磁性纳米材料

合集下载

磁性纳米材料在生物医学领域的应用研究

磁性纳米材料在生物医学领域的应用研究

磁性纳米材料在生物医学领域的应用研究磁性纳米材料是一种具有特殊磁性性质和微小尺寸的纳米粒子,其应用领域广泛,尤其在生物医学领域中具备巨大的潜力。

本文将重点探讨磁性纳米材料在生物医学领域中的应用研究进展,涉及其在诊断、治疗和生物分析等方面的应用。

一、磁性纳米材料在医学诊断中的应用1. 磁共振成像(MRI)磁性纳米材料具有优异的磁性性能,可作为MRI对比剂,提高诊断的准确性和敏感性。

通过将磁性纳米材料注射到患者体内,可以更清晰地展现组织和器官的结构,检测疾病的早期变化。

2. 磁性粒子法磁性纳米粒子可以与药物或抗体等生物标志物结合,通过外加磁场作用,将其靶向输送至病变部位,实现对疾病的定位和治疗。

这种磁性粒子法已广泛应用于肿瘤治疗、心脑血管疾病诊断与治疗以及传统药物的改良。

二、磁性纳米材料在医学治疗中的应用1. 靶向治疗利用磁性纳米材料的磁性效应,将其与药物结合,可以实现药物的靶向输送,减少对正常细胞的损害,提高治疗效果。

例如,通过将磁性纳米材料修饰在药物分子上,可以实现对肿瘤细胞的选择性杀伤。

2. 热疗磁性纳米材料在外加磁场的作用下产生剧烈的磁性加热效应,可用于局部热疗。

将磁性纳米材料注射到肿瘤组织中,通过对磁场加热,使肿瘤组织局部升温,达到杀灭肿瘤的目的。

这种热疗方法具有非侵入性、无辐射的特点,被广泛应用于肿瘤治疗领域。

三、磁性纳米材料在生物分析中的应用1. 生物标记磁性纳米材料可以作为生物标记物,通过与生物分子(如蛋白质、抗体等)结合,实现对生物分子的检测和定量分析。

磁性纳米材料的磁性效应可通过磁性检测方法进行分析,具备高灵敏度和快速反应的特点。

2. 磁性免疫分析磁性纳米材料结合传统的免疫分析方法,可以实现对生物样品中微量成分的快速检测。

通过对磁性纳米材料的修饰和功能化,可以提高检测的灵敏度和选择性,并且实现高通量、自动化的分析过程。

总结:磁性纳米材料在生物医学领域中的应用研究已取得了许多令人瞩目的进展。

纳米磁性材料ppt课件

纳米磁性材料ppt课件

3. 1988年,法国巴黎大学教授研究组首先在Fe/Cr纳米结构的多 层膜中发现了巨磁电阻效应,引起国际上的反响。此后,美国、 日本和西欧都对发展巨磁电阻材料及其在高技术中的应用投入很 大的力量,兴起纳米磁性材料的开发应用热。1988年,由非晶态 FeSiB退火通过掺杂Cu和Nb控制晶粒,获得了新型的纳米晶软磁材 料; 4. 1988年,人们发现了磁性多层膜的巨磁电阻效应,并由此产生 一门新兴学科:自旋电子学。 5. 1993年,人们通过理论研究发现,纳米级的软磁和硬磁颗粒复 合将综合软磁Ms高,硬磁Hc高的优点获得磁能积比现有最好NdFeB 高一倍的新型纳米硬磁材料。 6. 进人21世纪以来,利用模板生长一维磁性纳米丝的研究很活跃, 材料包括单一金属、合金、化合物、多层材料、复合材料等,应 用目标也从存储介质到细胞分离,多种多样。
(4)生成磁性液体的必要条件 生成磁性液体的必要条件是强磁性颗粒要足够小,
在致可以削弱磁偶极矩之间的静磁作用,能在基液中作无 规则的热运动。基液包括:水基、煤油基、短基、二醋基、 聚苯基、硅油基、氟碳基等。
(5)磁性液体的特点
在磁场作用下可以被磁化,可以在磁场作用下运动, 但同时它又是液体,具有液体的流动性。
二、纳米磁性材料的定义
纳米磁性材料是指材料尺寸限度 Nano Material
在纳米级,通常在1-100nm的准
0D
零维超细微粉,一维超细纤维
(丝)或二维超薄膜或由它们组
成的固态或液态磁性材料。当传
1D
统固体材料经过科技手段被细化
到纳米级时,其表面和量子隧道

4、 磁性液体
(1)磁性液体的定义 磁性液体是由纳米磁性微粒包复一层长链的有机表
面活性剂,高度弥散于一定基液中,而构成稳定的具有 磁性的液体。其中磁性微粒尺寸通常小于10nm,呈超顺 磁性。

磁性纳米材料在药物传递中的应用

磁性纳米材料在药物传递中的应用

磁性纳米材料在药物传递中的应用在现代医学领域,药物传递系统的不断创新和优化是提高治疗效果、减少副作用的关键。

近年来,磁性纳米材料因其独特的物理化学性质,在药物传递领域展现出了巨大的应用潜力。

磁性纳米材料通常指尺寸在纳米级(1 100 纳米)的具有磁性的材料,如氧化铁纳米粒子等。

它们具有超顺磁性,即在外部磁场存在时能够被迅速磁化,而在磁场消失后磁性也很快消失,这一特性为其在药物传递中的应用奠定了基础。

首先,磁性纳米材料能够实现药物的靶向传递。

通过在纳米粒子表面修饰特定的分子,如抗体、配体等,可以使其特异性地结合到病变部位的细胞或组织上。

当施加外部磁场时,载药的磁性纳米粒子能够在磁场的引导下富集到靶向部位,提高药物在病灶处的浓度,从而增强治疗效果,同时减少药物对正常组织的损伤。

例如,对于肿瘤的治疗,磁性纳米粒子可以通过与肿瘤细胞表面的特异性抗原结合,在磁场作用下精准地将药物递送到肿瘤组织内部,提高抗肿瘤药物的疗效,降低全身性的毒副作用。

其次,磁性纳米材料还能够提高药物的负载量和稳定性。

由于其高比表面积和孔隙结构,磁性纳米材料可以负载大量的药物分子。

同时,纳米粒子的外壳可以对药物进行保护,防止其在体内环境中过早降解或失活,从而延长药物的半衰期,提高药物的生物利用度。

再者,磁性纳米材料能够实现药物的控释。

通过对纳米粒子的结构和组成进行设计,可以实现药物在特定条件下的缓慢释放。

例如,利用 pH 敏感的聚合物对磁性纳米粒子进行包裹,当纳米粒子到达肿瘤等酸性环境时,聚合物外壳发生降解,从而释放出药物。

这种控释机制能够更好地模拟药物在体内的自然代谢过程,减少药物的突释现象,降低药物的毒性。

在实际应用中,磁性纳米材料的制备方法和表面修饰技术至关重要。

常见的制备方法包括共沉淀法、水热法、溶胶凝胶法等。

这些方法可以制备出尺寸均匀、形貌可控的磁性纳米粒子。

而表面修饰则是为了提高纳米粒子的生物相容性、稳定性和靶向性。

常用的修饰材料有聚乙二醇(PEG)、壳聚糖、多肽等。

磁性纳米材料

磁性纳米材料

磁性纳米材料磁性纳米材料是指具有纳米尺度的磁性特性的材料。

由于其特殊的结构和性质,磁性纳米材料在科学研究和工业应用中具有广泛的应用前景。

磁性纳米材料具有以下几个特点:首先,磁性纳米材料具有较大的比表面积。

纳米材料由于其尺寸较小,其比表面积较大,因此磁性纳米材料具有更高的活性。

其次,磁性纳米材料具有优异的磁性能。

磁性纳米材料具有较高的矫顽力和剩磁,因此具有较高的磁导率和饱和磁感应强度。

此外,磁性纳米材料还具有优异的磁畴特性和磁矩特性。

再次,磁性纳米材料可通过外界磁场进行控制。

磁性纳米材料中的磁矩会对外界磁场做出响应,因此可以通过外界磁场来控制磁性纳米材料的性质和行为。

磁性纳米材料在科学研究领域具有广泛的应用。

一方面,磁性纳米材料可以用于磁共振成像(MRI)、细胞分离、基因和药物传递、磁性流体和磁性流体密封等医学领域。

由于纳米材料具有较高的比表面积和强大的磁性能,因此可以提高MRI的分辨率和灵敏度,并且可以在细胞分离和基因药物传递等领域具有广泛的应用前景。

另一方面,磁性纳米材料也可以应用于磁记录和磁传感等信息技术领域。

磁性纳米材料可以用作磁性存储介质,由于其较大的磁畴特性和独特的磁矩特性,能够提高磁记录的存储密度和读写速度。

此外,磁性纳米材料还具有广泛的应用前景。

例如,磁性纳米材料可以应用于环境领域,用于水处理和废水处理。

由于纳米材料具有较大的比表面积,可以提高水中杂质的吸附和去除效果。

另外,磁性纳米材料还可以应用于能源领域,例如用于催化剂的支撑材料、锂离子电池和燃料电池的电极材料等。

总之,磁性纳米材料具有广泛的应用前景,可以在医学、信息技术、环境和能源等领域发挥重要作用。

随着纳米技术的不断发展和应用的扩大,磁性纳米材料的研究和应用将会进一步深入。

磁性纳米材料的合成与特性分析

磁性纳米材料的合成与特性分析

磁性纳米材料的合成与特性分析在当今的科学研究领域中,磁性纳米材料因其独特的物理和化学性质,成为了材料科学中的一个热门研究方向。

磁性纳米材料具有超顺磁性、高矫顽力、低居里温度等特性,在生物医学、电子信息、环境保护等众多领域都展现出了广阔的应用前景。

本文将重点探讨磁性纳米材料的合成方法以及对其特性的分析。

一、磁性纳米材料的合成方法1、化学共沉淀法化学共沉淀法是制备磁性纳米材料最常用的方法之一。

其基本原理是将含有二价和三价铁离子的盐溶液在一定条件下混合,通过加入碱液使金属离子沉淀,经过一系列的处理得到磁性纳米粒子。

这种方法操作简单、成本低,但所制备的纳米粒子尺寸分布较宽,且容易团聚。

2、水热合成法水热合成法是在高温高压的水热条件下,使反应物在水溶液中进行反应生成纳米材料。

该方法可以有效地控制纳米粒子的尺寸和形貌,所制备的磁性纳米粒子结晶度高、分散性好,但反应条件较为苛刻,对设备要求较高。

3、热分解法热分解法通常是在高沸点有机溶剂中,将金属有机前驱体在高温下分解,得到磁性纳米粒子。

这种方法能够制备出尺寸均匀、单分散性好的纳米粒子,但所用的前驱体往往较为昂贵,且反应过程中需要严格控制温度和气氛。

4、微乳液法微乳液法是利用微乳液体系中的微小“水池”作为反应场所,控制纳米粒子的成核和生长。

该方法可以制备出粒径小且分布均匀的磁性纳米粒子,但微乳液的制备和后续处理较为复杂。

二、磁性纳米材料的特性1、磁学特性磁性纳米材料的磁学特性是其最重要的性质之一。

当纳米粒子的尺寸小于一定值时,会出现超顺磁性现象,即在没有外加磁场时,纳米粒子的磁性消失,而在外加磁场作用下,表现出较强的磁性。

此外,磁性纳米材料的矫顽力、饱和磁化强度等参数也会随着粒子尺寸、形状和晶体结构的变化而改变。

2、表面特性由于纳米粒子的比表面积大,表面原子所占比例高,因此表面特性对磁性纳米材料的性能有着重要影响。

表面活性剂的修饰可以改善纳米粒子的分散性和稳定性,同时也可以赋予其特定的功能,如生物相容性、靶向性等。

11.1 磁性纳米材料

11.1 磁性纳米材料

磁性纳米材料磁性纳米材料具有广泛的应用,已成为当今材料科学领域的研究热点之一。

磁性纳米材料与常规的磁性材料不同,主要原因是其与磁性相关的特征物理量也是处于纳米量级,如超顺磁性临界尺寸、磁交换作用长度等大致处于1-100 nm量级。

近年来,磁性纳米材料在催化、环境保护、航空航天、生物工程/生物医药、核磁成像等领域引起了科研工作者的广泛兴趣。

纳米材料因其小尺寸效应和表面效应,使得磁性纳米材料表现出不同于常规磁性材料的性质。

这是因为与磁性相关的特征物理参数恰好处于纳米量级,例如,磁单畴尺寸、超顺磁性临界尺寸等大致都处于纳米量级。

1 磁性纳米材料分类常用的磁性材料可分为三类:第一类为单体,如单纯的铁、钴、镍等;第二类为合金,如铁镍合金、铁铝合金等;第三类为氧化物,如氧化钴、四氧化三铁等。

这其中,用的最多的是四氧化三铁(Fe304),因为它具有粒径小、灵敏度高、毒性低、性能稳定、原材料易得等优势。

随着纳米材料科学与技术的发展,磁性Fe304纳米材料的应用开发越发引起人们的关注,特别是在生物医学领域的应用潜力巨大。

2 磁性纳米材料的特性当磁性材料粒径小到一定值时,它的磁学性质会发生很大变化。

磁性纳米材料通常包括纳米晶软磁材料、纳米晶永磁材料,室温下即可呈现为超顺磁性的磁性纳米粒子。

纳米晶软磁材料主要应用于变压器和电磁屏蔽等领域;纳米晶永磁材料主要用于信息记录、磁致冷、微电动机等领域;具有超顺磁性的磁性纳米粒子应用较为广泛,例如,环境保护、生物医学、磁性分离、锂离子电池、磁流体及磁光晶体等领域。

与磁性相关的单畴临界尺寸和超顺磁临界尺寸等特征物理长度均处于纳米数量级,而通过合成磁性纳米粒子的尺寸与这些特征的临界尺寸相当,因此磁性纳米粒子可以表现出不同于其它磁性材料的磁学性质。

2.1 单磁畴在强磁性材料中,由于材料体相的交换能、反磁场能、磁弹性能等各种能量的相互作用,使得材料体相被分成许多磁矩规则排列的小室(约10-14m3),这些小室就被称为磁畴。

纳米磁性材料

纳米磁性材料

纳米磁性材料
纳米磁性材料是一种具有特殊磁性性质的材料,其尺寸在纳米级别范围内。

由于其独特的结构和性能,纳米磁性材料在磁性材料领域具有重要的应用前景。

本文将对纳米磁性材料的特性、制备方法以及应用进行介绍。

首先,纳米磁性材料具有特殊的磁性特性。

由于其尺寸处于纳米级别,纳米磁性材料表现出与传统磁性材料不同的磁性行为。

例如,纳米磁性材料可能表现出更强的磁性、更高的磁饱和强度以及更低的磁滞回线。

这些特殊的磁性特性使得纳米磁性材料在磁记录、磁传感器和磁医学等领域具有重要的应用价值。

其次,纳米磁性材料的制备方法多种多样。

目前,常见的纳米磁性材料制备方法包括溶剂热法、溶胶凝胶法、化学气相沉积法等。

这些方法能够控制纳米磁性材料的形貌、尺寸和结构,从而调控其磁性能。

例如,通过调节制备条件和控制合成过程,可以制备出具有不同磁性特性的纳米磁性材料,满足不同领域的需求。

最后,纳米磁性材料在多个领域具有广泛的应用。

在磁记录领域,纳米磁性材料被用于制备高密度、高稳定性的磁记录介质,推动了信息存储技术的发展。

在磁传感器领域,纳米磁性材料被应用于制备高灵敏度、高分辨率的磁传感器,用于地磁探测、生物医学成像等领域。

在磁医学领域,纳米磁性材料被用于制备靶向性药物输送系统,实现对肿瘤的靶向治疗。

综上所述,纳米磁性材料具有特殊的磁性特性,其制备方法多样,应用领域广泛。

随着纳米技术的发展和磁性材料研究的深入,相信纳米磁性材料将在更多领域展现出其独特的优势和潜力。

磁性纳米材料

磁性纳米材料

磁性纳米材料
磁性纳米材料是一种具有特殊磁性的纳米级材料,具有广泛的应用前景。

磁性纳米材料的磁性来源于其微观结构和组成,通常包括铁、镍、钴等金属或合金。

这些材料在纳米尺度下具有独特的磁性行为,因此被广泛应用于磁记录、生物医学、磁性流体、传感器等领域。

首先,磁性纳米材料在磁记录领域具有重要应用。

由于其微小的尺寸和优异的磁性特性,磁性纳米材料被广泛用于磁盘存储、磁带存储等领域。

相比传统的磁性材料,磁性纳米材料具有更高的磁记录密度和更快的磁记录速度,能够大大提高存储设备的性能。

其次,磁性纳米材料在生物医学领域也有重要应用。

通过将药物包裹在磁性纳米材料上,可以实现靶向输送,提高药物的生物利用度和疗效,减少药物对健康组织的损伤。

此外,磁性纳米材料还可以作为磁共振成像(MRI)的对比剂,提高影像的清晰度和对比度,有助于医生更准确地诊断疾病。

另外,磁性纳米材料还被广泛应用于磁性流体和传感器领域。

磁性流体是一种由磁性纳米颗粒悬浮在载体液体中形成的流体,具有良好的磁响应性和流变性能,可以用于制备磁性密封、磁性制动器、磁性悬浮等产品。

而磁性纳米材料制备的传感器具有灵敏度高、响应速度快、体积小等优点,可以用于环境监测、生物传感、医学诊断等领域。

总的来说,磁性纳米材料具有广泛的应用前景,其在磁记录、生物医学、磁性流体、传感器等领域的应用正在不断拓展和深化。

随着纳米技术的不断发展,相信磁性纳米材料将会在更多领域展现出其独特的价值和潜力。

纳米磁性材料

纳米磁性材料

纳米磁性材料
纳米磁性材料是指其颗粒的尺寸在纳米级别的材料,具有特殊的磁性能。

与传统磁性材料相比,纳米磁性材料具有更高的磁化强度、更低的磁化场强度、更大的磁导率、更高的剩磁和更低的矫顽力。

纳米磁性材料的应用非常广泛。

首先,纳米磁性材料在信息存储方面有着重要的应用。

由于其高磁化强度,可以制备出容量更大、速度更快的硬盘和磁带。

同时,纳米磁性材料还可以用于磁存储器和磁传感器的制备,提高了数据存储密度和读写速度。

其次,纳米磁性材料在医学方面也有着广泛的应用。

由于纳米磁性材料具有较大的表面积和较佳的生物相容性,可以用于制备纳米药物载体,实现药物在体内的定向输送、缓慢释放和靶向治疗。

此外,纳米磁性材料还可用于磁共振成像、磁性标记和磁疗治疗等领域。

再次,纳米磁性材料在环境方面也有着一定的应用前景。

纳米磁性材料可以用于水处理、废气处理和固体废物处理等方面。

例如,纳米磁性材料可用于去除水中的重金属离子和有机污染物,净化水质。

另外,纳米磁性材料还可以用于油水分离、溶剂回收和垃圾处理等领域,具有很好的应用潜力。

总的来说,纳米磁性材料由于其特殊的磁性能,具备了广泛的应用前景。

随着纳米技术的进一步发展和应用,纳米磁性材料
在各个领域中的应用将会进一步拓展,并给人们的生活和工作带来更多的便利和改变。

磁性纳米材料在生物医学中的应用

磁性纳米材料在生物医学中的应用

磁性纳米材料在生物医学中的应用随着生物医学技术的不断发展,人们对于治疗疾病的需求也不断增长。

在这个背景下,磁性纳米材料的应用日渐广泛,成为了生物医学研究领域的一个热点。

磁性纳米材料因其独特的物理、化学性质,被广泛应用于生物医学诊断和治疗领域。

本文将从磁性纳米材料的基础知识、具体应用和未来发展方向三个方面来阐述磁性纳米材料在生物医学中的应用。

一、磁性纳米材料的基础知识磁性纳米材料是具有粒径在1-100nm的磁性晶体粒子,并被包裹在有机或无机表面活性剂中的一种新型材料。

磁性纳米材料的磁性能随其粒径的减小而增强,在外加磁场下可以快速定向,因此其在生物医学领域中被广泛应用于生物分离、诊断、治疗等方面。

二、磁性纳米材料的具体应用1.生物分离磁性纳米材料可与特定的生物分子(如抗体、核酸等)结合,并在外加磁场下实现快速定向,实现对目标分子的全面分离。

这种技术被应用于细胞分离、蛋白质纯化、肿瘤细胞分离等领域,具有分离速度快、稳定性好等优点。

2.生物诊断磁性纳米材料具有优异的生物相容性和生物膜透过性,常常用于磁共振成像技术、核酸分析、荷瘤细胞检测等生物诊断场景中。

其中,磁共振成像技术利用磁性纳米颗粒在外加磁场下引起的局部磁化现象,从而获得针对人体的高分辨率磁共振图像,达到准确定位和评估疾病的目的。

3.药物输送磁性纳米颗粒因其特有的磁性,可以通过外加磁场的力场实现在生物介质中的定向运输和效率释放。

因此,磁性纳米颗粒可以作为一种特殊的药物输送载体,被广泛应用于生物医药领域中,如肿瘤治疗、靶向运输等。

三、磁性纳米材料的未来发展方向随着生物医学技术的不断发展和人们对于治疗效果的不断提高,磁性纳米材料在未来的应用领域也将变得更加广泛。

可以预见的是,在生物医学中,磁性纳米材料将从生物分离、生物诊断和药物输送等方面进一步深入和创新,发展成为一种多功能性的生物医学材料。

总之,磁性纳米材料在生物医学中的应用是一个不断深入的过程,磁性纳米材料的优异性质成为实现生物治疗和药物输送的关键。

纳米磁性材料的研究与应用

纳米磁性材料的研究与应用

纳米磁性材料的研究与应用纳米科技是当代研究热点之一,其广泛应用于生命科学、能源、材料科学等领域。

其中,纳米磁性材料作为一种具有特殊性质的纳米材料,被广泛地用于医学诊断、生物分析、环境修复等领域。

一、纳米磁性材料的概述纳米磁性材料是指颗粒大小在 1-100 纳米之间,具有磁性的材料。

它们具有单分散性、可控性、高比表面积和磁学/光学/电学等方面的特殊性质。

这些特殊性质是由于其尺寸、形状、晶体结构、表面活性和磁基团之间相互作用等因素的综合影响所导致的。

依据其组成和性质不同,可以将纳米磁性材料分为不同类型,如金属纳米粒子、氧化铁纳米颗粒、合金纳米颗粒、共轭高分子/纳米介孔复合物等。

二、纳米磁性材料的制备方法纳米磁性材料的制备方法多种多样,其中较常见的方法包括溶剂热反应法、凝胶燃烧法、水热法、微乳液法和溶胶-凝胶法等。

以氧化铁磁性材料为例,常见的制备方法如下:1. 溶剂热反应法:将铁离子和氧化剂在有机溶剂中进行反应,可以制备出分散性良好且颗粒大小均匀的氧化铁纳米颗粒。

2. 水热法:将铁离子和氢氧化钠在高温下反应,可以制备出纳米结晶体,通过后续处理方法分离得到纳米氧化铁颗粒。

3. 微乳液法:调整微乳液的温度和 pH 值,通过配位作用和凝胶化作用制备纳米铁氧体。

以上方法仅是其中的几种,不同制备方法对于纳米磁性材料的制备和性质有着不同的影响。

三、纳米磁性材料的应用1. 医学诊断纳米磁性材料由于其磁性和生物兼容性的特点,成为目前医学诊断领域研究的热点。

主要应用于拟诊和治疗。

例如,一个正在研究的磁共振图像增强的方法是通过将磁性荧光标记的纳米颗粒注入肿瘤或其他医学样本中,然后使用磁共振成像技术 (Magnetic Resonance Imaging),以便诊断和定位疾病。

此外,还可以利用这些纳米材料跟踪带药的情况,实现精准医疗。

2. 生物分析在生物分析中,利用纳米磁性材料对生物分子进行捕获和可视化分析的方法成为一种新兴的关键技术。

纳米磁性材料

纳米磁性材料

(4)生成磁性液体的必要条件
生成磁性液体的必要条件是强磁性颗粒要足够小,
在致可以削弱磁偶极矩之间的静磁作用,能在基液中作无 规则的热运动。基液包括:水基、煤油基、短基、二醋基、
聚苯基、硅油基、氟碳基等。
(5)磁性液体的特点
在磁场作用下可以被磁化,可以在磁场作用下运动, 但同时它又是液体,具有液体的流动性。
通常软磁材料的饱和磁化强度较高,永磁材料的矫顽力较高,如将软磁 相与永磁相在纳米尺度内进行复合,通过交换耦合作用,就有可能获得兼具
二者优点的复合永磁材料。
3. 纳米磁记录材料 (1)磁记录材料的定义 用于记录、存储、和再生信息的磁性材料。 (2)磁记录材料的发展趋势 磁记录发展的总趋势是大容量、高密度、高速度、低价
(3)发展状况
1934年就制成胶体Fe3O4溶液,用于磁畴观察,20世纪60-70
年代已发展成为一类商用产品,用于高速旋转轴密封等方面,美、 日等国均有商品生产,我国虽已研制成功,但应用的领域尚未开
拓,因此目前沿未形成规模生产。
近年来人们对磁性液体,或它与微米级微粒组合成的复合介 质的磁光、磁声以及微波特性进行了研究,有可能开拓出一类新 型的功能器件。
0D 1D
2D
3D Nanosize: 1---100nm
三、纳米磁性材料的基本特征
1.磁畴 2.超顺磁性 3.矫顽力
1.磁畴(Magnetic Domain)
(1) 在纳米尺度下,纳米粒子将变成 单畴粒子。当粒子尺寸R很小时,畴壁 能相对于退磁能更严重,没有必要再分 磁畴,这样就形成了单畴粒子。 (2)对于纳米颗粒,直接把大块铁磁 晶体中关于磁畴和畴壁的概念推广到铁 磁颗粒。 (3)块状磁性材料因交换作用能、磁 各向异性能而使磁矩平行排列在其易轴 方向,从而将导致很强的退磁能。 (4)尺寸R越大,退磁能越高。为降低 能量,材料必然分裂成磁畴.

磁性纳米材料的超顺磁性研究

磁性纳米材料的超顺磁性研究

磁性纳米材料的超顺磁性研究随着现代科学技术的快速发展,越来越多的新材料被发现并应用于各种领域,其中包括纳米材料。

在纳米材料中,磁性纳米材料是最为关键和重要的一类,因为它们在医学、生物、电子、能源等领域的应用非常广泛。

特别是超顺磁性的磁性纳米材料,因其磁滞回线窄、饱和磁化强、磁化易轻易反转、磁导率低、相对损耗低,具有独特的磁学性质,广泛应用于磁共振成像、热疗、磁性分离、生物探针等方面,同时,其还有着良好的生物相容性、低毒性等优良性质。

本文将详细介绍磁性纳米材料的超顺磁性研究。

1. 超顺磁性超顺磁性是指纳米材料在外加磁场下磁矩方向全部指向磁场方向,而矩值非常大,称为超顺磁性。

通常,磁滞回线窄、饱和磁化强、磁化易轻易反转、磁导率低、相对损耗低,都是我们定义超顺磁性的特征。

这些性质是由于磁性纳米颗粒具有单分子的磁性结构相互耦合所致。

对于一般的磁性杂化颗粒形式的材料,超顺磁性表现出了更加复杂的磁学行为,称为超摩尔磁性。

2. 超顺磁性研究超顺磁性材料的研究自上世纪80年代开始。

早期,一些杂化纳米颗粒的超顺磁性已经被报道。

近年来,由于纳米技术的快速发展,人们对超顺磁性材料的研究越来越深入,各种新的材料和方法被发现和开发出来。

例如:利用化学合成方法制备的无机超顺磁性材料、顶性有机超顺磁性材料、晶格控制的超顺磁生物分子、超摩尔磁纳米复合材料和表面修饰超顺磁性颗粒等等。

超顺磁性材料的研究旨在探索新的超顺磁性体系的磁学特性,并发现其在各种领域中的应用。

通过结构改变和表面修饰可以调控材料的超顺磁性,从而实现新的功能材料的制备和用途拓展。

例如:磁共振成像、生物标记、磁性传感器、磁性分离等等。

3. 磁共振成像在临床医学中,磁共振成像(MRI)是一种无创性的影像诊断技术,其通过磁共振现象来获取人体内部不同组织的图像。

MRI的成像分辨率得依赖于磁共振现象的信号强度和磁性纳米颗粒的对组织的选择性获取。

在MRI中,磁性纳米颗粒被引入到人体内部,通过其超顺磁性的特性,来作为对组织选择性的信号源,以提高信号强度和选择性。

纳米磁性材料的基本特征

纳米磁性材料的基本特征
感谢您的观看
05 结论
未来发展方向
1 2 3
探索新型纳米磁性材料
随着科技的发展,未来将会有更多新型的纳米磁 性材料被发现和研发,以满足各种不同的应用需 求。
提高性能与稳定性
目前纳米磁性材料在稳定性方面还有待提高,未 来可以通过改进制备工艺和材料改性等方法,提 高其性能和稳定性。
拓展应用领域
随着纳米磁性材料性能的提高和成本的降低,其 应用领域将进一步拓展,如生物医学、能源、环 保等。
03 纳米磁性材料的化学特性
稳定性
01
02
03
高热稳定性
纳米磁性材料在高温下仍 能保持稳定的磁性能,不 易发生相变或失去磁性。
抗氧化性
一些纳米磁性材料具有较 好的抗氧化性能,能够在 空气中稳定存在而不易被 氧化。
化学稳定性
纳米磁性材料对酸、碱、 盐等化学物质具有一定的 稳定性,不易发生化学反 应。
表面改性
表面修饰
表面活性剂处理
通过表面修饰,可以改变纳米磁性材料 的表面性质,如亲水性、疏水性、电荷 性质等,以适应不同的应用需求。
使用表面活性剂处理纳米磁性材料, 可以降低表面张力,增加分散性和稳 定性。
表面接枝
在纳米磁性材料的表面接枝聚合物或 生物分子,可以增加材料的功能性和 生物相容性。
04 纳米磁性材料的应用
尺寸效应
磁畴结构变化
随着尺寸的减小,纳米磁性材料的磁畴结构会发生显著变化。在宏观尺度下,磁畴结构通常比较简单,而在纳米 尺度下,由于表面效应和量子效应的影响,磁畴结构变得复杂且多样化。
磁性能变化
随着尺寸的减小,纳米磁性材料的磁性能也会发生变化。例如,随着尺寸的减小,饱和磁化强度、矫顽力和剩磁 等磁性能参数可能会发生变化。

磁性纳米材料在生物医学领域的应用PPT

磁性纳米材料在生物医学领域的应用PPT
磁性纳米材料可作为磁共振成像 (MRI)的造影剂,提高图像分辨率, 帮助医生更准确地诊断疾病。
核医学显像
磁性纳米材料可用于正电子发射断层扫 描(PET)等核医学显像技术,提高灵 敏度和特异性。
磁性纳米材料在肿瘤治疗中的应用
磁热疗
利用磁性纳米材料在交变磁场下产生热量,对肿瘤进行热疗,杀死癌细胞或抑制肿瘤生长。
降低成本
研究更加高效、低成本的磁性纳米材 料制备方法,降低生产成本,促进大 规模应用。
提高控制精度
加强磁场控制技术的研究,提高对磁 性纳米材料的定位和治疗效果的控制 精度。
标准化和规范化
推动磁性纳米材料在生物医学领域应 用的标准化和规范化进程,促进其推 广和应用。
04
磁性纳米材料的前景展望
磁性纳米材料在生物医学领域的未来发展方向
磁性纳米材料的制备方法多样,可以根据 实际需求调整成分、尺寸和形貌,以满足 不同应用的需求。
磁性纳米材料面临的挑战
ቤተ መጻሕፍቲ ባይዱ体内安全性问题
虽然磁性纳米材料具有良好的生物相容 性,但仍存在一定的安全隐患,如长期
滞留、聚集等。
体内外磁场控制精度问题
体内外磁场对磁性纳米材料的控制精 度有限,可能影响其定位和治疗效果。
肿瘤诊疗一体化
利用磁性纳米材料实现肿瘤的早期诊断与治疗, 提高诊疗效果和患者生存率。
精准靶向治疗
通过磁性纳米材料实现药物的精准投递,降低副 作用,提高治疗效果。
生物成像与检测
利用磁性纳米材料提高生物成像的分辨率和灵敏 度,实现疾病的早期发现与监测。
磁性纳米材料在其他领域的应用前景
环境治理
01
利用磁性纳米材料吸附和去除水体和空气中的有害物质,改善
03

磁性纳米材料的制备及其应用前景

磁性纳米材料的制备及其应用前景

磁性纳米材料的制备及其应用前景随着科技的不断发展,磁性纳米材料已经成为了材料科学领域中的一个热门研究方向。

磁性纳米材料不仅具有很强的磁性,在生物医学、电子信息、环境治理等领域中也有很广泛的应用前景。

本文将从磁性纳米材料的制备入手,探讨其在不同领域的应用前景。

磁性纳米材料的制备磁性纳米材料的制备方法主要包括物理法、化学法、生物法、等离子体法等。

其中,化学法制备的纳米磁性材料具有制备简单、成本低、操作容易等优点,被广泛应用。

一般来说,化学法制备纳米磁性材料的步骤为:首先需要选择一种合适的磁性材料,然后通过一系列的化学反应进行制备。

以氧化铁磁性纳米材料为例,其制备过程如下:1. 预处理磁性材料,如将硝酸铁或氢氧化铁等物质用水洗涤,并在一定温度下进行干燥。

2. 将处理后的磁性材料与一定比例的还原剂放入反应容器中,加入一定浓度的还原剂,在一定反应时间内进行还原反应,将氧化态的铁离子转化为二价离子。

3. 调节pH值、离子强度等反应条件,控制锰离子或其他离子在反应溶液中的浓度,促进晶核的形成和晶体生长。

4. 通过离心、洗涤等步骤,将制备的磁性纳米材料从溶液中分离出来。

此外,生物法也是一种常用的制备磁性纳米材料的方法。

生物法通过生物体相互作用的方式,控制纳米材料的形态和大小,制备出具有特定功能的生物磁性纳米材料。

如著名的磁性纳米粒子法(MNP法),在水相中可制备出稳定的磁性纳米粒子,该材料的表面还容易与药物、蛋白质等分子结合。

磁性纳米材料在不同领域的应用前景生物医学领域磁性纳米材料在生物医学领域中具有很广泛的应用前景,如药物输送、磁共振成像、磁性靶向治疗等方面。

其中,药物输送是磁性纳米材料的重要应用之一。

药物输送技术是一种将药物通过不同的途径给予患者的方法。

磁性纳米材料在药物输送中具有很好的应用效果,其主要原因是可以通过磁性控制材料在体内的分布、转化和聚集。

通过修饰表面的生物分子和特殊的磁性质,可以避免药物过早地丢失和被破坏,同时也可以减少药物的毒副作用。

纳米磁性材料

纳米磁性材料

磁性纳米材料的方面的应用
自80 年代末,国际上出现了以有机高分子化学和物理学为 主的交叉学科:有机高分子磁学,打破了磁体只有与3d 和4f 电 子金属有关,而与有机高分子无关的传统看法。有机金属高分 子磁性材料分为复合型和结构型两大类:前者是在合成树脂中 添加铁氧体或稀土类磁粉,经成型,磁化成塑料磁性材料。后 者是在不加磁粉的情况下,其自身具有本征磁性的结构金属 有机磁性材料。这方面的工作在理论和应用方面均有重要的 意义,但尚处于探索阶段。
• 3,磁流体
当磁性材料的粒径小于临界半径是,纳米晶粒就变得有 顺磁性—称之为超顺磁性,这时的磁作用相互作用弱。利用 这种超顺磁性可作磁流体。磁流体具有液体的流动性和磁 体的磁性,它在工业废液处理、材料密封等方面应用前景是 广阔。
纳米磁性材料的种类
• 4,磁制冷和磁致电阻材料
磁制冷性质是纳米材料比常规材料的熵变量大的 外在表 现。含纳米铁磁性相钆镓石榴石具有较明显的磁制冷温度。 铁基纳米晶词条带具有磁致电阻效应,通过环向或横向磁场 退火是带中感生环向或横向的磁各向异性,并能够观察到磁 致电阻大幅度的变化。
微观粒子具有穿越势垒的能力,称为量子隧道效应。而在 马的脾脏铁蛋白纳米颗粒研究中,发现宏观磁学量如磁化强 度,磁通量等也具有隧道效应,这就是宏观量子隧道效应。它 限定了磁存储信息的时间极限和微电子器件的尺寸极限。
磁性纳米材料的应用
• 1,在纳米吸波材料领域的应用
随着雷达、微波通信、电子对抗和环保等军用、民用科学 技术的发展,微波吸收材料的应用日趋广泛,磁性纳米吸波材 料的研究受到人们的关注。纳米铁氧体具有复介质吸收特性, 是微波吸收材料中较好的一种。其基本原理是当微波信号通 过铁氧体材料时,将电磁波能量转化为其它形式能量(主要是 热能) 而被消耗掉。这种损耗主要是铁氧体的磁致损耗和介 质电损耗所致。纳米磁性材料,特别是类似铁氧体的纳米磁性 材料放入涂料中,既有优良的吸波特性,又有良好的吸收和耗 散红外线的性能加之密度小,在隐身方面的应用上有明显的优 越性。

纳米材料的磁性材料及其应用

纳米材料的磁性材料及其应用

纳米材料的磁性材料及其应用随着科学技术的不断发展,纳米材料成为研究热点。

纳米材料的磁性材料是其中的一个重要部分,具有广泛的应用前景。

本文将重点介绍纳米材料的磁性材料及其应用。

一、纳米材料的磁性材料1.磁性粉末磁性粉末是应用最广泛的纳米材料磁性材料之一。

磁性粉末主要有软磁性和硬磁性两种。

软磁性磁性粉末适用于高频和变压器,而硬磁性磁性粉末则适用于材料磁存储等场。

2.磁性涂料磁性涂料是使用纳米磁性粉末和有机聚合物、溶剂和添加剂组成的。

它们可以在任何常规磁性表面上涂覆,并用于制造数据存储磁盘、磁带、汽车电机、扫描马达、医疗用品、机器人等。

3.纳米氧化铁磁性材料氧化铁是一种非常有用的纳米材料磁性材料,具有良好的磁性和导电性,对于电子器件具有重要的意义。

氧化铁磁性材料在催化、生物医学、磁性分离、传感和储能等领域中应用广泛。

二、纳米材料的磁性材料应用1.生物医学领域磁性材料在生物领域有广泛的应用,如磁性靶向药物、磁性造影剂、细胞分离、磁性生物传感器等。

磁性材料具有良好的生物相容性,可以有效地将其作为靶向药物输送系统来治疗肿瘤和其他疾病。

2.磁性数据存储磁性数据存储是目前计算机中应用最广泛的技术之一。

随着数据规模的不断扩大和数据存储密度的提高,对于更小、更高密度的磁性材料的需求也越来越大。

纳米材料的磁性材料在这个领域中具有重要的应用前景。

3.储能纳米材料磁性材料还可以用于储能器件,如电池、超级电容器、电容储能器及磁性热储能器件等。

利用磁性材料的高热稳定性,可以通过磁场改变磁材料的热容,实现磁储能器件。

4.磁性分离纳米材料磁性材料还可以用于化学品和废水的净化。

磁性材料可用于对处于离子溶剂中的各种有机物和无机物离子进行去除。

总结:纳米材料的研究和应用已经成为当前材料科学领域的重要方向。

纳米材料的磁性材料具有广泛应用前景,如生物医学、磁性数据存储、储能、磁性分离等领域。

磁性材料与其他材料的组成和结构具有很高的可调性和多样性,因此可以针对不同的应用需求进行定制。

超顺磁性纳米材料课件

超顺磁性纳米材料课件
特性
具有较高的磁响应性和稳定性, 可以在外部磁场的作用下快速定 向排列,且不会产生磁畴壁位移 。
制备方法
物理法
利用物理过程(如蒸发、溅射、激光 脉冲等)制备超顺磁性纳米材料。
化学法
通过化学反应(如沉淀法、溶胶-凝胶 法、微乳液法等)制备超顺磁性纳米 材料。
应用领域
01
02
03
04
生物医学
用于磁共振成像、药物传递和 肿瘤治疗等领域。
详细描述
科研人员将不断探索新的材料体系, 通过精确控制材料的成分、结构和性 能,以满足各种应用需求。新型的合 成方法也将不断涌现,以实现高效、 环保的纳米材料制备。
应用领域的拓展
总结词
超顺磁性纳米材料的应用领域将不断扩 大,涉及医疗、能源、环境等领域。
VS
详细描述
随着研究的深入和技术的发展,超顺磁性 纳米材料将在更多领域展现出其特殊的优 势和潜力。例如,在医疗领域,它们可以 用于药物输送、肿瘤诊断和治疗;在能源 领域,它们可以用于高效储能和太阳能转 化;在环境领域,它们可以用于水处理和 空气净化等。
光学性质
光学性质
超顺磁性纳米材料由于其内部原子或分子的排列无序,因此具有特殊的光学性质。在 Hô 公子吸取光谱中,超顺磁性纳米材料表现出明显的宽频吸取峰,这是由于其内部原子或分 子的能级结构所引起的。
光吸取与散射
超顺磁性纳米材料对光的吸取与散射作用较强,可以用于光吸取、光散射以及光催化等领 域InstanceOf技术。
感谢观看
风险评估与监测
对超顺磁性纳米材料进行全面的风险评估,并对其在环境中的散布 、迁移和转化进行实时监测。
教育培训与意识提升
加强相关人员的培训和教育,提高他们对超顺磁性纳米材料安全性 的认识,确保安全操作规程的执行。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁性物质的应用可以一直追溯到中国古代,早在公元前4世纪,我们的祖先就开始利用磁性材料,并且制造出4大发明之一的指南针,用于军事和航海。

因此,磁性物质的研究是一个古老而重要的领域,也是工业应用方面广泛研究的课题。

纳米材料与常规粗晶材料具有很大性质上的不同,除了具有普通材料的性质之外,还具有特殊的纳米效应,所以,纳米材料具有许多优异的光学、电学、热学、磁学和力学性质,已成为新世纪材料科学研究的热点,并给传统的磁性产业带来了跨越式发展的重大机遇和挑战。

纳米尺度磁性材料的发展,使材料的磁性能发生了量变到质变的飞跃,显著地提高了材料的磁性能。

磁性材料作为材料中的一个重要成员,一直紧密伴随着纳米科技的发展,是纳米材料学中不可或缺的一部分。

研究表明,当材料的尺寸进入纳米尺度后,比表面积急剧增大,表面能相应升高,量子效应体现出来,使得磁性纳米材料具有一些奇异的物理性质,为此,磁性纳米材料成为信息、生物、化学材料等领域的一个研究热点。

一、磁性纳米材料的制备在人们所熟知的大量磁性材料中,由于不能同时满足高饱和磁化强度和稳定性高的要求,饱和磁化强度高但稳定性低的材料应用在一定程度上受到了限制。

目前可选作磁性微粒的仅有少数几种,主要为金属氧化物,如三氧化二铁Fe2O3)、MFe2O4(M=Co,Mn,Ni)、四氧化三铁(Fe3O4),二元和三元合金,如金属铁、钻、镍及其铁钻合金、镍铁合金,以及钕铁硼(NdFeB)、镧钻合金(LaCo)合金等,它们的稳定性(即抗氧化能力)依次递减,但饱和磁化强度却按上述次序递增。

纳米科技的发展,使这些磁性材料的应用成为可能,目前,磁性材料纳米化已成为材料科学的一个发展趋势。

磁性纳米材料的制备技术决定了其性质,关系着最终工业应用。

目前磁性纳米材料制备技术可以有多种分类,一种是分做物理法和化学法;另一种是按照物质状态进行分类,如固相法、液相法和气相法。

其中,固相法包括非晶晶化法和高能球磨法;液相法包括喷雾法、沉积法、蒸发法、溶胶凝胶法、溶剂挥发分解法及电沉积法;气相法包括熔融金属反应法、气体冷凝法、真空蒸镀法、溅射法、激光诱导法、电加热蒸发法、混合等离子法及化学气相沉积法等。

这些方法各有其优缺点:非晶晶化法是在非晶基础上通过退火的热处理方式实现纳米晶化的种方法;高能球磨法是在高能球磨机中,将几十微米的磁性材料粗颗粒通过与研磨球、研磨罐及颗粒之间的频繁碰撞,使这些微米的固体颗粒发生反复地被挤压、变形、断裂、焊合等强烈的塑性变形,磁性材料颗粒表面的缺陷密度增加,晶粒逐渐细化,直至形成纳米级磁性颗粒。

球磨法工艺操作简单,成本也较低,但使用该法制备的磁性纳米材料容易引进杂质,很难得到均匀而细小的颗粒,同时还存在分散性较差、晶体缺陷较多、颗粒稳定性较低、能耗很大的缺点。

溶胶凝胶法是利用金属有机或无机化合物作为前体,经溶液、溶胶、凝胶而固化,优点是工艺简单、反应物种多、产物颗粒均一、过程易控制、分散性好、易实现高纯化、反应周期短、反应温度低,但是制备成本高,而且还需要高温煅烧,这对小粒径磁性纳米颗粒的合成不利。

机械合金化法能制备出常规方法难以获得的高熔点金属和合金纳米材料,还可以制备纳米金属间化合物、互不相溶体系的固溶体及纳米晶陶瓷复合材料等,该法工艺简单、效率高,因而是制备磁性纳米材料的一种有效工艺方法。

溅射法是工艺比较成熟的方法,产量大、工艺过程比较简单、成本低、晶粒度容易控制,但缺点是由于辊表面不可避免地存在一些缺陷,因而通过此法制得的条带存在微裂纹等缺陷,并且利用该方法只能制备出二维的磁性纳米材料薄带。

沉淀法包括共沉淀法、均匀沉淀法和直接沉淀法,共沉淀法适合制备氧化物,是在混合的金属盐溶液中添加沉淀剂,即得到组分均匀的溶液,再进行热分解,特点是简单易行,但产物纯度低、粒径大;直接沉淀法是使溶液中的金属阳离子直接与沉淀剂发生化学反应而形成沉淀物;均匀沉淀法是在金属盐溶液中加入沉淀剂溶液时不断搅拌,使沉淀剂在溶液中缓慢生成,消除了沉淀剂的不均匀性。

化学气相沉积法也称气相化学反应法,制备的产物颗粒细小、形貌均匀,具有良好的分散性。

高温分解法是在高沸点有机溶剂中加热分解有机金属化合物来制备纳米粒子。

微乳液法是将2种互不相溶的液体通过表面活性剂分子作为界面膜,形成热力学稳定、各向同性的分散体系,这样可使成核、生长、聚结、团聚等过程局限在一个微小的球形液滴内,从而可形成球形颗粒,又避免了颗粒之间进一步团聚,因此,该方法所得纳米颗粒粒径分布窄,且单分散性、界面性和稳定性好,同时,与其他方法相比,还具有实验装置简单、粒径易于控制、能耗低、适应面广等优点。

二、磁性纳米材料的应用发展趋势1.生物医学工程应用(1)磁性分离和纯化磁性纳米粒子由于具有粒径小、比表面积大、表面有许多悬空键等特点,可以很容易进行表面修饰,将多种反应性功能基(如羧基、氨基、巯基、生物素、单克隆抗体等)通过共聚、表面改性赋予其表面,使其具有一些特殊的性质。

磁性分离技术是利用生物素与亲和素系统、免疫亲和系统、化学共价结合等的特异性反应,在外加磁场的定向控制下,磁性粒子通过亲和吸附、清洗、解吸等操作,可以从复杂的生物体系中分离到目标生物分子(如蛋白、核酸等),具有磁性分离方便、亲和吸附的特异性及敏感性高等众多优点。

(2)磁共振成像对比剂磁共振成像(MRI)技术是利用生物体内不同组织在外加磁场下产生不同的磁共振信号来成像,磁共振信号的强弱取决于组织内水分子中质子的弛豫时间,成分中的一些未成对电子自旋产生的局部磁场能够缩短或增加临近水分子质子的弛豫时间,从而增大临近区域的磁共振信号强度,提高成像的对比度。

例如,超顺磁性氧化铁粒子主要应用于分子和细胞成像。

当超顺磁性氧化铁纳米颗粒通过静脉注射入人体后,与血浆蛋白相结合,并在调理素作用下被网状内皮系统所识别,吞噬细胞就会把超顺磁性氧化铁纳米颗粒作为异物而摄取,从而使超顺磁性氧化铁沉积在网状内皮细胞丰富的组织和器官中。

因此,超顺磁性氧化铁是一种网状内皮系统的对比剂,可用于肝、脾、淋巴结、骨髓等富含网状内皮细胞的组织和器官的MRI 增强。

若是对纳米颗粒表面进行适当的修饰和特异性分子的偶联则可以实现更广泛的靶向。

(3)磁性药物靶向载体化疗是目前治疗恶性肿瘤的主要手段之一,近些年来,随着新药的不断涌现,肿瘤化疗取得了一定的进展。

目前,治疗肿瘤的化疗药物一般是采用常规的注射途径,该方法会使这些药物均匀分地布在全身循环中,而它们在到达恶性肿瘤之前,要经过蛋白结合、代谢、排泄等步骤,致使血液中的药物浓度迅速降低,最终只有少量药物到达恶性肿瘤部位,要提高恶性肿瘤内的化疗药物浓度,就必须提高全身循环系统的药物浓度,也就必须加大药物剂量。

因此,这种没有特异性的给药方式降低了药物的生物利用度且同时会对全身产生毒副作用,造成患者不能耐受其严重的毒副作用而终止临床治疗。

磁性药物载体是磁性粒子和高分子耦合剂组成的,由于在外加磁场下具有磁导向性,药物将集中于靶部位,能够增加对靶部位的治疗效果,同时减弱对全身的毒副作用。

(4)肿瘤磁致热疗将瘤区加热到41〜46°C以上治疗恶性肿瘤的方法称为热疗,热疗是肿瘤治疗学中一种重要的治疗手段。

41〜46C的高温可影响生物膜功能和状态,激活溶酶体活性,抑制脱氧核糖核酸(DNA)、核糖核酸(RNA)及蛋白质合成,增加热休克蛋白合成,从而达到杀死肿瘤细胞的作用。

而与肿瘤组织比较,正常组织血液循环良好,散热快,所以不会受到影响。

肿瘤组织与正常组织这一热生物学上的差异,使肿瘤热疗的临床应用成为可能。

传统的热疗系统由于药物分布的全身性,在对肿瘤组织进行加热的同时往往会损伤周围的正常组织,磁性纳米粒子的出现,为解决热疗的这一问题提供了新途径,即磁致热疗。

首先,磁性纳米粒子通过注射等方式进入血循环内,然后在体外恒定磁场下导向到肿瘤组织,最后,使用交变磁场使磁性纳米粒子发生磁滞损耗而产生热量,使温度升高到41°C以上而杀死周围肿瘤细胞。

磁性纳米粒子的引入,改善了传统热疗的靶向定位问题,提高了热疗效率,使肿瘤热疗走向临床应用成为可能。

磁致热疗继承了传统热疗微创的优点,同时又具有靶向效应好的特点,已成为恶性肿瘤治疗的关注焦点之一。

(5)磁性转染磁性转染是利用磁性纳米粒子作为载体,将DNA负载到磁性纳米粒子上,然后在外界磁场影响下转染到细胞内的方法。

与病毒或其它非病毒载体相比,由于磁性纳米粒子被修饰后带有易于和带负电荷的DNA结合的正电荷,转染效率提高几十到几千倍。

(6)组织修复磁力组织工程采用磁性阳离子脂质体纳米粒子(MCLs)标记细胞,利用磁力集聚促进细胞分层,形成多层片层三维组织结构。

这一方法目前已应用于人间充质干细胞和视网膜色素上皮细胞,用于生成相关组织结构。

(7)磁性纳米颗粒的多功能化和应用随着对磁性纳米材料研究的深入,人们已经不满足于单一功能颗粒的应用,从而逐渐构建了多功能的磁性纳米颗粒。

同时在磁性纳米颗粒表面连接多种功能性分子,如抗体、药物分子、报告基因等,就构成了多功能磁性纳米颗粒。

当这种多功能磁性纳米颗粒靶向到肿瘤部位后,颗粒就可以对肿瘤进行诊断和治疗(药物治疗和磁致热疗)。

2.工业技术应用(1)在磁记录方面的应用在20世纪计算机刚被发明的时候,利用的存储设备是磁带。

随着技术的进步,人类发现了巨磁阻效应(磁性材料的电阻率在有外磁场作用时较之无外磁场作用时存在巨大变化的现象),并成功地应用这一原理,开发出容量各异的硬盘。

硬盘是利用磁颗粒的磁性来记录数据,硬盘的盘片数量和盘片大小都已标准化,由于物理尺寸限制,若要提升硬盘的容量,就必须提高磁区的存储密度。

随着纳米加工技术的进步,用于存储的磁颗粒也是越来越小,目前,采用三维立体存储技术已经可以实现容量为3TB的商业化存储。

(2)在纳米永磁材料方面的应用在一定条件下,磁性纳米材料可得到单磁畴结构,这是它的特点之一,性能比普通永磁材料更优越,其永磁性能可以随合金的组元、含量和制造工艺等不同而有显著的变化。

目前,研究较多的主要有铁钴钒系、钕铁硼系和铁铬钴系,这些合金掺杂少量其他元素如钛、铜、钴、钨等还可进一步改善其永磁性或加工性。

在此基础上,以稀土永磁材料制成的电机高效节能,符合节能减排的要求。

(3)在纳米吸波材料领域的应用随着雷达、微波通信、电子对抗等军用、民用科学技术的发展,对微波吸收材料提出了更高的要求,虽然有很多材料都具备吸波性能,但是要满足广谱吸收的要求,还要数磁性纳米吸波材料。

纳米铁氧体具有复介质吸收特性,是微波吸收材料中较好的一种。

将类似铁氧体的纳米磁性材料放入涂料中,能够使涂料既有优良的吸波特性,又有良好的吸收和耗散红外线性能。

(4)用作气敏传感器根据纳米粒子的表面效应(当外界环境发生变化时,粒子表面或界面上的离子价态和电子亦发生变化的特点),适当掺杂重金属可使磁性纳米材料的电导和灵敏度得以显著提高。

相关文档
最新文档