方形NMCB 的周长=662(6)242t t ++-=-………………………6分则5 122(242)4t t +=- 解得:4t =…………………………7分 (3)分类讨论由AE BE ⊥可得:90AEB ∠=? ①若E 在AB 上方,AO ∥BC ∥l∴180OAE MEA ∠+∠=?,180CBE MEB ∠+∠=? ∴360OAE MEA CBE MEB ∠+∠+∠+∠=?90AEB MEA MEB ∠=∠+∠=?36090270OAE CBE ∠+∠=?-?=?……………9分②若E 在AB 下方……………7分AO ∥BC ∥l∴OAE AEN ∠=∠,CBE NEB ∠=∠∴90OAE CBE AEN NEB AEB ∠+∠=∠+∠=∠=?即90OAE CBE ∠+∠=?综上所述,270OAE CBE ∠+∠=?或90OAE CBE ∠+∠=?…11分(不同解法,请酌情给分)。
最新人教版数学七年级下学期《期中检测卷》含答案解析
2020-2021学年度第二学期期中测试人教版七年级数学试题一、选择题(共10道题,每题2分,共20分)1. 9的算术平方根是()A. ﹣3B. ±3C. 3D. 32.在平面直角坐标系中,点A(﹣2,4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.将一直角三角板与两边平行的纸条如图放置.若∠1=50°,则∠2的度数为()A.30°B. 40°C. 50°D. 60°4.如图,AB∥CD,∠AGE=126°,HM平分∠EHD,则∠MHD的度数是()A. 44° B. 25° C. 26° D. 27°5.下列说法正确的是( ) A. 相等的角是对顶角 B. 一个角的补角必是钝角C. 同位角相等 D. 一个角的补角比它的余角大90°6.点()1,3-向右平移3个单位后的坐标为( ) A.()4,3- B. ()1,6- C. ()2,3 D. ()1,0-7.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有x个人,这个物品价格是y元.则可列方程组为()A. 83,74x y x y =+⎧⎨=-⎩B. 83,74x y x y =-⎧⎨=+⎩C. 84,73x y x y =+⎧⎨=-⎩D. 84,73x y x y =-⎧⎨=+⎩8.下列说法正确的是( )A. 0的平方根是0B. 1的平方根1C. 1的平方根1-D. 1-的平方根1- 9.过A(4,-2)和B(-2,-2)两点的直线一定( )A. 垂直于x 轴B. 与y 轴相交但不平行于x 轴C. 平行于x 轴D. 与x 轴,y 轴平行10.二元一次方程2x +y =8的正整数解有( )个.A. 1B. 2C. 3D. 4二、填空题(共8道题,每题2分,共16分)11.在22,0, 3.141592,2.95,,25,3,0.2020020002...72π-+-(两个非零数之间依次多一个0),其中无理数有_______个12.16的平方根是 .13.若25.36=5.036,253.6=15.906,则253600=__________.14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________319127-_____. 16.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.17.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC ∥AE ;③如果∠1=∠2=∠3,则有BC ∥AE ;④如果∠2=45°,必有∠4=∠E .其中正确的有_____(填序号).18.如图,在平面直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,…,将△OAB 进行n 次变换,得到△OA n B n ,观察每次变换中三角形顶点坐标有何变化,找出规律,推测A 2020的坐标是__三、解答题(第19-26题,共64分)19.计算 (1231981416⎛⎫-- ⎪⎝⎭(2)323220.解方程组:(1)23321x y x y -=⎧⎨+=⎩. (2)222529x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩21.如图,在平面直角坐标系中,三角形ABC 的顶点坐标分别为()2,4A -,B(51)--,,(01)C ,,把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.(1)画出三角形ABC 和平移后’’’A B C 的图形;(2)写出三个顶点A ',B ',C '的坐标;(3)求三角形ABC 的面积.22.在某体育用品商店,购买50根跳绳和80个毽子共用1120元,购买30根跳绳和50个毽子共用680元.(1)跳绳、毽子的单价各是多少元?(2)该店在“元旦”节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1700元,该店的商品按原价的几折销售?23.如图,AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE,请你将下面解答过程填写完整.解:∵AB∥CD,∴∠4= ()∵∠3=∠4∴∠3= (等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .∴∠3= ()∴AD∥BE().24.已知,如图,AD∥BC,∠A=∠C.求证:∠1=∠2.25.如图1,点A 、B 直线1l 上,点C 、D 在直线2l 上,AE 平分∠BAC ,CE 平分∠ACD ,∠EAC+∠ACE=90°.(1)请判断1l 与2l 的位置关系并说明理由;(2)如图2,在(1)的结论下,P 为线段AC 上一定点,点Q 为直线CD 上一动点,当点Q 在射线CD 上运动时(不与点C 重合)∠CPQ+∠CQP 与∠BAC 有何数量关系?请说明理由.26.小明在拼图时,发现8个一样大小的长方形恰好可以拼成一个大的长方形,如图(1),小红看见了,说:“我来试一试”结果小红七拼八凑,拼成了如图(2)的正方形,中间还留下一个洞,恰好边长是2mm 的小正方形,你能计算出每个长方形的长和宽吗?答案与解析一、选择题(共10道题,每题2分,共20分)1. 9的算术平方根是()A. ﹣3B. ±3C. 3D. 3【答案】C【解析】试题分析:9的算术平方根是3.故选C.考点:算术平方根.2.在平面直角坐标系中,点A(﹣2,4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【详解】解:由﹣2<0,4>0得点A(﹣2,4)位于第二象限,故选:B.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.将一直角三角板与两边平行的纸条如图放置.若∠1=50°,则∠2的度数为()A. 30°B. 40°C. 50°D. 60°【答案】B【解析】【分析】先根据∠1=50°,∠FEG=90°,求得∠3的度数,再根据平行线的性质,求得∠2的度数即可.【详解】解:如图,∵∠1=50°,∠FEG=90°,∴∠3=40°,∵AB∥CD,∴∠2=∠3=40°.故选:B.【点睛】本题主要考查的是平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.4.如图,AB∥CD,∠AGE=126°,HM平分∠EHD,则∠MHD的度数是()A. 44°B. 25°C. 26°D. 27°【答案】D【解析】【分析】由题意可由平行线的性质,求出∠EHD的度数,再由HM平分∠EHD,即可求出∠MHD的度数.【详解】解:由题意得:∠AGE=∠BGF=126°,∵AB∥CD,∴∠EHD=180°−∠BGF=54°,又∵HM平分∠EHD,∴∠MHD=12∠EHD=27°.故选D.【点睛】本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.5.下列说法正确的是( )A. 相等的角是对顶角B. 一个角的补角必是钝角C. 同位角相等D. 一个角的补角比它的余角大90°【答案】D【解析】【分析】 根据对顶角的定义,余角与补角的关系,对各选项分析判断后利用排除法求解.【详解】解:A 、对顶角相等,相等的角不一定是对顶角,故本选项错误;B 、锐角的补角是钝角,直角的补角是直角,钝角的补角是锐角,故本选项错误;C 、只有两直线平行,同位角才相等,故本选项错误;D 、一个角α的补角为180°﹣α,它的余角为90°﹣α,(180°﹣α)﹣(90°﹣α)=90°,故本选项正确. 故选D .【点睛】本题综合考查了余角、补角、对顶角,是基本概念题,熟记概念与性质是解题的关键. 6.点()1,3-向右平移3个单位后的坐标为( )A . ()4,3-B. ()1,6-C. ()2,3D. ()1,0-【答案】C【解析】【分析】 直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:把点(−1,3)向右平移3个单位后所得的点的坐标为:(−1+3,3),即(2,3),故选C .【点睛】本题主要考查了坐标与图形变化−平移,平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.7.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有x 个人,这个物品价格是y 元.则可列方程组为( ) A. 83,74x y x y =+⎧⎨=-⎩B. 83,74x y x y =-⎧⎨=+⎩C. 84,73x y x y =+⎧⎨=-⎩D. 84,73x y x y =-⎧⎨=+⎩【答案】A【解析】【分析】根据等量关系:每人出8元,还余3元;每人出7元,还差4元即可列出方程组.【详解】根据题意有83, 74 x yx y=+⎧⎨=-⎩故选:A.【点睛】本题主要考查二元一次方程组的应用,读懂题意,找到等量关系是解题的关键.8.下列说法正确的是()A. 0的平方根是0B. 1的平方根1C. 1的平方根1-D. 1-的平方根1-【答案】A【解析】【分析】根据平方根的性质,逐一判定即可. 【详解】A选项,0的平方根是0,正确;B选项,1的平方根是±1,错误;C选项,1的平方根是±1,错误;D选项,1-没有平方根,错误;故选:A. 【点睛】此题主要考查对平方根的理解,熟练掌握,即可解题. 9.过A(4,-2)和B(-2,-2)两点的直线一定() A. 垂直于x轴 B. 与y轴相交但不平行于x轴C. 平行于x轴D. 与x轴,y轴平行【答案】C【解析】【分析】根据平行于x轴的直线上两点的坐标特点解答.【详解】∵A,B两点的纵坐标相等,∴过这两点的直线一定平行于x轴.故选C.【点睛】解答此题的关键是掌握平行于坐标轴的直线上的点的坐标的特点.10.二元一次方程2x +y =8的正整数解有( )个.A. 1B. 2C. 3D. 4【答案】C【解析】【分析】由于二元一次方程2x +y =8中y 的系数是1,可先用含x 的代数式表示y ,然后根据此方程的解是正整数,那么把最小的正整数x =1代入,算出对应的y 的值,再把x =2代入,再算出对应的y 的值,依此可以求出结果.【详解】解:∵2x +y =8,∴y =8﹣2x ,∵x 、y 都是正整数,∴x =1时,y =6;x =2时,y =4;x =3时,y =2.∴二元一次方程2x +y =8的正整数解共有3对.故选:C .【点睛】由于任何一个二元一次方程都有无穷多个解,求满足二元一次方程的正整数解,即此方程中两个未知数的值都是正整数,这是解答本题的关键.注意最小的正整数是1. 二、填空题(共8道题,每题2分,共16分)11.在22,0, 3.141592,2.95,0.2020020002 (72)π-+-(两个非零数之间依次多一个0),其中无理数有_______个【答案】3【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:无理数有2π−0.2020020002…(两个非零数之间依次多一个0),共3个, 故答案为3.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.2020020002…(相邻两个2之间0的个数逐次加1)等有这样规律的数.12.16的平方根是.【答案】±2.【解析】【详解】解:∵16=4∴16的平方根是±2.故答案为±2.13.若25.36=5.036,253.6=15.906,则253600=__________.【答案】503.6【解析】【分析】根据平方根的计算方法和规律计算即可=5.036×100=503.6.故答案为503.6.【详解】解:253600=25.361000014.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________【答案】15°【解析】【分析】如下图,过点E作EF∥BC,然后利用平行线的性质结合已知条件进行分析解答即可.【详解】由题意可得AD∥BC,∠DAE=∠1+45°,∠AEB=90°,∠EBC=30°,过点E作EF∥BC,则AD∥EF∥BC,∴∠AEF=∠DAE=∠1+45°,∠FEB=∠EBC=30°,又∵∠AEF=∠AEB-∠FEB,∴∠AEF=90°-30°=60°,∴∠1+45°=60°,∴∠1=60°-45°=15°.故答案为:15°.319127-_____. 【答案】23【解析】【分析】根据是实数的性质即可化简. 331982127273-==. 故答案为23. 【点睛】此题主要考查二次根式的化简,解题的关键是熟知实数的性质.16.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.【答案】如果两个角是对顶角,那么这两个角相等【解析】【分析】命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.【详解】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.【点睛】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.17.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC∥AE;③如果∠1=∠2=∠3,则有BC∥AE;④如果∠2=45°,必有∠4=∠E.其中正确的有_____(填序号).【答案】①③【解析】【分析】根据平行线的判定和性质解答即可.【详解】解:∵∠EAD=∠CAB=90°,∴∠1=∠3,故①正确,当∠2=30°时,∠3=60°,∠4=45°,∴∠3≠∠4,故AE与BC不平行,故②错误,当∠1=∠2=∠3时,可得∠3=∠4=45°,∴BC∥AE,故③正确,∵∠E=60°,∠4=45°,∴∠E≠∠4,故④错误,故答案为:①③.【点睛】此题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解决本题的关键.18.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,…,将△OAB进行n次变换,得到△OA n B n,观察每次变换中三角形顶点坐标有何变化,找出规律,推测A2020的坐标是__【答案】(22020,3)【解析】【分析】根据图形写出点A系列的坐标与点B系列的坐标,根据具体数值找到规律即可.【详解】∵A(1,3),A1(2,3),A2(4,3),A3(8,3)…纵坐标不变为3,横坐标都和2有关,为2n,∴An(2n,3);∴A2020(22020,3)故答案为:(22020,3)【点睛】依次观察各点的横纵坐标,得到规律是解决本题的关键.三、解答题(第19-26题,共64分)19.计算(1231981416⎛⎫--⎪⎝⎭(2)3232【答案】(1)12-;(2)423.【解析】【分析】(1)直接利用立方根以及平方根的性质分别化简得出答案;(2)直接利用绝对值的定义化简得出答案;【详解】(12319151812416442⎛⎫--=-+=- ⎪⎝⎭(2)32323232423==【点睛】考查了实数的混合运算以及二次根式的加减混合运算,正确化简各数是解题关键.20.解方程组:(1)23321x yx y-=⎧⎨+=⎩.(2)222529x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩【答案】(1)11x y =⎧⎨=-⎩;(2)521x y z =⎧⎪=-⎨⎪=⎩. 【解析】【分析】(1)首先由 ①×2+②,消去y ,然后解关于x 的方程即可求解. (2)由①+②+③得到x+y+z=4④,再由①-④得到y 的值,②-④得到z 的值,③-④得到x 的值.【详解】(1)23321x y x y ①②-=⎧⎨+=⎩ 由 ①×2+②,得 7x =7,解得 x =1, 把 x =1 代入①式,得2﹣y =3,解得y =﹣1所以原方程组的解为11x y =⎧⎨=-⎩. (2)2 2....2 5....29....x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩①②③①+②+③ 得4x+4y+4z=16 即 x+y+z=4 ④①-④ 得y= -2②-④ 得z= 1③-④ 得x= 5所以原方程组的解为521x y z =⎧⎪=-⎨⎪=⎩【点评】考查了解二元一次方程组和解三元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.21.如图,在平面直角坐标系中,三角形ABC 的顶点坐标分别为()2,4A -,B(51)--,,(01)C ,,把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.(1)画出三角形ABC 和平移后’’’A B C 的图形;(2)写出三个顶点A ',B ',C '的坐标;(3)求三角形ABC 的面积.【答案】(1)图见解析(2)点A′的坐标为(0,0)、B'的坐标为(-3,−5)、C′的坐标为(2,−3)(3)192【解析】【分析】(1)依据所得点的坐标,描点后首尾顺次连接即可求解;(2)根据点的坐标的平移规律即可求解;(3)根据割补法及三角形的面积公式可得答案.【详解】(1)如图,△ABC和△’’’A B C为所求;(2)∵把三角形ABC向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C'''.∴点A′的坐标为(0,0)、B'的坐标为(-3,−5)、C′的坐标为(2,−3);(3)三角形ABC的面积=5×5-12×3×5-12×3×2-12×2×5=25-152-3-5=192.【点睛】本题主要考查作图−平移变换,解题的关键是掌握平移变换的定义和性质,并根据平移变换的定义和性质得出变换后的对应点位置.22.在某体育用品商店,购买50根跳绳和80个毽子共用1120元,购买30根跳绳和50个毽子共用680元.(1)跳绳、毽子的单价各是多少元?(2)该店在“元旦”节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1700元,该店的商品按原价的几折销售?【答案】(1)跳绳的单价为16元,毽子的单价为4元;(2)商品按原价的八五折销售.【解析】【分析】(1)可设跳绳的单价为x 元,毽子的单价为y 元,根据题意列出关于x,y 的二元一次方程组,解方程组即可;(2)设商品按原价的z 折销售,根据第(1)问求出来的跳绳和毽子的单价,根据题意列出方程,解方程即可.【详解】(1)设跳绳的单价为x 元,毽子的单价为y 元,根据题意有508011203050680x y x y +=⎧⎨+=⎩ ,解得164x y =⎧⎨=⎩所以跳绳的单价为16元,毽子的单价为4元;(2)设商品按原价的z 折销售,根据题意得(164)100170010z +⨯⨯= 解得8.5z = 所以商品按原价的八五折销售.【点睛】本题主要考查一元一次方程及二元一次方程组的应用,读懂题意,列出方程及方程组是解题的关键.23.如图,AB ∥CD .∠1=∠2,∠3=∠4,试说明 AD ∥BE ,请你将下面解答过程填写完整.解:∵AB ∥CD ,∴∠4= ( )∵∠3=∠4∴∠3= (等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .∴∠3= ()∴AD∥BE().【答案】∠BAE;两直线平行,同位角相等;∠BAE;∠CAD;∠CAD;等量代换;内错角相等,两直线平行.【解析】【分析】根据平行线的性质得出∠4=∠BAE,由此∠3=∠BAE,根据∠2=∠1可得∠BAE=∠CAD,从而得出∠3=∠CAD,根据平行线的判定定理得出即可.【详解】解:∵AB∥CD,∴∠4=∠BAE(两直线平行,同位角相等),∵∠3=∠4,∴∠3=∠BAE(等量代换),∵∠1=∠2,∴∠1+∠CAF=∠2+∠CAE,即∠BAE=∠CAD,∴∠3=∠CAD(等量代换),∴AD∥BE(内错角相等,两直线平行).【点睛】本题考查平行线的性质和判定.熟记平行线的性质和判定定理,并能正确识图完成角度之间的转换是解决此题的关键.24.已知,如图,AD∥BC,∠A=∠C.求证:∠1=∠2.【答案】见解析.【解析】【分析】根据两直线平行,同旁内角互补得到∠A+∠ABC =180°,再根据∠A =∠C 得到∠C+∠ABC =180°,根据同旁内角互补,两直线平行得到DC ∥AB ,再利用两直线平行,内错角相等得到∠1=∠2.【详解】∵AD ∥BC ,∴∠A+∠ABC =180°,又∵∠A =∠C ,∴∠C+∠ABC =180°,∴DC ∥AB ,∴∠1=∠2.【点睛】考查了直线平行的判定与性质:同位角相等,两直线平行;两直线平行,内错角相等. 25.如图1,点A 、B 在直线1l 上,点C 、D 在直线2l 上,AE 平分∠BAC ,CE 平分∠ACD ,∠EAC+∠ACE=90°.(1)请判断1l 与2l 的位置关系并说明理由;(2)如图2,在(1)的结论下,P 为线段AC 上一定点,点Q 为直线CD 上一动点,当点Q 在射线CD 上运动时(不与点C 重合)∠CPQ+∠CQP 与∠BAC 有何数量关系?请说明理由.【答案】(1)1l ∥2l ;(2)①当Q 在C 点左侧时,∠BAC=∠CQP +∠CPQ ,②当Q 在C 点右侧时,∠CPQ+∠CQP+∠BAC=180°.【解析】分析】(1)先根据CE 平分∠ACD ,AE 平分∠BAC 得出∠BAC=2∠1,∠ACD=2∠2,再由∠1+∠2=90°可知∠BAC+∠ACD=180,故可得出结论;(2)分两种情况讨论:①当Q 在C 点左侧时;②当Q 在C 点右侧时.【详解】解:(1)1l ∥2l .理由如下:∵AE 平分∠BAC ,CE 平分∠ACD(已知),∴∠BAC=2∠1,∠ACD=2∠2(角平分线的定义);又∵∠1+∠2=90°(已知), ∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2)=180°(等量代换)∴1l ∥2l (同旁内角互补,两直线平行) (2)①当Q 在C 点左侧时,过点P 作PE ∥1l . ∵1l ∥2l (已证),∴PE ∥2l (同平行于一条直线的两直线互相平行), ∴∠1=∠2,(两直线平行,内错角相等), ∠BAC=∠EPC ,(两直线平行,同位角相等),又∵∠EPC=∠1+∠CPQ ,∴∠BAC=∠CQP +∠CPQ (等量代换) ②当Q 在C 点右侧时,过点P 作PE ∥1l . ∵1l ∥2l (已证),∴PE ∥2l (同平行于一条直线的两直线互相平行), ∴∠1=∠2,∠BAC=∠APE ,(两直线平行,内错角相等), 又∵∠EPC=∠1+∠CPQ ,∠APE+∠EPC=180°(平角定义)∴∠CPQ+∠CQP+∠BAC=180°.【点睛】本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.26.小明在拼图时,发现8个一样大小的长方形恰好可以拼成一个大的长方形,如图(1),小红看见了,说:“我来试一试”结果小红七拼八凑,拼成了如图(2)的正方形,中间还留下一个洞,恰好边长是2mm的小正方形,你能计算出每个长方形的长和宽吗?【答案】小长方形的长为10mm,宽为6mm.【解析】【分析】设每个小长方形的长为xmm,宽为ymm,根据图形给出的信息可知,长方形的5个宽与其3个长相等,两个长加2的和等于一个长与两个宽的和,于是得方程组,解出即可.【详解】设每个长方形的长为xmm,宽为ymm,由题意得35222x yx x y=⎧⎨+=+⎩,解得:106xy=⎧⎨=⎩.答:小长方形的长为10mm,宽为6mm.【点睛】考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时根据矩形和正方形的长与宽的关系建立方程组是关键.精品试卷。
福清市2021年七年级下册期中质量检测数学试卷与答案
A.
x
2 3
x
1 2
y y
50 50
B.
x x
1 2 2 3
y y
50 50
C.
1
2
2
3
x x
y y
50 50
D.
1 2
x
x
2 3
y y
50 50
七年级数学—1—(共 4 页)
9.如图,平面直角坐标系 xOy 中,点 A(1,0),以 OA 为边向上作正方形 OABC,以点 A 为圆心,AC
2.下列各数中,无理数的是( )
A. 3 1
B. 12
3.下列各式中,正确的是( )
C.3.1415926
D. 2 7
A. 9 3
B. 3 6 2
C. 72 7
4.已知点 P 的坐标为(-2,3),则点 P 所在的象限是( )
A.第一象限
B.第二象限
C.第三象限
5.下列选项中不是二元一次方程 x 2y 3 的解的是( )
(1)一辆 A 型大巴车和一辆 B 型大巴车一次可以各载多少名学生? (2)该校七年级有 310 名学生,学校准备租 A 型车和 B 型车各若干辆,且每辆车上刚好坐满学
生,请选出最省钱的租车方案,并求出最少租车费用是多少?
七年级数学—3—(共 4 页)
13.已知点 M(m-3,m+1)在 x 轴上,则 m=_______.
F
B
C
c
5a
1
Hale Waihona Puke 24b314.命题“垂直于同一条直线的两条直线互相平行”的题设是___________________________.
15.已知关于
福建省2021年七年级下学期数学期中考试试卷A卷(新版)
福建省2021年七年级下学期数学期中考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017七下·乌海期末) 下列各数中,无理数是()A .B . 3.14C .D . 5π2. (2分) (2019七下·北流期末) 在平面直角坐标系中,点(1, -4)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分) (2019七下·宜昌期末) 已知 a<b,c<0,则下列式子正确的是()A . a+c>b+cB . ac2>bc2C . ac>bcD . ac<bc4. (2分)若max{S1 , S2 ,…,Sn}表示实数S1 , S2 ,…,Sn中的最大者.设A=(a1 , a2 , a3),b=,记A⊗B=max{a1b1 , a2b2 , a3b3},设A=(x-1,x+1,1),B=,若A⊗B=x-1,则x的取值范围为()A . 1-≤x≤1B . 1≤x≤1+C . 1-≤x≤1D . 1≤x≤1+5. (2分) (2019七下·南通月考) 下列各数中,无理数是()A .B .C .D .6. (2分)若平行四边形的一边长为2,面积为,则此边上的高介于()A . 3与4之间B . 4与5之间C . 5与6之间D . 6与7之间7. (2分)(2020·襄阳模拟) 将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A . 15°B . 22.5°C . 30°D . 45°8. (2分)如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1B,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x的垂线交直线于点B2 ,以原点O为圆心,OB2长为半径画弧交x轴于点A3 ,…,按此做法进行下去,点A5的坐标为()A . (16,0)B . (12,0)C . (8,0)D . (32,0)9. (2分)一条船在灯塔的北偏东30°方向,那么灯塔在船的什么方向()A . 南偏西30°B . 西偏南40°C . 南偏西60°D . 北偏东30°10. (2分) (2016七下·吉安期中) 弹簧挂上物体后会伸长,现测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)之间有如下关系:物体质量x/千克 0 1 2 3 4 5…弹簧长度y/厘米 10 10.5 11 11.5 12 12.5…下列说法不正确的是()A . x与y都是变量,其中x是自变量,y是因变量B . 弹簧不挂重物时的长度为0厘米C . 在弹簧范围内,所挂物体质量为7千克时,弹簧长度为13.5厘米D . 在弹簧范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米二、填空题 (共12题;共18分)11. (1分)不等式4x﹣3<2x+1的解集为________.12. (1分) (2017八上·鄞州月考) 若直角三角形的两条边长为a、b,且满足,则该直角三角形的斜边长为________13. (1分) (2020七下·原州月考) 点在轴上,则的值为________.14. (1分) (2020七下·武昌期中) 如图,已知点B在点A的北偏东32°,点C在点B的北偏西58°,CB =12,AB=9,AC=15,则△ABC的面积为________.15. (1分) (2019八上·伊川月考) 已知有理数,,满足,那么的平方根为________.16. (2分) (2019七下·黄骅期末) 若不等式2(x+1)>3的最小整数解是方程5x﹣2ax=3的解,则a的值为________.17. (2分)(2019·扬州) 将一个矩形纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD=________.18. (1分)如图,因为∠1=∠B,所以________.理由是:________.因为∠2=∠B,所以________.理由是:________.19. (1分) (2019八上·杭州期末) 已知点是直线上的点,且到轴的距离等于,则点的坐标为________.20. (1分) (2020八上·泉州月考) 已知:a,b是两个连续的整数,且则 ________.21. (1分) (2019八上·邢台开学考) 如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠AFC,以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°—∠ABD;④∠BDC= ∠BAC,其中正确的结论有________.22. (5分)(2012·本溪) 如图,下图是一组由菱形和矩形组成的有规律的图案,第1个图中菱形的面积为S(S为常数),第2个图中阴影部分是由连接菱形各边中点得到的矩形和再连接矩形各边中点得到的菱形产生的,依此类推…,则第n个图中阴影部分的面积可以用含n的代数式表示为________.(n≥2,且n是正整数)三、解答题 (共8题;共38分)23. (5分)(2017·山东模拟) 计算:﹣3tan30°+(π﹣4)0 .24. (5分) (2018八上·重庆期中) 计算:(﹣1)2017+(π﹣2017)0﹣.25. (5分) (2019七下·宜昌期中) 若一正数a的两个平方根分别是2m-3和5-m,求a的值.26. (1分) (2017七下·汶上期末) 已知:如图,四边形ABCD中,点C在AB的延长线上,连接DC.∠EDC=∠C,AD∥BE.求证:∠A=∠E.证明:∵∠EDC=∠C,∴AB∥________.(________)∴________=________.(________)∵AD∥BE,∴∠A=________.(________)∴∠A=∠E.(等量代换)27. (1分) (2017七下·河东期末) 如图所示,若AB∥DC,∠1=39°,∠C和∠D互余,则∠D=________,∠B=________.28. (4分) (2016八下·桂阳期末) 如图,在平面直角坐标系中,矩形OABC的对角线AC平行于x轴,边OA 与x轴正半轴的夹角为30°,OC=2,则点A的坐标是________.29. (5分)已知AD∥EF,∠1=∠2.试说明:AB∥DG.30. (12分) (2019八上·海伦期中) 如图,直线AB交x轴于点A(3,0),交y轴于点B(0,2)(1)求三角形AOB的面积;(2)在x轴负半轴上找一点Q,使得S△QOB=S△AOB ,求Q点坐标.(3)在y轴上任一点P(0,m),请用含m的式子表示三角形APB的面积.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共12题;共18分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、考点:解析:三、解答题 (共8题;共38分)答案:23-1、考点:解析:答案:24-1、考点:解析:答案:25-1、考点:解析:答案:26-1、考点:解析:答案:27-1、考点:解析:答案:28-1、考点:解析:答案:29-1、考点:解析:答案:30-1、答案:30-2、答案:30-3、考点:解析:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福清市20214-2021学年度第二学期七年级期中考试数学参考答案
一、选择题(共10小题,每小题3分,共30分) 1 2 3 4 5 6 7 8 9 10 B
B
C
C
A
C
C
B
D
B
二、填空题(共7题,每小题2分,共14分)
11. < 12.如果两个角是对顶角,那么它们相等。
13. 35︒ 14. 2- 15. 0或1-或1 16. ①③④ 17. ()9,4 三、解答题(共6题,共56分) 18、(1)计算:①232+
- ② 23(2)98--+-
解:原式=232+-……3分 解:原式=432-- ……3分 =3 …………5分 =1-…………5分 (2)一个数的两个不同..平方根分别为3a +与26a -,求该数. 解:根据题意可得:3260a a ++-=……………2分 解得 1a =……………3分
34a +=,则2416=
则这个数为16……………5分 19. 按图填空, 并注明理由(本题6分). 证明: ∵1=2∠∠ (已知) ∴DB ∥EC ( 内错角相等,两直线平行 ) ∴4E ∠=∠ ( 两直线平行,内错角相等 ) 又∵3E ∠=∠ ( 已知 ) ∴34∠=∠ ( 等量代换 )
∴AD ∥BE . (每空1分)
2021(本题9分) (1)
1(4,7)
A
1(1,2)B
1(6,4)C ……………3分
(2)如图所示…………………5分
图9
(3)111111
(25)523259.5222
A B C S ∆=+⨯-⨯⨯-⨯⨯=…7分 (4) 24,25D ⎛⎫ ⎪⎝⎭或14,25D ⎛⎫
- ⎪⎝⎭
……9分
21.解:原绿化带的面积=22
10100()m =……2分 扩大后绿化带的面积=2
4100400()m ⨯=………4分
40020()m =
答:扩大后绿化带的边长为20m 。
…………………6分
22.解:(1)猜想:AB ∥CD ,理由如下………1分
AE ∥BC ,
∴180A B ∠+∠=︒(两直线平行,同旁内角互补) …3分
A C ∠=∠
∴180B C ∠+∠=︒
∴AB ∥CD (同旁内角互补,两直线平行) ………………5分
(2)
AE ∥BC
∴23∠=∠(两直线平行,内错角相等)…………………6分
180A ABC ∠+∠=︒(两直线平行,同旁内角相等) 13
∠=∠ ∴123∠=∠=∠,22ABC ∠=∠ 又
22AEF ∠=∠
∴22180A ABC A A AEF ∠+∠=∠+∠=∠+∠=︒…8分
180AEF AED ∠+∠=︒
∴A AED C ∠=∠=∠
即AED C ∠=∠…………………………9分 (请酌情给分) 23.解:(1)
正方形ABCO 的周长为24
∴4OA OC BC AB ====…………………………1分
则(6,6)B ,(6,0)C …………………………3分
(2)设经过t 秒满足题意,
则OM AN t ==,6MC NB t ==-…………………4分
长方形AOMN 的周长=662122t t ++=+…………………………5分 长方形NMCB 的周长=662(6)242t t ++-=-………………………6分 则5
122(242)4
t t +=
- 解得:4t =…………………………7分 (3)分类讨论
由AE BE ⊥可得:90AEB ∠=︒ ①若E 在AB 上方,
AO ∥BC ∥l
∴180OAE MEA ∠+∠=︒,180CBE MEB ∠+∠=︒ ∴360OAE MEA CBE MEB ∠+∠+∠+∠=︒
90AEB MEA MEB ∠=∠+∠=︒
36090270OAE CBE ∠+∠=︒-︒=︒……………9分
②若E 在AB 下方……………7分
AO ∥BC ∥l
∴OAE AEN ∠=∠,CBE NEB ∠=∠
∴90OAE CBE AEN NEB AEB ∠+∠=∠+∠=∠=︒
即90OAE CBE ∠+∠=︒
综上所述,270OAE CBE ∠+∠=︒或90OAE CBE ∠+∠=︒…11分 (不同解法,请酌情给分)。