高中数学课时作业:不等关系与不等式
不等关系与不等式(第一课时)教案
3.1 不等关系与不等式(第一课时)大冶一中柯尊胜一、教学目标(1)通过实例,明确不等量关系的存在.通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,学会依据具体问题的实际背景分析问题、解决问题的方法.(2)学会依据具体问题的实际背景分析问题、解决问题的方法;在实际问题中抽象出不等关系,培养学生的抽象思维能力,正确运用数学语言的表述能力;通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯.二.教学的重点与难点重点:用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题.理解不等式(组)对于刻画不等关系的意义和价值.理解不等式的基本性质,并能用以解决简单的数学问题。
难点:用不等式(组)正确表示出不等关系.三、教学方法以广泛的相关事例为指导,辅以信息技术手段,采用问题式引导探究,并与讲解演练相结合,在实例中抽象,在抽象中提升。
四、教学基本流程创设情景,由实例引入新课用不等式表示不等关系不等式的基本性质及简单应用小结,用不等式表示不等关系、不等式基本性质五、教学过程实际问题中的不等关系引例1 今天的天气预报说:明天早晨最低温度为7℃,明天白天的最高温度为13℃;引例2 限速40km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h,写成不等式就是:.引例3 某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%,用不等式可以表示为________.几何中的不等关系1、两点间直线段最短。
2、三角形两边之和大于第三边、两边之差小于第三边。
3. 设点A 与平面α的距离为d ,B 为平面α上的任意一点,则d 与两点的距离|AB|是什么关系?实数的基本不等关系1、正数大于零、负数小于零;2、非负数大于或小于零、非正数不大于零;3、实数的平方不小于零,实数的绝对值大于或等于零;4、“同号积为正,异号积为负。
高三数学必修五《不等关系与不等式》教案
高三数学必修五《不等关系与不等式》教案教案【一】整体设计教学分析本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.三维目标1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.重点难点教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.教学难点:准确比较两个代数式的大小.课时安排1课时教学过程导入新课思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.推进新课新知探究提出问题1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗3数轴上的任意两点与对应的两实数具有怎样的关系4任意两个实数具有怎样的关系用逻辑用语怎样表达这个关系活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“b”“a教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.实例1:某天的天气预报报道,气温32℃,最低气温26℃.实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA实例3:若一个数是非负数,则这个数大于或等于零.实例4:两点之间线段最短.实例5:三角形两边之和大于第三边,两边之差小于第三边.实例6:限速40km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h.实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-71+4,2x≤6,a+2≥0,3≠4,0≤5等.教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26℃≤t≤32℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图.|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.|AB|-|BC| 实例6,若用v表示速度,则v≤40km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.讨论结果:(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.(4)对于任意两个实数a和b,在a=b,a>b,--b 应用示例例1(教材本节例1和例2)活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.变式训练1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是()A.f(x)>g(x)B.f(x)=g(x)C.f(x)答案:A解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).2.已知x≠0,比较(x2+1)2与x4+x2+1的大小.解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.例2比较下列各组数的大小(a≠b).(1)a+b2与21a+1b(a>0,b>0);(2)a4-b4与4a3(a-b).活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2 ;a+b=a-b22a+b.∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)] =-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2] ∴a4-b4 点评:比较大小常用作差法,一般步骤是作差——变形——判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.变式训练已知x>y,且y≠0,比较xy与1的大小.活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.解:xy-1=x-yy.∵x>y,∴x-y>0.当y 当y>0时,x-yy>0,即xy-1>0.∴xy>1.点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了请说明理由.活动:解题关键首先是把文字语言转换成数学语言,然后比较前后比值的大小,采用作差法.解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,因此a+mb+m>ab≥10%.所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.点评:一般地,设a、b为正实数,且a0,则a+mb+m>ab.变式训练已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则()A.a1+a8>a4+a5B.a1+a8C.a1+a8=a4+a5D.a1+a8与a4+a5大小不确定答案:A解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).∵{an}各项都大于零,∴q>0,即1+q>0.又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.知能训练1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的个数为()2.比较2x2+5x+9与x2+5x+6的大小.答案:1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,③x2+y2-2xy=(x-y)2≥0.∴只有①恒成立.2.解:因为2x2+5x+9-(x2+5x+6)=x2+3>0,所以2x2+5x+9>x2+5x+6.课堂小结1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.作业习题3—1A组3;习题3—1B组2.设计感想1.本节设计关注了教学方法的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.备课资料备用习题1.比较(x-3)2与(x-2)(x-4)的大小.2.试判断下列各对整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.3.已知x>0,求证:1+x2>1+x.4.若x5.设a>0,b>0,且a≠b,试比较aabb与abba的大小.参考答案:1.解:∵(x-3)2-(x-2)(x-4)=(x2-6x+9)-(x2-6x+8)=1>0,∴(x-3)2>(x-2)(x-4).2.解:(1)(m2-2m+5)-(-2m+5)=m2-2m+5+2m-5=m2.∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.∴m2-2m+5≥-2m+5.(2)(a2-4a+3)-(-4a+1)=a2-4a+3+4a-1=a2+2.∵a2≥0,∴a2+2≥2>0.∴a2-4a+3>-4a+1.3.证明:∵(1+x2)2-(1+x)2=1+x+x24-(x+1)=x24,又∵x>0,∴x24>0.∴(1+x2)2>(1+x)2.由x>0,得1+x2>1+x.4.解:(x2+y2)(x-y)-(x2-y2)(x+y) =(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y).∵x0,x-y ∴-2xy(x-y)>0.∴(x2+y2)(x-y)>(x2-y2)(x+y).5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,当a>b>0时,ab>1,a-b>0,则(ab)a-b>1,于是aabb>abba.当b>a>0时,0则(ab)a-b>1.于是aabb>abba.综上所述,对于不相等的正数a、b,都有aabb>abba. 教案【二】教学准备教学目标熟练掌握不等式的证明问题教学重难点熟练掌握不等式的证明问题教学过程不等式的证明二【基础训练】1.若,,则下列不等始终正确的是()2.设a,b为实数,且,则的最小值是()4.求证:对任何式数x,y,z,下述三个不等式不可能同时成立。
高三数学必修五《不等关系与不等式》教案
高三数学必修五《不等关系与不等式》教案【导语】高考竞争异常激烈,千军万马争过独木桥,秋天到了,而你正以凌厉的步伐迈进这段特别的岁月中。
这是一段青涩而又平淡的日子,每个人都隐身于高考,而平淡之中的张力却只有真正的勇士才可以破译。
为了助你一臂之力,无忧考网高中频道为你精心准备了《高三数学必修五《不等关系与不等式》教案》助你金榜题名!教案【一】整体设计教学分析本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.三维目标1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.重点难点教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.教学难点:准确比较两个代数式的大小.课时安排1课时教学过程导入新课思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.推进新课新知探究提出问题1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系?2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗?3数轴上的任意两点与对应的两实数具有怎样的关系?4任意两个实数具有怎样的关系?用逻辑用语怎样表达这个关系?活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“<”“≠”“≥”“≤”表示,而不等式则是表示两者的不等关系,可用“a>b”“a教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.实例1:某天的天气预报报道,气温32℃,最低气温26℃.实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA实例3:若一个数是非负数,则这个数大于或等于零.实例4:两点之间线段最短.实例5:三角形两边之和大于第三边,两边之差小于第三边.实例6:限速40km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h.实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-7<-5,3+4>1+4,2x≤6,a+2≥0,3≠4,0≤5等.教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26℃≤t≤32℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图.|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被减数与减数的位置也可以.实例6,若用v表示速度,则v≤40km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.讨论结果:(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.(4)对于任意两个实数a和b,在a=b,a>b,a0��a>b;a-b=0��a=b;a-b<0��a应用示例例1(教材本节例1和例2)活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.变式训练1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是()A.f(x)>g(x)B.f(x)=g(x)C.f(x)答案:A解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).2.已知x≠0,比较(x2+1)2与x4+x2+1的大小.解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.例2比较下列各组数的大小(a≠b).(1)a+b2与21a+1b(a>0,b>0);(2)a4-b4与4a3(a-b).活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]<0.∴a4-b4<4a3(a-b).点评:比较大小常用作差法,一般步骤是作差――变形――判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.变式训练已知x>y,且y≠0,比较xy与1的大小.活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.解:xy-1=x-yy.∵x>y,∴x-y>0.当y<0时,x-yy<0,即xy-1<0.∴xy<1;当y>0时,x-yy>0,即xy-1>0.∴xy>1.点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.活动:解题关键首先是把文字语言转换成数学语言,然后比较前后比值的大小,采用作差法.解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a由于a+mb+m-ab=m b-a b b+m>0,于是a+mb+m>ab.又ab≥10%,因此a+mb+m>ab≥10%.所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.点评:一般地,设a、b为正实数,且a0,则a+mb+m>ab.变式训练已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则()A.a1+a8>a4+a5B.a1+a8C.a1+a8=a4+a5D.a1+a8与a4+a5大小不确定答案:A解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).∵{an}各项都大于零,∴q>0,即1+q>0.又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.知能训练1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的个数为()A.3B.2C.1D.02.比较2x2+5x+9与x2+5x+6的大小.答案:1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,③x2+y2-2xy=(x-y)2≥0.∴只有①恒成立.2.解:因为2x2+5x+9-(x2+5x+6)=x2+3>0,所以2x2+5x+9>x2+5x+6.课堂小结1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.作业习题3―1A组3;习题3―1B组2.设计感想1.本节设计关注了教学方法的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.备课资料备用习题1.比较(x-3)2与(x-2)(x-4)的大小.2.试判断下列各对整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.3.已知x>0,求证:1+x2>1+x.4.若x5.设a>0,b>0,且a≠b,试比较aabb与abba的大小.参考答案:1.解:∵(x-3)2-(x-2)(x-4)=(x2-6x+9)-(x2-6x+8)=1>0,∴(x-3)2>(x-2)(x-4).2.解:(1)(m2-2m+5)-(-2m+5)=m2-2m+5+2m-5=m2.∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.∴m2-2m+5≥-2m+5.(2)(a2-4a+3)-(-4a+1)=a2-4a+3+4a-1=a2+2.∵a2≥0,∴a2+2≥2>0.∴a2-4a+3>-4a+1.3.证明:∵(1+x2)2-(1+x)2=1+x+x24-(x+1)=x24,又∵x>0,∴x24>0.∴(1+x2)2>(1+x)2.由x>0,得1+x2>1+x.4.解:(x2+y2)(x-y)-(x2-y2)(x+y)=(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y).∵x0,x-y<0.∴-2xy(x-y)>0.∴(x2+y2)(x-y)>(x2-y2)(x+y).5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,当a>b>0时,ab>1,a-b>0,则(ab)a-b>1,于是aabb>abba.当b>a>0时,0则(ab)a-b>1.于是aabb>abba.综上所述,对于不相等的正数a、b,都有aabb>abba. 教案【二】教学准备教学目标熟练掌握不等式的证明问题教学重难点熟练掌握不等式的证明问题教学过程不等式的�C明二【基�A��】1.若,,�t下列不等始�K正�_的是()2.�Oa,b����担�且,�t的最小值是()4.求�C:�θ魏问��x,y,z,下述三��不等式不可能同�r成立。
高二数学复习 课时提升作业(三十二) 6.1《不等关系与不等式》文 新人教A版
课时提升作业(三十二)不等关系与不等式一、选择题(每小题5分,共35分)1.(2015·成都模拟)已知a,b为非零实数,且a<b,则下列不等式一定成立的是( )A.a2<b2B.ab2>a2bC.<D.<【解析】选C.若a<b<0,则a2>b2,故A错;若0<a<b,则>,故D错;若ab<0,即a<0,b>0,则a2b>ab2,故B错.2.(2015·嘉兴模拟)设M=x2,N=-x-1,则M与N的大小关系是( )A.M>NB.M=NC.M<ND.与x有关【解析】选A.M-N=x2+x+1=+>0,所以M>N.3.(2015·广东实验中学模拟)已知0<a<b<1,则( )A.>B.<C.<D.>【解题提示】利用不等式的基本性质和指数函数、对数函数的单调性即可得出.【解析】选D.因为0<a<b<1,所以-=<0,可得<;>;(lga)2>(lgb)2;lga<lgb<0,可得>.综上可知,只有D正确.【加固训练】(2015·富阳模拟)如果a,b,c满足c<b<a,且ac<0,那么下列选项中不一定成立的是( )A.ab>acB.bc>acC.cb2<ab2D.ac(a-c)<0【解析】选C.因为c<b<a,且ac<0,所以a>0,c<0.所以ab-ac=a(b-c)>0,bc-ac=(b-a)c>0,ac(a-c)<0,所以A,B,D均正确.因为b可能等于0,也可能不等于0.所以cb2<ab2不一定成立.4.某同学拿50元钱买纪念邮票,票面8角的每套5张,票面2元的每套4张,如果每种邮票至少买两套,则买票面8角的x套与票面2元的y套用不等式表示为( )A. B.C. D.0.8×5x+2×4y≤50【解析】选A.根据题意直接列出相应的不等式,组成不等式组即可.5.若a>b>c,a+b+c=0,下列不等式恒成立的是( )A.ac>bcB.ab>acC.a|b|>c|b|D.a2>b2>c2【解析】选B.由a>b>c,a+b+c=0,得a>0,c<0,因为b>c,所以ab>ac.6.若-<α<β<,则α-β一定不属于的区间是( )A.(-π,π)B.C.(0,π)D.(-π,0)【解题提示】由-<α<β<可得-<-β<,从而有-π<α-β<0.【解析】选C.因为-<α<β<,所以-<-β<,所以-π<α-β<0,结合选项可知选项C一定不可能,故选C.7.(2015·上海模拟)若a,b为实数,则a>b>0是“a2>b2”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分条件也非必要条件【解题提示】当a,b>0时,由题意解出a2>b2为a>b或a<-b,然后再判断命题的关系.【解析】选A.若a>0,b>0,因为a2>b2,所以a2-b2>0,所以a>b或a<-b,所以a>b>0⇒a2>b2,反之则不成立,所以a>b>0是a2>b2的充分不必要条件,故选A.二、填空题(每小题5分,共15分)8.(2015·北京模拟)已知a+b>0,则+与+的大小关系是.【解析】+-=+=(a-b)=.因为a+b>0,(a-b)2≥0,所以≥0,所以+≥+.答案:+≥+9.(2015·临沂模拟)用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长18m,要求菜园的面积不小于216m2,靠墙的一边长为xm,其中的不等关系可用不等式(组)表示为. 【解析】矩形的另一边长为(30-x)=15-x,矩形面积为x且0<x<18,则不等式组为答案:10.已知f(x)=ax2+b,若1≤f(1)≤2,2≤f(2)≤3,则f(3)的范围为.【解析】令f(3)=9a+b=m(a+b)+n(4a+b)=(m+4n)a+(m+n)b,则解得即f(3)=-(a+b)+(4a+b).因为1≤a+b≤2,2≤4a+b≤3,所以2≤f(3)≤,即f(3)的范围是.答案:【一题多解】本题还可有以下解法:巧妙换元:令a+b=x,4a+b=y,则a=,b=,1≤x≤2,2≤y≤3.因为f(3)=9a+b=,6≤8y-5x≤19,所以2≤f(3)≤,即f(3)的范围是.【加固训练】(2015·盐城模拟)若-1<a+b<3,2<a-b<4,则2a+3b的取值范围为.【解析】设2a+3b=x(a+b)+y(a-b),则解得又因为-<(a+b)<,-2<-(a-b)<-1,所以-<(a+b)-(a-b)<,即-<2a+3b<答案:(20分钟40分)1.(5分)(2015·资阳模拟)已知a,b为实数,则“a>b>1”是“<”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】选A.由a>b>1⇒a-1>b-1>0⇒<,当a=0,b=2时,<,但a>b>1不成立,所以< a>b>1,故选A.2.(5分)(2015·烟台模拟)已知-1<a<0,A=1+a2,B=1-a2,C=,比较A,B,C的大小结果为( )A.A<B<CB.B<A<CC.A<C<BD.B<C<A【解析】选B.方法一:不妨设a=-,则A=,B=,C=2,由此得B<A<C,选B.方法二:由-1<a<0得1+a>0,A-B=(1+a2)-(1-a2)=2a2>0得A>B,C-A=-(1+a2)=-=->0,得C>A,所以B<A<C.3.(5分)(2015·遵义模拟)已知下列结论:①若a>|b|,则a2>b2;②若a>b,则<;③若a>b,则a3>b3;④若a<0,-1<b<0,则ab2>a.其中正确的是(只填序号即可).【解析】对于①,因为a>|b|≥0,所以a2>b2,即①正确;对于②,当a=2,b=-1时,显然不正确;对于③,显然正确;对于④,因为a<0,-1<b<0,ab2-a=a(b2-1)>0,所以ab2>a,即④正确.答案:①③④4.(12分)已知函数f(x)=ax2+bx+c满足f(1)=0,且a>b>c,求的取值范围.【解题提示】用a+c把b表示出来代入a>b>c,利用放缩法求解.【解析】因为f(1)=0,所以a+b+c=0,所以b=-(a+c).又a>b>c,所以a>-(a+c)>c,且a>0,c<0,所以1>->,即1>-1->,所以解得-2<<-.5.(13分)(能力挑战题)某单位组织职工去某地参观学习需包车前往.甲车队说:“如领队买全票一张,其余人可享受7.5折优惠”,乙车队说:“你们属团体票,按原价的8折优惠”.这两车队的原价、车型都是一样的,试根据单位的人数,比较两车队的收费哪家更优惠.【解析】设该单位职工有n人(n∈N*),全票价为x元,坐甲车需花y1元,坐乙车需花y2元,则y1=x+x·(n-1)=x+nx,y2=nx.因为y1-y2=x+nx-nx=x-nx=x,当n=5时,y1=y2;当n>5时,y1<y2;当n<5时,y1>y2.因此当单位去的人数为5人时,两车队收费相同;多于5人时,选甲车队更优惠;少于5人时,选乙车队更优惠.。
课时作业3:一 第1课时 不等式的基本性质
一 不等式第1课时 不等式的基本性质一、选择题1.已知a >0>b ,c <d <0,给出下列不等式:(1)ad >bc ;(2)a -c >b -d ;(3)a (d -c )>b (d -c ).其中成立的个数是( )A .0B .1C .2D .3答案 C解析 因为a >0,b <0,c <d <0,所以ad <0,bc >0,故(1)不成立;因为a >b ,c <d <0,所以-c >-d ,所以a -c >b -d ,故(2)成立;由c <d <0,知d -c >0,又a >0>b ,所以a (d -c )>b (d -c ),故(3)成立.2.已知a >-1且b >-1,则p =b 1+a +a 1+b 与q =a 1+a +b 1+b的大小关系是( ) A .p >q B .p <q C .p ≥q D .p ≤q答案 C解析 p -q =b -a 1+a +a -b 1+b=(b -a )(b -a )(1+a )(1+b )=(b -a )2(1+a )(1+b )≥0,∴p ≥q . 3.设a ,b ∈(-∞,0),则“a >b ”是“a -1a >b -1b”成立的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 a ,b ∈(-∞,0),∵a >b ,∴1a <1b ,即-1a >-1b ,∴a -1a >b -1b, ∴“a >b ”是“a -1a >b -1b”成立的充分条件. 又由a -1a >b -1b ⇒a -b +1b -1a>0 ⇒(a -b )+a -b ab >0⇒(a -b )·ab +1ab>0 ⇒a -b >0⇒a >b .∴“a >b ”又是“a -1a >b -1b”成立的必要条件. 故“a >b ”是“a -1a >b -1b”成立的充要条件. 4.已知a ,b ,c ∈(0,+∞),若c a +b <a b +c <b c +a,则( ) A .c <a <bB .b <c <aC .a <b <cD .c <b <a答案 A解析 由c a +b <a b +c <b c +a, 可得c a +b +1<a b +c +1<b c +a+1, 即a +b +c a +b <a +b +c b +c <a +b +c c +a.又a ,b ,c ∈(0,+∞), 所以a +b >b +c >c +a .由a +b >b +c ,可得a >c ;由b +c >c +a ,可得b >a ,于是有c <a <b .5.设a >1>b >-1,则下列不等式中恒成立的是( )A.1a <1bB.1a >1b C .a >b 2D .a 2>2b 答案 C解析 ∵-1<b <1,∴b 2<1<a .6.设角α,β满足-π2<α<β<π2,则α-β的取值范围是( ) A .-π<α-β<0 B .-π<α-β<πC .-π2<α-β<0 D .-π2<α-β<π2答案 A解析 ∵-π2<α<β<π2, ∴-π2<-β<π2且α-β<0,∴-π<α-β<0. 二、填空题 7.已知a ,b ,c 是实数,则a 2+b 2+c 2与ab +bc +ca 的大小关系是__________. 答案 a 2+b 2+c 2≥ab +bc +ca解析 ∵a 2+b 2+c 2-ab -bc -ca =12(2a 2+2b 2+2c 2-2ab -2bc -2ca )=12[(a -b )2+(b -c )2+(c -a )2]≥0,当且仅当a =b =c 时,等号成立,∴a 2+b 2+c 2≥ab +bc +ca .8.已知0<a <1b ,且M =11+a +11+b ,N =a 1+a +b 1+b,则M ,N 的大小关系是________. 答案 M >N解析 M -N =1-a 1+a +1-b 1+b =2(1-ab )(1+a )(1+b ). ∵0<a <1b,∴ab <1,即1-ab >0, ∴M -N >0,∴M >N .9.若a ,b ∈R ,且a >b ,下列不等式:①b a >b -1a -1;②(a +b )2>(b +1)2;③(a -1)2>(b -1)2. 其中不成立的是________.(填序号)答案 ①②③解析 ①中,b a -b -1a -1=ab -b -ab +a a (a -1)=a -b a (a -1). 因为a -b >0,a (a -1)的符号不确定,①不成立;②中,取a =2,b =-2,则(a +b )2=0,(b +1)2>0,②不成立;③中,取a =2,b =-2,则(a -1)2=1,(b -1)2=9,③不成立.10.已知三个不等式:①ab >0;②c a >d b;③bc >ad .以其中两个作为条件,余下一个作为结论,则可组成________个正确命题.答案 3解析 若ab >0,bc >ad 成立,不等式bc >ad 两边同除以ab ,得c a >d b,即ab >0,bc >ad ⇒c a >d b; 若ab >0,c a >d b 成立,c a >d b两边同乘以ab , 得bc >ad ,即ab >0,c a >d b⇒bc >ad ; 若c a >d b,bc >ad 成立, 由于c a -d b =bc -ad ab>0, 又bc -ad >0,故ab >0,所以c a >d b,bc >ad ⇒ab >0. 综上,任两个作为条件都可推出第三个成立,故可组成3个正确命题.三、解答题11.已知a ,b ,x ,y 都是正数,且1a >1b,x >y . 求证:x x +a >y y +b. 证明 因为a ,b ,x ,y 都是正数且1a >1b,x >y , 所以x a >y b ,故a x <b y, 则a x +1<b y +1,即a +x x <b +y y. 所以x x +a >y b +y. 12.若a >b >0,c <d <0,e <0,求证:e (a -c )2>e (b -d )2. 证明 ∵c <d <0,∴-c >-d >0.∵a >b >0,∴a -c >b -d >0,∴(a -c )2>(b -d )2>0,∴1(a -c )2<1(b -d )2. 又∵e <0,∴e (a -c )2>e (b -d )2. 13.已知a >0,b >0,试比较a b +b a 与a +b 的大小. 解 ⎝⎛⎭⎫a b+b a -(a +b )=a a +b b -ab (a +b )ab=a a +b b -a b -b a ab =a (a -b )-b (a -b )ab=(a -b )(a -b )ab=(a +b )(a -b )2ab. 因为a >0,b >0,所以a +b >0,ab >0,又因为(a -b )2≥0(当且仅当a =b 时等号成立),所以(a +b )(a -b )2ab ≥0,即a b +b a≥a +b (当且仅当a =b 时等号成立). 四、探究与拓展14.若x >y >0,则y 2+1x 2+1与y x的大小关系是________. 答案 y 2+1x 2+1>y x 解析 y 2+1x 2+1-y 2x 2=x 2(y 2+1)-y 2(x 2+1)x 2(x 2+1)=x 2-y 2x 2(x 2+1)=(x -y )(x +y )x 2(x 2+1). 因为x >y >0,所以x -y >0,x +y >0,x 2>0,x 2+1>1,所以(x -y )(x +y )x 2(x 2+1)>0. 所以y 2+1x 2+1>y 2x2>0. 故 y 2+1x 2+1>y x. 15.已知-1≤a +b ≤1,1≤a -2b ≤3,求a +3b 的取值范围.解 设a +3b =λ1(a +b )+λ2(a -2b )=(λ1+λ2)a +(λ1-2λ2)b ,∴⎩⎪⎨⎪⎧λ1+λ2=1,λ1-2λ2=3,解得λ1=53,λ2=-23. 又-53≤53(a +b )≤53,-2≤-23(a -2b )≤-23, ∴-113≤a +3b ≤1,即a +3b 的取值范围为⎣⎡⎦⎤-113,1.。
课时作业8:习题课 基本不等式
习题课 基本不等式课时对点练1.设t =a +2b ,s =a +b 2+1,则t 与s 的大小关系是( ) A .s ≥t B .s >t C .s ≤t D .s <t 答案 A解析 ∵b 2+1≥2b ,∴a +2b ≤a +b 2+1,即t ≤s . 2.若a ,b ∈R ,则a 2+b 2与2|ab |的大小关系是( ) A .a 2+b 2≥2|ab | B .a 2+b 2=2|ab | C .a 2+b 2≤2|ab | D .a 2+b 2>2|ab |答案 A解析 ∵a 2+b 2-2|ab |=(|a |-|b |)2≥0,∴a 2+b 2≥2|ab |(当且仅当|a |=|b |时,等号成立).3.小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( ) A .a <v <ab B .v =ab C.ab <v <a +b2D .v =a +b2答案 A解析 设甲、乙两地的距离为s , 则v =2ss a +s b =21a +1b . 由于a <b ,∴1a +1b <2a ,∴v >a ,又1a +1b>21ab,∴v <ab . 故a <v <ab .4.若正实数a ,b 满足a +b =2,则ab 的最大值为( ) A .1 B .2 2 C .2 D .4 答案 A解析 由基本不等式得,ab ≤⎝⎛⎭⎫a +b 22=1,当且仅当a =b =1时,等号成立.5.设非零实数a ,b ,则“a 2+b 2≥2ab ”是“a b +ba ≥2”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 a 2+b 2≥2ab 成立的条件是任意非零实数,而a b +ba ≥2成立的条件是a ,b 同号,由集合的关系可知选B.6.(多选)已知a >0,b >0,a +b =1,对于代数式⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ,下列说法正确的是( ) A .最小值为9 B .最大值是9C .当a =b =12时取得最小值D .当a =b =12时取得最大值答案 AC解析 原式=1+1a +1b +1ab =1+a +b ab +1ab =1+2ab ,因为ab ≤⎝⎛⎭⎫a +b 22=14,所以1ab≥4.所以原式=1+2ab ≥9,当且仅当a =b =12时,等号成立.7.已知a >b >c ,则(a -b )(b -c )与a -c2的大小关系是________________. 答案(a -b )(b -c )≤a -c 2解析 因为a >b >c ,所以a -b >0,b -c >0, 所以a -c 2=(a -b )+(b -c )2≥(a -b )(b -c ),当且仅当a -b =b -c 时,等号成立.8.已知t >0,则函数y =t 2-4t +1t 的最小值为________.答案 -2解析 y =t +1t -4≥2-4=-2.当且仅当t =1时,等号成立.9.已知a >b >c ,你能比较出4与⎝⎛⎭⎫1a -b +1b -c (a -c )的大小吗?解 ⎝⎛⎭⎫1a -b +1b -c (a -c )≥4,理由如下:因为a -c =(a -b )+(b -c ), 所以⎝⎛⎭⎫1a -b +1b -c [(a -b )+(b -c )]=2+b -c a -b +a -b b -c,又a >b >c ,所以a -b >0,b -c >0, 所以b -c a -b +a -b b -c ≥2,故⎝⎛⎭⎫1a -b +1b -c (a -c )≥4, 当且仅当b -c a -b =a -b b -c 时,取“=”.10.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值. 解 (1)由2x +8y -xy =0, 得8x +2y =1, 又x >0,y >0, 则1=8x +2y≥28x ·2y =8xy,得xy ≥64, 当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64. (2)由2x +8y -xy =0, 得8x +2y=1, 则x +y =⎝⎛⎭⎫8x +2y ·(x +y ) =10+2x y +8yx≥10+22x y ·8yx=18. 当且仅当x =12且y =6时等号成立, 所以x +y 的最小值为18.11.已知a >0,b >0,ab =1,且m =b +1a ,n =a +1b ,则m +n 的最小值是( )A .3B .4C .5D .6 答案 B解析 m +n =b +1a +a +1b =2a +2b ≥24ab =4,当且仅当a =b =1时,等号成立.12.已知a >0,b >0,则下列不等式中不成立的是( ) A .a +b +1ab≥2 2 B .(a +b )⎝⎛⎭⎫1a +1b ≥4 C.a 2+b 2ab ≥2abD.2ab a +b>ab 答案 D 解析 a +b +1ab ≥2ab +1ab ≥22, 当且仅当a =b =22时,等号成立,A 成立; (a +b )⎝⎛⎭⎫1a +1b ≥2ab ·21ab=4, 当且仅当a =b 时,等号成立,B 成立; ∵a 2+b 2≥2ab >0,∴a 2+b 2ab≥2ab , 当且仅当a =b 时,等号成立,C 成立; ∵a +b ≥2ab ,a >0,b >0, ∴2ab a +b ≤1,2aba +b≤ab , 当且仅当a =b 时,等号成立,D 不成立.13.设自变量x 对应的因变量为y ,在满足对任意的x ,不等式y ≤M 都成立的所有常数M 中,将M 的最小值叫做y 的上确界.若a ,b 为正实数,且a +b =1,则-12a -2b 的上确界为( )A .-92 B.92 C.14 D .-4答案 A解析 因为a ,b 为正实数,且a +b =1, 所以12a +2b =⎝⎛⎭⎫12a +2b ×(a +b )=52+⎝⎛⎭⎫b 2a +2a b ≥52+2b 2a ×2a b =92, 当且仅当b =2a ,即a =13,b =23时,等号成立,因此有-12a -2b ≤-92,即-12a -2b 的上确界为-92.14.设x ∈(0,1),则当11-x +4x 取得最小值时,x 的值是________.答案 23解析 ∵x ∈(0,1),则1-x >0,由基本不等式可得11-x +4x=[(1-x )+x ]·⎝⎛⎭⎫11-x +4x =x 1-x +4(1-x )x+5≥2x 1-x ·4(1-x )x +5=9,当且仅当x 1-x=4(1-x )x ,即x =23时,等号成立.15.若实数x ,y 满足xy +3x =3⎝⎛⎭⎫0<x <12,则3x +1y -3的最小值为________. 答案 8解析 ∵实数x ,y 满足xy +3x =3⎝⎛⎭⎫0<x <12, ∴x =3y +3,∴0<3y +3<12,解得y >3.则3x +1y -3=y +3+1y -3=y -3+1y -3+6 ≥2(y -3)·1y -3+6=8,当且仅当y =4,x =37时,等号成立.16.已知a ,b 都是正数,求证:21a +1b≤ab ≤a +b2≤a 2+b 22. 证明 ∵1a +1b ≥21ab, ∴11a +1b ≤ab 2, 即21a +1b≤ab . 又∵⎝⎛⎭⎫a +b 22=a 2+2ab +b 24≤a 2+a 2+b 2+b 24=a 2+b 22,∴a +b 2≤a 2+b 22. 又由基本不等式得a +b2≥ab ,故21a +1b≤ab ≤a +b2≤a 2+b 22(当且仅当a =b 时,等号成立).。
高中数学课时作业十二基本不等式的应用湘教版必修第一册
课时作业(十二) 基本不等式的应用[练基础]1.已知a >0,b >0,a +b =1,则1a +1b的最小值是( )A .3B .4C .5D .62.已知a >0,b >0,ab =1,且m =b +1a ,n =a +1b,则m +n 的最小值是( )A .3B .4C .5D .63.某工厂过去的年产量为a ,技术革新后,第一年的年产量增长率为p ()p >0,第二年的年产量增长率为q ()q >0,p ≠q ,这两年的年产量平均增长率为x ,则( )A .x =p +q2 B .x =pqC .x >p +q2D .x <p +q24.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .55.某人要用铁管做一个形状为直角三角形且面积为1 m 2的铁架框(铁管的粗细忽略不计),在下面四种长度的铁管中,最合理(够用,又浪费最少)的是( )A .4.6 mB .4.8 mC .5 mD .5.2 m6.(多选)小王从甲地到乙地往返的速度分别为a 和b (a <b ),其全程的平均速度为v ,则( )A .a <v <abB .v =abC .ab <v <a +b2D .v =2aba +b7.已知x >0,y >0,若2y x +8xy>m +2恒成立,则实数m 的取值范围是________.8.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则该公司年平均利润的最大值是________万元.9.已知x >0,y >0,且x +4y =40. (1)求xy 的最大值;(2)求1x +1y的最小值.10.某公司今年3月欲抽调一批销售员推销A 产品,根据过去的经验,每月A 产品销售数量y (万件)与销售员的数量x (人)之间的函数关系式为y =920xx 2+3x +1 600(x >0).在该月内,销售员数量为多少时,销售的数量最大?最大销售量为多少?(精确到0.1万件)[提能力]11.(多选)若对于任意的x >0,不等式xx 2+3x +1≤a 恒成立,则实数a 可能的值为( )A .0B .15C .1D .212.已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8 13.若两个正实数x ,y 满足4x+1y=1,且不等式x +4y >m 2-6m 恒成立,则实数m的取值范围是________.14.在4×□+9×□=60的两个□中,分别填入两个自然数,使它们的倒数和最小,应分别填上________和________.15.某单位决定用18.8万元把一会展中心(长方体状,高度恒定)改造成方舱医院,假设方舱医院的后墙利用原墙不花钱,正面用一种复合板隔离,每米造价40元,两侧用砖砌墙,每米造价45元,顶部每平方米造价20元.问:(1)改造后方舱医院的面积S 的最大值是多少?(2)为使S 达到最大,且实际造价又不超过预算,那么正面复合板应设计为多长?[培优生]16.我们学习了二元基本不等式:设a >0,b >0,a +b2≥ab ,当且仅当a =b 时,等号成立,利用基本不等式可以证明不等式,也可以利用“和定积最大,积定和最小”求最值.(1)对于三元基本不等式请猜想:设a >0,b >0,c >0,a +b +c3≥________,当且仅当a=b =c 时,等号成立(把横线补全).(2)利用(1)猜想的三元基本不等式证明:设a >0,b >0,c >0,求证:(a 2+b 2+c 2)(a +b +c )≥9abc . (3)利用(1)猜想的三元基本不等式求最值:设a >0,b >0,c >0,a +b +c =1,求(1-a )(1-b )(1-c )的最大值.课时作业(十二) 基本不等式的应用1.解析:因为a >0,b >0,a +b =1, 所以1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=2+b a +ab≥2+2b a ·ab=4, 当且仅当a =b =12时等号成立,故选B. 答案:B2.解析:∵a >0,b >0,ab =1,且m =b +1a ,n =a +1b,则m +n =a +1a +b +1b ≥2a ·1a+2b ·1b=4, 当且仅当a =1a,b =1b即a =1,b =1时取等号. 故选B. 答案:B3.解析:由题意,可得a (1+p )(1+q )=a (1+x )2,即(1+p )(1+q )=(1+x )2,因为(1+p )(1+q )≤⎝ ⎛⎭⎪⎫1+p +1+q 22,当且仅当p =q 时取等号,p ≠q ,所以(1+p )(1+q )<⎝ ⎛⎭⎪⎫1+p +1+q 22, 则1+x <2+p +q 2=1+p +q 2,即x <p +q 2,故选D. 答案:D4.解析:可得6⎝ ⎛⎭⎪⎫2a +1b =1,所以2a +b =6⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=6⎝⎛⎭⎪⎫5+2a b+2b a ≥6×(5+4)=54,当且仅当2a b=2ba时等号成立,所以9m ≤54,即m ≤6,故选C.答案:C5.解析:设直角三角形两直角边长分别为x m ,y m ,则12xy =1,即xy =2.周长l =x +y +x 2+y 2≥2xy +2xy =22+2≈4.83(m), 当且仅当x =y 时等号成立.结合实际问题,可知选C. 故选C. 答案:C6.解析:设甲、乙两地之间的距离为s ,则全程所需的时间为s a +s b, ∴v =2ss a +s b=2aba +b .∵b >a >0,由基本不等式可得ab <a +b2,∴v =2ab a +b <2ab2ab=ab , 另一方面v =2ab a +b <2·⎝ ⎛⎭⎪⎫a +b 22a +b =a +b2,v -a =2ab a +b -a =ab -a 2a +b >a 2-a2a +b =0,∴v >a ,则a <v <ab . 故选AD. 答案:AD7.解析:因为x >0,y >0,所以2y x +8x y ≥8,当且仅当2y x =8x y时,“=”成立.所以m +2<8,解得m <6.答案:m <68.解析:每台机器运转x 年的年平均利润为y x=18-⎝ ⎛⎭⎪⎫x +25x ,而x >0,故y x≤18-225=8,当且仅当x =5时等号成立,此时年平均利润最大,最大值为8万元.答案:89.解析:(1)因为x >0,y >0,∴40=x +4y ≥24xy =4xy (当且仅当x =4y ,即x =20,y =5时等号成立) 所以xy ≤100, 因此xy 的最大值为100.(2)因为x +4y =40,即140(x +4y )=1,所以1x +1y =140(x +4y )⎝ ⎛⎭⎪⎫1x +1y =140⎝ ⎛⎭⎪⎫5+4y x +x y ≥140⎝ ⎛⎭⎪⎫5+24y x ·x y =940, (当且仅当x =2y ,即x =403,y =203时等号成立)所以1x +1y 的最小值为940.10.解析:依题意得y =920x +3+1 600x(x ∈N *). 因为x +1 600x≥2x ·1 600x=80,当且仅当x =1 600x,即x =40时上式等号成立,所以y max =92083≈11.1(万件).所以当销售员为40人时,销售量最大,最大销售量约为11.1万件. 11.解析:对于∀x >0,不等式xx 2+3x +1≤a 恒成立.即对∀x >0,不等式1x +1x+3≤a 恒成立.∵x +1x+3≥3+2x ·1x =5.当且仅当x =1时,取等号,所以1x +1x+3的最大值为15.所以a ≥15. 故选BCD. 答案:BCD12.解析:(x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y≥1+a +2y x ·axy=1+a +2a , 当且仅当y x =axy,即y =ax 时取等号. 依题意得1+a +2a ≥9,即(a -2)(a +4)≥0,又a +4>0, ∴a ≥2,解得a ≥4,故a 的最小值为4. 故选B. 答案:B 13.解析:∵4x+1y=1,∴x +4y =(x +4y )⎝ ⎛⎭⎪⎫4x +1y =4+16y x +x y+4≥8+216y x ·xy=16.当且仅当x =16y ,即y =4且x =64时取等号.∵x +4y >m 2-6m 恒成立,则16>m 2-6m ,解得-2<m <8.答案:-2<m <814.解析:设两数分别为x ,y (x ,y ∈N *),即4x +9y =60,1x +1y =⎝ ⎛⎭⎪⎫1x +1y 4x +9y 60 =160⎝ ⎛⎭⎪⎫13+4x y +9y x ≥160×(13+12)=512,当且仅当4x y =9yx,且4x +9y =60,即x =6且y =4时,等号成立,故应分别填上6,4. 答案:6 415.解析:(1)设正面复合板长为x m ,侧面长为y m ,总造价为z 元,则方舱医院的面积S =xy ,总造价z =40x +2×45y +20xy =40x +90y +20xy .由条件知z ≤188 000,即4x +9y +2xy ≤18 800. ∵x >0,y >0, ∴y ≤18 800-4x 9+2x .令t =9+2x ,则x =t -92(t >9),∴S =xy ≤t -92·18 800-(2t -18)t=-t 2+9 418t -9×9 409t=-⎝⎛⎭⎪⎫t +9×9 409t+9 418 ≤-2t ·9×9 409t+9 418=-2×3×97+9 418 =8 836,当且仅当t =9×9 409t,即t =291时等号成立.故S 的最大值为8 836 m 2.(2)由(1)知,当S =8 836 m 2时,t =291,t =9+2x ,∴x =141,则y =8 836141=1883.∴方舱医院的面积S 达到最大值8 836 m 2,实际造价又不超过预算时,正面复合板的长应设计为141 m .16.解析:(1)对于三元基本不等式猜想:设a >0,b >0,c >0,a +b +c3≥3abc ,当且仅当a =b =c 时,等号成立.(2)因为a >0,b >0,c >0,又因为a +b +c ≥33abc >0,a 2+b 2+c 2≥ 33a 2b 2c 2>0,所以(a 2+b 2+c 2)(a +b +c )≥93a 3b 3c 3=9abc , 当且仅当a =b =c 时,等号成立. 即(a 2+b 2+c 2)(a +b +c )≥9abc , (3)因为a >0,b >0,c >0,a +b +c3≥3abc ,所以abc ≤⎝ ⎛⎭⎪⎫a +b +c 33,又因为a +b +c =1,0<1-a <1,0<1-b <1,0<1-c <1,所以(1-a )(1-b )(1-c )≤⎝ ⎛⎭⎪⎫1-a +1-b +1-c 33=827,当且仅当a =b =c =13时,等号成立.所以(1-a )(1-b )(1-c )的最大值为827.。
新人教版高中数学必修第一册等式性质与不等式性质PPT课件及课时作业
2.方法归纳:作差比较法、赋值法、不等式性质法. 3.常见误区:注意不等式性质的单向性或双向性,即每条性质是否具有可 逆性.
A.|a|>|b|
C.
a b
>1
B.a2>b2
√D.a3>b3
可利用赋值法.令a=1,b=-2, 满足 a>b,但|a|<|b|,a2<b2,ab=-12<1, 故A,B,C都不正确.
所以 0<-ab<3,所以-3<ab<0. 由①②得-3<ab<4.
反思感悟
利用不等式的性质求取值范围的策略 (1)建立待求范围的整体与已知范围的整体的关系,最后利用一 次不等式的性质进行运算,求得待求的范围. (2)同向不等式的两边可以相加,这种转化不是等价变形,如果 在解题过程中多次使用这种转化,就有可能扩大其取值范围.
反思感悟
(1)利用不等式的性质对不等式的证明其实质就是利用性质对不等 式进行变形,变形要等价,同时要注意性质适用的前提条件. (2)用作差法证明不等式和用作差法比较大小的方法原理一样,变 形后判断符号时要注意充分利用题目中的条件.
跟踪训练2 已知a>b>0,c<0,证明:ac>bc .
方法一 ac-bc=cba-b a, ∵a>b>0,c<0,
√C.a>b⇒a3>b3
D.|a|>b⇒a2>b2
对于A,当a>0,b<0时不成立;选项B一定成立; 对于C,当a>b时,a3-b3=(a-b)(a2+ab+b2)=(a-b)·a+b22+34b2 >0成立; 对于D,当b<0时,不一定成立.如|2|>-3,但22<(-3)2.
课时4:不等关系和不等式 课件-2025届高三数学一轮复习
3.倒数性质的几个必备结论
(1)a b,ab 0 1 1 ; ab
(2)a 0 b 1 1 ; ab
(3)a b 0,0 c d a b ; cd
(4)0 a x b或a x b 0 1 1 1 . bxa
4.有关分数的性质
若a > b > 0,m > 0,则 (1)b bm , b bm (bm 0);
a am a am (2) a a m, a a m(bm 0).
b bm b bm
五、典型例题
六,课堂总结
1、主要内容:
1.不等式的性质 2.比较实数大小
2、易错点:
应用非不等式的性质 题目原始条件漏用
作业布置:
1、完成课时作业4
2、预习下一节内容: (1)复习课本44--49页,完成课时5中必备知识部分的填空。 (2)将课本43页第7、8、9、10、11、12题写在作业本上。
课时4:不等关系和不等式
课前准备:学案,复习资料,双色笔,笔记本,草稿本
一、课标要求 1、知识层面: (1)了解日常生活中的不等关系,了解不等式(组)的实际背景. (2)会比较两个实数的大小,掌握不等式的基本性质. 2、能力与素养: 通过本节课的学习提升学生分析问题,解决问题的能力,提升学 生数学运算,数学建模的核心素养.
二、高考回顾
பைடு நூலகம்
新高考I卷
2021
不等关系和不等式
5
2022
10
2023
5
2024
5
三、与其它章节的联系 常与集合、指数函数、对数函数、幂函数相关联.
四、本节课知识结构
1.全比较两个实数大小的方法
2.不等式的性质
(1)对称性:如果a>b,那么b<a;如果b<a,那么a>b.即a>b⇔b<a.(2)传递性:如果 a>b,b>c,那么a>c.即a>b,b>c⇒a>c.(3)可加性:如果a>b,那么a+c>b+c.(4)可 积性:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么ac<bc.(5)同向可加性:如 果a>b,c>d,那么a+c>b+d.(6)同向同正可乘性:如果a>b>0,c>d>0,那么 ac>bd.(7)可乘方性:如果a>b>0,那么an>bn(n∈N,n≥2).
不等关系与不等式
1第十一课时 不等关系与不等式【知识与技能】(1)通过具体情境建立不等观念,并能用不等式或不等式组表示不等关系; (2)能用不等式或不等式组解决简单的实际问题; (3)了解不等式的基本性质. 【重点难点】重点:用不等式或不等式组表示实际问题中的不等关系,并用不等式或不等式组研究含有简单的不等关系的问题;难点:用不等式或不等式组准确地表示不等关系,用不等式或不等式组解决简单的含有不等关系的实际问题. 【教学过程】 一、问题与探究1.某品牌酸奶的质量检查规定,酸奶中脂肪的含量f 应不少于2.5%,蛋白质的含量p 应不少于2.3%.你能用不等式表示对脂肪和蛋白质含量的规定吗?我们经常应用 来研究含有不等关系的问题,常用的不等号有: . 2.想一想,怎样比较两个实数的大小? 作差法比较两实数(代数式)大小2类型1 用不等式(组)表示不等关系【例1】《铁路旅行常识》规定:“一、随同成人旅行身高1.2~1.5米的儿童,享受半价客票(以下称儿童票),超过1.5米时,应买全价票.每一成人旅客可免费带一名身高不足1.2米的儿童,超过一名时,超过的人数应买儿童票;……;十、旅客免费携带品的体积和重量是:每件物品的外部尺寸长、宽、高之和不超过160厘米,杆状物品不超过200厘米,重量不超过20千克……”。
设身高为h (米),物品外部尺寸长、宽、高之和为P (厘米),请用不等式表示下表中的不等关系.“不足”、“不超过”等,对于实际问题中不要漏掉隐含条件.2.文字语言与数学符号语言之间的转换.将实际问题中的不等关系写成对应的不等式时,问题中关键性的文字语言与对应的数学符号语言之间的正确转换,关系到是否能正确地用不等式表示出不等关系.3.常见的文字语言与数学符号的转换: (1)x 为非负数;(2)x 为实数,而且大于1不大于6;(3)x 与y 的平方和不小于2,而且不大于10. 类型2 作差法比较两数(式)的大小【例2】已知x >1,比较x 3-1与2x 2-2x 的大小.3 【变式】设a >0,b >0,且a ≠b ,比较a a b b 与a b b a 的大小.小结:1.本题采用的是作差法比较大小,一般地,涉及两个代数式比较大小,常用作差法. 2.作差法比较两个数(式)的大小可以归纳为“三步一结论”,即作差→变形→定号→结论.其中变形为关键,定号为目的.在变形中,一般变形得越彻底,越有利于下一步的判断.在定号中,若为几个因式积,需对每个因式均先定号,若符号不确定时,需进行讨论. 【练习1】将例题中“x >1”改为“x ∈R ”,试比较x 3-1与2x 2-2x 的大小.【练习2】比较1816与1618的大小.类型3 不等式基本性质及应用【例3】(1)已知a >b ,e >f ,c >0.求证:f -ac <e -bc ; (2)若bc -ad ≥0,bd >0.求证:a +b b ≤c +d d .小结:用不等式的性质进行证明时要善于寻找欲证不等式的已知条件,利用相应的不等式性质证明;要注意观察一个不等式是不是在某个已知条件的两边同乘以(除以)一个常数;一个不等式是不是某两个同向不等式相加得到的;一个不等式是不是将一个不等式的两边取了倒数而得到的等等.【练习】已知0a b >>,0c d <<,0e <. 求证:e ea cb d>--.类型4 利用不等式的性质求范围问题【例4】已知12<a <60,15<b <36,求a -b 及ab 的取值范围.4【练习1】已知-π2≤α<β≤π2,求α+β2,α-β2的取值范围.【练习2】若α,β满足-π2<α<β<π2,则2α-β的取值范围是( )A .-π<2α-β<0B .-π<2α-β<πC .-3π2<2α-β<π2 D .0<2α-β<π三、课时小结1.使用不等式的性质时,一定要注意它们成立的前提条件,不可强化或弱化它们成立的条件,盲目套用. 2.用不等式(组)表示实际问题中不等关系的步骤(1)审题.通读题目,分清楚已知量和未知量,设出未知量;(2)找关系.寻找已知量与未知量之间有哪些不等关系(即满足什么条件,同时注意隐含条件);(3)列不等式(组).建立已知量和未知量之间的关系式.3.作差法比较大小的关键步骤是变形,变形时常采用配方,因式分解、通分、有理化等手段进行. 四、课时作业1.(2013·长沙高二检测)设b <a ,d <c ,则下列不等式中一定成立的是( ) A .a -c >b -d B .ac >bd C .a +c >b +d D .a +d >b +c 2.(2013·岳阳高二检测)已知非零实数a ,b 满足a >b ,则下列不等式成立的是( )A .a 2>b 2 B.1a <1b C .a 2b >ab 2 D.a b 2>ba 23.(2013·南昌高二检测)若a >b 且c ∈R ,则下列不等式中一定成立的是( ) A .a >bc B .a 2>b 2 C .a +c >b +c D .ac 2>bc 2 4.已知a >b >c ,且a +b +c =0,下列不等式恒成立的是( )A .ac >bcB .ab >acC .a |b |>c |b |D .a 2>b 2>c 2 5.已知c >1,且x =c +1-c ,y =c -c -1,则x ,y 之间的大小关系是( ) A .x >y B .x =y C .x <y D .x ,y 的关系随c 而定 6.一个两位数,其中个位数字为a ,十位数字为b ,且这个两位数大于50,可用不等式表示为________.7.若-1<x <y <0,则1x ,1y ,x 2,y 2的大小关系为________.8.已知a >b >c ,求证:1a -b +1b -c +1c -a >0.11.某粮食收购站分两个等级收购小麦,一级小麦每千克a 元,二级小麦每千克b 元(b <a ),现有一级小麦m 千克,二级小麦n 千克,若以两种价格的平均数收购,是否合理?为什么?。
高三数学第一轮复习课时作业(32)不等关系与不等式
课时作业(三十二) 第32讲 不等关系与不等式时间:35分钟 分值:80分基础热身1.若x ≠2或y ≠-1,M =x 2+y 2-4x +2y ,N =-5,则M 与N 的大小关系是( ) A .M >N B .M <N C .M =N D .M ≥N2.已知a +b >0,b <0,那么a ,b ,-a ,-b 的大小关系是( ) A .a >b >-b >-a B .a >-b >-a >b C .a >-b >b >-a D .a >b >-a >-b 3.已知ab ≠0,那么ab >1是b a<1的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.若0<α<π,则sin2α与2sin α的大小关系是( ) A .sin2α>2sin α B .sin2α<2sin α C .sin2α=2sin α D .无法确定 能力提升5.已知x >y >z ,x +y +z =0,则( ) A .xy >yz B .xz >yzC .xy >xzD .x |y |>z |y |6.设a >2,A =a +1+a ,B =a +2+a -2,则A 、B 的大小关系是( ) A .A >B B .A <B C .A ≥B D .A ≤B 7.“α+β>2,且αβ>1”是“α>1,且β>1”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件8.若a <b <0,则下列结论中正确的是( ) A.1a >1b 和1|a |>1|b |均不能成立 B.1a -b >1a 和1|a |>1|b |均不能成立 C .不等式1a -b >1a 和⎝⎛⎭⎫a +1b 2>⎝⎛⎭⎫b +1a 2均不能成立D .不等式1|a |>1|b |⎝⎛⎭⎫a +1a 2>⎝⎛⎭⎫b +1b 2均不能成立9.给出下列命题:①a >b 与b <a 是同向不等式;②a >b 且b >c 等价于a >c ;③a >b >0,d >c >0,则a c >b d;④a >b ⇒ac 2>bc 2;⑤a c 2>b c2⇒a >b .其中真命题的序号是________.10.若a 1<a 2,b 1<b 2,则a 1b 1+a 2b 2与a 1b 2+a 2b 1的大小关系是________.11.同学们都知道,在一次考试后,如果按顺序去掉一些高分,那么班级的平均分将降低;反之,如果按顺序去掉一些低分,那么班级的平均分将提高.这两个事实可以用数学语言描述为:若有限数列a 1,a 2,…,a n 满足a 1≤a 2≤…≤a n , 则________(结论用数学式子表示).12.(13分)已知a >b >c >1,设M =a -c ,N =a -b ,P =2⎝⎛⎭⎫a +b2-ab ,比较M ,N ,P 的大小.难点突破13.(1)(6分)对任意实数a 、b 、c ,在下列命题中,真命题是( ) A .“ac >bc ”是“a >b ”的必要条件 B .“ac =bc ”是“a =b ”的必要条件 C .“ac >bc ”是“a >b ”的充分条件 D .“ac =bc ”是“a =b ”的充分条件(2)(6分)设6<a <10,a2≤b ≤2a ,c =a +b ,那么c 的取值范围是( )A .9<c <30B .0≤c ≤18C .0≤c ≤30D .15<c <30课时作业(三十二)【基础热身】1.A 解析 由x ≠2或y ≠-1,则M -N =(x -2)2+(y +1)2>0. 2.C 解析 由a +b >0得,a >-b >0,∴-a <b <0,∴选C.3.A 解析 a b >1即a -b b >0,所以a >b >0,或a <b <0,此时b a <1成立;反之b a <1,所以a -ba>0,即a >b ,a >0,或a <0,a <b ,此时不能得出ab>1.4.B 解析 sin2α=2sin αcos α<2sin α. 【能力提升】5.C 解析 由x +y +z =0知x 、y 、z 中至少有一个小于零有一个大于零,又x >y >z ,所以z <0,x >0. 6.A 解析 A 2=2a +1+2a 2+a ,B 2=2a +2a 2-4,显然A 2>B 2.7.B 解析 若α>1,β>1,则α+β>2,且αβ>1;反之不然,如α=3,β=23,故选B.8.B 解析 ∵b <0,∴-b >0,∴a -b >a ,又∵a -b <0,a <0,∴1a -b <1a ,故1a -b >1a不成立;∵a <b <0,∴|a |>|b |,∴1|a |<1|b |,故1|a |>1|b |不成立.由此知选B. 9.③⑤ 解析 ①中两个不等式为异向不等式;②中只能确定⎩⎨⎧a >b ,b >c⇒a >c ,不是等价不等式;由a >b >0,d >c >0得ad >bc >0,∴a c >b d ,故③正确;当c =0时,④不正确;在已知条件下1c2>0恒成立,∴⑤正确.10.a 1b 1+a 2b 2>a 1b 2+a 2b 1 解析 (a 1b 1+a 2b 2)-(a 1b 2+a 2b 1)=(a 1-a 2)(b 1-b 2)>0.11.a 1+a 2+…+a m m ≤a 1+a 2+…+a n n(1≤m <n )和a m +1+a m +2+…+a n n -m ≥a 1+a 2+…+a nn(1≤m <n )解析 设1≤m <n ,如果去掉a m +1,a m +2,…,a n ,则a 1+a 2+…+a m m ≤a 1+a 2+…+a nn,反之a m +1+a m +2+…+a n n -m ≥a 1+a 2+…+a nn.12.解答 ∵b >c >1,∴b >c ,∴-b <-c , ∴a -b <a -c ,即N <M .P -N =a +b -2ab -(a -b )=b -2ab +b=b (b -2a +1)=b (b -a )+(1-a ), 由a >b >c >1,b -a <0,且1-a <0,∴P -N <0, 故得P <N <M .【难点突破】13.(1)B (2)A 解析 (1)逐条分析即可;(2)3a <ab <20a ,∴3<b <20,再根据不等式的性质可得,正确选项为A.。
课时作业4:2.1 第一课时 不等关系与不等式
2.1 等式性质与不等式性质第一课时 不等关系与不等式基础达标一、选择题1.下面能表示“a 与b 的和是非正数”的不等式为( ) A.a +b <0 B.a +b >0 C.a +b ≤0D.a +b ≥0解析 a 与b 的和是非正数,即a +b ≤0. 答案 C2.大桥桥头竖立的“限重40吨”的警示牌,是指示司机要安全通过该桥,应使车和货的总重量T 满足关系为( ) A.T <40 B.T >40 C.T ≤40D.T ≥40解析 “限重40吨”用不等式表示为T ≤40. 答案 C3.设M =x 2,N =-x -1,则M 与N 的大小关系是( ) A.M >N B.M =N C.M <ND.与x 有关解析 ∵M -N =x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34>0,∴M >N .答案 A4.下列不等式,正确的个数为( )①x 2+3>2x (x ∈R );②a 3+b 3≥a 2b +ab 2;③a 2+b 2≥2(a -b -1). A.0 B.1 C.2D.3解析 ①x 2+3-2x =(x -1)2+2>0,∴x 2+3>2x ;②a 3+b 3-a 2b -ab 2=(a +b )(a 2-ab +b 2)-ab (a +b )=(a +b )(a 2-2ab +b 2)=(a +b )(a -b )2,(a -b )2≥0,但a +b 的符号不能确定,∴②不一定正确;③a 2+b 2-2(a -b -1)=(a -1)2+(b +1)2≥0,∴a 2+b 2≥2(a -b -1).故①③正确,选C. 答案 C5.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示.盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h 1,h 2,h 3,h 4,则它们的大小关系正确的是( )A.h 2>h 1>h 4B.h 1>h 2>h 3C.h 3>h 2>h 4D.h 2>h 4>h 1解析 根据四个杯的形状分析易知h 2>h 1>h 4或h 2>h 3>h 4. 答案 A 二、填空题6.不等式a 2+4≥4a 中,等号成立的条件为________. 解析 令a 2+4=4a ,则a 2-4a +4=0,∴a =2. 答案 a =27.已知a ,b ∈R ,且ab ≠0,则ab -a 2________b 2(填“<”,“>”,“=”). 解析 两式作差得,ab -a 2-b 2=-⎝ ⎛⎭⎪⎫a -b 22-34b 2<0,所以,ab -a 2<b 2.答案 <8.(多空题)一辆汽车原来每天行驶x km ,如果该辆汽车每天行驶的路程比原来多19 km ,那么在8天内它的行程就超过2 200 km ,写出不等式为______________;如果它每天行驶的路程比原来少12 km ,那么它原来行驶8天的路程就得花9天多的时间,用不等式表示为____________.解析 由题意知,汽车原来每天行驶x km ,8天内它的行程超过2 200 km ,则8(x +19)>2 200.若每天行驶的路程比原来少12 km ,则原来行驶8天的路程就要用9天多,即8xx -12>9.答案 8(x +19)>2 200 8xx -12>9 三、解答题9.一个盒子中红、白、黑三种球分别为x 个、y 个、z 个,黑球个数至少是白球个数的一半,至多是红球个数的13,白球与黑球的个数之和至少为55,试用不等式(组)将题中的不等关系表示出来. 解 据题意可得⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55(x ,y ,z ∈N ). 10.设x ,y ,z ∈R ,比较5x 2+y 2+z 2与2xy +4x +2z -2的大小. 解 ∵5x 2+y 2+z 2-(2xy +4x +2z -2) =4x 2-4x +1+x 2-2xy +y 2+z 2-2z +1 =(2x -1)2+(x -y )2+(z -1)2≥0, ∴5x 2+y 2+z 2≥2xy +4x +2z -2, 当且仅当x =y =12且z =1时取等号.能力提升11.已知0<a 1<1,0<a 2<1,记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A.M <N B.M >N C.M =ND.无法确定解析 ∵0<a 1<1,0<a 2<1,∴-1<a 1-1<0,-1<a 2-1<0,∴M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1)>0,∴M >N ,故选B. 答案 B12.有学生若干人,住若干宿舍,如果每间住4人,那么还余19人,如果每间住6人,那么只有一间不满但不空,求宿舍间数和学生人数. 解 设宿舍有x 间,则学生有(4x +19)人,依题意, ⎩⎨⎧4x +19<6x ,4x +19>6(x -1).解得192<x <252. ∵x ∈N *,∴x =10,11或12.学生人数分别为59,63,67.故宿舍间数和学生人数分别为10间59人,11间63人或12间67人.创新猜想13.(多选题)下列说法错误的是()A.某人月收入x元不高于2 000元可表示为“x<2 000”B.小明的身高为x,小华的身高为y,则小明比小华矮可表示为“x>y”C.变量x不小于a可表示为“x≥a”D.变量y不超过a可表示为“y≥a”解析对于A,x应满足x≤2 000,故A错误;对于B,x,y应满足x<y,故B错误;C正确;对于D,y和a的大小关系可表示为“y≤a”,故D错误.答案ABD14.(多空题)已知a,b∈R,若ab=1,则a2+b2的最小值是________,当且仅当a =b=________,取得最小值.解析根据a2+b2-2ab=(a-b)2≥0,故a2+b2≥2ab=2,当且仅当a-b=0即a=b=±1时等号成立.答案2±1。
高中数学第二章等式与不等式2.2.1第1课时不等关系与不等式bb高一第一册数学
12/9/2021
第八页,共三十三页。
[答一答] 1.说明 a≤b 或 a≥b 的含义.并判断“3≥3”成立吗?为 什么?
提示:不等式 a≤b 应读作“a 小于或者等于 b”,其含义是 指“或者 a<b,或者 a=b”,等价于“a 不大于 b”,即若 a<b 与 a=b 之中有一个正确,则 a≤b 正确.
如果 a-b 是正数,那么 a>b;如果 a-b 是负数,那么 a<b; 如果 a-b 等于零,那么 a=b.反之也成立,就是 a-b>0⇔a>b; a-b=0⇔a=b;a-b<0⇔a<b.
上面等价符号的左式反映的是实数运算性质,右式反映的则 是实数大小的顺序,合起来就成为实数的运算性质与大小顺序之 间的关系.它是不等式这一章的理论基础,是不等式性质的证明, 是证明不等式和解不等式的主要依据.
12/9/2021
第三十三页,共三十三页。
[解] 设高速动车组的速度为 v1,波音飞机的最高时速为 v2,普通客车的速度为 v3,则 v1,v2 的关系:2v1+100≤v2;v1, v3 的关系:v1>3v3.
12/9/2021
第二十四页,共三十三页。
用不等式表示不等关系的关键在于找出题中体现不等关系 的关键词:“至少”“至多”“不少于”“不多于”等.用代数 式表示相应的量,并用与关键词对应的不等号连接.要注意 “≤”与“≥”中的“=”能否取到,避免错用.
“3≥3”成立,因为 a≥b 即为 a>b 或 a=b,也可以说成 a 不小于 b,只要 a>b 或 a=b 之中有一个正确,则 a≥b 就正确.
12/9/2021
高二人教A版必修5教案:3-1不等关系与不等式
提高 0.1 元,销量就相应地减少 2000 本。若把提价后杂志的定价设为 x 元,怎样用不等式
表示销售的总收入还不底于 20 万元呢?
(教师示范 → 学生板演 → 小结)
3、小结:文字语言与数学语言之间的转换,实数的运算性质与大小顺序之间的关系.
三、巩固练习:
1.某电脑拥护计划使用不超过 500 元的资金购买单价分别为 60 元、70 元的单片软件和盒装
教学重点:理解不等式的性质及其证明.
教学难点:从实际的不等关系中抽象出具体的不等式.
教学过程:
一、复习准备:
1. 提问:实数的运算性质与大小顺序之间的关系
2. 设点A与平面 之间的距离为 d,B为平面 上任意一点,则点A与平面 的距离小于
或等于A,B两点间的距离,请将上述不等关系写成不等式.
二、讲授新课:
三、本节难点
用不等式(组)正确表示出不等关系。
四、知识储备
“作差法”比较两个实数的大小和常用的不等式的基本性质 ① 用“作差法”比较两个实数大小的关键是判断差的正负,常采用配方、因式分解、有理
化等方法.常用的结论有 x2 0,− x2 0,|x| 0,-|x| 0 等.
② “作差法”的一般步骤是: ①作差;②变形;③判断符号;④得出结论. ③常用的不等式的基本性质
_____________.
④.配制 A, B 两种药剂需要甲、乙两种原料,已知配一剂 A 种药需甲料 3 毫克,乙料 5 毫克, 配一剂 B 药需甲料 5 毫克,乙料 4 毫克。今有甲料 20 毫克,乙料 25 毫克,若 A, B 两种药 至少各配一剂,则 A, B 两种药在配制时应满足怎样的不等关系呢?用不等式表示出来.
2023版新教材高中数学第二章等式与不等式-不等式及其性质课时作业新人教B版必修第一册
2.2.1 不等式及其性质必备知识基础练1.完成一项装修工程,请木工需付工资每人50元,请瓦工需付工资每人40元,现有工人工资预算2 000元,设木工x人,瓦工y人,则工人满足的关系式是( ) A.5x+4y<200 B.5x+4y≥200C.5x+4y=200 D.5x+4y≤2002.下列结论中正确的是( )A.若ac>bc,则a>b B.若a2>b2,则a>bC.若>,则a>b D.若<,则a>b3.设M=3x2-x+1,N=x2+x-1,则( )A.M>NB.M<NC.M=ND.M与N的大小关系与x有关4.已知c>a>b>0,则________.(填“>”“<”或“=”)5.若1<a<3,-4<b<2,那么a-|b|的取值范围是( )A.(-3,3] B.(-3,5)C.(-3,3) D.(1,4)6.(1)比较x2+3与2x的大小;(2)已知a,b为正数,且a≠b,比较a3+b3与a2b+ab2的大小.关键能力综合练7.下列不等式中,正确的是( )A.若a-c>b-d且c>d,则a>bB.若a>b且k∈N+,则a k>b kC.若a>b>0,c>d,则ac>bdD.若a>b,则ac2>bc28.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①A+B+C=90°+90°+C>180°,这与三角形内角和为180°相矛盾,A=B=90°不成立;②所以一个三角形中不能有两个直角;③假设三角形的三个内角A,B,C中有两个直角,不妨设A=B=90°,正确顺序的序号为( )A.①②③ B.①③②C.②③① D.③①②9.要证明+<2 可选择的方法有以下几种,其中最合理的为( )A.综合法 B.分析法C.反证法 D.归纳法10.已知α∈(0,),β∈[0,],则2α-的取值范围是( )A.(0,) B.(-,)C.(0,1) D.(-,1)11.(多选)已知a,b,c,d均为实数,则下列命题正确的是( )A.若ab<0,bc-ad>0,则->0B.若ab>0,->0,则bc-ad>0C.若bc-ad>0,->0,则ab>0D.若<<0,则<12.已知1<a<6,3<b<4,求a-b,的取值范围.核心素养升级练13.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:①男学生人数多于女学生人数;②女学生人数多于教师人数;③教师人数的两倍多于男学生人数.(1)若教师人数为4,则女学生人数的最大值为________;(2)该小组人数的最小值为________.14.已知a>0,b>0,试比较+与+的大小.2.2.1 不等式及其性质必备知识基础练1.解析:由题意可得,总的工资为50x+40y,又因为现有工人工资预算2 000元,故50x+40y≤2 000,化简可得5x+4y≤200.答案:D2.解析:对于A,c>0时,结论成立,故A不正确;对于B,a=-2,b=-1,满足a2>b2,但a<b,故B不正确;对于C,利用不等式的性质,可得结论成立;对于D,a=-1,b=2,满足<,但a<b,故D不正确.答案:C3.解析:因为M-N=3x2-x+1-(x2+x-1)=2x2-2x+2=2(x-)2+>0,所以M>N.答案:A4.解析:因为c>a,所以c-a>0,又因为a>b,所以>.答案:>5.解析:∵-4<b<2,∴0≤|b|<4,∴-4<-|b|≤0.又∵1<a<3,∴-3<a-|b|<3.答案:C6.解析:(1)(x2+3)-2x=x2-2x+3=(x-1)2+2≥2>0,所以x2+3>2x.(2)(a3+b3)-(a2b+ab2)=a3+b3-a2b-ab2=a2(a-b)-b2(a-b)=(a-b)(a2-b2)=(a-b)2(a+b),因为a>0,b>0,且a≠b,所以(a-b)2>0,a+b>0.所以(a3+b3)-(a2b+ab2)>0,即a3+b3>a2b+ab2.关键能力综合练7.解析:若a-c>b-d且c>d,则a>b,故A正确;当a=1,b=-2,k=2时,命题不成立,故B错误;令a=2,b=1,c=-2,d=-3,满足a>b>0,c>d,但推不出ac>bd,故C错误;令c=0可知D错误.答案:A8.解析:根据反证法的步骤,应该是先提出假设,再推出矛盾,最后否定假设,从而肯定结论.答案:D9.解析:要证明+<2最合理的方法是分析法.答案:B10.解析:因为α∈(0,),β∈[0,],所以2α∈(0,1),∈[0,],则-∈[-,0],所以2α-∈(-,1).答案:D11.解析:对于A,若ab<0,bc-ad>0,不等式两边同时除以ab得-<0,所以A不正确;对于B,若ab>0,->0,不等式两边同时乘以ab得bc-ad>0,所以B正确;对于C,若->0,当两边同时乘以ab时可得bc-ad>0,所以ab>0,所以C正确;对于D,由<<0,可知b<a<0,所以a+b<0,ab>0,所以<成立,所以D正确.答案:BCD12.解析:∵3<b<4,∴-4<-b<-3.∴1-4<a-b<6-3,即-3<a-b<3.又<<,∴<<,即<<2.综上,a-b的取值范围为(-3,3),的取值范围为(,2).核心素养升级练13.解析:设男学生、女学生、教师人数分别为x,y,z,则x>y>z.(1)若教师人数为4,则4<y<x<8,当x=7时,y取得最大值6.(2)当z=1时,1=z<y<x<2,不满足条件;当z=2时,2=z<y<x<4,不满足条件;当z=3时,3=z<y<x<6,y=4,x=5,满足条件.所以该小组人数的最小值为3+4+5=12.答案:(1)6 (2)1214.解析:方法一 作差法(+)-(+)=(-)+(-)=+==.∵a>0,b>0,∴+>0,>0,(-)2≥0,∴≥0,∴+≥+.方法二 作商法=====1+≥1.∵a>0,b>0,∴+>0,+>0,∴+≥+.方法三 平方法∵(+)2=++2,(+)2=a+b+2,∴(+)2-(+)2=.∵a>0,b>0,∴≥0,∵+>0,+>0,∴+≥+.。
高中数学必修一2.3 二次函数与一元二次方程、不等式(课时作业)
2.3二次函数与一元二次方程、不等式课程标准学科素养1.会结合一元二次函数的图象,判断一元二次方程实根的存在性及实根的个数,了解函数的零点与方程根的关系.2.经历从实际情境中抽象出一元二次不等式的过程,了解一元二次不等式的实际意义. 能借助一元二次函数求解一元二次不等式,并能用集合表示一元二次不等式的解集.3.借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系.通过对二次函数与一元二次方程、不等式的学习,提升“逻辑推理”、“数学运算”“直观想象”的核心素养.[对应学生用书P24]知识点一元二次不等式(1)一元二次不等式:一般地,我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.一元二次不等式的一般形式是ax2+bx+c>0或ax2+bx +c<0.[微思考]不等式x2-y2>0是一元二次不等式吗?提示:此不等式含有两个变量,根据一元二次不等式的定义,可知不是一元二次不等式.(2)二次函数的零点:一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x叫做二次函数y=ax2+bx+c的零点.(3)二次函数与一元二次方程、不等式的解的对应关系Δ>0Δ=0Δ<0 y=ax2+bx+c(a>0)的图象ax2+bx+c=0 (a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根ax2+bx+c>0 (a>0)的解集{x|x<x1,或x>x2}⎩⎨⎧⎭⎬⎫x⎪⎪x≠-b2a Rax 2+bx +c <0 (a >0)的解集 {x |x 1<x <x 2} ∅ ∅[微体验]1.不等式(1-x )(3+x )>0的解集是( ) A .{x |-3<x <1} B .{x |x <-3或x >1} C .{x |-1<x <3}D .{x |x <-1或x >3}A [不等式变为(x -1)(x +3)<0,解得-3<x <1.] 2.不等式x 2-2x -5>2x 的解集是________.解析 由x 2-2x -5>2x ,得x 2-4x -5>0,因为x 2-4x -5=0的两根为-1,5,故x 2-4x -5>0的解集为{x |x <-1或x >5}.答案 {x |x >5或x <-1}3.不等式-3x 2+5x -4>0的解集为________.解析 原不等式变形为3x 2-5x +4<0. 因为Δ=(-5)2-4×3×4=-23<0,所以3x 2-5x +4=0无解.由函数y =3x 2-5x +4的图象可知,3x 2-5x +4<0的解集为∅.答案 ∅4.二次不等式ax 2+2x -1<0的解集为R ,则a 的取值范围是________.解析 由题意得,⎩⎪⎨⎪⎧ a <0,Δ<0⇒⎩⎪⎨⎪⎧a <0,4+4a <0⇒a <-1.答案 a <-1[对应学生用书P 25]探究一 一元二次不等式的解法求不等式4x 2-4x +1>0的解集.解 因为Δ=(-4)2-4×4×1=0, 所以方程4x 2-4x +1=0的解是x 1=x 2=12,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠12. [变式探究] 将本例不等式变为:-x 2+2x -3>0,求解此不等式的解集. 解 不等式可化为x 2-2x +3<0. 因为Δ=(-2)2-4×3=-8<0, 方程x 2-2x +3=0无实数解, 而y =x 2-2x +3的图象开口向上, 所以原不等式的解集是∅. [方法总结]解一元二次不等式的一般步骤:第一步,将一元二次不等式化为一端为0的形式(习惯上二次项系数大于0). 第二步,求出相应一元二次方程的根,或判断出方程没有实根. 第三步,画出相应二次函数示意草图,方程有根的将根标在图中.第四步,观察图象中位于x 轴上方或下方的部分,对比不等式中不等号的方向,写出解集.[跟踪训练1] 求下列一元二次不等式的解集. (1)x 2-5x >6;(2)-x 2+7x >6. 解 (1)由x 2-5x >6,得x 2-5x -6>0. ∵x 2-5x -6=0的两根是x =-1或6, ∴原不等式的解集为{x |x <-1或x >6}. (2)由-x 2+7x >6,得x 2-7x +6<0. ∵x 2-7x +6=0的两个根是x =1或6, ∴不等式x 2-7x +6<0的解集为{x |1<x <6}. 探究二 二次函数与一元二次方程、不等式间的关系已知关于x 的不等式x 2+ax +b <0的解集为{x |1<x <2},试求关于x 的不等式bx 2+ax +1>0的解集.解 由根与系数的关系,可得⎩⎪⎨⎪⎧ -a =1+2,b =1×2,即⎩⎪⎨⎪⎧a =-3,b =2. ∴不等式bx 2+ax +1>0,即2x 2-3x +1>0. 由2x 2-3x +1>0,解得x <12或x >1.∴bx 2+ax +1>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <12或x >1. [方法总结]应用三个“二次”之间的关系解题的思想一元二次不等式与其对应的函数与方程之间存在着密切的联系,即给出了一元二次不等式的解集,则可知不等式二次项系数的符号和相应一元二次方程的根.在解决具体的数学问题时,要注意三者之间的相互联系,并在一定条件下相互转换.[跟踪训练2] 已知不等式ax 2-bx +2<0的解集为{x |1<x <2},求a ,b 的值. 解 方法一:由题设条件知a >0,且1,2是方程ax 2-bx +2=0的两实根.由根与系数的关系,知⎩⎨⎧1+2=b a,1×2=2a,解得⎩⎪⎨⎪⎧a =1,b =3.方法二:把x =1,2分别代入方程ax 2-bx +2=0中,得⎩⎪⎨⎪⎧ a -b +2=0,4a -2b +2=0.解得⎩⎪⎨⎪⎧a =1,b =3.探究三 一元二次不等式的实际应用问题某校园内有一块长为800 m ,宽为600 m 的长方形地面,现要对该地面进行绿化,规划四周种花卉(花卉带的宽度相同),中间种草坪,若要求草坪的面积不小于总面积的一半,求花卉带宽度的范围.解 设花卉带的宽度为x m(0<x <300), 则中间草坪的长为(800-2x )m ,宽为(600-2x )m. 根据题意可得(800-2x )(600-2x )≥12×800×600,整理得x 2-700x +60 000≥0, 即(x -600)(x -100)≥0,解得0<x ≤100或x ≥600,x ≥600不符合题意,舍去. 故所求花卉带宽度的范围为(0,100]. [方法总结]一元二次不等式应用题常以二次函数为模型,解题时要弄清题意,准确找出其中的不等关系,再利用一元二次不等式求解,确定答案时应注意变量具有的“实际含义”.[跟踪训练3] 在一个限速40 km /h 的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事发后现场测得甲车的刹车距离略超过12 m ,乙车的刹车距离略超过10 m. 又知甲、乙两种车型的刹车距离S m 与车速x km/h 之间分别有如下关系:S 甲=0.1x +0.01x 2,S 乙=0.05x +0.005x 2. 问谁超速行驶应负主要责任.解 由题意列出不等式S 甲=0.1x 甲+0.01x 2甲 >12, 解得x 甲<-40或x 甲>30, S 乙=0.05x 乙+0.005x 2乙>10. 解得x 乙<-50或x 乙>40.由于x >0,从而得x 甲>30 km /h ,x 乙>40 km/h. 经比较知乙车超过限速,应负主要责任.[对应学生用书P 26]1.解一元二次不等式的常见方法(1)图象法:由一元二次方程、一元二次不等式及二次函数的关系求解. (2)代数法:将所给不等式化为一般式后借助分解因式或配方求解. 2.一元二次不等式解集的记忆方法(1)一元二次不等式ax 2+bx +c >0(a >0)与ax 2+bx +c <0(a >0)的解集的记忆口诀:大于取两边,小于取中间.(2)当一元二次不等式ax 2+bx +c >0与ax 2+bx +c <0的二次项系数a <0时,可以转化为a >0.3.解一元二次不等式应用题解一元二次不等式应用题的关键在于构造一元二次不等式模型,选择其中起关键作用的未知量为x ,用x 来表示其他未知量,根据题意,列出不等关系再求解.课时作业(十) 二次函数与一元二次方程、不等式[见课时作业(十)P 145]1.不等式9x 2+6x +1≤0的解集是( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪x =-13 B .⎩⎨⎧⎭⎬⎫x ⎪⎪-13≤x ≤13 C .∅D .⎩⎨⎧⎭⎬⎫-13A [变形为(3x +1)2≤0.∴x =-13.]2.(2018·全国卷Ⅰ)已知集合A ={x |x 2-x -2>0},则∁R A =( ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2} D .{x |x ≤-1}∪{x |x ≥2}B [通解:A ={x |(x -2)(x +1)>0}={x |x <-1或x >2},所以∁R A ={x |-1≤x ≤2}. 优解:因为A ={x |x 2-x -2>0},所以∁R A ={x |x 2-x -2≤0}={x |-1≤x ≤2}.] 3.一元二次方程ax 2+bx +c =0的根为2,-1,则当a <0时,不等式ax 2+bx +c ≥0的解集为( )A .{x |x <-1或x >2}B .{x |x ≤-1或x ≥2}C .{x |-1<x <2}D .{x |-1≤x ≤2}D [由题意知,-b a =1,ca =-2,∴b =-a ,c =-2a ,又∵a <0,∴x 2-x -2≤0,∴-1≤x ≤2.]4.在R 上定义运算“⊙”:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值范围为( )A .{x |0<x <2}B .{x |-2<x <1}C .{x | x <-2或x >1}D .{x |-1<x <2}B [根据给出的定义得,x ⊙(x -2)=x (x -2)+2x +(x -2)=x 2+x -2=(x +2)(x -1),又x ⊙(x -2)<0,则(x +2)(x -1)<0,故不等式的解集是{x |-2<x <1}.]5.若产品的总成本y (万元)与产量x (台)之间的函数关系式是y =3 000+20x -0.1x 2(0<x <240),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是( )A .100台B .120台C .150台D .180台C [由条件知25x -y =25x -3 000-20x +0.1x 2=0.1x 2+5x -3 000≥0,即x 2+50x -30 000≥0. ∴(x +200)(x -150)≥0. 解得x ≥150或x ≤-200(舍去).∴最低产量为150台.]6.不等式ax 2+bx +12>0的解集为{x |-3<x <2},则a -b =________.解析 由题意,得⎩⎪⎨⎪⎧a <0,-3+2=-b a ,-3×2=12a,解得⎩⎪⎨⎪⎧a =-2,b =-2.∴a -b =0. 答案 07.已知集合A ={x |3x -2-x 2<0},B ={x |x -a <0},且B ⊆A ,则a 的取值范围为________.解析 A ={x |3x -2-x 2<0}={x |x 2-3x +2>0}={x |x <1或x >2},B ={x |x <a }.若B ⊆A ,如图,则a ≤1.答案 (-∞, 1]8.若方程x 2+(m -3)x +m =0有两个正实根,则m 的取值范围是________. 解析 由题意得,⎩⎪⎨⎪⎧Δ=(m -3)2-4m ≥0,x 1+x 2=3-m >0,x 1x 2=m >0,解得0<m ≤1.答案 0<m ≤19.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏.为了使这批台灯每天能获得400元以上的销售收入,应怎样制定这批台灯的销售价格?解 设每盏台灯售价x 元,则x ≥15,并且日销售收入为x [30-2(x -15)],由题意知,当x ≥15时,有x [30-2(x -15)]>400,解得:15≤x <20.所以为了使这批台灯每天获得400元以上的销售收入,应当制定这批台灯的销售价格为x ∈[15,20).10.关于x 的不等式mx 2-mx -6+m <0对x ∈R 恒成立,求实数m 的取值范围. 解 ①若m =0,则问题等价于-6<0对x ∈R 恒成立,显然成立.②若m ≠0,则有⎩⎪⎨⎪⎧ m <0,Δ<0,即⎩⎪⎨⎪⎧m <0,(-m )2-4m (m -6)<0.解得m <0.综上所述,所求m 的取值范围是m ≤0.1.不等式mx 2-ax -1>0(m >0)的解集可能是( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >14 B .R C .⎩⎨⎧⎭⎬⎫x ⎪⎪-13<x <32 D .∅A [因为Δ=a 2+4m >0,所以函数y =mx 2-ax -1的图象与x 轴有两个交点,又m >0,所以原不等式的解集不可能是B 、C 、D .]2.不等式组⎩⎪⎨⎪⎧x 2-1<0,x 2-3x <0的解集为( )A .{x |-1<x <1}B .{x |0<x <3}C .{x |0<x <1}D .{x |-1<x <3}C [由⎩⎪⎨⎪⎧ x 2-1<0x 2-3x <0,得⎩⎪⎨⎪⎧-1<x <10<x <3,∴0<x <1.] 3.设a <-1,则关于x 的不等式a (x -a )⎝⎛⎭⎫x -1a <0的解集为________. 解析 因为a <-1,所以a (x -a )·⎝⎛⎭⎫x -1a <0⇔(x -a )·⎝⎛⎭⎫x -1a >0.又a <-1,所以1a>a ,所以x >1a或x <a .答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪x <a 或x >1a 4.某商品在最近30天内的价格f (t )与时间t (单位:天)的函数关系是f (t )=t +10(0<t ≤30,t ∈N );销售量g (t )与时间t 的函数关系是g (t )=-t +35(0<t ≤30,t ∈N ),则使这种商品日销售金额不小于500元的t 的范围为________.解析 日销售金额=(t +10)(-t +35),依题意有(t +10)(-t +35)≥500,解得解集为{t |10≤t ≤15,t ∈N }.答案 {t |10≤t ≤15,t ∈N }5.解关于x 的不等式(a ∈R ):x 2-(a +a 2)x +a 3>0. 解 将不等式x 2-(a +a 2)x +a 3>0变形为 (x -a )(x -a 2)>0.当a <0时,有a <a 2,所以不等式的解集为{x |x <a 或x >a 2}; 当a =0时,a =a 2=0,所以不等式的解集为{x |x ∈R ,且x ≠0};当0<a<1时,有a>a2,所以不等式的解集为{x|x<a2或x>a};当a=1时,a=a2=1,所以不等式的解集为{x|x∈R,且x≠1};当a>1时,有a<a2,所以不等式的解集为{x|x<a或x>a2}.6.(拓广探索)某热带风暴中心B位于海港城市A东偏南30°的方向,与A市相距400 km.该热带风暴中心B以40 km/h的速度向正北方向移动,影响范围的半径是350 km.问:从此时起,经多少时间后A市将受热带风暴影响,大约受影响多长时间?解如图,以A市为原点,正东方向为x轴建立直角坐标系.∵AB=400,∠BAx=30°,∴台风中心B的坐标为(2003,-200),x h后台风中心B到达点P(2003,40x-200)处.由已知,A市受台风影响时,有|AP|≤350,即(2003)2+(40x-200)2≤3502,整理得16x2-160x+375≤0,解得,3.75≤x≤6.25,A市受台风影响的时间为6.25-3.75=2.5.故在3.75 h后,A市会受到台风的影响,时间长达2.5 h.。
【课件】等式性质与不等式性质+第一课时不等关系与不等式高一上学期数学人教A版(2019)必修第一册
限时小练
1.在开山工程爆破时,已知导火索燃烧的速度是每秒12厘米,人跑开的速度是 每秒 4 米,为了使点燃导火索的人能够在爆破时跑到 100 米以外的安全区,导 火索的长度 x(厘米)应该满足的不等式为( )
巩固与练习(3)
例 3. 已知 a>0,求证:a+a1≥2.
证明 法一利用 a2+b2≥2ab.
∵a>0, ∴a+a1=(
a)2+
1 2 a
≥2 a·1a=2. 当且仅当 a=1 时,等号成立.
法二
∵a+a1-2=(
a)2+
1a2-2
=
a- 1a2≥0,
∴a+a1≥2.
深化与思考
1.比较两数的大小或证明不等式,最基本的方法是作差比 较法,其关键是作差变形,判断差的符号.
全票,其余人可享受 7.5 折优惠.”乙车队说:“你们属团体票,按原价的 8 折
优惠.”这两个车队的原价、车型都是一样的,试根据单位去的人数比较两车队
的收费哪家更优惠.
限时小练
限时小练
限时小练
简解答:
课堂作业
1、练习1,2,3 2、预习 本节剩余部分。
本节内容结束 THANKS
代数复习 等式
数式 不等式
复习引入 方程(组)
一元一次不等式(组)
函数
解不等式(组)的理论依据是什么? 方程(组)、不等式与函数之间有什么联系?
复习引入
常见的不等关系有哪些?你能用文字语言和符号语言 表述吗?
文字语言 大于 小于
大于或等于(不小于) 小于或等于(不大于)
符号语言 > < ≥ ≤
课时作业13:不等关系与不等式
§1.4 不等关系与不等式课时精练1.若a ,b 都是实数,则“a -b >0”是“a 2-b 2>0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 a -b >0⇒a >b ≥0⇒a >b ≥0⇒a 2>b 2, 但a 2-b 2>0⇏a -b >0,所以“a -b >0”是“a 2-b 2>0”的充分不必要条件.2.已知非零实数a ,b 满足a <b ,则下列命题成立的是( )A .a 2<b 2B .ab 2<a 2b C.1ab 2<1a 2bD.b a <a b 答案 C解析 若a <b <0,则a 2>b 2,故A 不成立;若⎩⎪⎨⎪⎧ab >0,a <b ,则a 2b <ab 2,故B 不成立; 若a =1,b =2,则b a =2,a b =12,b a >a b,故D 不成立,由不等式的性质知,C 正确. 3.如果x +y <0,且y >0,那么下列不等式成立的是( )A .y 2>x 2>-xyB .x 2>y 2>-xyC .x 2<-xy <y 2D .x 2>-xy >y 2答案 D解析 x 2-y 2=(x -y )(x +y ),∵x +y <0且y >0,∴x <0,∴x -y <0,∴x 2-y 2>0,∴x 2>y 2,又xy +y 2=y (x +y ),∵x +y <0,y >0,∴y (x +y )<0,∴y 2<-xy .又x2+xy=x(x+y)>0,∴x2>-xy,综上,x2>-xy>y2.4.已知a1∈(0,1),a2∈(0,1),记M=a1a2,N=a1+a2-1,则M与N的大小关系是() A.M<N B.M>NC.M=N D.不确定答案 B解析M-N=a1a2-(a1+a2-1)=a1a2-a1-a2+1=(a1-1)(a2-1),又a1∈(0,1),a2∈(0,1),∴a1-1<0,a2-1<0.∴(a1-1)(a2-1)>0,即M-N>0,∴M>N.5.(多选)已知c<b<a,且ac<0,那么下列不等式中,一定成立的是()A.ab>ac B.c(b-a)>0C.cb2<ab2D.ac(a-c)<0答案ABD解析由c<b<a且ac<0知a>0且c<0,b的正负不确定,由b>c且a>0知ba>ca,故A一定成立;∵b-a<0且c<0,∴c(b-a)>0,故B一定成立;当b=0时,cb2=ab2=0,故C不一定成立;又a-c>0且ac<0,∴ac(a-c)<0,故D一定成立.6.(多选)有外表一样,重量不同的六个小球,它们的重量分别是a,b,c,d,e,f,已知a +b+c=d+e+f,a+b+e>c+d+f,a+b+f<c+d+e,a+e<b.则下列判断正确的有() A.b>c>f B.b>e>fC.c>e>f D.b>e>c答案ABD解析因为a+b+c=d+e+f,a+b+e>c+d+f,所以e-c>c-e,所以e>c,又因为a+b+c=d+e+f,a+b+f<c+d+e,所以c-f>f-c,所以c>f,所以e>c>f,所以C错误;又因为a+e<b,所以a<b,e<b,所以b>e>c,b>e>f,b>c>f均成立,所以ABD正确.7.已知M=x2+y2+z2,N=2x+2y+2z-π,则M________N.(填“>”“<”或“=”)答案>解析 M -N =x 2+y 2+z 2-2x -2y -2z +π=(x -1)2+(y -1)2+(z -1)2+π-3≥π-3>0,故M >N .8.已知非零实数a ,b 满足a >b ,则下列结论正确的是________(填序号).①1a <1b;②a 3>b 3;③2a >2b ;④ln a 2>ln b 2. 答案 ②③解析 当a >0,b <0时,1a >0>1b,故①不正确; 由函数y =x 3,y =2x 的单调性可知,②③正确;当a =1,b =-1时,ln a 2=ln b 2=ln 1=0,故④不正确.9.近来鸡蛋价格起伏较大,每两周的价格均不相同,假设第一周、第二周鸡蛋价格分别为a 元/斤、b 元/斤,家庭主妇甲和乙买鸡蛋的方式不同:家庭主妇甲每周买3斤鸡蛋,家庭主妇乙每周买10元钱的鸡蛋,试比较谁的购买方式更优惠(两次平均价格低视为更优惠)________.(在横线上填甲或乙即可)答案 乙解析 由题意得甲购买产品的平均单价为3a +3b 6=a +b 2,乙购买产品的平均单价为2010a +10b=2ab a +b,由条件得a ≠b . ∵a +b 2-2ab a +b =(a -b )22(a +b )>0, ∴a +b 2>2ab a +b, 即乙的购买方式更优惠.10.(2021·浙江宁海中学月考)已知等比数列{a 1,a 2,a 3,a 4}满足a 1∈(0,1),a 2∈(1,2),a 3∈(2,3),则a 4的取值范围是________.答案 (22,9)解析 设等比数列{a 1,a 2,a 3,a 4}的公比为q ,由a 1∈(0,1),a 2∈(1,2),a 3∈(2,3)可知,0<a 1<1①,1<a 1q <2②,2<a 1q 2<3③,由③÷②可得1<q <3,③÷①可得q 2>2,即q >2或q <-2,②÷①可得q >1, 所以2<q <3,所以a 4=a 3q ∈(22,9).11.已知a +b >0,试比较a b 2+b a 2与1a +1b 的大小. 解 a b 2+b a 2-⎝⎛⎭⎫1a +1b =a -b b 2+b -a a2 =(a -b )·⎝⎛⎭⎫1b 2-1a 2=(a +b )(a -b )2a 2b 2. ∵a +b >0,(a -b )2≥0,∴(a +b )(a -b )2a 2b 2≥0. ∴a b 2+b a 2≥1a +1b. 12.(1)若bc -ad ≥0,bd >0,求证:a +b b ≤c +d d; (2)已知c >a >b >0,求证:a c -a >b c -b. 证明 (1)∵bc ≥ad ,1bd >0,∴c d ≥a b, ∴c d +1≥a b +1,∴a +b b ≤c +d d. (2)∵c >a >b >0,∴c -a >0,c -b >0.∵a >b >0,∴1a <1b, 又∵c >0,∴c a <c b ,∴c -a a <c -b b, 又c -a >0,c -b >0,∴a c -a >b c -b.13.(多选)若0<a <1,b >c >1,则( )A.⎝⎛⎭⎫b c a >1B.c -a b -a >c b C .c a -1<b a -1D .log c a <log b a答案 AD解析 对于A ,∵b >c >1,∴b c>1.∵0<a <1,则⎝⎛⎭⎫b c a >⎝⎛⎭⎫b c 0=1,故正确. 对于B ,若c -a b -a >c b,则bc -ab >bc -ac ,即a (c -b )>0,这与0<a <1,b >c >1矛盾,故错误. 对于C ,∵0<a <1,∴a -1<0.∵b >c >1,∴c a -1>b a -1,故错误.对于D ,∵0<a <1,b >c >1,∴log c a <log b a ,故正确.14.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(1)男学生人数多于女学生人数;(2)女学生人数多于教师人数;(3)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为________.②该小组人数的最小值为________.答案 ①6 ②12解析 设男学生人数为x ,女学生人数为y ,教师人数为z ,由已知得⎩⎪⎨⎪⎧ x >y ,y >z ,2z >x ,且x ,y ,z均为正整数.①当z =4时,8>x >y >4,∴x 的最大值为7,y 的最大值为6,故女学生人数的最大值为6.②x >y >z >x 2,当x =3时,条件不成立,当x =4时,条件不成立,当x =5时,5>y >z >52,此时z =3,y =4.∴该小组人数的最小值为12.15.已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系为( )A .a <b ≤cB .b ≤c <aC .b <c <aD .b <a <c答案 A解析 c -b =4-4a +a 2=(a -2)2≥0,∴c ≥b ,又b +c =6-4a +3a 2,c -b =4-4a +a 2,两式相减得2b =2+2a 2即b =1+a 2,∴b -a =a 2+1-a =⎝⎛⎭⎫a -122+34>0, ∴b >a ,∴a <b ≤c .16.观察以下运算:1×5+3×6>1×6+3×5,1×5+3×6+4×7>1×6+3×5+4×7>1×7+3×6+4×5.(1)若两组数a 1,a 2与b 1,b 2,且a 1≤a 2,b 1≤b 2,则a 1b 1+a 2b 2≥a 1b 2+a 2b 1是否成立,试证明.(2)若两组数a 1,a 2,a 3与b 1,b 2,b 3且a 1≤a 2≤a 3,b 1≤b 2≤b 3,对a 1b 3+a 2b 2+a 3b 1,a 1b 2+a 2b 1+a 3b 3,a 1b 1+a 2b 2+a 3b 3进行大小顺序(不需要说明理由).解 (1)成立,证明如下:∵a1b1+a2b2-(a1b2+a2b1)=a1(b1-b2)+a2(b2-b1)=(a1-a2)(b1-b2),又a1≤a2,b1≤b2,∴(a1-a2)(b1-b2)≥0,即a1b1+a2b2≥a1b2+a2b1.(2)a1b3+a2b2+a3b1≤a1b2+a2b1+a3b3≤a1b1+a2b2+a3b3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业35 不等关系与不等式
一、选择题
1.设M =2a (a -2),N =(a +1)(a -3),则有( A ) A .M >N B .M ≥N C .M <N D .M ≤N
解析:因为M -N =2a (a -2)-(a +1)(a -3)=a 2-2a +3=(a -1)2+2>0,所以
M >N ,故选A.
2.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( C ) A.1
a <
b B .a 2>b 2 C.a
c 2+1>b
c 2+1
D .a |c |>b |c | 解析:取a =1,b =-1,排除选项A ;取a =0,b =-1,排除选项B ;取c =0,排除选项D ;显然1c 2+1>0,则不等式a >b 的两边同时乘1
c 2+1,所得不等式仍成立.故选
C.
3.若a <b <0,则下列不等式不能成立的是( A ) A.1a -b >1
a B.1a >1
b C .|a |>|b |
D .a 2>b 2
解析:取a =-2,b =-1,则1a -b >1
a
不成立.
4.若a ,b 都是实数,则“a -b >0”是“a 2-b 2>0”的( A ) A .充分不必要条件 B .必要不充分条件 C .充要条件
D .既不充分也不必要条件
解析:由a -b >0得a >b ≥0,则a 2>b 2
⇒a 2-b 2>0;由a 2-b 2>0得a 2>b 2,可得a >b ≥0或a <b ≤0等,所以“a -b >0”是“a 2-b 2>0”的充分不必要条件.故选A.
5.已知x >y >z ,x +y +z =0,则下列不等式成立的是( C )
A .xy >yz
B .xz >yz
C .xy >xz
D .x |y |>z |y |
解析:因为x >y >z ,x +y +z =0,所以3x >x +y +z =0,3z <x +y +z =0,所以x >0,z <0.
所以由⎩
⎨⎧
x >0,y >z 可得xy >xz .故选C.
6.已知a >b ,则下列各式一定正确的是( D ) A .a lg x >b lg x B .ax 2>bx 2 C .a 2>b 2
D .a ·2x >b ·2x
解析:A 中,当x =1时,不成立;B 中,当x =0时,不成立;C 中,当a =0,b =-1时,不成立;D 中,因为2x >0,所以a ·2x >b ·2x 成立.故选D.
7.已知a =14log 23,b =12,c =1
2log 53,则( A ) A .c <a <b B .a <b <c C .b <c <a
D .b <a <c
解析:由题可知a =log 24
3<log 2
4
4=12=b ,又a =14×lg3lg2=12×lg 3lg2,那么c =12
log 53=12×lg3lg5=12×lg 3lg 5
<12×lg 3
lg2=a ,则c <a <b .故选A.
8.若a <b ,d <c ,且(c -a )(c -b )<0,(d -a )(d -b )>0,则a ,b ,c ,d 的大小关系是( A )
A .d <a <c <b
B .a <c <b <d
C .a <d <b <c
D .a <d <c <b
解析:∵a <b ,(c -a )(c -b )<0,(d -a )(d -b )>0,∴a <c <b ,且d <a 或d >b ,结合d <c ,
知d <a <c <b .故选A.
二、填空题
9.用一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m,要求菜园的面积不小于216 m 2,靠墙的一边长为x m,其中的不等关系可用不等式(组)表示
为⎩⎨⎧
0<x ≤18,x ⎝ ⎛⎭
⎪⎫
15-x 2≥216.
解析:矩形靠墙的一边长为x m,则另一边长为30-x 2 m,即⎝ ⎛
⎭
⎪⎫15-x 2 m,根据题意
知⎩⎨⎧
0<x ≤18,x ⎝ ⎛⎭
⎪⎫
15-x 2≥216.
10.已知a ,b 为实数,且a ≠b ,a <0,则a <2b -b 2
a (填“>”“<”或“=”). 解析:∵a ≠
b ,a <0,∴a -⎝ ⎛⎭⎪⎫2b -b 2a =(a -b )2a <0,∴a <2b -b 2
a .
11.已知a ,b ,c ,d 均为实数,有下列命题 ①若ab >0,bc -ad >0,则c a -d
b >0; ②若ab >0,
c a -d
b >0,则b
c -a
d >0; ③若bc -ad >0,c a -d
b >0,则ab >0. 其中正确的命题是①②③. 解析:∵ab >0,b
c -a
d >0, ∴c a -d b =bc -ad
ab >0,∴①正确; ∵ab >0,又c a -d
b >0,即b
c -a
d ab >0, ∴bc -ad >0,∴②正确;
∵bc -ad >0,又c a -d
b >0,即b
c -a
d ab >0,∴ab >0,∴③正确.故①②③都正确. 12.已知函数f (x )=ax +b,0<f (1)<2,-1<f (-1)<1,则2a -b 的取值范围是
⎝ ⎛⎭
⎪⎫-32,52. 解析:由函数的解析式可知0<a +b <2,-1<-a +b <1,又2a -b =12(a +b )-3
2(-
a +
b ),结合不等式的性质可得2a -b ∈⎝ ⎛⎭
⎪⎫
-32,52.
13.已知存在实数a 满足ab 2>a >ab ,则实数b 的取值范围是(-∞,-1).
解析:因为ab 2>a >ab ,所以a ≠0,当a >0时,b 2>1>b ,即⎩⎪⎨⎪
⎧
b 2>1,b <1,解得b <-1;当
a <0时,
b 2<1<b ,即⎩⎨⎧
b 2<1,
b >1
无解.综上可得b <-1.
14.若x >y ,a >b ,则在①a -x >b -y ,②a +x >b +y ,③ax >by ,④x -b >y -a ,⑤a y >b
x 这五个式子中,恒成立的不等式的序号是②④.
解析:令x =-2,y =-3,a =3,b =2,符合题设条件x >y ,a >b ,因为a -x =3-(-2)=5,b -y =2-(-3)=5,所以a -x =b -y ,因此①不成立.因为ax =-6,by =-6,所以ax =by ,因此③也不成立.因为a y =3-3
=
-1,b x =2-2=-1,所以a y =b
x ,因此⑤不成立.由不等式的性质可推出②④成立.
尖子生小题库——供重点班学生使用,普通班学生慎用
15.据统计,某超市两种蔬菜A ,B 连续n 天的价格(单位:元)分别为a 1,a 2,a 3,…,a n
和b 1,b 2,b 3,…,b n .令M ={m |a m <b m ,m =1,2,…,n },若M 中元素个数大于3
4n ,则称蔬菜A 在这n 天的价格低于蔬菜B ,记作:A ≺B .现有三种蔬菜A ,B ,C ,下列说法正确的是( C )
A .若A ≺
B ,B ≺
C ,则A ≺C
B .若A ≺B ,B ≺
C 同时不成立,则A ≺C 不成立 C .A ≺B ,B ≺A 可同时不成立
D .A ≺B ,B ≺A 可同时成立
解析:特例法:例如蔬菜A 连续10天的价格分别为1,2,3,4,…,10,蔬菜B 连续10天的价格分别为10,9,…,1时,A ≺B ,B ≺A 同时不成立,故选C.
16.(杭州质检)若实数a ,b ,c 满足对任意实数x ,y 有3x +4y -5≤ax +by +c ≤3x +4y +5,则( A )
A .a +b -c 的最小值为2
B .a -b +c 的最小值为-4
C .a +b -c 的最小值为4
D .a -b +c 的最大值为6
解析:当x=1,y=-1时,-6≤a-b+c≤4,所以a-b+c的最小值为-6,最大值为4,故B,D错误;当x=-1,y=-1时,-12≤-a-b+c≤-2,则2≤a+b-c≤12,所以a+b-c的最小值为2,最大值为12,故A正确,C错误.故选A.。