初一数学第六章实数知识点归纳
人教版七年级下册第六章实数知识点
![人教版七年级下册第六章实数知识点](https://img.taocdn.com/s3/m/d3a2943117fc700abb68a98271fe910ef12dae9d.png)
人教版七年级下册第六章实数知识点
实数是数学中最基本的概念之一,是指可以用数字表示的所有数。
实数由有理数和无理数两部分组成。
有理数是可以表示成两个整数之比的数,包括整数、分数、小数等,而无理数则不能表示成有理数的形式,如圆周率π、自然对数的底数e等。
在七年级数学下册第六章中,我们将学习实数的相关知识,包括实数的分类、实数的运算、实数的比较等。
一、实数的分类
1.有理数:有理数包括正整数、负整数、零、正分数、负分数和整数。
2.无理数:无理数是不能表示成有理数的形式的数,它们包括无限不循环小数和根号下无理数等。
二、实数的运算
1.加法:实数的加法满足交换律、结合律和分配律。
2.减法:实数的减法可以转化成加法,即a-b=a+(-b)。
3.乘法:实数的乘法满足交换律、结合律和分配律。
4.除法:实数的除法可以转化成乘法,即a÷b=a×(1/b),其中b≠0。
5.乘方:实数的乘方表示数的自我乘积,即a的n次幂表示为an。
三、实数的比较
1.正数比较大小:正数比较大小时,数值越大的数越大。
2.负数比较大小:负数比较大小时,数值越小的数越大。
3.正数和负数比较大小:正数比负数大。
4.零和正数、负数比较大小:零比负数大,比正数小。
5.一般实数比较大小:需要将实数转化成同一种形式再比较大小。
以上就是七年级数学下册第六章实数知识点的简单介绍,希望对大家有所帮助。
在学习实数时,我们需要多做练习,多思考,才能真正掌握实数的相关知识。
七年级下册数学第六章实数主要知识点归纳总结
![七年级下册数学第六章实数主要知识点归纳总结](https://img.taocdn.com/s3/m/89bc25457f1922791788e841.png)
第六章 实数主要知识点6.1 平方根1、平方根(1)平方根的定义:如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根.即:如果a x =2,那么x 叫做a 的平方根.(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。
(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算;0的平方根是0.(5)符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用-a 表示.(6)a x =2 <—> a x ±=a 是x 的平方 x 的平方是ax 是a 的平方根(除0外,x 的值一正一负互为相反数)a 的平方根是x(除0外,x 的值一正一负互为相反数)2、算术平方根(1)算术平方根的定义: 一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式a x =2 (x≥0)中,规定a x =。
(2)a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数。
(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。
(4)夹值法及估计一个(无理)数的大小(5)a x =2 (x≥0) <—> a x =a 是x 的平方 x 的平方是ax 是a 的算术平方根(x 的取值为非负数) a 的算术平方根是x(x 的取值为非负数)(6)正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥0(7)平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。
人教版数学七年级下册知识重点与单元测-第六章6-4《实数》章末复习(基础巩固)
![人教版数学七年级下册知识重点与单元测-第六章6-4《实数》章末复习(基础巩固)](https://img.taocdn.com/s3/m/daa0cb047275a417866fb84ae45c3b3567ecddee.png)
第六章 实数6.4 《实数》章末复习(基础巩固)【要点梳理】要点一:平方根和立方根要点二:实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2等; ②有特殊意义的数,如π; ③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式. (4)实数和数轴上点是一一对应的. 2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。
我们已经学习过的非负数有如下三种形式: (1)任何一个实数a 的绝对值是非负数,即|a |≥0; (2)任何一个实数a 的平方是非负数,即2a ≥0;(30≥ (0a ≥). 非负数具有以下性质: (1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0.4.实数的运算:数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.5.实数的大小的比较:有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数 大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法.【典型例题】类型一、有关方根的问题例1、下列命题:①负数没有立方根;②一个实数的算术平方根一定是正数;③一个正数或负数的立方根与这个数同号;④如果一个数的算术平方根是这个数本身,那么这个数是1或0;⑤如果一个数的立方根是这个数本身,那么这个数是1或0 ,其中错误的有( )A.2个B.3 个C.4 个D.5个 【答案】B ;【解析】①负数有立方根;②0的算术平方根是0;⑤立方根是本身的数有0,±1. 【总结升华】把握平方根和立方根的定义是解题关键. 举一反三:【变式】下列运算正确的是( )A 2=±B =2=- D .|2|2--= 【答案】C ;例210.1== 若7160.03670.03=,542.1670.33=,则_____________3673= 【答案】±1.01;7.16;【解析】102.01的小数点向左移动2位变成1.0201,它的平方根的小数点向左移动1位,变成1.01,注意符号;0.3670的小数点向右移动3位变成367,它的立方根的小数点向右移动1位,变成7.16【总结升华】一个数的小数点向左移动2位,它的平方根的小数点向左移动1位;一个数的小数点向右移动3位,它的立方根的小数点向右移动1位.类型二、与实数有关的问题 例3、把下列各数填入相应的集合: -1、3、π、-3.14、9、26-、22-、7.0 . (1)有理数集合{ }; (2)无理数集合{ }; (3)正实数集合{ };(4)负实数集合{ }.【思路点拨】首先把能化简的数都化简,然后对照概念填到对应的括号里. 【答案与解析】(1)有理数集合{-1、-3.14、9、7.0 };(2)无理数集合{ 3、π、26-、22-}; (3)正实数集合{ 3、π、9、26-、7.0 };(4)负实数集合{ -1、-3.14、22-}. 【总结升华】有理数是有限小数和无限循环小数,无理数是无限不循环小数.总结常见的无理数形式.举一反三:【变式】在实数0、π、、、﹣中,无理数的个数有( )A .1个B .2个C .3个D .4个 【答案】B ;例4、计算(1)233)32(1000216-++(2)23)451(12726-+- (3)32)131)(951()31(--+【思路点拨】先逐个化简后,再按照计算法则进行计算. 【答案与解析】解:(1)233)32(1000216-++=226101633++= (2)23)451(12726-+-23111112743412⎛⎫--=-+=- ⎪⎝⎭ (3)32)131)(951()31(--+=3314218121393327333⎛⎫⨯-=-=-=- ⎪⎝⎭.【总结升华】根据开立方和立方,开平方和平方互逆运算的关系,可以通过立方、平方的方法去求一个数的立方根、平方根.举一反三: 【变式】计算(1) 333000216.0008.012726---- (2) ()223323)3()21()4()4(2--⨯-+-⨯-【答案】 解:(1) 333000216.0008.012726---- ()310.20.0627=---- 29150=-(2) ()223323)3()21()4()4(2--⨯-+-⨯-()184434=-⨯+-⨯- 321336=---=-. 例5、已知:(a+6)2+=0,则2b 2﹣4b ﹣a 的值为 .【答案】12. 【解析】 解:∵(a+6)2+=0,∴a+6=0,b 2﹣2b ﹣3=0, 解得,a=﹣6,b 2﹣2b=3, 可得2b 2﹣4b=6,则2b 2﹣4b ﹣a=6﹣(﹣6)=12, 故答案为:12.【总结升华】本题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.举一反三:【变式1】实数a 、b 在数轴上所对应的点的位置如图所示: 化简2a +∣a -b ∣= .【答案】 解:∵a <0<b , ∴a -b <0∴2a +∣a -b ∣=-a -(a -b )=b -2a .【变式2】实数a 在数轴上的位置如图所示,则2,1,,a aa a -的大小关系是: ;-1a【答案】21a a a a<<<-; 类型三、实数综合应用例6、现有一面积为150平方米的正方形鱼池,为了增加养鱼量,欲把鱼池的边长增加6米,那么扩建鱼池的面积为多少(最后结果保留4个有效数字)?【答案与解析】解:因为原正方形鱼池的面积为150平方米,根据面积公式, 15012.247≈ (米).由题意可得扩建后的正方形鱼池的边长为(12.247+6)米, 所以扩建后鱼池的面积为218.247≈333.0(平方米). 答:扩建后的鱼池的面积约为333.0(平方米).【总结升华】要求扩建后的鱼池的面积,应先求出其边长,而原鱼池的面积为150平方米,由此可得原鱼池的边长,再加上增加的6米,故新鱼池面积可求.举一反三:【变式】一个底为正方形的水池的容积是4863m ,池深1.5m ,求这个水池的底边长. 【答案】解:设水池的底边长为x ,由题意得2 1.5486x ⨯=2324x =18x =答:这个水池的底边长为18m .【巩固练习】一.选择题1. 下列说法正确的是( ) A .数轴上任一点表示唯一的有理数 B .数轴上任一点表示唯一的无理数 C .两个无理数之和一定是无理数 D .数轴上任意两点之间都有无数个点2.的算术平方根是( )A .2B .±2C .D .±3.已知a 、b 是实数,下列命题结论正确的是( ) A .若a >b ,则2a >2bB .若a >|b |,则2a >2bC .若|a |>b ,则2a >2b D .若3a >3b ,则2a >2b4. 3387=-a ,则a 的值是( ) A.87 B. 87- C. 87± D. 512343- 5. 若式子3112x x -+-有意义,则x 的取值范围是 ( ). A.21≥x B. 1≤x C.121≤≤x D. 以上答案都不对. 6. 下列说法中错误的是( )A.3a 中的a 可以是正数、负数或零.B.a 中的a 不可能是负数.C. 数a 的平方根有两个.D.数a 的立方根有一个. 7. 数轴上A ,B 两点表示实数a ,b ,则下列选择正确的是( ) A.0>+b a B. 0ab > C.0a b -> D.||||0a b ->8. 估算219+的值在 ( )A. 5和6之间B.6和7之间C.7和8之间D.8和9之间 二.填空题9. 若2005的整数部分是a ,则其小数部分用a 表示为 . 10.当x 时,32-x 有意义. 11. =--32)125.0( .12. 若12-x 是225的算术平方根,则x 的立方根是 . 13. 3343的平方根是 . 14.﹣64的立方根与的平方根之和是 .15. 2112- ,5- 22 , 33 216. 数轴上离原点距离是5的点表示的数是 . 三.解答题17. 一个正数x 的平方根是32-a 与a -5,则a 是多少?18. 已知x ﹣2的平方根是±2,2x+y+7的立方根是3,求x 2+y 2的平方根.19. 已知:表示a 、b 两个实数的点在数轴上的位置如图所示,请你化简()2b a b a ++-20. 阅读题:阅读下面的文字,解答问题.大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2-1表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:已知:10+3=y x +,其中x 是整数,且10<<y ,求y x -的相反数.【答案与解析】 一.选择题 1. 【答案】D ;【解析】数轴上任一点都表示唯一的实数. 2. 【答案】C 3. 【答案】B ;【解析】B 答案表明,||||a b a b >>且,故2a >2b . 4. 【答案】B ; 【解析】33378a a ⎛⎫-=-=-- ⎪⎝⎭.5. 【答案】A ;6. 【答案】C ;【解析】数a 不确定正负,负数没有平方根. 7. 【答案】C ; 8. 【答案】B ;【解析】4195<<,61927<+<. 二.填空题9. 【答案】2005a -; 10.【答案】为任意实数 ; 【解析】任何实数都有立方根. 11.【答案】25.0-;【解析】3233(0.125)0.250.25--=-=-. 12.【答案】3;【解析】x -12=15, x =27,3273=. 13.【答案】7±;【解析】 3343=7,7的平方根是7±.14.【答案】﹣2或﹣6. 【解析】∵﹣64的立方根是﹣4,=4,∵4的平方根是±2,∵﹣4+2=﹣2,﹣4+(﹣2)=﹣6,∴﹣64的立方根与的平方根之和是﹣2或﹣6.15.【答案】>;<;>;16.【答案】5【解析】数轴上离原点距离是5的点有两个,分别在原点的左右两边.三.解答题17.【解析】解:∵一个正数x 的平方根是32-a 与a -5,∴32-a 与a -5互为相反数,即32-a +a -5=0,解得2a =-.18.【解析】解:∵x ﹣2的平方根是±2,2x+y+7的立方根是3,∴x ﹣2=22,2x+y+7=27,解得x=6,y=8,∴x 2+y 2=62+82=100,∴x 2+y 2的平方根是±10.19.【解析】解:∵b <a <0 ∴()2b a b a ++-()||2a b a b a b a b b=-++=--+=- 20.【解析】解:∵11<10+3<12∴x =11,y =10+3-11=31∴()3111312x y y x --=-=-=.。
初一数学第六章实数知识点归纳(K12教育文档)
![初一数学第六章实数知识点归纳(K12教育文档)](https://img.taocdn.com/s3/m/0c8bd524bb4cf7ec4bfed09c.png)
初一数学第六章实数知识点归纳(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初一数学第六章实数知识点归纳(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初一数学第六章实数知识点归纳(word版可编辑修改)的全部内容。
第六章 实数 知识点归纳一、实数的概念及分类 (3分)1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数整数包括正整数、零、负整数。
正整数又叫自然数.正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定结构的数,如0.1010010001…等;(3)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;3。
实数与数轴上点的关系:实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数.与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大二、实数的倒数、相反数和绝对值 (3分)1、相反数从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立.2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,若|a|=a,则a≥0;若|a|=—a,则a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小.3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。
人教版七年级数学下册第六章实数知识点汇总
![人教版七年级数学下册第六章实数知识点汇总](https://img.taocdn.com/s3/m/16e1639114791711cd79177f.png)
人教版七年级数学下册第六章实数知识点汇总【知识点一】实数的分类1、按定义分类: 2.按性质符号分类:注:0既不是正数也不是负数.【知识点二】实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数. 0 的相反数是 0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称 .(3) 互为相反数的两个数之和等于0.a、 b 互为相反数a+b=0.2.绝对值|a| ≥0.3.倒数( 1) 0 没有倒数 (2) 乘积是 1 的两个数互为倒数. a、 b 互为倒数 .▲▲ 平方根【知识要点】1.算术平方根:正数 a 的正的平方根叫做 a 的算术平方根,记作“a”。
2.如果 x2=a,则 x 叫做 a 的平方根,记作“± a”(a称为被开方数)。
3. 正数的平方根有两个,它们互为相反数;0 的平方根是0;负数没有平方根。
4.平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个。
联系:( 1)被开方数必须都为非负数;( 2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。
( 3)0 的算术平方根与平方根同为 0。
5.如果 x3=a,则 x 叫做 a 的立方根,记作“3 a”( a 称为被开方数)。
6.正数有一个正的立方根; 0 的立方根是 0;负数有一个负的立方根。
7.求一个数的平方根(立方根)的运算叫开平方(开立方)。
8.立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有 2 个,并且互为相反数,0 的平方根只有一个且为0.9.一般来说,被开放数扩大(或缩小)n 倍,算术平方根扩大(或缩小) n 倍,例如25 5, 2500 50.10.平方表:(自行完成)222221 = 6 =11 =16 =21 =22=72=122=172=222=32=82=132=182=232=42=92=142=192=242=52=102=152=202=252=题型规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0 和 1;立方根是其本身的数是0 和±1。
七年级下册数学第六章 实数知识点
![七年级下册数学第六章 实数知识点](https://img.taocdn.com/s3/m/19ed950576a20029bc642d46.png)
第六章实数一、知识定义:1.算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”。
2. 如果ax=2,则x叫做a的平方根,记作“±a”(a称为被开方数)。
3. 正数的平方根有两个,它们互为相反数(即和为0);0的平方根是0;负数没有平方根。
4. 平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个。
联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。
(3)0的算术平方根与平方根同为0。
3,则x叫做a的立方根,记作“3a”(a称为被开方数)。
5. 如果ax=6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。
7. 求一个数的平方根(立方根)的运算叫开平方(开立方)。
8. 立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.9. 一般来说,被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如5025==.,5250010.平方表与立方根:(自行完成)1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。
每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。
20a≥0。
3、公式:⑴(a≥0a取任何数)。
4、区分(a≥0),与2a=a5、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0(此性质应用很广,务必掌握)。
6、判断无理数的三种形式:(1)开方开不尽的数(2)无限不循环小数,(3)含有 的数如有侵权请联系告知删除,感谢你们的配合!31949 7CCD 糍40432 9DF0 鷰38731 974B 靋r25420 634C 捌30332 767C 發38284 958C 閌36052 8CD4 賔36860 8FFC 迼21933 55AD 喭2221848 5558 啘39986 9C32 鰲。
第六章实数知识点总结
![第六章实数知识点总结](https://img.taocdn.com/s3/m/eb34d544a7c30c22590102020740be1e650ecc3c.png)
第六章实数知识点总结摘要:一、实数的定义与分类1.实数的定义2.实数的分类二、实数的性质与运算1.实数的性质2.实数的运算三、实数与数轴1.数轴的概念2.实数与数轴的关系四、实数的比较与大小1.实数的大小比较2.实数的大小关系五、实数的应用1.实数在数学中的应用2.实数在其他学科中的应用正文:实数是数学中的一个重要概念,它包括有理数和无理数。
实数的定义是指数轴上的点,可以表示为有序对(a,b),其中a 表示点的横坐标,b 表示点的纵坐标。
根据横坐标a 的值,实数可以分为负数、零和正数。
实数的性质包括:1.实数具有连续性,即任意两个实数之间总存在一个实数;2.实数具有完备性,即每个实数都可以用无限接近的有理数表示;3.实数具有可数性,即实数集中的每个元素都可以与自然数集建立一一对应关系。
实数的运算包括加法、减法、乘法、除法、乘方和开方。
这些运算遵循交换律、结合律和分配律等基本运算法则。
实数的运算不仅限于实数,还可以扩展到复数。
实数与数轴有密切的关系。
数轴是一个直线,规定了原点、正方向和单位长度。
实数可以表示为数轴上的点,根据横坐标a 的值,实数可以分为负数、零和正数。
数轴上的点与实数之间的对应关系是一一映射。
实数的大小比较和大小关系是数学中常见的问题。
实数的大小比较遵循“大于一切小于它的数,小于一切大于它的数”的原则。
实数的大小关系可以通过数轴来直观表示。
实数在数学中有广泛的应用,如微积分、实分析等。
实数在其他学科中也有应用,如物理、化学、生物等。
实数的概念、性质和运算等基础知识是解决实际问题的关键。
总之,实数是数学中的一个基本概念,它具有重要的理论意义和实际应用价值。
初中数学七年级数学第六章实数(全章节图文详解)
![初中数学七年级数学第六章实数(全章节图文详解)](https://img.taocdn.com/s3/m/1031eb1fee06eff9aff8071a.png)
实 数
有理数
正整数 0 自然数 负整数 正分数
无理数
无限不循环小数
一般有三种情况
负分数 正无理数 负无理数 (1)含π 的数
2 开方开不尽的数
(3)有规律但不循环的无限小数
七年级数学第六章实数
也可以这样来分类: 正实数 实 数 0
负有理数 正有理数
正无理数
负实数
负无理数
七年级数学第六章实数
七年级数学第六章实数
几个基本公式:(注意字母 的取值范围)
a a =
2
a
0
a
3
2
a
a 0
a
a 0 a 0
(a 0)
a
3
a a
3
3
a为任何数 a为任何数 a为任何数
a
3
a =
-3 a
七年级数学第六章实数
区别
你知道算术平方根、平方根、立方根联系和区别吗?
3 47 9 11 5 3, , , , , 5 8 11 90 9
3 47 3 3.0, 0.6, 5.875, 5 8 9 11 5 0. 81, 0.1 2, 0. 5 11 90 9
事实上,任何一个有理数都可以写成有限小数或 无限循环小数。
4
3 0.13
(2)无理数集合: (3)整数集合: (4)负数集合: (5)分数集合: (6)实数集合: 9
3
5
64
3
3
9
9
3
3 4
9
3 4
0. 6
3
0.13
3 0. 6 4
人教版七年级数学下册第六章实数知识点汇总
![人教版七年级数学下册第六章实数知识点汇总](https://img.taocdn.com/s3/m/0e222ddac5da50e2534d7f3d.png)
人教版七年级数学下册第六章实数知识点汇总-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN人教版七年级数学下册第六章实数知识点汇总【知识点一】实数的分类1、按定义分类: 2.按性质符号分类:注:0既不是正数也不是负数. 【知识点二】实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.2.绝对值|a|≥0.3.倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.a、b互为倒数 .▲▲平方根【知识要点】1.算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”。
2. 如果x2=a,则x叫做a的平方根,记作“±a”(a称为被开方数)。
3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
4. 平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个。
联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。
(3)0的算术平方根与平方根同为0。
5. 如果x3=a,则x叫做a的立方根,记作“a”(a称为被开方数)。
6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。
27. 求一个数的平方根(立方根)的运算叫开平方(开立方)。
8. 立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.9. 一般来说,被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如502500,525==.10.平方表:(自行完成)题型规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。
初一数学第六章《实数》知识点汇总
![初一数学第六章《实数》知识点汇总](https://img.taocdn.com/s3/m/6963397025c52cc58bd6be3d.png)
初一数学知识点第六章 实数 知识点归纳一、实数的概念及分类 (3分)1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定结构的数,如0.1010010001…等;(3)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; 3. 实数与数轴上点的关系:实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。
与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大二、实数的倒数、相反数和绝对值 (3分)1、相反数从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、 无限小数是有理数(×) 无限小数是无理数(×)有理数是无限小数(×) 无理数是无限小数(√)数轴上的点都可以用有理数表示(×) 有理数都可以由数轴上的点表示(√)数轴上的点都可以用无理数表示(×) 无理数都可以由数轴上的点表示(√)数轴上的点都可以用实数表示(√) 实数都可以由数轴上的点表示(√)三、平方根、算数平方根和立方根1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
【最新】人教版七年级数学下册第6章实数知识点.doc
![【最新】人教版七年级数学下册第6章实数知识点.doc](https://img.taocdn.com/s3/m/582c4b1c4b73f242336c5f80.png)
1 实数第6章实数知识点1.有理数,无理数概念:有理数:任何有限小数和无限循环小数都是有理数。
无理数:无限不循环小数叫做无理数。
2.平方根和算术平方根的概念及其性质:(1)概念:如果2x a ,那么x 是a 的平方根,记作:a ;其中a 叫做a 的算术平方根。
(2)性质:①当a ≥0时,a ≥0;当a <0时,a 无意义;②2a =a ;③2a a 。
(3)开平方:求一个数a 的平方根的运算,叫做开平方,期中a 叫做被开方数。
3.立方根的概念及其性质:(1)概念:若3xa ,那么x 是a 的立方根,记作:3a ;(2)性质:①33a a ;②33a a ;③3a =3a(3)开立方:求一个数a 的立方根的运算,叫做开立方,期中a 叫做被开方数。
4.实数的概念及其分类:(1)概念:实数是有理数和无理数的统称;(2)分类:a 按定义分无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数负整数负有理数零正分数正整数正有理数有理数实数b 按大小分: 负实数零正实数在数轴上表示的两个实数,右边的数总比左边的数大.5.与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。
因此,数轴正好可以被实数填满。
6.算术平方根的运算律:(a ≥0,b ≥0);(a ≥0,b >0);a b ab ;aa bb。
人教版七年级数学下册第六章实数知识点汇总
![人教版七年级数学下册第六章实数知识点汇总](https://img.taocdn.com/s3/m/e3984c6767ec102de3bd8913.png)
人教版七年级数学下册第六章实数知识点汇总【知识点一】实数的分类1、按定义分类:2、按性质符号分类: 注:0既不就是正数也不就是负数、【知识点二】实数的相关概念1、相反数(1)代数意义:只有符号不同的两个数,我们说其中一个就是另一个的相反数.0的相反数就是0、(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称、(3)互为相反数的两个数之与等于0、a、b互为相反数a+b=0、2、绝对值|a|≥0.3、倒数(1)0没有倒数(2)乘积就是1的两个数互为倒数.a、b互为倒数、▲▲平方根【知识要点】1、算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”。
2、如果x2=a,则x叫做a的平方根,记作“±a”(a称为被开方数)。
3、正数的平方根有两个,它们互为相反数;0的平方根就是0;负数没有平方根。
4、平方根与算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个。
联系:(1)被开方数必须都为非负数;(2)正数的负平方根就是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。
(3)0的算术平方根与平方根同为0。
5、如果x3=a,则x叫做a的立方根,记作“3a”(a称为被开方数)。
6、正数有一个正的立方根;0的立方根就是0;负数有一个负的立方根。
7、求一个数的平方根(立方根)的运算叫开平方(开立方)。
8、立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数与0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0、9、一般来说,被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n 倍,例如502500,525==、10、平方表:(自行完成)题型规律总结:1、平方根就是其本身的数就是0;算术平方根就是其本身的数就是0与1;立方根就是其本身的数就是0与±1。
2020人教版七年级数学 第六章 实数知识点总结无答案
![2020人教版七年级数学 第六章 实数知识点总结无答案](https://img.taocdn.com/s3/m/aab5a5c183d049649b6658ed.png)
第六章实数知识点总结一.几个符号1.算术平方根(被开方数、根号、根指数2省略)2.平方根(两个数值)3.立方根(数3的书写位置、大小要求)二.几个重要结论1. 2a=(0)(0)a aaa a>⎧==⎨-<⎩a5. 3=a6. 被开方数越大,它的算术平方根也越大;7. 被开方数的小数点向左(向右)每移动两位,它的算术平方根的小数点就向左(向右)移动一位;8. 被开方数的小数点向左(向右)每移动三位,它的立方根的小数点就向左(向右)移动一位;三.几个重要性质1.正数的平方根有两个,它们互为相反数;2.负数没有平方根;3.0的平方根是0;4. 正数的立方根是正数;负数的立方根是负数;0的立方根是0. 四.几个特殊数1.算术平方根等于它本身的数有0,1;2. 平方根等于它本身的数有03. 立方根等于它本身的数有-1,0,1;五.实数的分类1.按定义分 0⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正有理数有理数负有理数实数正无理数无理数负无理数2.按性质分: 0⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数六.实数有关性质1.相反数:a 的相反数是-a;2.绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0; (0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩3.计算:乘法的分配律,几个重要结论;2a = ()a b c ac bc +=+ 11a a⋅=七.实数与数轴上的点的位置关系在数轴上,任意一个点都可以用一个实数表示;任意一个实数都可以在数轴上找到一个点的位置;所以,实数与数轴上的点是一一对应的。
(有限小数或无限循环小数) (无限不循环小数)例题1:1. 有下列说法:(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示.其中正确说法的个数是( )A. 1B. 2C. 3D. 4例题22. 在3π,161-,3.14,0,21-,25,14-, 76.0123456…(小数部分由相继的正整数组成)中,有理数有:{ }无理数有:{ }负数有:{ }3. 若1.1001.102=_______ .101=, a =_______________;4. 13的小数部分是 .5. 比较大小:(1); (2)15+- 22-;______32. 例题3计算(1) 2243+2(3) 32-+3812)1(412)2(-+÷--(5) 2例题4解方程:2491690x -=60x y -+=.一个正数x的两个平方根是2a-3与5-a,求x的值.例题5已知x3+-=,求3--11xxy93x的平方根.+y23-。
人教版七年级数学下册知识点总结(第六章-实数)
![人教版七年级数学下册知识点总结(第六章-实数)](https://img.taocdn.com/s3/m/c1a6c23d2cc58bd63086bdcd.png)
第六章实数【知识点一】实数的分类1、按定义分类:正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、按性质符号分类:正有理数正实数实数0 正无理数负有理数负实数负无理数注:0既不是正数也不是负数。
【知识点二】实数的相关概念1。
相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数。
0的相反数是0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0。
若a、b互为相反数,则a+b=0.2.绝对值|a|≥0。
正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值等于0。
3。
倒数(1)0没有倒数(2)乘积是1的两个数互为倒数。
若a、b互为倒数则ab=1 .4.平方根(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0±。
本身;负数没有平方根.a(a≥0)的平方根记作a(2)一个正数a的正的平方根,叫做a的算术平方根。
0的算术平方根是0.a(a≥0)的算术平方根记作a。
5.立方根如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.a的立方根记作3a。
如果两个被开方数互为相反数,则它们的立方根也互为相反数,反之亦然。
即有33a-a=。
-【知识点三】实数与数轴数轴定义: 规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可。
【知识点四】实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大。
2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数,绝对值大的反而小。
3.无理数的比较大小:对于开平方,被开方数越大,它的算术平方根越大。
对于开立方,被开方数越大,它的立方根越大。
七年级实数知识点总结归纳
![七年级实数知识点总结归纳](https://img.taocdn.com/s3/m/e98558ce85868762caaedd3383c4bb4cf6ecb712.png)
七年级实数知识点总结归纳实数是数学中一个重要的概念,它由有理数和无理数组成。
了解实数的概念和性质对于七年级的学生来说非常重要。
在本文中,我将对七年级的实数知识点进行总结归纳,以帮助同学们更好地理解和掌握这一知识。
一、实数的概念实数是包括有理数和无理数的一种数集。
有理数是可以表示为两个整数之比的数,可以是整数、分数或小数(有限小数或循环小数)。
无理数是不能表示为两个整数之比的数,它们的小数部分无限不循环。
实数集是一个无限连续的数轴。
二、有理数的性质1. 有理数可以表达为a/b的形式,其中a和b是整数,b不等于0。
2. 有理数的和、差、积、商仍然是有理数。
3. 有理数有顺序性,可以进行大小比较。
三、无理数的性质1. 无理数的小数部分无限不循环,不能表示为两个整数之比。
2. 无理数与有理数相加、相乘的结果是无理数。
3. 无理数有顺序性,可以进行大小比较。
四、实数的性质1. 实数集是一个无限连续的数轴,包括所有的有理数和无理数。
2. 实数具有完备性,即实数集中的每一个非空子集都有上确界和下确界。
3. 实数满足四则运算的基本性质,包括交换律、结合律、分配律等。
五、实数的运算1. 实数的加法和减法:对于任意的实数a、b和c,有加法交换律、加法结合律、减法的定义等运算规则。
2. 实数的乘法和除法:对于任意的实数a、b和c(c≠0),有乘法交换律、乘法结合律、除法的定义等运算规则。
六、实数的进一步应用实数的知识点不仅仅在数学中有应用,它还在物理、经济等领域中有广泛的应用。
例如,在物理学中,实数用于描述物体的质量、速度等;在经济学中,实数用于表示货币的价值、收入等。
七、实数的应用练习通过理论知识的学习之后,我们可以通过一些练习题来加深对实数的理解和掌握。
下面是一些实数的应用练习题:1. 比较以下两组数的大小:{-2, -1, 0, 1, 2} 和 {-2.5, -1.5, -0.5, 0.5,1.5}。
2. 计算以下两个实数的和:-7.2 和 8.35。
七年级初一数学 第六章 实数知识点总结附解析
![七年级初一数学 第六章 实数知识点总结附解析](https://img.taocdn.com/s3/m/b603ea9333687e21ae45a925.png)
七年级初一数学 第六章 实数知识点总结附解析一、选择题1.对一组数(x,y)的一次操作变换记为P 1(x,y),定义其变换法则如下:P 1(x,y)=(x+y,x-y),且规定P n (x,y)=P 1(P n-1(x,y))(n 为大于1的整数),如:P 1(1,2)=(3,-1),P 2(1,2)= P 1(P 1(1,2))= P 1(3,-1)=(2,4),P 3(1,2)= P 1(P 2(1,2))= P 1(2,4)=(6,-2),则P 2017(1,-1)=( ).A .(0,21008)B .(0,-21008)C .(0,-21009)D .(0,21009)2.一列数1a , 2a , 3a ,…… n a ,其中1a =﹣1, 2a =111a -, 3a =211a -,……,n a =111n a --,则1a ×2a ×3a ×…×2017a =( ) A .1B .-1C .2017D .-2017 3.设n 为正整数,且20191n n <<+,则n 的值为( ) A .42B .43C .44D .45 4.已知253.6=15.906,25.36=5.036,那么253600的值为( )A .159.06B .50.36C .1590.6D .503.6 5.圆的面积增加为原来的m 倍,则它的半径是原来的( )A .m 倍B .2m 倍C .m 倍D .2m 倍 6.下列说法错误的是( )A .﹣4是16的平方根B .16的算术平方根是2C .116的平方根是14D .25=5 7.下列计算正确的是( )A .42=±B .1193±=C .2(5)5-=D .382=±8.下列各数是无理数的为( )A .-5B .πC .4.12112D .09.如图,数轴上O 、A 、B 、C 四点,若数轴上有一点M ,点M 所表示的数为m ,且5m m c -=-,则关于M 点的位置,下列叙述正确的是( )A .在A 点左侧B .在线段AC 上 C .在线段OC 上D .在线段OB 上10.2243522443355+=22444333555+=,仔细222020420203444333+个个 )A .20174555个B .20185555个C .20195555个D .20205555个 二、填空题11.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=. 例如:(-3)☆2= 32322-++-- = 2. 从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____.12.实数,,a b c 在数轴上的点如图所示,化简()()222a a b c b c ++---=__________.13.数轴上表示1、2的点分别为A 、B ,点A 是BC 的中点,则点C 所表示的数是____.14.已知,x 、y 是有理数,且y =2x -+ 2x -﹣4,则2x +3y 的立方根为_____.15.请先在草稿纸上计算下列四个式子的值:①31;②3312+;③333123++;④33331234+++,观察你计算的结果,用你发现的规律直接写出下面式子的值333312326++++=__________.16.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______. 17.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.18.如果一个数的平方根和它的立方根相等,则这个数是______.19.写出一个大于3且小于4的无理数:___________.20.如图,数轴上的点A 能与实数15,3,,22---对应的是_____________三、解答题21.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由33101000,1001000000==,因为1000327681000000<<,请确定332768是______位数; (2)由32768的个位上的数是8,请确定332768的个位上的数是________,划去32768后面的三位数768得到32,因为333=27,4=64,请确定332768的十位上的数是_____________ (3)已知13824和110592-分别是两个数的立方,仿照上面的计算过程,请计算:332768=____;3-110592________=22.对于有理数a ,b ,定义运算:a ⊕b =ab -2a -2b +1.(1)计算5⊕4的值;(2)计算[(-2)⊕6]⊕3的值;(3)定义的新运算“⊕”交换律是否还成立?请写出你的探究过程.23.你能找出规律吗?(1)计算:49⨯= ,49⨯= ;1625⨯= ,1625⨯= .结论:49⨯49⨯;1625⨯ 1625⨯.(填“>”,”=”,“<”).(2)请按找到的规律计算:①520⨯;②231935⨯. (3)已知:a =2,b =10,则40= (可以用含a ,b 的式子表示).24.我们在学习“实数”时画了这样一个图,即“以数轴上的单位长为‘1’的线段作一个正方形,然后以原点O 为圆心,正方形的对角线长为半径画弧交数轴于点A”,请根据图形回答下列问题:(1)线段OA 的长度是多少?(要求写出求解过程)(2)这个图形的目的是为了说明什么?(3)这种研究和解决问题的方式体现了 的数学思想方法.(将下列符合的选项序号填在横线上)A .数形结合B .代入C .换元D .归纳25.定义:若两个有理数a ,b 满足a +b =ab ,则称a ,b 互为特征数.(1)3与 互为特征数;(2)正整数n (n >1)的特征数为 ;(用含n 的式子表示)(3)若m ,n 互为特征数,且m +mn =-2,n +mn =3,求m +n 的值.26.阅读下面的文字,解答问题:是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而121的小数部分.请解答下列问题:(1_______,小数部分是_________;(2)的小数部分为a b ,求a b +(3)已知:100x y +=+,其中x 是整数,且01y <<,求24x y +-的平方根。
七年级数学实数知识点归纳
![七年级数学实数知识点归纳](https://img.taocdn.com/s3/m/dab064772a160b4e767f5acfa1c7aa00b42a9d7b.png)
七年级数学实数知识点归纳实数,是指所有有理数和无理数的总称。
在学习数学时,实数也是一个较为基础的概念。
在七年级数学里,涉及到的实数知识点也相对简单明了。
下面就让我们来归纳一下七年级数学实数知识点吧。
一、实数的概念实数是一个广义的概念,包括有理数、无理数。
有理数是可以表示成两个整数之比的数,而无理数则不能表示成两个整数之比的数。
比如,根号2就是一个无理数。
我们用符号R表示实数集合。
二、有理数有理数是指可以表示成一分数的数,也就是指可以表示为两个整数之比的数。
它包括正整数、负整数、零和分数。
有理数在数轴上可以表示成有限小数或无限循环小数。
1. 正整数、负整数、零数轴上正方向表示正数,负方向表示负数,而0则位于数轴的原点。
2. 有理数的大小比较对于任意两个有理数a和b,它们的大小比较可以通过它们的差a-b来完成。
如果a-b>0,则a>b;如果a-b=0,则a=b;如果a-b<0,则a<b。
三、无理数无理数是不能表示成两个整数之比的数。
它有很多种表现形式,如根号2、根号3、π等等。
无理数在数轴上也可以精确地标出它的位置,但是它们不能用有限小数或无限循环小数表示。
四、实数的加、减、乘、除实数的加、减、乘、除是基础运算之一。
在进行这些运算时,我们需要注意数的符号和大小关系。
1. 加法实数的加法是指将两个实数相加,比如a+b。
当两个实数同号时,它们的和为它们的绝对值相加;当两个实数异号时,它们的和为它们的绝对值相减。
2. 减法实数的减法是指将一个实数减去另一个实数,比如a-b。
减法可以转化成加法,即a-b=a+(-b)。
3. 乘法实数的乘法是指将两个实数相乘,比如a×b。
同号相乘得正,异号相乘得负。
4. 除法实数的除法是指将一个实数除以另一个实数,比如a÷b。
其中,被除数为0时,结果为0;除数为0时,结果不存在。
五、实数的绝对值实数的绝对值是指一个实数距离0点的距离,它的值总是非负数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章实数知识点归纳
一、实
数的
概念(3分) 1、实数的分类 正有理数 有理数零有限小数和无限循环小数 实数负有理数
正无理数 无理数无限不循环小数
负无理数
整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数
在理解无理数时,要抓住“无限不
循环”这一
时之起 (1)开方开不尽的数,如
7,等;(2)有特定结构的数,如0.1010010001,等;32 32 (3) π 3 +8等; 3.实数与数轴上点: 实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反 过来,数轴上的每一个点都是表示一个实数。
与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的 实数大 二、实数的倒数、相反数和绝对值(3分) 1、相反数 从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数, 则有a+b=0,a=—b ,反之亦成立。
2、绝对值 一
个
数的绝
对值就是表示这
个数的
点
与原
|
a
|
≥。
零
|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个 负数,绝对值大小。
3、倒数 如果
a 与
b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有 倒数。
4、无限小数是有理数(×)无限小数是无理数(×) 有理数是无限小数(×)无理数是无限小数(√) 数轴上的点都可以用有理数表示(×)有理数都可以由数轴上的点表示(√) 数轴上的点都可以用无理数表示(×)无理数都可以由数轴上的点表示(√) 数轴上的点都可以用实数表示(√)实数都可以由数轴上的点表示(√) 三、平方根、算数平方根和立方根 1、平方根
如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a的平方根记做“a”。
2、算术平方根
正数a的正的平方根叫做a的算术平方根,记作“a”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a(a0)a0
2
a a
;注意a的双重非负性:
-a(a<0)a0
3、立方根
如果一个数的立方等于a,那么这个数就叫做a的立方根(或a的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:3a3a,这说明三次根号内的负号可以移到根号外面。
考点四、科学记数法和近似数(3—6分)
1、有效数字
一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。
2、科学记数法
把一个数写做
n
a10的形式,其中1a10,n是整数,这种记数法叫科学记数法。
考点五、实数大小的比较的几种方法(3分)
(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较:设a、b是实数,
①ab0ab,②ab0ab,③ab0ab
aaa
(3)求商比较法:设a、b是两正实数,1ab;1ab;1ab;
bbb
(4)绝对值比较法:设a、b是两负实数,则abab。
22
(5)平方法:设a、b是两负实数,则abab。
考点六、实数的运算(做题的基础,分值相当大)
1、实数混合运算时,对于运算顺序有什么规定?
实数混合运算时,将运算分为三级,加减为一级运算,乘除为二能为运算,乘方为三级运算。
同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行。
2、有理数除法运算法则就什么?
两有理数除法运算法则可用两种方式来表述:第一,除以一个不等于零的数,等于乘以
这个数的倒数;第二,两数相除,同号得正,异号得负,并把绝对值相除。
零除以任何一个不为零的数,商都是零。
3、什么叫有理数的乘方?幂?底数?指数?
相同因数相乘积的运算叫乘方,乘方的结果叫幂,相同因数的个数叫指数,这个因数叫n
底数。
记作:a
4、有理数乘方运算的法则是什么?
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数。
零的任何正整数幂都是零。
5、加括号和去括号时各项的符号的变化规律是什么?
去(加)括号时如果括号外的因数是正数,去(加)括号后式子各项的符号与原括号内的式子相应各项的符号相同;括号外的因数是负数去(加)括号后式子各项的符号与原括号内式子相应各项的符号相反。