由样本推断总体

合集下载

《中医统计学》习题及答案

《中医统计学》习题及答案

《中医统计学》练习题第一部分绪论一、最佳选择题1.抽样研究是一种科学、高效的方法,目的是研究( B )A.样本B.总体C.抽样误差D.概率2.由样本推断总体,样本应该是( D )A.总体中的典型部分B.总体中有意义的部分C.总体中有价值的部分D.总体中有代表性的部分3.统计上所说的系统误差、过失误差、测量误差和抽样误差四种误差,在实际工作中( C )A.四种误差都不可避免B.过失误差和测量误差不可避免C.测量误差和抽样误差不可避免D.系统误差和抽样误差不可避免4.统计描述是指( C )A.比较指标的差别有无显著性B.估计参数C.用统计指标描述事物的特征D.判断无效假设是否成立5.统计推断是指( D )A.从总体推断样本特征B.从总体推断总体特征C.从样本推断样本特征D.从样本推断总体特征6.对某样品进行测量时,由于仪器事先未校正,造成测量结果普遍偏高,这种误差属于( A )A.系统误差B.随机测量误差C.抽样误差D.过失误差7.随机抽样的目的是( D )A.消除系统误差B.消除测量误差C.消除抽样误差D.减小样本偏性8.对某地200名16岁中学生口腔检查,发现患龋齿的人数为54人,该资料属于( B )A.数值变量资料B.无序分类变量资料C.有序分类变量资料D.三个都不是9.数值变量资料是( C )A.用仪器测量出来的资料B.按观察单位的类别,清点各类观察单位数的资料C.用定量方法测定观察单位某个变量的大小的资料D.按观察单位的等级,清点各等级观察单位数的资料10.无序分类变量资料是( B )A.用仪器测量出来的资料B.按观察单位的类别,清点各类观察单位数的资料C.用定量方法测定观察单位某个变量的大小的资料D.按观察单位的等级,清点各等级观察单位数的资料11.有序分类变量资料是( D )A.用仪器测量出来的资料B.按观察单位的类别,清点各类观察单位数的资料C.用定量方法测定观察单位某个变量的大小的资料D.按观察单位的等级,清点各等级观察单位数的资料12.下列哪种不属于数值变量资料( C )A.红细胞数B.血钙浓度C.阳性人数D.脉搏13.下列哪种属于有序分类变量资料( A )A.治疗痊愈、有效、无效人数B.各血型人数C.白细胞分类百分比D.贫血和不贫血人数二、判断题1.统计工作的主要内容是对资料进行统计分析。

统计样本与总体的关系

统计样本与总体的关系

统计样本与总体的关系一、引言统计学是一门研究和应用数据收集、数据分析和数据解释的学科,广泛应用于各个领域。

在统计学中,样本与总体是基本概念,它们之间的关系对于统计推断和决策具有重要意义。

本文将探讨统计样本与总体的关系,并分析其在实际应用中的意义。

二、样本与总体的定义1. 样本:指从总体中选取的一部分观察对象或者观察值。

样本的数量通常比总体的数量小,但应具有代表性,能够反映总体的特征。

2. 总体:指研究或者调查的全部对象或者观察值的集合。

总体包含了所有可能的观察目标,但通常很难直接获得所有观察值。

三、样本与总体的关系1. 抽样:为了研究总体,人们需要从总体中选取样本进行观察和研究。

选择样本的方法应该是随机的,以确保样本的代表性和可靠性。

2. 推断:通过对样本的观察和分析,可以对总体进行推断。

样本的特征和行为可以反映总体的特征和行为,从而得出关于总体的结论。

3. 误差:样本与总体之间存在一定的误差。

样本是从总体中选取的,而不是总体本身,因此样本的观察结果可能与总体存在差异。

人们通过统计分析来估计和控制这种误差,以增加推断的准确性。

4. 抽样误差:抽样误差是指由于样本选择不准确或者样本量过小而产生的误差。

人们通过增加样本容量、改进抽样方法等手段来减小抽样误差,提高推断的准确性。

5. 总体参数与样本统计量:总体的特征通过总体参数来描述,例如总体的均值、方差等;而样本的特征通过样本统计量来描述,例如样本的平均值、标准差等。

样本统计量可以作为总体参数的估计值,从而推断总体的特征。

6. 中心极限定理:中心极限定理是统计学中的重要定理,它指出在很多情况下,大样本均值的分布近似于正态分布。

中心极限定理使得人们可以通过样本分布对总体分布进行推断。

四、实际应用中的意义1. 科学研究:在科学研究中,人们往往无法直接观察或者调查所有的个体,因此需要通过样本对总体进行研究。

样本与总体的关系决定了研究结论的可靠性和推广性。

2. 市场调查:在市场调查中,人们通过对样本的调查和分析来推断总体的市场需求、消费行为等。

第五章 统计推断(1)

第五章 统计推断(1)
2检验是根据s判断抽出该样本的总体 其标准差是否等于
某一给定值。
检验程序:
(a) 确定假设H 0和H A: H 0:= 0;H A 有三种可能的形式: ( 1 ) 0 (2) 0 (若已知不可能小于 0 ) (3) 0 (若已知不可能大于 0 )
(b)计算检验的统计量:
1. 单个样本平均数检验
在实际研究中,常常要 检验一个样本平均数 x与已知的总体 平均数0是否有显著差异,即检 验该样本是否来自某一 已知 的总体。
已知的总体平均数一般 为一些公认的理论数值 。如畜禽正常 的生理指标、怀孕期、 生产性能指标等,都可 以样本平均数 与之比较,检验差异显 著性。
1.1 在σ已知的情况下,单个平均数的显著性 检验-u检验 检验程序:
• 两类错误之间的关系如何?
二者的区别是I型错误只有在否定H0的情况下发生,而 II型错误只有在接受H0时才会发生。 二者的联系是,在样本容量相同的情况下,I型错误减 小,II型错误就会增大;反之II型错误减小,I型错误就 会增大。比如,将显著性水平α从0.05提高到0.01,就 更容易接受H0,因此犯I型错误的概率就减小,但相应 地增加了犯II型错误的概率。
第一节 假设检验的基本步骤及原理
1. 假设检验的基本步骤
我们通过一个例子来介绍假设检验的基本步骤:
例一,已知某品种玉米 单穗重X ~ N (300,9.52 ),即单穗重 总体平均数0 300g,标准差 9.5 g。在种植过程中喷洒 了某种药剂的植株中随 机抽取9个果穗,测得平均单穗 重 x 308g,试问这种药剂对该品 种玉米的平均单穗重 有无真实影响?
• (一)提出假设
首先对样本所在的总体 作一假设。假设喷洒了 药剂的玉米单穗重 总体平均数与原来的玉米单穗重总 体平均数0之间没有真实差异, 即=0。也就是说表面差异( x 0)是由抽样误差造成的 。

统计学各章练习——抽样推断

统计学各章练习——抽样推断

第九章抽样推断一、名词1、抽样推断:即由样本指标来推断总体指标的统计方法。

2、抽样误差:是指抽样指标和全及指标之间的绝对离差。

3、抽样极限误差:是指样本指标与全及指标之间产生的抽样误差被允许的最大可能范围,也叫允许误差。

4、点估计:就是直接用样本指标代表总体指标的估计方法。

5、区间估计:就是把抽样指标与抽样平均误差结合起来,来推断总体指标所在的可能范围的方法。

6、假设检验:就是先对研究总体的参数做出某种假设,然后抽取样本,构造适当的统计量,利用样本提供的信息对假设的正确性进行判断的过程。

二、填空题1.抽样推断是由(样本指标)来推断(相应的全及指标)的统计方法。

2.影响抽样误差大小的因素主要有:总体各单位标志值的差异程度、(样本的单位数目)、(抽样的具体方法)和抽样调查的组织形式。

3.抽样误差是由于抽样的(随机性)而产生的误差,这种误差不可避免,但可以控制在(所允许的范围)之内。

4.抽样平均误差是样本平均数的(标准差),是所有可能样本指标与总体指标之离差的(平均数)。

5.抽样极限误差,是指样本指标与全及指标之间产生的(抽样误差)被允许的(最大可能范围)。

6.用样本指标估计总体指标,要做到三个要求,即:(无偏性)、(一致性)、(有效性)。

7.抽样估计的方法有(点估计)和(区间估计)两种。

8.总体参数的区间估计必须同时具备(估计值)、(抽样误差范围)和(概率保证程度)三个要素。

9.总体中各单位标志值之间的变异程度越大,要求的样本单位数就(越多),即样本容量就(越大),总体各单位标志值变异程度与样本容量之间成(正比)。

10.允许误差越大,需要的样本单位数目就(越少);允许误差越小,需要的样本单位数目就(越多)。

11.对推断结果要求的可靠程度越高,必要样本单位数目就(越多);反之,可靠程度越低,必要样本单位数目就(越少)。

12.参数估计是用样本统计量估计(总体参数),而假设检验则是先对总体参数(提出假设),然后,运用样本资料验证假设(是否成立)。

用样本推断总体

用样本推断总体

第五章用样本推断总体(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--编写日期:2015年11月29日课时教案章节第四章课题总体平均数与方差的估计课型新授课教法讲练结合教学目标【知识与技能】1.掌握用样本平均数估计总体平均数2.掌握用样本方差估计总体方差.【过程与方法】通过对具体事例的分析、探讨,掌握简单随机样本在大多数情况下,当样本容量足够大时,样本的平均数和方差能反应总体相应的情况.【情感态度】感受数学在生活中的应用.教学重点样本平均数、方差估计总体平均数、方差的综合应用.教学难点体会统计思想,并会用样本平均数和方差估计总体平均数和方差.教学方法投影仪教学媒体一、情景导入,初步认知一所学校要从两名短跑速度较快的同学中选拔一名去参加市里的比赛,为了使选拔公平,每名同学都进行10次测试,结果两名同学测试的结果的平均数是相同的,那么,派谁去参加比赛更好呢?【教学说明】:二、思考探究,获取新知1.我们在研究某个总体时,一般用数据表示总体中每个个体的某种数量特性,所有这些数据组成一个总体,而样本则是从总体中抽取的部分数据,因此,样本蕴含着总体的许多信息,这使我们有可能通过样本的某些特性去推断总体的相应特性.2.从总体中抽取样本,然后通过对样本的分析,去推断总体的情况,这是统计的基本思想,用样本平均数,样本方差分别去估计总体平均数,总体方差就是这一思想的体现,实践和理论都表明:对于简单的随机样本,在大多数情况下,当样本容量足够大时,这种估计是合理的.3.思考:(1)如何估计某城市所有家庭一年内平均丢弃的塑料袋个数?(2)在检查甲、乙两种棉花的纤维长度时,如何估计哪种棉花的纤维长度比较整齐?【归纳结论】:4.探究:某农科院在某地区选择了自然条件相同的两个试验区,用相同的管理技术试种甲、乙两个品种的水稻各100亩.如何确定哪个品种的水稻在该地区更有推广价值呢?为了选择合适的稻种,我们需要关心这两种水稻的平均产量及产量的稳定性(即方差),于是,待水稻成熟后,各自从这100亩水稻随机抽取10亩水稻,记录它们的亩产量(样本),数据如下表所示:我们可以求出这10亩甲、乙品种的水稻的平均产量.因此,我们可以用这个产量来估计这两种水稻大面积种植后的平均产量.我们还可以计算出这10亩甲、乙品种的水稻的方差,从而利用这两个方差来估计.这两种水稻大面积种植后的稳定性(即方差),从而得出哪种水稻值得推广.5.通过上面的探究,怎样用样本去估计总体,才能使估计更加合理?【归纳结论】:6.如何用样本方差估计总体方差?【归纳结论】【教学说明】三、运用新知,深化理解1.见教材P143例题.年宁波市初中毕业生升学体育集中测试项目包括体能(耐力)类项目和速度(跳跃、力量、技能)类项目.体能类项目从游泳和中长跑中任选一项,速度类项目从立定跳远、50米跑等6项中任选一项.某校九年级共有200名女生在速度类项目中选择了立定跳远,现从这200名女生中随机抽取10名女生进行测试,下面是她们测试结果的条形图.(另附:九年级女生立定跳远的计分标准)九年级女生立定跳远计分标准:(注:不到上限,则按下限计分,满分10分)(1)求这10名女生在本次测试中,立定跳远距离的极差,立定跳远得分的众数和平均数;(2)请你估计该校选择立定跳远的200名女生得满分的人数.(2)因为10名女生中有6名得满分,所以估计200名女生中得满分的人数是200×610=120(人).3.某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛,抽查了两人在最近10次选拔赛中的表现,他们的成绩(单位:cm)如下:你认为该派谁参加?4.如图所示,为了了解A、B两个旅游点的游客人数变化情况,抽取了从2002年至2006年“五一”的旅游人数变化情况,制成下图.根据图中所示解答以下问题:(1)B旅游点的旅游人数相对上一年,增长最快的是哪一年?(2)从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;编写日期:2015年11月30日课时教案教学目标【知识与技能】用样本中的“率”估计总体中的“率”.【过程与方法】经历数据的收集、整理、描述与分析的过程,进一步发展统计的意识和数据处理能力.【情感态度】体会统计在生活中的应用.教学重点用样本中的“率”估计总体中的“率”教学难点用样本中的“率”估计总体中的“率”.教学方法投影仪教学媒体一、情景导入,初步认知在实践中,我们常常通过简单的随机抽样,用样本的“率”去估计总体相应的“率”,例如工厂为了估计一批产品的合格率,常常从产品中随机抽取一部分进行检查,通过对样本进行分析,推断出这批产品的合格率.那么有什么方法来对“率”作出合理的估计呢?【教学说明】:二、思考探究,获取新知1.某工厂生产了一批产品,从中抽取1000件来检查,发现有10件次品,试估计这批产品的次品率.解:由于是随机抽取,即总体中每一件产品都有相同的机会被抽取,因此,随机抽取的1000件产品组成了一个简单随机样本,因而可以用这个样本的次品率作为对这批产品的次品率的估计,从而这批产品的次品率为1%.2.某地为提倡节约用水,准备实行“阶梯水价计费”方式,用户月用水量不超出基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取了部分用户的月用水量数据.并将这些数据绘制成了如下的图形:如果自来水公司将基本月用水量定为每户12吨,那么该地区20万用户中约有多少用户能够全部享受基本价格?【教学说明】:三、运用新知,深化理解1.见教材P147例2.2.某灯具厂从1万件同批次产品中随机抽取了100件进行质检,发现其中有5件不合格,估计该厂这一万件产品中不合格品约为多少件?3.为了了解我市某县参加2008年初中毕业会考的6000名考生的数学成绩,从中抽查了200名学生的数学成绩(成绩为整数,满分120分)进行统计分析,并根据抽查结果绘制了如下的统计表和扇形统计图:(1)请将以上统计表和扇形统计图补充完整;(2)若规定60分以下(不含60分)为“不合格”,60分以上(含60分)为“合格”,80分以上(含80分)为“优秀”,试求该样本的合格率、优秀率;(3)在(2)的规定下,请用上述样本的有关信息估计该县本次毕业会考中数学成绩优秀的人数和不合格的人数.年我市体卫站对某校九年级学生体育测试情况进行调研,从该校360名九年级学生中抽取了部分学生的成绩(成绩分为A、B、C三个层次)进行分析,绘制了频数分布表(如下),请根据图表信息解答下列问题:(1)补全频数分布表;(2)如果成绩为A等级的同学属于优秀,请你估计该校九年级约有多少人达到优秀水平.编写日期:2015年11月31日课时教案教学重点借助统计图表、统计量作出正确决策.教学难点能够利用统计的有关知识解决相关实际问题.教学方法投影仪教学媒体一、情景导入,初步认知我们知道能够用样本的量来估计总体中的量,那么,我们能不能利用样本来推算将来的情况呢?【教学说明】:二、思考探究,获取新知1.李奶奶在小区开了一家便利店,供应A,B,C,D,E5个品种的食物,由于不同品种的食物的保质期不同,因此,有些品种因滞销而变质,造成浪费,有些品种因脱销而给居民带来不便.面对这种情况,李奶奶很着急.请你想办法帮助李奶奶解决这一问题.分析:随机抽取几天中这5个品种的食物的销售情况,再根据结果提出合理的建议.(1)收集数据;(2)分析数据和统计结果;(3)估计结果确定进货方案.2.利用样本来推断总体的过程是怎样的呢?【归纳结论】:【教学说明】三、运用新知,深化理解1.见教材P151“做一做”.2.小红的奶奶开了一个牛奶销售店,主要经营“学生奶”“酸牛奶”“原味奶”,可奶奶经营不善,经常有些品种的牛奶滞销(没卖完)或脱销(量不够),造成了浪费或亏损,细心的小红结合所学的统计知识帮奶奶统计了一个星期牛奶的销售情况,并绘制了下表:(1)计算各品种牛奶的日平均销售量,并说明哪种牛奶销量最高;(2)计算各品种牛奶的方差(保留两位小数),并比较哪种牛奶销量最稳定;(3)假如你是小红,你会对奶奶有哪些好的建议?3.第九届中国国际园林博览会(园博会)已于2013年5月18日在北京开幕,以下是根据近几届园博会的相关数据绘制的统计图的一部分:(1)第九届园博会的植物花园区由五个花园组成,其中月季园面积为平方千米,牡丹园面积为平方千米;(2)第九届园博会园区陆地面积是植物花园区总面积的18倍,水面面积是第七、八两届园博会的水面面积之和,请根据上述信息补全条形统计图,并标明相应数据;(3)小娜收集了几届园博会的相关信息(如下表),发现园博会园区周边设置的停车位数量与日接待游客量和单日最多接待游客量中的某个量近似成正比例关系,根据小娜的发现,请估计将于2015年举办的第十届园博会大约需要设置的停车位数量(直接写出结果,精确到百位).第七届至第十届园博会游客量与停车位数量统计表解:(1)(2)陆地面积平分千米水面面积平方千米图略(3)3700【教学说明】:四、师生互动、课堂小结布置作业教材“习题”中第3 题.教学后记编写日期:2015年12月1日课时教案章节第四章课题章末复习课型新授课教法讲练结合教学目标【知识与技能】整合初中阶段所学统计知识,梳理形成知识网络.【过程与方法】加深对统计知识的理解,增强主动应用数学的意识和综合运用所学知识解决问题的能力.【情感态度】进一步理解用样本去估计总体的统计思想,培养从一般到特殊,再从特殊到一般的认知规律.教学重点统计知识的灵活应用.教学难点统计知识的灵活应用.教学方法投影仪教学媒体一、知识结构【教学说明】二、释疑解惑,加深理解1.由于简单随机样本客观地反映了实际情况,能够代表总体,因此我们可以用简单随机样本的平均数与方差分别去估计总体的平均数与方差.2.怎样用样本去估计总体,才能使估计更加合理?①抽取的样本要具有随机性;②样本容量要足够大.3.如何用样本方差估计总体方差?①计算样本平均数;②计算样本方差;③用样本方差估计总体方差.方差能够反映一组数据与其平均值的离散程度的大小.方差越大,离散程度越大,稳定性越差.4.在实践中,我们常常通过简单的随机抽样,用样本的“率”去估计总体相应的“率”.5.我们可以利用已有的统计数据来对事物在未来一段时间内的发展趋势做出判断和预测,为正确的决策提供服务.【教学说明】三、典例精析,复习新知1.如图所示是甲、乙两地某十天的日平均气温统计图,则甲、乙两地这10天的日平均气温的方差大小关系为:s2甲______s2乙(用>,=,<填空).2.某果园有果树200棵,从中随机抽取5棵,每棵果树的产量分别为(单位:千克):98,102,97,103,105,那么这5棵果树的平均产量为多少千克极差是多少这200棵果树的总产量约为多少千克3.某初中为了迎接初三学生体育中考,特地进行了一次考前模拟测试.如图是女生800米跑的成绩中抽取的10个同学的成绩.(1)求出这10名女生成绩的中位数、众数和极差;(2)按《萧山教育局中考体育》规定,女生800米跑成绩不超过3′25″就可以得满分.现该校初三学生有636人,其中男生比女生少74人.请你根据上面抽样的结果,估算该校初三学生中有多少名女生该项考试得满分?4.为了了解市场上甲、乙两种手表日走时误差的情况,从这两种手表中各随机抽取10块进行测试,两种手表日走时误差的数据如下(单位:秒):(1)计算甲、乙两种手表日走时误差的平均数;(2)你认为甲、乙两种手表中哪种手表走时稳定性好?说说你的理由.【教学说明】:四、复习训练,巩固提高1.下面是某地区2001~2004年初中生在校人数和全国初中学校数统计图(如图),由图可知从2001~2004年,该地区初中生在校人数()A.逐年增加,学校数也逐年增加B.逐年增加,学校数却逐年减少C.逐年减少,学校数也逐年减少D.逐年减少,学校数却逐年增加2.某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们在某出口处,对离开园区的游客进行调查,并将在此出口调查所得的数据整理后绘成图.(1)在此出口的被调查游客中,购买2瓶及2瓶以上饮料的游客人数占此出口的被调查游客人数的()%.(2)试问此出口的被调查游客在园区内人均购买了多少瓶饮料?3.某市对九年级学生进行了一次学业水平测试,成绩评定分A、B、C、D四个等级.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2 000名学生的数学成绩进行统计分析,相应数据的统计图表如下:(注:等级A、B、C、D分别代表优秀、良好、合格、不合格)(1)请将上面表格中缺少的三个数据补充完整;(2)若该市九年级共有60 000名学生参加测试,试估计该市学生成绩合格以上(含合格)的人数.4.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项:A.小时以上B.1~小时C.~1小时D.小时以下图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在小时以下?【教学说明】:五、师生互动,课堂小结布置教材“复习题5”中第2、5、6、8、10题.作业。

常用的假设检验方法(U检验、T检验、卡方检验、F检验)

常用的假设检验方法(U检验、T检验、卡方检验、F检验)

常⽤的假设检验⽅法(U检验、T检验、卡⽅检验、F检验)⼀、假设检验假设检验是根据⼀定的假设条件,由样本推断总体的⼀种⽅法。

假设检验的基本思想是⼩概率反证法思想,⼩概率思想认为⼩概率事件在⼀次试验中基本上不可能发⽣,在这个⽅法下,我们⾸先对总体作出⼀个假设,这个假设⼤概率会成⽴,如果在⼀次试验中,试验结果和原假设相背离,也就是⼩概率事件竟然发⽣了,那我们就有理由怀疑原假设的真实性,从⽽拒绝这⼀假设。

⼆、假设检验的四种⽅法1、有关平均值参数u的假设检验根据是否已知⽅差,分为两类检验:U检验和T检验。

如果已知⽅差,则使⽤U检验,如果⽅差未知则采取T检验。

2、有关参数⽅差σ2的假设检验F检验是对两个正态分布的⽅差齐性检验,简单来说,就是检验两个分布的⽅差是否相等3、检验两个或多个变量之间是否关联卡⽅检验属于⾮参数检验,主要是⽐较两个及两个以上样本率(构成⽐)以及两个分类变量的关联性分析。

根本思想在于⽐较理论频数和实际频数的吻合程度或者拟合优度问题。

三、U检验(Z检验)U检验⼜称Z检验。

Z检验是⼀般⽤于⼤样本(即⼤于30)平均值差异性检验的⽅法(总体的⽅差已知)。

它是⽤标准的理论来推断差异发⽣的概率,从⽽⽐较两个的差异是否显著。

Z检验步骤:第⼀步:建⽴虚⽆假设 H0:µ1 = µ2 ,即先假定两个平均数之间没有显著差异,第⼆步:计算Z值,对于不同类型的问题选⽤不同的计算⽅法,1、如果检验⼀个样本平均数(X)与⼀个已知的总体平均数(µ0)的差异是否显著。

其Z值计算公式为:其中:X是检验样本的均值;µ0是已知总体的平均数;S是总体的标准差;n是样本容量。

2、如果检验来⾃两个的两组样本平均数的差异性,从⽽判断它们各⾃代表的总体的差异是否显著。

其Z值计算公式为:第三步:⽐较计算所得Z值与理论Z值,推断发⽣的概率,依据Z值与差异显著性关系表作出判断。

如下表所⽰:第四步:根据是以上分析,结合具体情况,作出结论。

假设检验

假设检验

假设检验假设检验(Hypothesis Testing)是数理统计学中根据一定假设条件由样本推断总体的一种方法。

具体作法是:根据问题的需要对所研究的总体作某种假设,记作H0;选取合适的统计量,这个统计量的选取要使得在假设H0成立时,其分布为已知;由实测的样本,计算出统计量的值,并根据预先给定的显著性水平进行检验,作出拒绝或接受假设H0的判断。

常用的假设检验方法有u—检验法、t检验法、χ2检验法(卡方检验)、F—检验法,秩和检验等。

中文名假设检验外文名 hypothesis test提出者 K.Pearson 提出时间 20世纪初1、简介假设检验又称统计假设检验(注:显著性检验只是假设检验中最常用的一种方法),是一种基本的统计推断形式,也是数理统计学的一个重要的分支,用来判断样本与样本,样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。

其基本原理是先对总体的特征作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。

[1]2、基本思想假设检验的基本思想是小概率反证法思想。

小概率思想是指小概率事件(P<0.01或P<0.05)在一次试验中基本上不会发生。

反证法思想是先提出假设(检验假设H0),再用适当的统计方法确定假设成立的可能性大小,如可能性小,则认为假设不成立,若可能性大,则还不能认为假设成立。

[2] 假设是否正确,要用从总体中抽出的样本进行检验,与此有关的理论和方法,构成假设检验的内容。

设A是关于总体分布的一项命题,所有使命题A成立的总体分布构成一个集合h0,称为原假设(常简称假设)。

使命题A不成立的所有总体分布构成另一个集合h1,称为备择假设。

如果h0可以通过有限个实参数来描述,则称为参数假设,否则称为非参数假设(见非参数统计)。

如果h0(或h1)只包含一个分布,则称原假设(或备择假设)为简单假设,否则为复合假设。

对一个假设h0进行检验,就是要制定一个规则,使得有了样本以后,根据这规则可以决定是接受它(承认命题A正确),还是拒绝它(否认命题A正确)。

医学统计学复习题

医学统计学复习题

一、最正确选择题1.抽样研究是一种科学高效的方法,目的是研究〔B 〕• A.样本 B.总体• C.抽样误差 D.概率2.由样本推断总体,样本应该是〔D 〕• A.总体中的典型局部• B.总体中有意义的局部• C.总体中有价值的局部• D.总体中有代表性的局部3.统计上所说的系统误差、过失误差、测量误差和抽样误差四种误差,在实际工作中〔C 〕• A.四种误差都不可防止• B.过失误差和测量误差不可防止• C.测量误差和抽样误差不可防止• D.系统误差和抽样误差不可防止4.统计描述是指〔C 〕• A.比拟指标的差异有无显著性• B.估计参数• C.用统计指标描述事物的特征• D.判断无效假设是否成立5.统计推断是指〔D 〕• A.从总体推断样本特征• B.从总体推断总体特征• C.从样本推断样本特征• D.从样本推断总体特征6.对某样品进行测量时,由于仪器事先未校正,造成测量结果普遍偏高,这种误差属于〔A 〕• A.系统误差 B.随机测量误差• C.抽样误差 D.过失误差7.随机抽样的目的是〔D 〕• A.能消除系统误差• B.能消除测量误差• C.能消除抽样误差• D.能减小样本偏性8.对某地200名16岁中学生口腔检查,发现患龋齿的人数为54人,该资料属于〔B 〕• A.计量资料 B.计数资料• C.等级资料 D.三个都不是9.计量资料是〔C 〕• A.用仪器测量出来的资料• B.按观察单位的类别,清点各类观察单位数的资料• C.用定量方法测定观察单位某个变量的大小的资料• D.按观察单位的等级,清点各等级观察单位数的资料10.计数资料是〔B 〕• A.用仪器测量出来的资料• B.按观察单位的类别,清点各类观察单位数的资料• C.用定量方法测定观察单位某个变量的大小的资料• D.按观察单位的等级,清点各等级观察单位数的资料11.等级资料是〔D 〕• A.用仪器测量出来的资料• B.按观察单位的类别,清点各类观察单位数的资料• C.用定量方法测定观察单位某个变量的大小的资料• D.按观察单位的等级,清点各等级观察单位数的资料12.以下哪种不属于计量资料〔C 〕• A.红细胞数 B.血钙浓度• C.阳性人数 D.脉搏13.以下哪种属于等级资料〔A 〕• A.治疗痊愈、有效、无效人数• B.各血型人数• C.白细胞分类百分比• D.贫血和不贫血人数二、判断题• 1.统计工作的主要内容是对资料进行统计分析。

统计学试题未打印

统计学试题未打印

一、最佳选择题1.为了由样本推断总体,样本应该是A.总体中任意的一部分B.总体中的典型部分C.总体中有意义的部分D.总体中有价值的一部分E.总体中有代表性的一部分2.有一组数据如下:3,5,4,6,9,14,2,9,19。

该资料的中位数为A.9 B.14 C.11.5 D.6 E.7.53.抽样误差是指A.不同样本指标之间的差别B.样本指标与总体指标之间由于抽样产生的差别C.样本中每个个体之间的差别D.由于抽样产生的观测值之间的差别E.测量误差与过失误差之间的差别4.描述一组正偏态分布的资料的变异程度的大小,宜采用A.标准误B.标准差C.全距D.四分位数间距E.离均差之和5.表示正态分布资料个体变异程度常用的指标是A.标准误B.标准差C.全距D.方差E.极差二、简答题1.为什么要对b 和r进行显著性检验?2.正常值范围和总体均数的可信区间有何不同?3.多个样本均数的比较为什么不能用t检验?三、应用题1、某医院用某种中草药治疗高血压病人10名,治疗前后舒张压的变化如下表,问该中草药对于降低舒张压有无作用。

(不必计算)表1 某地10名高血压病人用某种中草药治疗前后的舒张压的变化治疗前后舒张期血压(mmHg)治疗前115 110 129 109 110 116 106 116 120 104治疗后116 90 108 87 92 90 110 120 88 96请回答下列问题:(1)该资料属于何种类型的资料?(2)若要了解该中草药对于降低舒张压有无作用应采用何种检验方法?写出检验假设、显著性水准及公式。

(3)该统计量在什么范围内差别有统计学意义?2、试以下表资料比较10岁小学生与20岁青年患龋齿率有无不同?(不必计算)10岁小学生与20岁青年患龋齿率比较年龄(岁)检查人数患龋齿人数患龋率(%)10~ 50 35 7020~ 60 30 50(1)该资料属于何种类型的资料?(2)若要了解10岁小学生与20岁青年患龋齿率是否不同,应采用何种检验方法?写出检验假设、显著性水准及公式。

36.3《由样本推断总体》教案(冀教版九年级下)教学设计

36.3《由样本推断总体》教案(冀教版九年级下)教学设计

36.3《由样本推断总体》教案(冀教版九年级下)教学设计思想:需三课时讲授;本节是在前面已经学过的数据的整理与表示的基础上展开学习的。

其中频率、频数、平均数等等都是学习本节的基础。

在教学中,多采用的是分组实验让学生接受新知,不仅激起学生的兴趣,还能锻炼学生的动手操作能力。

教学目标:1.知识与技能学会用科学的随机抽样的方法,选取合适的样本进行抽样调查;会用样本的平均数、方差等特性估计总体的相应特性;体会用样本估计总体的统计思想,知道不同的样本对总体的估计不同。

2.过程与方法体会随机抽样是了解总体情况的一种重要数学方法,经历抽样不同所得到的结果不同的过程,体会抽样的关键作用。

3.情感、态度与价值观会运用样本的某种特性估计总体的相应特性的统计思想解决有关实际问题。

教学重点:用样本估计总体。

教学难点:用样本估计总体。

教学方法:分组讨论、引导式。

教学媒体:幻灯片、实验器材。

教学安排:3课时。

教学过程:Ⅰ.复习导入师:在七年级我们学过对数据的初步整理,其中涉及到不少统计的概念,同学们回忆一下。

生:我们学过平均数、众数、中位数、方差。

师:回答的很好;那你们还记得它们的含义吗?学生回答,教师板书。

平均数:一般地,如果有n个数123nx x x x 、、、、,那么12n 1x=x x x n +++()叫做这n个数的平均数。

众数:在一组数据中,出现次数最多的数据叫做这组数据的众数。

中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数的平均数)叫做这组数据的中位数。

方差:在一组数据中,各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差。

Ⅱ.新课讲授我们来观看两个实例:(幻灯片投映)1.某市场调查员就“你家的电视机是什么品牌的”这个问题在大街上随机调查了5人,结果有3人回答说:我家的彩电是H 牌的。

如果由此就说H 牌电视机的市场占有率为60%,你觉得可信吗?2.一份报告称:在美国和西班牙战争期间,美国海军的死亡率为9‰,而同期纽约市民的死亡率为16‰。

第五章《用样本推断总体》复习讲义(解析版)

第五章《用样本推断总体》复习讲义(解析版)

第五章 用样本推断总体(考点讲义)1.样本容量:样本中个体的数目叫做样本容量。

2.在用样本特性估计总体特性时,要注意一是样本要有代表性,二是样本容量要足够大。

3.求平均数的公式:123nx x x x x n++++=L【类型一】利用样本平均数估算总体数量【例1】为了创设全新的校园文化氛围,进一步组织学生开展课外阅读,让学生在丰富多彩的书海中,扩大知识源,亲近母语,提高文学素养.某校准备开展“与经典为友、与名著为伴”的阅读活动,活动前对本校学生进行了“你最喜欢的图书类型(只写一项)”的随机抽样调查,相关数据统计如下:请根据以上信息解答下列问题:(1)该校对_____名学生进行了抽样调查,m = _____n =_____(2)请将图1和图2补充完整,并求出扇形统计图中小说所对应的圆心角度数;(3)已知该校共有学生800人,利用样本数据估计全校学生中最喜欢科幻人数约为多少人?【解析】(1)用其它初一它的百分比即可;(2)用360∘乘以所占得百分比;(3)用样本估计总体.解:(1)20÷10%=200(名).由图1,得n=40,m=100-20-10-40=30答:该校对200名学生进行了抽样调查;m=30,n=40(2)如图:小说对应的圆心角度数为360∘×20%=72∘;(3)800×30%=240.答:全校学生中最喜欢小说的人数约为240名.【对应训练1】为了估计湖里有多少条鱼,小刚先从湖里捞出了100条鱼做上标记,然后放回湖里去.经过一段时间,带有标记的鱼完全混合于鱼群后,小刚又从湖里捞出200条鱼,如果其中15条有标记,那么估计湖里有鱼()A.1333条B.3000条C.300条D.1500条【答案】A【解析】在样本中“捕捞200条鱼,发现其中15条有标记”,即可求得有标记的所占比例,而这一比例也适用于整体,据此即可解答.【对应训练2】我国古代数学名著《九章算术》有“米谷粒分”.粮仓开仓收粮,有人送来谷米1608石,验得其中夹有谷粒.现从中抽取谷米一把,共数得256粒,其中夹有谷粒32粒,则这批谷米内夹有谷粒约是________石.【答案】201【解析】根据256粒内夹谷32粒,可得比例,再乘以1608石,即可得出答案.【解答】解:根据题意,得1608×32=201(石),256∴这批谷米内夹有谷粒约201石.【对应训练3】某山区中学280名学生参加植树节活动,要求每人植3至6棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:3棵;B:4棵;C:5棵;D:6棵,将各类的人数绘制成扇形图(如图1)和条形图(如图2).回答下列问题:(1)这次调查一共抽查了________名学生的植树量;请将条形图补充完整;(2)被调查学生每人植树量的众数是________棵、中位数是________棵;(3)求被调查学生每人植树量的平均数,并估计这280名学生共植树多少棵?【解析】(1)由B类型的人数及其所占百分比可得总人数,总人数乘以D类型的对应的百分比即可求出其人数,据此可补全图形;(2)根据众数和中位数的概念可得答案;(3)先求出样本的平均数,再乘以总人数即可.【解答】(1)这次调查一共抽查植树的学生人数为8÷40%=20(人),D类人数=20×10%=2(人);条形图补充如图:(2)植树4棵的人数最多,则众数是4,共有20人植树,其中位数是第10、11人植树数量的平均数,则中位数是4,(3)x=4×48×562×7=5.3(棵),205.3×280=148(棵).答:估计这3280名学生共植树1484棵.【类型二】用样本估计总体【例2】为了提高学生的综合素养,某校开设了五门第二课堂活动课,按照类别分为:A“剪纸”、B“绘画”、C“雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如下两幅不完整的统计图.根据信息,回答下列问题:(1)本次调查的样本容量为________,统计图中的a=________,b=________;(2)通过计算补全条形统计图;(3)该校共有3000名学生,请你估计全校喜爱“雕刻”的学生人数.解:(1)样本容量为1815%=120,a=120×10%=12,b=120×30%=36.故答案为:120;12;36.(2)组频数:120―18―12―30―36=24(人),补全条形统计图如图所示:(3)3000×30120=750(人),答:该校喜爱“雕刻”约有750人.【跟踪训练1】在一个不透明的盒子中装有20个黄、白两种颜色的乒乓球,除颜色外其它都相同,小明进行了多次摸球试验,发现摸到白色乒乓球的频率稳定在0.2左右,由此可知盒子中黄色乒乓球约有…()A.2个B.4个C.18个D.16个【答案】D【跟踪训练2】质检部门从1000件电子元件中随机抽取100件进行检测,其中有2件是次品.试据此估计这批电子元件中大约有________件次品.【答案】20【解析】根据随机抽取100件进行检测,其中有2件是次品,可以计算出这批电子元件中大约有多少件次品.【跟踪训练3】书籍是人类进步的阶梯.为了解学生的课外阅读情况,某校随机抽查了部分学生本学期阅读课外书的册数,并绘制出如下统计图.(1)共抽查了多少名学生?(2)请补全条形统计图,并写出被抽查学生本学期阅读课外书册数的众数、中位数;(3)根据抽查结果,请估计该校1200名学生中本学期课外阅读5册书的学生人数.解:(1)12÷30%=40(名).(2)如图所示,由图知,众数为5,中位数为5.(3)∵抽查的样本中,课外阅读5册书的学生人数占14×100%=35%,40∴估计该校学生课外阅读5册书的学生人数约占35%,∴该校1200名学生中课外阅读5册书的学生人数约为1200×35%=420(人).【类型三】用样本频率估计总体频率【例3】中长跑(男生1000m,女生800m)是河南省某市中招体育考试的必考项目.甲、乙两校为了解本校九年级学生的训练情况,各随机抽取了20名九年级学生的中长跑模拟测试成绩(满分:30分),将成绩进行统计、整理与分析,过程如下:【收集数据】【整理数据】整理以上数据,得到模拟测试成绩x(分)的频数分布表.【分析数据】根据以上数据,得到以下统计量.根据以上信息,回答下列问题:(1)填空:a= ________,b=_________, m=________, n=________;(2)综合上表中的统计量,推断________校学生中长跑成绩更好,理由为________(写出一条即可)(3)若甲、乙两校各有800名学生,请估计两校中长跑模拟测试成绩不低于25分的学生一共有多少名?解:(1)由数据可得,a=7,b=8,m=24.75,n=23.4. 故答案为:7;8;24.75;23.4.(2)甲校学生成绩的平均数比乙校学生成绩的平均数高,且甲校学生成绩的方差比乙校学生成绩的方差小,成绩较稳定.(答案不唯一,合理即可)故答案为:甲.=720(名),(3)(800+800)×1082020答:估计两校中长跑模拟测试成绩不低于25分的学生一共有720名.【跟踪训练】今年是建党100周年,为了让全校学生牢固树立爱国爱党的崇高信念,某校开展了形式多样的党史学习教育活动,八、九年级(各有500名学生)举行了一次党史知识竞答(满分为100分),然后随机各抽取20名同学的成绩进行了收集、统计与分析,过程如下:【收集数据】两个年级抽取的20名同学的成绩如下表:八年级:7968878985598997898998938586899077898379九年级:8688979194625194877194789255979294948598【整理数据】将两个年级的抽样成绩进行分组整理:成绩x(分)50≤x<6060≤x<7070≤x<8080≤x<9090≤x<100八年级113114九年级2a b411【分析数据】抽样的平均数、众数、中位数、方差和优秀率(90分及以上为优秀)如下表:年级统计量平均数众数中位数方差优秀率八年级8589c80.420%九年级859491.5192d请根据以下信息,回答下列问题:(1)填空:a=________,b= ________,c=________,d=________;(2)请估计此次知识竞答中,八年级成绩优秀的学生人数;(3)小李同学认为九年级的整体成绩更好,请从至少两个方面分析其合理性.解:(1)由表中数据可知,九年级落在60≤x<70内的只有62,故a=1;九年级落在70≤x<80内的有71,78,故b=2;八年级成绩按照从小到大的顺序排列后,落在第10,11的数为87,89,∴中位数为88,故c=88;九年级90分及以上的学生有11人,∴九年级的优秀率为1120×100%=55%.故答案为:1;2;88;55%.(2)∵500×20%=100,∴估计此次知识竞答中,八年级成绩优秀的学生人数为100人.(3)九年级抽样成绩的众数,中位数和优秀率均高于八年级,说明九年级平均成绩更高,高分更多,因此九年级整体成绩更好.【类型四】用样本推断总体的实际应用【例4】某运动鞋经销商随机调查某校40名女生的运动鞋号码,结果如下表:鞋的号码35.53636.53737.5人数4616122现在该经销商要进200双上述五种运动鞋,你认为应该怎样进货比较合理?解析:先求出各鞋码所占比例,再乘200,即可得到所需进货数.解:由表中数据可知各鞋码的女生的比例,根据比例进货.需要进35.5码运动鞋:200×440=20(双),需要进36码运动鞋:200×640=30(双)需要进36.5码运动鞋:200×1640=80(双),需要进37码运动鞋:200×1240=60(双)需要进37.5码运动鞋:200×240=10(双)。

统计推断的内容包括

统计推断的内容包括

统计推断的内容包括参数估计和假设检验。

统计推断是通过样本推断总体的统计方法。

总体是通过总体分布的数量特征即参数(如期望和方差) 来反映的。

因此,统计推断包括:对总体的未知参数进行估计;对关于参数的假设进行检查; 对总体进行预测预报等。

科学的统计推断所使用的样本,通常通过随机抽样方法得到。

统计推断的理论和方法论基础,是概率论和数理统计学。

一、基本介绍统计推断(statistical inference),是指根据带随机性的观测数据(样本)以及问题的条件和假定(模型),而对未知事物作出的,以概率形式表述的推断。

它是数理统计学的主要任务,其理论和方法构成数理统计学的主要内容。

统计推断是从总体中抽取部分样本,通过对抽取部分所得到的带有随机性的数据进行合理的分析,进而对总体作出科学的判断,它是伴随着一定概率的推测。

统计推断的基本问题可以分为两大类:一类是参数估计问题;另一类是假设检验问题。

在质量活动和管理实践中,人们关心的是特定产品的质量水平,如产品质量特性的平均值、不合格品率等。

这些都需要从总体中抽取样本,通过对样本观察值分析来估计和推断,即根据样本来推断总体分布的未知参数,称为参数估计。

参数估计有两种基本形式:点估计和区间估计。

统计推断的一个基本特点是:其所依据的条件中包含有带随机性的观测数据。

以随机现象为研究对象的概率论,是统计推断的理论基础。

二、表述形式在数理统计学中,统计推断问题常表述为如下形式:所研究的问题有一个确定的总体,其总体分布未知或部分未知,通过从该总体中抽取的样本(观测数据)作出与未知分布有关的某种结论。

例如,某一群人的身高构成一个总体,通常认为身高是服从正态分布的,但不知道这个总体的均值,随机抽部分人,测得身高的值,用这些数据来估计这群人的平均身高,这就是一种统计推断形式,即参数估计。

若感兴趣的问题是“平均身高是否超过 1.7(米)”,就需要通过样本检验此命题是否成立,这也是一种推断形式,即假设检验。

抽样检验标准简介

抽样检验标准简介


GB/T15482—1995 产品质量监督小总体计数一次抽样检验 程序及抽样表(计数、监督抽样。N=10~250,一次)。 GB/T15500—1995 利用电子随机数抽样器进行随机抽样 的方法(随机抽样方法之一)。 GB/T16306—1996 产品质量监督复查程序及抽样方案 (监督抽样、复查,一次)。 GB/T16307—1996 计量截尾序贯抽样检验程序及抽样表 (计量、序贯、截尾)。 这些抽样标准中,主要是: GB/T2828.1—2003 (泊松分布) GB/T6378—2002 (正态分布) GB/T13264—1991 (超几何分布)

11、抽检特性曲钱(OC曲线)
12、平均样本量曲线(ASN曲线)
该曲线表明了二次和多次抽样方案的经济性。
从AC=1至AC=44,列于表9。可以看出,二 次的平均样本量低于一次,多次的平均样本 量低于二次。 在曲线峰值情况下最好避免采用二次或多次 抽样方案。
13、生产方风险表
列于GB/T2828.1-2003标准中表5-A、B、C,
对二次或多次抽样时,每个后续的样本应从
同一批的剩余部分中抽取。
6、检验水平IL
IL标志着检验量。
GB/T2828.1表1上列出了 七个水平。从S—1、S—2、 S—3、S—4、Ⅰ、Ⅱ、Ⅲ自左至右,样本量 依次增大,鉴别力也依次增强,除非另有规 定,应使用水平Ⅱ。 特殊检验水平S—1~ S—4应用于必须使用样 本量小且容许风险较大的情况,如破坏性检 验或检验工作量、检验成本特别大的情况。
3.抽样检验条件
GB/T2829—2002。 b随机抽样 GB/T10111—1988, GB/T15500—1995,随机数表等。

医学统计学课后选择题

医学统计学课后选择题

第一章。

1.医学统计学研究的对象是A.医学中的小概率事件B.各种类型的数据C.动物和人的本质D.有变异的医学事物E.残疾的预防与治疗2.用样本推断总体具有代表性的样本,通常指的是A.总体中最容易获得的部分个体B.在总体中随意抽取的任意一个C.挑选总体中的有代表性的部分个体D.用方法抽取的部分个体E.依照随机原则抽取总体中的部分个体3.下列观测结果属于有序数据的是A.收缩压测量值B.脉搏数C.住院天数D.病情程度E.四种血型4.随机测量误差指的是A.有某些固定的因素引起的误差B.由不可预知的偶然因素引起的误差,C.选择样本不当引起的误差D.选择总体不当引起的误差E.由操作失误引起的误差5.系统误差指的是A.有某些固定的因素引起的误差,B.由操作失误引起的误差C.选择样本不当引起的误差D.样本统计量与总体参数之间的误差E.由不可预知的偶然因素引起的误差6.抽样误差指的是A.有某些固定的因素引起误差B.由操作失误引起的误差C.选择样本不当引起的误差D.样本统计量与总体参数间的误差E.由不可预知的偶然因素引起的误差7.收集数据不可避免的误差A.随机误差B.系统误差C.过失误差,D.记录误差E.仪器故障误差8.统计学中所谓的总体通常指的A.自然界中的所有研究对象B.概括性的研究结果,C.同质观察单位的全体D.所有的观察数据E.具有代表性意义的数据9.统计学中所谓的样本通常是A.可测量的生物性样品B.统计量C.某一变量的测量值D.数据中有代表性的一部分E.总体中有代表性的部分观察单位10.10。

医学研究中抽样误差的主要来源是A.测量仪器不够准确,B.检验出现错误C.统计设计不合理D.生物个体的变异E.样本不够第二章1.某医学资料数据大的一端没有确定数值描述其集中趋势适用的统计指标A.中位数B.几何均数C.均数D.百分位数E.频数分布2.算术均数与中位数相比,其特点是。

A.不易受极端数值的影响B.能充分利用数据的信息,C.抽样误差较大,D.更适用于偏态分布资料,E.更适用于分布不明确资料。

由样本推断总体课程设计

由样本推断总体课程设计

由样本推断总体课程设计一、教学目标本节课的教学目标是让学生掌握由样本推断总体的基本原理和方法,能够运用样本数据对总体进行合理的推断。

具体来说,知识目标包括:了解样本和总体的概念,理解样本平均数、样本方差等统计量;掌握用样本平均数估计总体平均数、用样本方差估计总体方差的方法。

技能目标包括:学会使用样本数据进行合理的假设,能够运用适当的统计方法对总体进行推断;能够对给定的数据进行合理的分析和处理,得出准确的推断结果。

情感态度价值观目标包括:培养学生的数据分析意识,使其能够主动寻找和利用样本数据对现实问题进行合理的推断;培养学生团队合作和交流分享的习惯,增强其对统计学科的兴趣和信心。

二、教学内容本节课的教学内容主要包括样本和总体的概念、样本平均数和样本方差的估计方法。

具体来说,首先介绍样本和总体的定义,让学生了解样本在推断总体中的作用;然后讲解样本平均数和样本方差的计算方法,让学生掌握如何利用样本数据对总体进行估计。

在讲解过程中,结合实际案例,让学生学会如何运用样本数据进行合理的推断,并能够对推断结果进行合理的解释。

三、教学方法为了激发学生的学习兴趣和主动性,本节课采用多种教学方法进行教学。

首先,采用讲授法,系统地讲解样本和总体的概念、样本平均数和样本方差的估计方法;其次,采用讨论法,让学生分组讨论实际案例,引导学生运用所学知识进行合理的推断;最后,采用案例分析法,让学生分析实际问题,培养其数据分析的能力。

四、教学资源为了支持教学内容和教学方法的实施,本节课准备了一系列的教学资源。

教材方面,选用《统计学》作为主教材,辅助以《统计学实验与应用》等参考书;多媒体资料方面,准备了一些案例分析的视频资料,以便于学生更好地理解理论知识;实验设备方面,准备了一些统计软件和计算器,让学生能够实际操作并进行数据分析。

通过这些教学资源的运用,丰富学生的学习体验,提高其学习效果。

五、教学评估为了全面、客观地评估学生的学习成果,本节课采用多元化的评估方式。

医学统计学复习题

医学统计学复习题

一、最佳选择题1.抽样研究是一种科学高效的方法,目的是研究(B )? A.样本 B.总体? C.抽样误差 D. 概率2.由样本推断总体,样本应该是( D )? A.总体中的典型部分? B.总体中有意义的部分? C.总体中有价值的部分? D. 总体中有代表性的部分3.统计上所说的系统误差、过失误差、测量误差和抽样误差四种误差,在实际工作中( C )? A.四种误差都不可避免? B.过失误差和测量误差不可避免? C.测量误差和抽样误差不可避免? D. 系统误差和抽样误差不可避免4.统计描述是指( C )? A.比较指标的差别有无显著性? B.估计参数? C.用统计指标描述事物的特征? D. 判断无效假设是否成立5.统计推断是指( D )? A.从总体推断样本特征? B.从总体推断总体特征? C.从样本推断样本特征? D. 从样本推断总体特征6.对某样品进行测量时,由于仪器事先未校正,造成测量结果普遍偏高,这种误差属于( A )? A.系统误差 B.随机测量误差? C.抽样误差 D. 过失误差7.随机抽样的目的是( D )? A.能消除系统误差? B.能消除测量误差? C.能消除抽样误差? D. 能减小样本偏性54 人,该资料属于( B )8.对某地 200 名 16 岁中学生口腔检查,发现患龋齿的人数为? A.计量资料 B.计数资料? C.等级资料 D. 三个都不是9.计量资料是( C )? A.用仪器测量出来的资料? B.按观察单位的类别,清点各类观察单位数的资料? C.用定量方法测定观察单位某个变量的大小的资料? D. 按观察单位的等级,清点各等级观察单位数的资料10.计数资料是( B )? A.用仪器测量出来的资料? B.按观察单位的类别,清点各类观察单位数的资料? C.用定量方法测定观察单位某个变量的大小的资料? D. 按观察单位的等级,清点各等级观察单位数的资料11.等级资料是( D )? A.用仪器测量出来的资料? B.按观察单位的类别,清点各类观察单位数的资料? C.用定量方法测定观察单位某个变量的大小的资料? D. 按观察单位的等级,清点各等级观察单位数的资料12.下列哪种不属于计量资料( C )? A.红细胞数 B.血钙浓度? C.阳性人数 D.脉搏13.下列哪种属于等级资料( A )? A.治疗痊愈、有效、无效人数? B.各血型人数? C.白细胞分类百分比? D. 贫血和不贫血人数二、判断题? 1.统计工作的主要内容是对资料进行统计分析。

第四讲 用样本推断总体

第四讲 用样本推断总体

率),要设计一个简单随机样本的抽样
方案。该公司希望有90%的信心使所估
计的比例只有2个百分点左右的误差。
为了节约调查费用,在这种情况下应该
抽取多少样本?
案例 总统选举的民意调查(背景) 二
据美国竞选业专业杂志 Campaigning
Reports统计历次美国总统竞选的花费: 2004年为6.93亿美元;2008年高达13亿美 元。整个总统竞选过程中,候选人一般会花 费10-15%的竞选经费在民意调查上。如何 确定被调查的人数是首先要考虑的问题。
建立工作表
样本比例区间估计的计算结果
计算 公式
样本比例为p, 样本容量为n
p z 2
p1 p , p z n 2
p1 p n
样本比例的区间估计
“比例样本容量”工作表
计算 公式
利用Excel计算必要样本数
“比例样本容量”工作表
每次民调中所需调查人数

为了调查对总统候
选人的支持率,临近11月
调查时间 9月 10月 11月初 大选前一天
极限误差 0.04 0.03 0.02 0.01
份大选前夕,希望得到更
高的精确度即更小的极限
误差,求每次调查中所需
的样本容量(置信度
95%)。
案例 三 学生每天上网的时间的区间


一、某大学为了解学生每天上网的时间,在全校 7500名学生中采取不重复抽样方法随机抽取36人, 调查他们每天上网的时间(单位:小时) ,得到下 面数据。要求:该校大学生平均上网时间的置信区间, 置信概率为90% 上网时间 3.3, 4.4, 2.1, 4.7, 3.1, 2, 1.9, 1.4, 6.2, 5.4, 1.2, 1.2, 5.8, 2.6,5.1, 2.9, 2.3, 6.4, 4.3, 3.5, 4.1, 1.8,4.2 ,2.4, 5.4, 3.5, 3.6, 0.5, 4.5, 5.7, 0.8, 3.6 , 3.2, 2.3, 1.5, 2.5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由样本推断总体以下是查字典数学网为您推荐的由样本推断总体,希望本篇文章对您学习有所帮助。

由样本推断总体教学设计思想:需三课时讲授;本节是在前面已经学过的数据的整理与表示的基础上展开学习的。

其中频率、频数、平均数等等都是学习本节的基础。

在教学中,多采用的是分组实验让学生接受新知,不仅激起学生的兴趣,还能锻炼学生的动手操作能力。

教学目标:1.知识与技能学会用科学的随机抽样的方法,选取合适的样本进行抽样调查;会用样本的平均数、方差等特性估计总体的相应特性;体会用样本估计总体的统计思想,知道不同的样本对总体的估计不同。

2.过程与方法体会随机抽样是了解总体情况的一种重要数学方法,经历抽样不同所得到的结果不同的过程,体会抽样的关键作用。

3.情感、态度与价值观会运用样本的某种特性估计总体的相应特性的统计思想解决有关实际问题。

教学重点:用样本估计总体。

教学难点:用样本估计总体。

教学方法:分组讨论、引导式。

教学媒体:幻灯片、实验器材。

教学安排:3课时。

教学过程:Ⅰ.复习导入师:在七年级我们学过对数据的初步整理,其中涉及到不少统计的概念,同学们回忆一下。

生:我们学过平均数、众数、中位数、方差。

师:回答的很好;那你们还记得它们的含义吗?学生回答,教师板书。

平均数:一般地,如果有n个数,那么叫做这n个数的平均数。

众数:在一组数据中,出现次数最多的数据叫做这组数据的众数。

中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数的平均数)叫做这组数据的中位数。

方差:在一组数据中,各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差。

Ⅱ.新课讲授我们来观看两个实例:(幻灯片投映)1.某市场调查员就你家的电视机是什么品牌的这个问题在大街上随机调查了5人,结果有3人回答说:我家的彩电是H牌的。

如果由此就说H牌电视机的市场占有率为60%,你觉得可信吗?2.一份报告称:在美国和西班牙战争期间,美国海军的死亡率为9,而同期纽约市民的死亡率为16。

结论是参加海军比较安全。

请说说为什么会得到这样毫无意义的结论。

同学们思考,相互讨论。

师:也许很多同学对用抽样的方法推断总体的情况保持怀疑的态度。

当样本容量太小或缺乏代表性时,这种怀疑是有道理的。

那么当样本容量较大且有较好的代表性时,由样本推断总体的准确性又如何呢?下面我们先来做个实验。

活动:把全班同学分成若干个实验小组(每组4至6名同学),课前每组准备400粒黄豆和100粒青豆,并将它们充分混合作为本组的实验用品。

实验时,将500粒豆子看做总体,从中取出50粒作为样本,数一数其中的青豆数。

重复做5次实验,最后,从500粒豆子中取出250粒,数出其中的青豆数作为第6次实验。

再分别计算50粒豆子中青豆的百分比及250粒豆子中青豆的百分比,将结果填入下表:实验序号 1 2 3 4 5 6豆子总数/粒 50 50 50 50 50 250青豆数/粒百分比通过做实验,再思考下面的问题:1.总体中青豆的百分比是多少?2.5次抽样得到的青豆的百分比相等吗?和20%差别大吗?3.250粒豆子中青豆的百分比和20%的差别大吗?4.为了得到较准确的估计值,应该注意什么?做完实验,同学们把实验结果填入上表;教师提问,学生回答上面的问题:第一问可以找中下等学生回答,知道总体中青豆的百分比是20%;然后第二问,学生可以直接观察实验数据,知道5次抽样的结果是不一样的,与20%是有一定的区别的;而最接近20%的是250粒豆子中青豆的百分比。

利用抽样的方法,估计总体中某类个体所占的比例,估计结果和实际结果会有误差,但随着样本容量的增大,这个比例会逐渐趋于稳定,且样本容量增大,估计的结果一般也越准确。

当然,样本要具有较好的代表性。

Ⅲ.出示例题例1.高中会考成绩采取A、B、C、D等级记分制,某市××局抽查了某学校25名高一年级学生的会考成绩,结果如下:A B B A A C B A B B A C BC B B C B B A A B A B B(1)统计样本中各等级会考成绩的频数,并计算频率。

(2)估计全校高一年级全体学生的会考成绩为总体,25名学生的会考成绩是样本。

解:在这里,全校高一年级全体学生的会考成绩为总体,25名学生的会考成绩是样本。

(1)样本中各等级会考成绩的频数及频率见下表:等级会考成绩 A B C D 合计频数 8 13 4 0 25频率 32% 52% 16% 0[ 100%(2)用样本中各等级会考成绩出现的频率估计总体中各等级会考成绩的百分比,A、B、C、D等级大约各占32%、52%、16%、0。

Ⅳ.课上练习某乒乓球训练学校将购进的乒乓球打开包装后装入一个大袋子,小明、小亮和小红分别从中取出一些乒乓球,通过测量其直径检验乒乓球的质量。

检验结果如下:姓名小明小亮小红检验个数 10 50 60合格乒乓球个数 9 48 57频率 90% 96% 95%分别用90%、96%、95%估计所以乒乓球的合格率,哪个结果可能更接近实际情况?板书设计:由样本推断总体(1)一、复习活动二、新课三、练习第二课时:课前准备:一小袋黄豆、一纸杯青豆。

师:接着上节的由样本推断总体继续学习,现在大家看一个问题:小明家承包了一个大鱼塘,你能设计一个方案估计池塘中鱼的总条数吗?生:我们用网把鱼从池塘中全部捞上来,再一个一个的数一数。

师:这倒是一种方法,但是这种做法不利于鱼的生长。

生:我看过其他的资料,科学家一般采用捕鱼再捕获的方法估计某个动物种群(昆虫、鸟类、鱼等)中动物的数量。

师:这位同学了解的知识很多,值得鼓励,说的不错,那你们明白它具体是怎么操作的吗?下面我们就来通过实验来解释一下。

活动:准备一小袋黄豆,一纸杯青豆,分小组模拟科学家估计鱼的总条数的过程。

学生在教师的指导下,完成下面的步骤:步骤捕捞过程模拟实验捕获从湖中捞出一网鱼,共有n条从袋子中取出一些黄豆,数出黄豆的粒数,记为n做标记对这n条鱼做标记后,放回湖中将n粒青豆放进袋子中,充分混合。

再捕获过几天,再捞出一网鱼,共有n条,其中有标记的鱼为r条再从袋子中取出一些豆子作为样本,数出豆子的总粒数m及其中的青豆粒数r。

师:首先我们要知道估计值是多少,然后与我们实验结果相比较。

设袋子中共有x粒豆子,用样本中青豆所占的比例估计袋子中青豆所占的比例,即,求得x的估计值为x 。

学生动手,数一数袋子中豆子的总粒数,然后与估计值进行比较。

将上述模拟实验再重复一次,在第一步(捕获)中,使取出的黄豆粒数比第一次实验时多一些。

师:同学们通过这个实验,你都有哪些启示呢?你得到的估计值与实际值接近吗,两次得到的估计值差异大吗?当样本较大时,是否估计得更准确一些?学生相互交流,讨论。

教师总结:抽样调查的方法广泛应用于许多领域,测定产品质量,了解民众对一些问题的看法,了解某商品的市场占有率等都是用抽样的方法。

而用上述捕获再捕获的方法估计池塘中鱼的总数是抽样方法之一。

练习:从一个池塘中捞出60条鱼,全部做上述标记后放回池塘中,过几天后又捞出3网鱼,每网鱼的数量及有标记的鱼的数量如下表所示。

用每网鱼的数量及三网鱼的合计数量分别估计池塘中鱼的总数,并将结果填写在下表中。

捕捞序号每网鱼的数量/条[ 有标记鱼的数量/条估计鱼的总数/条1 18 22 26 33 35 4合计板书设计:由样本推断总体(2)一、引例二、实验三、练习第三课时Ⅰ.引入师:上两节课我们了解了抽样调查的可靠性,以及由样本推断总体的基础理论。

现在我们通过例题来进一步理解它们在实际问题中的应用。

Ⅱ.授课我们拿个生活中很普遍的例子开始讨论:一箱优质苹果共50个,从中任意取出2个,用这2个苹果的平均质量(g)估计整箱苹果中平均每个苹果的质量。

你认为这样估计准确吗?任取5个呢?任取10个呢?对50个苹果逐一称量,质量数据如下:200 256 268 253 280 248 240 265 258 246272 267 242 212 262 252 268 250 255 223261 251 248 238 195 246 295 235 256 270253 256 249 252 275 254 235 260 228 245270 246 236 285 218 260 232 254 250 255师:同学们分5个小组,从下面两种方案中选取一种,抽取样本,计算平均数。

方案1:将50个数据分别写在50张纸片上,将纸片放在一个盒子中混合均匀,从中任意取出5张纸片,计算这5张纸片,计算这5个数的平均数,重复8次;从中任意取出10 张纸片,计算这10个数的平均数,重复8次。

方案2:利用计算器产生1到50之间的随机数,进行抽样。

(1)将计算结果填入下表抽样序号 1 2 3 4 5 6 7 85个数的平均数 [10个数的平均数(2)观察并比较两组平均数,哪组平均数稳定?(3)经计算,这50个数据的平均数是250.5。

哪组平均数更接近250.5?各组在教师的引导下,完成上面的实验步骤,并思考上面的问题。

[教法]:通过分组做实验的方法,不仅提高学生学习本节课的兴趣,还能锻炼学生动手操作的能力,使学生在实验过程中积极的思考问题,提高学习的积极性。

师:现在我们得出了实验数据,那请各组的同学根据你们实验得到的数据绘制出每列5个数据平均数的条形图。

根据重复抽样,每次10个数据的平均数绘制的条形图:观看上面的两图,同学们思考:两个图形反映的规律和你得到的规律一样吗?生甲:由于抽样的任意性,不同样本的平均数一般也不同。

生乙:当样本数据较少时,差异也可能会很大。

师:同学们总结的都很好;现在我们一起总结一下:一般地,由于抽样的任意性,不同样本的平均数一般不同;当样本数据较少时,差异也可能会很大。

那怎样才能使样本的平均数接近于总体的平均数呢?当样本中个体较多,且具有较好的代表性时,杨本的平均数趋于稳定,且与总体的平均数比较接近。

师:因此,我们经常用样本的平均数估计总体的平均数。

同样,也用样本的方差估计总体的方差。

Ⅲ.应用例1:用某台车床加工一种轴承,规定轴承的平均直径为20cm,方差不超过0.05。

从某天加工的轴承中随机抽取了10件,测得其直径(mm)如下:20.1 19.9 20.3 20.2 19.8 19.7 19.9 20.3 20 19.8(1)计算样本的平均数和样本的方差(2)用样本的平均数和方差估计总体的平均数和方差,推断这台车床的生产情况是否正常。

解:(1)样本的平均数为样本的方差为(2)总体的平均数和方差的估计值分别为20mm和0.042,由此可以看出这台车床的生产情况正常。

例2:小亮家承包的苹果园共有3000棵树龄相同的苹果树,为了估计今年苹果的总产量,小亮任意选择了6棵苹果树,数出它们挂果的个数分别为:260 340 280 420 360 380根据往年的经验,平均每个苹果的质量约为250g。

相关文档
最新文档