初一数学知识点汇总(全册)

合集下载

初中数学知识点汇总(整理完全版)

初中数学知识点汇总(整理完全版)

第二章、整式加减1、整式:⑴单项式:只含有数或字母的积的式子叫单项式。

(单独一个字母或数字也是单项式);系数:单项式中的数字因数;次数:单项式中,所有字母的指数和。

⑵多项式:几个单项式的和叫做多项式。

其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

①项:每一个单项式(注意带符号)。

②次数:多项式里次数最高的项的次数。

2、同类项:所含字母相同,并且相同字母的指数也相同的项。

几个常数项也是同类项。

3、合并同类项:系数相加,字母和字母的指数不变。

4、去括号时符号变化规律:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号不变;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

第三章、一元一次方程含有未知数的等式叫做方程,使方程左右两边相等的未知数的值叫做方程的解。

只含有一个未知数,未知数的次数是1,这样的方程叫做一元一次方程。

1、等式的性质一:等式两边加(或减)同一个数(或式子),结果仍相等。

等式的性质二:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2、一元一次方程的解法:去分母→去括号→移项→合并同类项→系数化为1。

注意:①去分母:两边同乘分母的最小公倍时,每一项都不能漏乘。

②去括号:“去正不变,去负全变”。

③移项:是从等号一端移到另一端,移项要变号。

④合并同类项:系数相加减做系数,字母和字母的指数不变。

⑤系数化为一列方程解应用题:(1)设未知数。

(2)找出相等的数量关系,(3)根据相等关系列几何图形:我们把从实物中抽象出的各种图形统称为几何图形。

立体图形:各部分不都在同一平面内,这种图形叫做立体图形。

平面图形:各部分都在同一平面内,这种图形叫做平面图形。

平面展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。

这样的平面图形称为相应立体图形的展开图。

三视图:指主视图、左视图、俯视图。

初一数学知识点(精选5篇)

初一数学知识点(精选5篇)

初一数学知识点(精选5篇)第一章有理数1.整数。

(正整数、0、负整数)2.正数和负数。

3.有理数。

(整数和分数统称有理数)4.自然数。

(非负整数)5.相反数。

(只有符号不同的两个数互为相反数)6.绝对值。

(一个数的绝对值就是表示这个数的点与原点的距离)第二章代数式1.代数式。

(用运算符号把数或表示数的字母连接起来的式子)2.代数式的值。

(求代数式的值就是给代数式中的字母个代数式确定值)第三章实数1.平方根。

(如果一个数的平方等于a,那么这个数就叫做a 的平方根)2.算数平方根。

(一个非负数的正的平方根叫做算数平方根)3.立方根。

(如果一个数的立方等于a,那么这个数就叫做a 的立方根)4.实数。

(有理数和无理数)5.实数的性质。

(实数能进行减、乘、除、加、乘方运算)6.近似数。

(通过四舍五入得到的与精确数接近的数)第四章整式和分式1.整式。

(与有理数相对的数式叫整式)2.分式。

(整式的一部分)3.分式的值为零。

(分子为零且分母不等于零)4.分式的乘除。

(乘除法转化成乘法计算)5.分式的加减。

(异分母的分式加减转化成通分后求和)6.分式方程。

(分母里含有未知数的方程叫分式方程)初一数学知识点篇21.有理数:有理数包括正整数、0和负整数。

有理数可以用分数表示。

2.数轴:数轴是一条直线,它的上面写着从0开始连续不断的点。

数轴上的0是正负数的分界线。

3.相反数:如果两个数的和为0,那么这两个数是一对相反数。

相反数包括正数和负数。

4.绝对值:一个数的绝对值是它离0的距离。

正数的绝对值是它本身,负数的绝对值是它的相反数。

5.代数式:用代数式表示出数量关系和变化规律的式子。

包括等式、不等式、方程、不等式、函数等。

6.整式:整式包括单项式和多项式。

单项式是由数字和字母组成,多项式是由几个单项式组成。

7.分式:分式包括分子和分母。

分子是由数字和字母组成,分母是由分式和整式组成。

8.方程:用方程表示出两个量之间的关系,并且这个方程是一个等式。

七年级全册数学知识点简版

七年级全册数学知识点简版

七年级全册数学知识点简版全文目录:一、正数、负数和零二、整数基本运算三、小数基本概念四、小数的加减运算五、小数乘法六、小数除法七、比例与比例的应用八、百分数基本概念九、百分数变化及关系式十、图形的基本概念十一、线段、角和三角形十二、图形的仿射变换十三、图形的平移,旋转和对称一、正数、负数和零数的分类:等于零的数叫做“零”,大于零的数叫做“正数”,小于零的数叫做“负数”。

数轴:数轴是用来表示数的直线,其上的点表示数。

二、整数基本运算整数加减法:同号数相加或相减,异号数相减;两个数相加等于其相反数的差。

整数乘法和除法:同号数乘或除得正数,异号数乘或除得负数;零乘任何数都得零,非零数除以零没有意义。

三、小数基本概念小数点:小数点实际上是用来表示整数部分与小数部分的分隔符。

小数的读法:把小数点左边的数字读成整数,右边的数字读成分数。

四、小数的加减运算小数相加:把小数点对齐后相加,不足的位数补零。

小数相减:补齐被减数小数位数与减数相同,将小数点对齐后相减。

五、小数乘法小数乘法:将被乘数与乘数分别除去小数点后,将位数相加,再将小数点移到最右边即为积的小数点。

六、小数除法小数除法:将小数点移动到两个数中尺度位数最多的数中,使整除后尺度更多,再移动回去即为商小数点的位置。

七、比例与比例的应用比例:由两个有联系的数用相同的单位表示时的对应关系。

比例的性质:在比例中,各项成比例,若一项增加或减少,其他也要相应增加或减少。

八、百分数基本概念百分数:以100为基数的分数称为百分数,百分数的百分号可以简写成%。

百分数的基准:通常情况下,我们选定100作为百分数的基准。

九、百分数变化及关系式百分数的变化:百分数的若干倍数和若干分数的百分数之间有着确定的对应关系,也就是变化关系式。

乘方及开方:a^n表示a的n次方,√a表示a的平方根,∛a表示a的立方根。

十、图形的基本概念平面图形的分类:点、线、线段、角、三角形、四边形、多边形、圆等。

初一数学知识点归纳(全)

初一数学知识点归纳(全)

初一数学知识点归纳(全)初一数学知识点归纳如下:一、有理数1. 有理数的定义:能写成两个整数的比的数叫做有理数。

2. 有理数的分类:正有理数、负有理数和零。

3. 有理数的性质:比较两个有理数的大小,绝对值大的数较大;绝对值相等的数,正数较大;都是负数时,绝对值小的数较大。

4. 有理数的运算:加法、减法、乘法和除法。

二、整式的加减1. 整式的定义:由数字、字母的乘积组成的代数式叫做整式。

2. 整式的加减法法则:同类项合并,即把同类项的系数相加或相减,字母和字母的指数保持不变。

三、一元一次方程1. 方程的定义:含有未知数的等式叫做方程。

2. 一元一次方程的定义:只含有一个未知数,并且未知数的最高次数是1的方程叫做一元一次方程。

3. 解一元一次方程的方法:移项、合并同类项、系数化为1。

四、几何图形初步1. 几何图形的定义:用点、线、面等基本元素构成的图形叫做几何图形。

2. 几何图形的分类:平面图形和立体图形。

3. 平面图形的基本性质:对称性、相似性、全等性等。

4. 立体图形的基本性质:表面积、体积、棱长等。

五、相交线与平行线1. 相交线的定义:在同一平面内,两条直线相交于一点,这个点叫做交点。

2. 平行线的定义:在同一平面内,两条直线永远不相交,这两条直线叫做平行线。

3. 平行线的性质:同位角相等,内错角相等,同旁内角互补。

六、实数1. 实数的定义:有理数和无理数的统称叫做实数。

2. 实数的分类:有理数、无理数。

3. 无理数的定义:不能写成两个整数的比的数叫做无理数。

4. 实数的运算:加法、减法、乘法和除法。

七、平面直角坐标系1. 平面直角坐标系的定义:在平面上,以两条互相垂直的直线为坐标轴,建立直角坐标系。

2. 点的坐标:在平面直角坐标系中,每个点都有一个唯一的有序实数对(x, y)与之对应,这个有序实数对叫做该点的坐标。

3. 函数的定义:在平面直角坐标系中,对于每一个自变量x,都有唯一确定的因变量y与之对应,这种对应关系叫做函数。

(完整版)初中数学各章节详细知识点

(完整版)初中数学各章节详细知识点

各章节知识点七年级上册第一章《有理数》1.正数与负数的概念2.正数与负数的实际意义3.有理数的概念4.数轴的概念5.相反数的概念6.绝对值的概念7.有理数的大小比较8.有理数的加法法则(6分)9.有理数的减法法则10.有理数的乘法法则11.有理数的运算律12.有理数的除法法则13.有理数的混合运算法则(6分)14.有理数的乘方相关概念(乘方、幂、底数、指数)15.有理数的乘方法则16.科学记数法(3分)17.近似数(有效数字)第二章《整式的加减》1.单项式及其相关概念(单项式、系数、次数)2.多项式及其相关概念(多项式、项、常数项、次数)3.整式4.同类项的概念5.合并同类项的法则6.去括号法则7.整式加减的运算法则(6分)第三章《一元一次方程》1.方程的概念2.一元一次方程的概念3.方程的解4.等式的性质5.一元一次方程的解法(步骤)(6分)6.一元一次方程的应用问题(和差倍分问题、数字问题、行程问题、工程问题、劳动力调配问题、增长率问题、商品利润问题)第四章《图形的初步认识》1.几何图形的概念2.立体图形的概念3.平面图形的概念4.立体图形的三视图(3分)5.立体图形的展开图6.点、线、面、体的概念7.直线的相关概念(直线、相交线、交点)8.两点确定一条直线9.点与直线的位置关系10.线段的中点11.两点之间线段最短12.两点之间的距离13.角及其相关概念14.角平分线(3分)15.余角的概念16.补角的概念17.余角(补角)的性质(3分)七年级下册第五章《相交线与平行线》1.相交线的相关概念(邻补角、对顶角)2.对顶角的性质3.垂线的相关概念(垂直、垂线、垂足)4.过一点画垂线5.垂线段最短6.点到直线的距离7.“三线八角”的相关概念8.平行的概念9.平行公理10.平行线的判定(3分)11.平行线的性质(3分)12.命题及其相关概念(命题、真命题、假命题)13.定理的概念14.平移的概念15.平移的性质(3分)第六章《平面直角坐标系》1.有序实数对的概念2.平面直角坐标系及其相关概念(平面直角坐标系、横轴、纵轴、原点、坐标、象限)3.特殊点坐标(象限符号、坐标轴上点的特征、坐标轴角平分线上点的特征、对称点坐标特征、平行于坐标轴的点的特征)4.直角坐标系的实际应用5.平移的坐标特征(3分)第七章《三角形》1.三角形的概念2.三角形的分类3.三角形的三边关系4.三角形的“三线”(高线、中线、角平分线)5.三角形的稳定性6.三角形的内角和定理7.三角形的外角8.三角形的外角性质定理(3分)9.等腰三角形的性质10.等边三角形的性质11.直角三角形的性质(6分)12.多边形及其相关概念(多边形、对角线、正多边形)13.多边形的内角和定理14.多边形的外角和定理第八章《二元一次方程组》1.二元一次方程的概念2.二元一次方程(组)的解3.解二元一次方程(代入消元法、加减消元法)(6分)4.二元一次方程的应用(6分)5.三元一次方程组的概念6.三元一次方程组的解法第九章《不等式与不等式组》1.不等式的概念2.不等式的解3.解集4.一元一次不等式的概念5.不等式的性质(3分)6.一元一次不等式的解法(3分)7.一元一次不等式的应用8.一元一次不等式组的概念9.一元一次不等式组的解法(6分)第十章《数据的收集、整理与描述》1.收集数据(问卷)2.整理数据(表格)3.描述数据(条形统计图、扇形统计图)(6分)4.抽样调查的概念5.总体、个体、样本、样本容量6.简单随机抽样的概念7.直方图及其相关概念(直方图、组距、频数)(6分)8.画直方图的步骤八年级上册第十一章《全等三角形》1.全等形的概念2.全等三角形的相关概念(全等三角形、对应顶点、对应边、对应角)3.全等三角形的性质4.全等三角形的判定(SSS,SAS,ASA,AAS)(6分)5.直角三角形的判定(HL)6.角平分线的性质7.角平分线的判定(6分)第十二章《轴对称》1.轴对称图形的概念2.关于直线对称的相关概念3.轴对称的性质4.线段垂直平分线的性质(6分)5.线段垂直平分线的判定(6分)6.作轴对称图形7.关于坐标轴对称点的特征8.等腰三角形的概念9.等腰三角形的性质10.等腰三角形的判定(6分)11.等边三角形的概念12.等边三角形的判定13.等边三角形的性质(6分)第十三章《实数》1.算术平方根的概念2.平方根的概念3.平方根的性质(3分)4.立方根的概念5.立方根的性质(3分)6.实数的概念7.实数的分类8.实数的相反数、绝对值(3分)9.实数与数轴的关系第十四章《一次函数》1.变量与常量2.函数与自变量3.函数的图像4.正比例函数的解析式5.正比例函数的图象及其性质(7分)6.一次函数的解析式7.一次函数的图象及其性质(7分)8.一次函数与一元一次方程的关系9.一次函数与一元一次不等式关系10.一次函数与二元一次方程组的关系第十五章《整式的乘除与因式分解》1.同底数的幂的乘法公式(3分)2.幂的乘方公式(3分)3.积的乘方公式整式的乘法法则4.单项式与多项式相乘的乘法法则5.多项式相乘的乘法法则(3分)6.平方差公式7.完全平方公式(3分)8.添括号法则9.同底数幂的除法法则10.单项式除单项式的法则11.多项式除以单项式法则12.因式分解的概念13.因式分解的方法(提取公因式法、公式法)(6分)八年级下册第十六章《分式》1.分式的概念2.分式的基本性质(3分)3.约分与通分4.最简分式5.分母有理化(3分)6.分式乘除的法则7.分式加减的法则8.整数指数幂的运算性质(3分)9.分式方程的概念10.分式方程的解法(6分)11.分式方程的应用(7分)第十七章《反比例函数》1.反比例函数的概念2.反比例函数的图象及其性质(7分)3.反比例函数的应用第十八章《勾股定理》1.勾股定理(6分)2.勾股定理的逆定理(3分)第十九章《四边形》1.平行四边形的概念2.平行四边形的性质(7分)3.平行四边形的判定(7分)4.两条平行直线之间的距离5.矩形的概念6.矩形的判定7.矩形的性质(7分)8.菱形的概念9.菱形的性质(7分)10.菱形的判定11.正方形的概念12.正方形的性质与判定(7分)13.梯形概念14.梯形的分类15.等腰梯形的性质16.等腰绞刑的判定(7分)第二十章《数据的分析》1.平均数与加权平均数2.中位数3.众数(3分)4.方差第二十一章《二次根式》1.二次根式的概念2.二次根式的两个重要公式(3分)3.代数式的概念4.二次根式的乘法法则5.二次根式的除法法则(6分)6.最简二次根式7.二次根式的加减法法则(3分)九年级上册第二十二章《一元二次方程》1.一元二次方程的概念2.一元二次方程的根3.一元二次方程的解法(直接开方法、配方法、求根公式法、因式分解法)(6分)4.根的判别式5.一元二次方程根与系数的关系6.一元二次方程的应用(面积问题、连续增长问题)(6分)第二十三章《二次函数》1. 一元二次方程的概念2. 二次函数的基本形式3. 二次函数图象的平移4. 二次函数图像的画法5. 二次函数图像的性质(7分)6. 二次函数图像的表示方法7. 二次函数图像的图像与各项系数之间的关系(7分)8. 二次函数图象的对称9. 二次函数与一元二次方程(7分)10. 函数的应用第二十四章《旋转》1.旋转的相关概念(旋转、旋转中心、旋转角)2.旋转的性质(6分)3.中心对称的相关概念(中心对称、对称中心、对称点)(6分)4.中心对称的性质5.中心对称图形的概念6.关于原点对称的点的坐标的特征(3分)第二十五章《圆》1.圆的相关概念(圆的两种定义、圆心、半径、弦、直径、圆弧、优弧、劣弧、半圆、等圆、等弧)2.垂径定理及其推论(6分)3.弧、弦、圆心角、弦心距之间的关系定理(6分)4.圆周角的概念5.圆周角定理及其推论6.圆内接多边形的概念7.圆内接四边形的性质(3分)8.点与圆的位置关系9.三点确定一个圆10.三角形的外接圆及外心11.直线与圆的位置关系及其相关概念(7分)12.切线的性质及判定定理(7分)13.切线长定理(7分)14.圆与圆的位置关系及其相关概念(7分)15.正多边形与圆的相关概念(正三角形与圆、正方形与圆、正六边形与圆)16.弧长公式及扇形面积公式(7分)17.圆锥及圆柱的侧面积及表面积(7分)第二十六章《概率》1.随机事件、不可能事件、必然事件的概念2.随机事件的性质3.概率的概念4.概率的计算公式(3分)5.用列表法、树形图计算概率(7分)6.频率与概率的关系第二十七章《相似》1. 有关相似形的概念2. 比例的性质3. 平行线分线段成比例定理(3分)4. 相似三角形(判定,性质,应用)(7分)5. 位似第二十八章《解直角三角形》1. 直角三角形的性质(3分)2. 直角三角形的判定(6分)3. 锐角三角函数的概念4. 解直角三角形(7分)第二十九章《投影与视图》1. 平行投影2. 中心投影3. 正投影。

七年级数学知识点归纳

七年级数学知识点归纳

七年级数学知识点归纳一、数与代数1. 整数- 整数 classification- 奇数与偶数- 质数与合数- 整数的四则运算- 整数的性质2. 有理数- 有理数的概念- 有理数的加法与减法- 有理数的乘法与除法- 有理数的比较大小- 绝对值与相反数3. 代数表达式- 单项式与多项式- 代数式的加减运算- 代数式的乘法运算- 代数式的除法运算- 因式分解4. 线性方程- 一元一次方程- 二元一次方程- 线性方程的解法- 线性方程的应用问题5. 不等式- 不等式的概念- 不等式的解集表示- 不等式的解法- 线性不等式与二次不等式二、几何1. 平面图形- 点、线、面的基本性质- 直线、射线、线段- 角的概念与分类- 平行线与相交线的性质- 三角形的基本性质与分类2. 圆的基本性质- 圆的定义- 圆的半径、直径、弦、弧- 圆周角与圆心角- 切线的概念与性质3. 面积与体积- 平行四边形、三角形、梯形的面积计算 - 圆的面积计算- 长方体与立方体的体积计算4. 变换图形- 平移、旋转、对称的概念- 图形的平移变换- 图形的旋转变换- 轴对称与中心对称三、数据与概率1. 数据的收集与整理- 数据的表示方法- 统计表的绘制- 频数与频率的概念2. 数据的分析与解释- 众数、中位数、平均数的计算- 数据的图表表示(条形图、折线图、饼图)3. 概率的初步认识- 随机事件的概念- 可能性的判断与概率计算以上是七年级的数学知识点归纳,每个部分都包含了基础概念、性质、计算方法和应用实例。

学生应掌握这些知识点,以便能够解决实际问题,并为以后的学习打下坚实的基础。

教师和家长应指导学生通过练习和实际应用来巩固这些概念。

七年级数学全部知识点

七年级数学全部知识点

七年级数学全部知识点
一、数字和运算
1. 正整数、负整数、零的概念和表示方法
2. 整数的加减乘除
3. 分数的概念和表示方法
4. 分数的加减乘除
5. 百分数的概念和表示方法
6. 百分数的加减乘除
7. 带分数的概念和表示方法
8. 带分数的加减乘除
9. 小数的概念和表示方法
10. 小数的加减乘除
二、图形和几何
1. 点、直线、线段、射线、角、平行线、垂直线等基本概念
2. 各种图形的概念,如正方形、长方形、三角形、梯形、圆等
3. 几何图形的周长和面积的计算方法
三、代数
1. 代数式的概念和表示方法
2. 代数式的加减乘除
3. 简单方程的概念和解法
4. 解一元一次方程的方法
四、函数
1. 函数的概念和基本性质
2. 函数的图形和特征
3. 一次函数的概念和解法
4. 比例的概念和解法
五、概率和统计
1. 样本、事件、概率的概念和表示方法
2. 随机事件的概念和性质
3. 等可能事件的概念和性质
4. 统计中的频数、频率、中位数、众数等概念
以上是七年级数学全部的知识点。

希望同学们在学习这些知识点时,能够认真复习、勤于练习、善于思考,做到知识点的掌握和应用。

初一数学知识点总结大全

初一数学知识点总结大全

初一数学知识点总结大全第一章有理数1.1正数和负数以前学过的0以外的数前面加上负号“-”的书叫做负数.以前学过的0以外的数叫做正数.数0既不是正数也不是负数,0是正数与负数的分界.在同一个问题中,分别用正数和负数表示的量具有相反的意义1.2有理数1.2.1有理数正整数、0、负整数统称整数,正分数和负分数统称分数.整数和分数统称有理数.1.2.2数轴规定了原点、正方向、单位长度的直线叫做数轴.数轴的作用:所有的有理数都可以用数轴上的点来表达.考前须知:⑴数轴的原点、正方向、单位长度三要素,缺一不可.⑵同一根数轴,单位长度不能改变.一般地,设是一个正数,那么数轴上表示a的点在原点的右边,与原点的间隔是a个单位长度;表示数-a的点在原点的左边,与原点的间隔是a个单位长度.1.2.3相反数只有符号不同的两个数叫做互为相反数.数轴上表示相反数的两个点关于原点对称.在任意一个数前面添上“-”号,新的数就表示原数的相反数.1.2.4绝对值一般地,数轴上表示数a的点与原点的间隔叫做数a的绝对值.一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0.在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数.比拟有理数的大小:⑴正数大于0,0大于负数,正数大于负数.⑵两个负数,绝对值大的反而小.1.3有理数的加减法1.3.1有理数的加法有理数的加法法那么:⑴同号两数相加,取一样的符号,并把绝对值相加.⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.⑶一个数同0相加,仍得这个数.两个数相加,交换加数的位置,和不变.加法交换律:a+b=b+a三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变.加法结合律:(a+b)+c=a+(b+c)1.3.2有理数的减法有理数的减法可以转化为加法来进展.有理数减法法那么:减去一个数,等于加这个数的相反数.a-b=a+(-b)1.4有理数的乘除法1.4.1有理数的乘法有理数乘法法那么:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.乘积是1的两个数互为倒数.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.两个数相乘,交换因数的位置,积相等.ab=ba三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.(ab)c=a(bc)一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.a(b+c)=ab+ac数字与字母相乘的书写标准:⑴数字与字母相乘,乘号要省略,或用“”⑵数字与字母相乘,当系数是1或-1时,1要省略不写.⑶带分数与字母相乘,带分数应当化成假分数.用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,那么式子2x+3x是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数.一般地,合并含有一样字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即ax+bx=(a+b)x上式中x是字母因数,a与b分别是ax与bx这两项的系数.去括号法那么:括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号.括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号.括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号一样;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反.1.4.2有理数的除法有理数除法法那么:除以一个不等于0的数,等于乘这个数的倒数.a÷b=a• (b≠0)两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算.乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果.1.5有理数的乘方1.5.1乘方求n个一样因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂.负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,0的任何正整数次幂都是0.有理数混合运算的运算顺序:⑴先乘方,再乘除,最后加减;⑵同级运算,从左到右进展;⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进展1.5.2科学记数法把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法.用科学记数法表示一个n位整数,其中10的指数是n-1.1.5.3近似数和有效数字接近实际数目,但与实际数目还有差异的数叫做近似数.准确度:一个近似数四舍五入到哪一位,就说准确到哪一位.从一个数的左边第一个非0 数字起,到末位数字止,所有数字都是这个数的有效数字.对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字.第二章一元一次方程2.1从算式到方程2.1.1一元一次方程含有未知数的等式叫做方程.只含有一个未知数(元),未知数的指数都是1(次),这样的方程叫做一元一次方程.分析^p 实际问题中的数量关系,利用其中的相等关系列出方程,是数学解决实际问题的一种方法.解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解.2.1.2等式的性质等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.2从古老的代数书说起——一元一次方程的讨论⑴把等式一边的某项变号后移到另一边,叫做移项.2.3从“买布问题”说起——一元一次方程的讨论⑵方程中有带括号的式子时,去括号的方法与有理数运算中括号类似.解方程就是要求出其中的未知数(例如x),通过去分母、去括号、移项、合并、系数化为1等步骤,就可以使一元一次方程逐步向着x=a的形式转化,这个过程主要根据等式的性质和运算律等.去分母:⑴详细做法:方程两边都乘各分母的最小公倍数⑵根据:等式性质2⑶考前须知:①分子打上括号②不含分母的项也要乘2.4再探实际问题与一元一次方程第三章图形认识初步3.1多姿多彩的图形现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形.3.1.1立体图形与平面图形长方体、正方体、球、圆柱、圆锥等都是立体图形.此外棱柱、棱锥也是常见的立体图形.长方形、正方形、三角形、圆等都是平面图形.许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形.3.1.2点、线、面、体几何体也简称体.长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体.包围着体的是面.面有平的面和曲的面两种.面和面相交的地方形成线.线和线相交的地方是点.几何图形都是由点、线、面、体组成的,点是构成图形的根本元素.3.2直线、射线、线段经过两点有一条直线,并且只有一条直线.两点确定一条直线.点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.类似的还有线段的三等分点、四等分点等.直线桑一点和它一旁的局部叫做射线.两点的所有连线中,线段最短.简单说成:两点之间,线段最短.3.3角的度量角也是一种根本的几何图形.度、分、秒是常用的角的度量单位.把一个周角360等分,每一份就是一度的角,记作1;把1度的角60等分,每份叫做1分的角,记作1;把1分的角60等分,每份叫做1秒的角,记作1.3.4角的比拟与运算3.4.1角的比拟从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.类似的,还有叫的三等分线.3.4.2余角和补角假如两个角的和等于90(直角),就说这两个角互为余角.假如两个角的和等于180(平角),就说这两个角互为补角.等角的补角相等.等角的余角相等.本章知识构造图第四章数据的搜集与整理搜集、整理、描绘和分析^p 数据是数据处理的根本过程.4.1喜欢哪种动物的同学最多——全面调查举例用划记法记录数据,“正”字的每一划(笔画)代表一个数据.考察全体对象的调查属于全面调查.4.2调查中小学生的视力情况——抽样调查举例抽样调查是从总体中抽取样本进展调查,根据样本来估计总体的一种调查.统计调查是搜集数据常用的方法,一般有全面调查和抽样调查两种,实际中常常采用抽样调查的方式.调查时,可用不同的方法获得数据.除问卷调查、访问调查等外,查阅文献资料和实验也是获得数据的有效方法.利用表格整理数据,可以帮助我们找到数据的分布规律.利用统计图表示经过整理的数据,能更直观地反映数据规律.4.3课题学习调查“你怎样处理废电池?”调查活动主要包括以下五项步骤:一、\x09设计调查问卷⑴设计调查问卷的步骤①确定调查目的;②选择调查对象;③设计调查问题⑵设计调查问卷时要注意:①提问不能涉及提问者的个人观点;②不要提问人们不愿意答复的问题;③提供的选择答案要尽可能全面;④问题应简明;⑤问卷应简短.二、施行调查将调查问卷复制足够的份数,发给被调查对象.施行调查时要注意:⑴向被调查者讲明哪些人是被调查的对象,以及他为什么成为被调查者;⑵告诉被调查者你搜集数据的目的.三、处理数据根据收回的调查问卷,整理、描绘和分析^p 搜集到的数据.四、交流根据调查结果,讨论你们小组有哪些发现和建议?五、写一份简单的调查报告第二册第五章相交线与平行线5.1相交线5.1.1相交线有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角.两条直线相交有4对邻补角.有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角.两条直线相交,有2对对顶角.对顶角相等.5.1.2两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直.其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.注意:⑴垂线是一条直线.⑵具有垂直关系的两条直线所成的4个角都是90.⑶垂直是相交的特殊情况.⑷垂直的记法:a⊥b,AB⊥CD.画直线的垂线有无数条.过一点有且只有一条直线与直线垂直.连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.直线外一点到这条直线的垂线段的长度,叫做点到直线的间隔 .5.2平行线5.2.1平行线在同一平面内,两条直线没有交点,那么这两条直线互相平行,记作:a∥b.在同一平面内两条直线的关系只有两种:相交或平行.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.假如两条直线都与第三条直线平行,那么这两条直线也互相平行.5.2.2直线平行的条件两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角.两条直线被第三条直线所截,在两条被截线之间,截线的两侧,这样的两个角叫做内错角.两条直线被第三条直线所截,在两条被截线之间,截线的同一旁,这样的两个角叫做同旁内角.断定两条直线平行的方法:方法1 两条直线被第三条直线所截,假如同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.方法2 两条直线被第三条直线所截,假如内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.方法3 两条直线被第三条直线所截,假如同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.5.3平行线的性质平行线具有性质:性质1 两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.性质2 两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.性质3 两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的间隔 .判断一件事情的语句叫做命题.5.4平移⑴把一个图形整体沿某一方向挪动,会得到一个新的图形,新图形与原图形的形状和大小完全一样.⑵新图形中的每一点,都是由原图形中的某一点挪动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等.图形的这种挪动,叫做平移变换,简称平移.第六章平面直角坐标系6.1平面直角坐标系6.1.1有序数对有顺序的两个数a与b组成的数对,叫做有序数对.6.1.2平面直角坐标系平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系.程度的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点.平面上的任意一点都可以用一个有序数对来表示.建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个局部,分别叫做第一象限、第二象限、第三象限和第四象限.坐标轴上的点不属于任何象限.6.2坐标方法的简单应用6.2.1用坐标表示地理位置利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:⑴建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;⑵根据详细问题确定适当的比例尺,在坐标轴上标出单位长度;⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.6.2.2用坐标表示平移在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).在平面直角坐标系内,假如把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;假如把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.第七章三角形7.1与三角形有关的线段7.1.1三角形的边由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.相邻两边组成的角,叫做三角形的内角,简称三角形的角.顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”.三角形两边的和大于第三边.7.1.2三角形的高、中线和角平分线7.1.3三角形的稳定性三角形具有稳定性.7.2与三角形有关的角7.2.1三角形的内角三角形的内角和等于180.7.2.2三角形的外角三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形的一个外角等于与它不相邻的两个内角的和.三角形的一个外角大于与它不相邻的任何一个内角.7.3多边形及其内角和7.3.1多边形在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.n边形的对角线公式:各个角都相等,各条边都相等的多边形叫做正多边形.7.3.2多边形的内角和n边形的内角和公式:180(n-2)多边形的外角和等于360.7.4课题学习镶嵌第八章二元一次方程组8.1二元一次方程组含有两个未知数,并且未知数的指数都是1的方程叫做二元一次方程把具有一样未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.使二元一次方程两边的值相等两个未知数的值,叫做二元一次方程的解二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.8.2消元由二元一次方程组中的一个方程,将一个未知数用含有另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程.这种方法叫做加减消元法,简称加减法.8.3再探实际问题与二元一次方程组第九章不等式与不等式组9.1不等式9.1.1不等式及其解集用“”号表示大小关系的式子叫做不等式.使不等式成立的未知数的值叫做不等式的解.能使不等式成立的未知数的取值范围,叫做不等式解的集合,简称解集.含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.9.1.2不等式的性质不等式有以下性质:不等式的性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式的性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式的性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变.9.2实际问题与一元一次不等式解一元一次方程,要根据等式的性质,将方程逐步化为x=a 的形式;而解一元一次不等式,那么要根据不等式的性质,将不等式逐步化为xa)的形式.9.3一元一次不等式组把两个不等式合起来,就组成了一个一元一次不等式组.几个不等式的解集的公共局部,叫做由它们所组成的不等式的解集.解不等式就是求它的解集.对于具有多种不等关系的问题,可通过不等式组解决.解一元一次不等式组时.一般先求出其中各不等式的解集,再求出这些解集的公共局部,利用数轴可以直观地表示不等式组的解集.9.4课题学习利用不等关系分析^p 比赛第 21 页共 21 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学知识点归纳代数初步知识1. 代数式:用运算符号“+ - × ÷ …… ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.2. 列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a ×5应写成5a ;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a ×211应写成23a ; (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a 写成a3的形式; (6)a 与b 的差写作a-b ,要注意字母顺序;若只说两数的差,当分别设两数为a 、b 时,则应分类,写做a-b 和b-a .3. 几个重要的代数式:(m 、n 表示整数)(1)a 与b 的平方差是: a 2-b 2 ; a 与b 差的平方是:(a-b )2;(2)若a 、b 、c 是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c ;(3)若m 、n 是整数,则被5除商m 余n 的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n 、n+1 ;(4)若b >0,则正数是:a 2+b ,负数是: -a 2-b ,非负数是: a 2 ,非正数是:-a 2 .有理数1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;84608986安博优学东直门2 (2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数;a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|, ba b a=. 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;倒数是本身的数是±1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 ⇔ a=0,b=0;(4)据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a ×10n的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.84608986安博优学东直门4 18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.整式的加减1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a 、b 、c 、p 、q 是常数)ax 2+bx+c 和x 2+px+q 是常见的两个二次三项式.5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:⎩⎨⎧多项式单项式整式 .6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.一元一次方程1.等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!2.等式的性质:等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.7.一元一次方程的标准形式: ax+b=0(x 是未知数,a 、b 是已知数,且a ≠0).8.一元一次方程的最简形式: ax=b (x 是未知数,a 、b 是已知数,且a ≠0).9.一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解).10.列一元一次方程解应用题:(1)读题分析法:………… 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: ………… 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:(1)行程问题: 距离=速度·时间 时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效·工时 工时工作量工效= 工效工作量工时=; (3)比率问题: 部分=全体·比率 全体部分比率= 比率部分全体=; (4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题: 售价=定价·折·101 ,利润=售价-成本, %100⨯-=成本成本售价利润率; (6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abc ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h.二元一次方程组1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元84608986安博优学东直门6 一次方程有无数个解.2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有唯一解(即公共解).4.二元一次方程组的解法:(1)代入消元法;(2)加减消元法;(3)注意:判断如何解简单是关键.※5.一次方程组的应用:(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则“难列易解”;(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.一元一次不等式(组)1.不等式:用不等号“>”“<”“≤”“≥”“≠”,把两个代数式连接起来的式子叫不等式.2.不等式的基本性质:不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b >0或ax+b <0 ,(a ≠0).5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.6.一元一次不等式组:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组;注意:ab >0 ⇔ 0b a >⇔ ⎩⎨⎧>>0b 0a 或⎩⎨⎧<<0b 0a ; ab <0 ⇔ 0b a < ⇔ ⎩⎨⎧<>0b 0a 或⎩⎨⎧><0b 0a ; ab=0 ⇔ a=0或b=0; ⎩⎨⎧≤≥ma m a ⇔ a=m . 7.一元一次不等式组的解集与解法:所有这些一元一次不等式解集的公共部分,叫做这个一元一次不等式组的解集;解一元一次不等式时,应分别求出这个不等式组中各个不等式的解集,再利用数轴确定这个不等式组的解集.8.一元一次不等式组的解集的四种类型:设 a >b a x b x a x >∴⎩⎨⎧>>是不等式组的解集 bx b x ax <∴⎩⎨⎧<<不等式的组解集是a b > a b >b x a b x a x >>∴⎩⎨⎧><不等式组的解集是 是空集不等式组解集∴⎩⎨⎧<>b x axa b > a b >9.几个重要的判断: 是正数、y x 0xy 0y x ⇔⎭⎬⎫>>+, 是负数、y x 0xy 0y x ⇔⎭⎬⎫><+,异号且正数绝对值大,、y x 0xy 0y x ⇔⎭⎬⎫<>+ .y x 0xy 0y x 异号且负数绝对值大、⇔⎭⎬⎫<<+几何A 级概念:(要求深刻理解、熟练运用、主要用于几何证明) 1. 角平分线的定义: 一条射线把一个角分成两个相等的部分,这条射线叫角的平分线.(如图) A B C O 几何表达式举例:(1) ∵OC 平分∠AOB∴∠AOC=∠BOC(2) ∵∠AOC=∠BOC∴OC 是∠AOB 的平分线2.线段中点的定义: 点C 把线段AB 分成两条相等的线段,点C 叫线段中点.(如图) B A C几何表达式举例:(1) ∵C 是AB 中点 ∴ AC = BC(2) ∵AC = BC∴C 是AB 中点3.等量公理:(如图) (1)等量加等量和相等;(2)等量减等量差相等; (3)等量的等倍量相等;(4)等量的等分量相等. 几何表达式举例:(1) ∵AC=DB∴AC+CD=DB+CD即AD=BC84608986安博优学东直门8 C D A B (1) CD AB O(2) AE F G B C MO (3)C G A B E F (4)(2) ∵∠AOC=∠DOB∴∠AOC-∠BOC=∠DOB-∠BOC 即∠AOB=∠DOC (3) ∵∠BOC=∠GFM 又∵∠AOB=2∠BOC∠EFG=2∠GFM∴∠AOB=∠EFG (4) ∵AC=21AB ,EG=21EF 又∵AB=EF∴AC=EG4.等量代换: 几何表达式举例:∵a=cb=c∴a=b 几何表达式举例: ∵a=c b=d 又∵c=d ∴a=b几何表达式举例: ∵a=c+d b=c+d ∴a=b 5.补角重要性质: 同角或等角的补角相等.(如图)3214几何表达式举例: ∵∠1+∠3=180° ∠2+∠4=180° 又∵∠3=∠4 ∴∠1=∠26.余角重要性质:同角或等角的余角相等.(如图)几何表达式举例: ∵∠1+∠3=90°∠2+∠4=90°又∵∠3=∠4∴∠1=∠27.对顶角性质定理:对顶角相等.(如图)B A C D O 几何表达式举例: ∵∠AOC=∠DOB ∴ (1423)8.两条直线垂直的定义: 两条直线相交成四个角,有一个角是直角,这两条直线互相垂直.(如图) C D A B O几何表达式举例:(1) ∵AB 、CD 互相垂直∴∠COB=90°(2) ∵∠COB=90°∴AB 、CD 互相垂直9.三直线平行定理: 两条直线都和第三条直线平行,那么,这两条直线也平行.(如图) 几何表达式举例:∵AB ∥EF又∵CD ∥EF∴AB ∥CD10.平行线判定定理: 两条直线被第三条直线所截: (1)若同位角相等,两条直线平行;(如图) (2)若内错角相等,两条直线平行;(如图) (3)若同旁内角互补,两条直线平行.(如图)几何表达式举例:(1) ∵∠GEB=∠EFD∴ AB ∥CD(2) ∵∠AEF=∠DFE∴ AB ∥CD(3) ∵∠BEF+∠DFE=180°∴ AB ∥CD11.平行线性质定理: (1)两条平行线被第三条直线所截,同位角相等;(如图) (2)两条平行线被第三条直线所截,内错角相等;(如图) (3)两条平行线被第三条直线所截,同旁内角互补.(如图)B E G AC DF H几何表达式举例:(1) ∵AB ∥CD∴∠GEB=∠EFD(2) ∵AB ∥CD∴∠AEF=∠DFE(3) ∵AB ∥CD∴∠BEF+∠DFE=180°C DA B E F BE G AC DF H84608986安博优学东直门10几何B 级概念:(要求理解、会讲、会用,主要用于填空和选择题)一 、基本概念:直线、射线、线段、角、直角、平角、周角、锐角、钝角、互为补角、互为余角、邻补角、两点间的距离、相交线、平行线、垂线段、垂足、对顶角、延长线与反向延长线、同位角、内错角、同旁内角、点到直线的距离、平行线间的距离、命题、真命题、假命题、定义、公理、定理、推论、证明.二 、 定理:1.直线公理:过两点有且只有一条直线.2.线段公理:两点之间线段最短.3.有关垂线的定理:(1)过一点有且只有一条直线与已知直线垂直;(2)直线外一点与直线上各点连结的所有线段中,垂线段最短.4.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.三 、公式:直角=90°,平角=180°,周角=360°,1°=60′,1′=60″.四 、常识:1.定义有双向性,定理没有.2.直线不能延长;射线不能正向延长,但能反向延长;线段能双向延长.3.命题可以写为“如果………那么………”的形式,“如果………”是命题的条件,“那么………” 是命题的结论.4.几何画图要画一般图形,以免给题目附加没有的条件,造成误解.5.数射线、线段、角的个数时,应该按顺序数,或分类数.6.几何论证题可以运用“分析综合法”、“方程分析法”、“代入分析法”、“图形观察法”四种方法分析.7.方向角:(1) (2)8.比例尺:比例尺1:m 中,1表示图上距离,m 表示实际距离,若图上1厘米,表示实际距离m 厘米.9.几何题的证明要用“论证法”,论证要求规范、严密、有依据;证明的依据是学过的定义、公理、定理和推论. 北偏西30°南偏东60°30°60°北东西东北东南西北西南关注微博:@安博优学东直门校区1184608986安博优学东直门。

相关文档
最新文档