等差数列求和及练习题(整理).

合集下载

(完整版)等差等比数列求和与差的练习题

(完整版)等差等比数列求和与差的练习题

(完整版)等差等比数列求和与差的练习题
题目一:等差数列求和
已知等差数列的首项为$a_1$,公差为$d$,求该等差数列的前$n$项和$S_n$。

解答步骤:
1. 根据公式$S_n = \frac{n}{2}(a_1 + a_n)$计算出结果。

题目二:等差数列差的问题
已知等差数列的首项为$a_1$,公差为$d$,依次计算以下问题:
1. $a_3 - a_2$;
2. $a_5 - a_3$;
3. $a_{10} - a_5$。

解答步骤:
1. 利用公式$a_n = a_1 + (n-1)d$计算出各项的值;
2. 按照题目给定的差问题计算出结果。

题目三:等比数列求和
已知等比数列的首项为$a_1$,公比为$r$,求该等比数列的前$n$项和$S_n$。

解答步骤:
1. 如果公比$r=1$,则$S_n = n \cdot a_1$,直接计算结果;
2. 如果公比$r \neq 1$,则$S_n = a_1 \cdot \frac{1 - r^n}{1 - r}$,按照公式计算结果。

题目四:等比数列差的问题
已知等比数列的首项为$a_1$,公比为$r$,依次计算以下问题:
1. $a_2 - a_1$;
2. $a_4 - a_2$;
3. $a_{10} - a_{5}$。

解答步骤:
1. 利用公式$a_n = a_1 \cdot r^{(n-1)}$计算各项的值;
2. 按照题目给定的差问题计算出结果。

以上是关于等差数列求和与差的练题的完整版文档。

等差数列求和方法总结

等差数列求和方法总结

等差数列求和方法总结等差数列求和方法总结一.用倒序相加法求数列的前n项和假如一个数列{an},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的`和,这一求和方法称为倒序相加法。

我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。

例题1:设等差数列{an},公差为d,求证:{an}的前n项和Sn=n(a1+an)/2解:Sn=a1+a2+a3+...+an ①倒序得:Sn=an+an-1+an-2+…+a1 ②①+②得:2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+…+(an+a1)又∵a1+an=a2+an-1=a3+an-2=…=an+a1∴2Sn=n(a2+an) Sn=n(a1+an)/2二.用公式法求数列的前n项和对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进展求解。

运用公式求解的考前须知:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。

三.用裂项相消法求数列的前n项和裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。

四.用错位相减法求数列的前n项和错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。

即假设在数列{an·bn}中,{an}成等差数列,{bn}成等比数列,在和式的两边同乘以公比,再与原式错位相减整理后即可以求出前n项和。

五.用迭加法求数列的前n项和迭加法主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an ,从而求出Sn。

六.用分组求和法求数列的前n项和分组求和法就是对一类既不是等差数列,也不是等比数列的数列,假设将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。

等差数列求和及练习题(整理).doc

等差数列求和及练习题(整理).doc

等差数列求和引例:计算 1+2+3+4++97+98+99+100一、有关概念 :像1、2、3、4、5、6、7、8、9、这样连起来的一串数称为数列;数列中每一个数叫这个数列的一项,排在第一个位置的叫首项,第二个叫第二项,第三个叫第三项,,最后一项又叫末项;共有多少个数又叫项数;如果一个数列,从第二项开始,每一项与前一项之差都等于一个固定的数,我们就叫做等差数列。

这个固定的数就叫做“公差”。

二、有关公式:和 =(首项 +末项)×项数÷ 2末项 =首项 +公差×(项数 -1)公差 =(末项 -首项)÷(项数 -1)项数 =(末项 -首项)÷公差 +1三、典型例题:例 1、聪明脑筋转转转:判断下列数列是否是等差数列?是的请打“√”,并把等差数列的首项,末项、公差及项数写出来,如果不是请打“×”。

判断首项末项公差项数(1) 1、2、4、8、16、 32.()()()()()(2)42、49、56、63、70、77. ()()()()()(3)5、1、4、1、3、1、2、1. ()()()()()(4)44、55、66、77、88、99、110()()()()()练习1、填空:数列首项末项公差项数2、5、8、 11、140、4、8、 12、163、15、27、39、511、2、3、 4、5、、 48、49、 502、4、6、 8、、 96、 98、100例 2、已知等差数列 1,8,15, , 78.共 12 项,和是多少?(博易 P27例 2)(看 ppt,推出公式)例 3、计算 1+3+5+7++35+37+39练习 2:计算下列各题(1)6+10+14+18+22+26+30 (3)1+3+5+7++95+97+99(2)3+15+27+39+51+63(4)2+4+6+8++96+98+100(3)已知一列数 4,6,8,10 ,,64,共有 31 个数,这个数列的和是多少?例 5、有一堆圆木堆成一堆,从上到下,上面一层有 10 根,每向下一层增加一根,共堆了 10 层。

奥数题等差数列求和及应用一

奥数题等差数列求和及应用一

等差数列求和及应用一等差数列的定义:一列数,如果相邻两个数的差相等,我们就说这个数列叫做等差数列;相等的差叫做这列数的公差,这列数的个数叫做项数,最小的数叫做首项,最大的数叫做末项。

(以下公式要求熟记)基本公式:和=(首项+末项)×项数÷2 末项=首项+(项数-1)×公差项数=(末项-首项)÷公差+1 首项=末项-(项数-1)×公差 公差=1--项数首项末项例1、 计算:1+2+3+4+…+99+100=例2、 计算:1+3+5+7+…+1995+1997+1999=例3、 数列4,9,14,19,…的第80项是多少例4、 有一列数按如下规律排列:6,10,14,18,…这数列中前100个数的和是多少例5、 求100至200之间被7除余2的所有三位数的和是多少例6、 学校进行乒乓球选拔赛,每个参赛选手要和其他选手赛一场,⑴如果一共有10外队员,一共要进行多少场比赛⑵一共进行了78场比赛,有多少人参加了选拔赛例7、 小红家在一条胡同里,这条胡同门牌号从1开始,挨着号码编下去。

如果除小红家外,其余各家的门牌号加起来,减去小红家的门牌号数,恰好等于100。

问小红家的门牌是几号全胡同里共有几家例8、 若干个同样的盒子排成一排,小明把50多个同样的棋子分装在盒中,其中只有一个盒子没有棋子,然后他外出了。

小光从每个有棋子的盒子里各拿出一个其中放在空盒里,再把盒子重新排列了一下,小明回来查看一番,没发现有人动过。

问:共有多少个盒子家庭作业:【1】计算 ⑴ 2+4+6+8…+198+200 ⑵ 3+10+17+24+31+…+94 ⑶ 77+74+71+……+11+8+5【2】已知等差数列3,7,11,15,…,195,问这个数列共有多少项【3】已知等差数列2,7,12,17,……它的第25项是多少第36项是多少【4】一个有30项的等差数列,公差是5,末项为154,这个数的首项是多少【5】一个等差数列,首项是4,末项是88,公差是6,这列数的总和是多少【6】有一列数,已知第一个数是9,从第二个数起,每个数都比前一个数多4,这列数的前50个数的和是多少【7】学校举行乒乓球选拔赛,每个参赛选手都要和其他所有选手各赛一场,一共进行91场比赛,有多少人参加了选拔赛【8】一个物体从空中降落,第一秒落下9米,以后每秒都比前一秒多落下9米,经过10秒到达地面,这个场体原来离地面的高是多少米【9】上体育课时,我们几个同学站成一排,从1开始顺序报数,除我以外的其他同学报的数之和减去我报的数恰好等于72。

(完整版)等差数列练习题有答案

(完整版)等差数列练习题有答案

数列A 、等差数列知识点及例题一、数列由与的关系求n a n S na 由求时,要分n=1和n≥2两种情况讨论,然后验证两种情况可否用统一的解析式表示,若不能,则用分段函数的n S n a 形式表示为。

11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩〖例〗根据下列条件,确定数列的通项公式。

{}na 分析:(1)可用构造等比数列法求解;(2)可转化后利用累乘法求解;(3)将无理问题有理化,而后利用与的关系求解。

n a n S 解答:(1)(2)……累乘可得,故(3)二、等差数列及其前n 项和(一)等差数列的判定1、等差数列的判定通常有两种方法:第一种是利用定义,,第二种是利用等差中项,即。

1()(2)n n a a d n --=≥常数112(2)n n n a a a n +-=+≥2、解选择题、填空题时,亦可用通项或前n 项和直接判断。

(1)通项法:若数列{}的通项公式为n 的一次函数,即=An+B,则{}是等差数列;n a n a n a (2)前n 项和法:若数列{}的前n 项和是的形式(A ,B 是常数),则{}是等差数列。

n a n S 2n S An Bn =+n a 注:若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可。

〖例〗已知数列{}的前n 项和为,且满足n a n S 111120(2),2n n n n S S S S n a ---+=≥=A (1)求证:{}是等差数列;1nS (2)求的表达式。

n a 分析:(1)与的关系结论;1120n n n n S S S S ---+=A →1n S 11n S -→(2)由的关系式的关系式1nS →n S →n a 解答:(1)等式两边同除以得-+2=0,即-=2(n≥2).∴{}是以==2为首1n n S S -A 11n S -1n S 1n S 11n S -1n S 11S 11a 项,以2为公差的等差数列。

数列求和方法(带例题和练习题)

数列求和方法(带例题和练习题)

数列的求和数列求和主要思路:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; 数列求和的常用方法一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 11123(1)2nn k S k n n n ===+++++=+∑… 4、2222211123(1)(21)6nn k S k n n n n ===++++=++∑5、 2333331(1)1232nn k n n S kn =+⎡⎤===++++=⎢⎥⎣⎦∑ 公式法求和注意事项(1)弄准求和项数n 的值;(2)等比数列公比q 未知时,运用前n 项和公式要分类。

例1.求和221-++++n xx x (0,2≠≥x n )二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 例2.求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S例3.求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 三、倒序相加法如果一个数列与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列前n 项和即可用倒序相加发,如等差数列的前n 项和就是此法推导的例4.求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值例4变式训练1:求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值. 例4变式训练2: 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.例4变式训练3:在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.例5.已知数列{}n a 的通项公式321n n a n =+-,求数列{}n a 的前n 项和n S 。

数列求和专项练习(含答案)

数列求和专项练习(含答案)

数列求和专项练习1.在等差数列{}n a 中,已知34151296=+++a a a a ,求前20项之和。

2.已知等差数列{}n a 的公差是正数,且,4,126473-=+-=a a a a 求它的前20项之和。

3.等差数列{}n a 的前n 项和S n =m ,前m 项和S m =n (m>n ),求前m+n 项和S n+m4.设y x ≠,且两数列y a a a x ,,,,321和4321b y b b x b ,,,,,均为等差数列,求1243a a b b --5.在等差数列{}n a 中,前n 项和S n ,前m 项和为S m ,且S m =S n , n m ≠,求S n+m6.在等差数列{}n a 中,已知1791,25S S a ==,问数列前多少项为最大,并求出最大值。

7.求数列的通项公式:(1){}n a 中,23,211+==+n n a a a(2){}n a 中,023,5,21221=+-==++n n n a a a a a9.求证:对于等比数列前n 项和S n 有)(32222n n n n n S S S S S +=+10. 已知数列{}n a 中,前n 项和为S n ,并且有1),(241*1=∈+=+a N n a S n n (1)设),(2*1N n a a b n n n ∈-=+求证{}n b 是等比数列;(2)设),(2*N n a c nn ∈=求证{}n b 是等差数列;11.设数列满足,(Ⅰ)求数列的通项公式:(Ⅱ)令,求数列的前n 项和.【规范解答】(Ⅰ)由已知,当时,而,满足上述公式,所以的通项公式为. (Ⅱ)由可知,①从而 ②①②得{}n a 12a ={}n a n n b na ={}n b n S 1n ≥[]111211()()()n n n n n a a a a a a a a ++-=-+-++-+21232(1)13(222)22n n n --+-=++++=12a ={}n a 212n n a -=212n n n b na n -==•35211222322n n n s -=•+•+•++•23572121222322n n n s +=•+•+•++•-3521212(12)22222n n n n s -+-=++++-•即 12.已知数列{}n a 的前n 项和*∈+=N n nn S n ,22. (1)求数列{}n a 的通项公式;(2)设()n nan a b n 12-+=,求数列{}n b 的前n 2项和.【答案】(1) n a n = (2) 21222n n T n +=+-13.已知数列{}n a 是递增的等比数列,且14239,8.a a a a +== (Ⅰ)求数列{}n a 的通项公式;211(31)229n n S n +⎡⎤=-+⎣⎦(Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .(Ⅰ)由题设可知83241=⋅=⋅a a a a ,又941=+a a , 可解的⎩⎨⎧==8141a a 或⎩⎨⎧==1841a a (舍去)由314q a a =得公比2=q ,故1112--==n n n qa a . (Ⅰ)1221211)1(1-=--=--=n n n n q q a S 又1111111n n n n n n n n n n a S S b S S S S S S +++++-===-所以1113221211111...1111...++-=⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+++=n n nn n S S S S S S S S b b b T12111--=+n .14. 设数列{}n a 的前n 项和为n S .已知233nn S =+.(I )求{}n a 的通项公式;(II )若数列{}n b 满足3log n n n a b a =,求{}n b 的前n 项和n T . 【解析】所以,13,1,3,1,n n n a n -=⎧=⎨>⎩1363623n n +=-⨯ ,又1T 适合此式.13631243nnn T +=-⨯ 15.知等差数列满足:,,的前n 项和为.(1)求及;(2)令(n N *),求数列的前n 项和. 【命题立意】本题考查等差数列的通项公式与前n 项和公式的应用、裂项法求数列的和,考查了考生的逻辑推理、等价变形和运算求解能力.【思路点拨】(1)设出首项和公差,根据已知条件构造方程组可求出首项和公差,进而求出求及;(2)由(1)求出的通项公式,再根据通项的特点选择求和的方法.【规范解答】(1)设等差数列的公差为d ,因为,,所以有,解得, 所以;==. (2)由(1)知,所以b n ===, 所以==,即数列的前n 项和=.{}n a 37a =5726a a +={}n a n S n a n S n b =211n a -∈{}n b n T n a nS n b {}n a 37a =5726a a +=112721026a d a d +=⎧⎨+=⎩13,2a d ==321)=2n+1n a n =+-(n S n(n-1)3n+22⨯2n +2n 2n+1n a =211n a -21=2n+1)1-(114n(n+1)⋅111(-)4n n+1⋅n T 111111(1-+++-)4223n n+1⋅-11(1-)=4n+1⋅n4(n+1){}n b n T n4(n+1)。

等差数列求和基础题

等差数列求和基础题

等差数列求和基础题一.选择题1. 等差数列{}n a 的前n 项和为n S ,若142,20,a S ==则6S =A.16B.24C.36D.422. 设等差数列{}n a 的前n 项和为n S ,若111a =-,376a a +=-,则当n S 取最小值时, n 等于A.8B.7C.6D.93. 已知n S 是等差数列{}n a 的前n 项和,且63S =,1118S =,则9a 等于A.3B.5C.8D.154. 已知等差数列{a n }前n 项的和为S n , 233=a , S 3=9,则a 1= A.23 B.29 C.-3 D.6 5. 已知等差数列{}n a 中,256,15a a ==,若2n n b a =,则数列{}n b 的前5项和为A. 90B. 45C. 30D. 1866. 等差数列}{n a 的前n 项和为n S ,若119717,170a a a S ++=则的值为A.10B.20C.25D.307. 设等差数列{a n }前n 项和为S n . 若a 1= -11,a 4+a 6= -6 ,则当S n 取最小值时,n 等于A.6B. 7C.8D.98. 设等差数列{}n a 的前n 项和为n S ,246a a +=,则5S 等于A.10B.12C.15D.309. 已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =A.138B.135C.95D.2310. 记等差数列的前n 项和为n S ,若244,20S S ==,则该数列的公差d =A.2B.3C.6D.711. 已知等差数列{}n a 中,26a =,515a =,若2n n b a =,则数列{}n b 的前5项和等于A.30B.45C.90D.18612. 设S n 是等差数列{a n }的前n 项和,若S 5 = S 9,则a 3:a 5 =A.5:9B.9:5C.3:5D.5:313. 在等差数列}{n a 中,已知S 3=9,S 9=54,则}{n a 的通项n a 为A.33-=n a nB.n a n 3=C.2+=n a nD.1+=n a n14. 若等差数列}{n a 的前3项和93=S 且11=a ,则2a 等于A.3B.4C.5D.615. 等差数列{}n a 中,11a =,3514a a +=,其前n 项和100n S =,则n =A.9B.10C.11D.1216. 等差数列{a n }的前n 项和为S n ,若等于则442,10,2S S S ==A.12B.18C.24D.4217. 已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差d =A.23- B.13- C.13 D.2318. 在等差数列{a n }中,若a 4+a 6 =12, S n 是数列{a n }的前n 项和,则S 9的值为A.48B.54C.60D.6619. 一个只有有限项的等差数列,它的前5项的和为34,最后5项和为146,所有项的和为234,则它的第七项等于A.22B.21C.19D.1820. 已知数列{a n }的通项公式是a n =2n –49 (n ∈N ),那么数列{a n }的前n 项和S n 达到最小值时的n 的值是A.23B.24C.25D.2621. 已知等差数列{a n }中,a 2+a 8=8,则该数列前9项和S 9等于A.18B.27C.36D.4522. 设S n 是等差数列{a n }的前n 项和,若S 7=35,则a 4=A.8B.7C.6D.523. 等差数列{}n a 中,n S 是前n 项和,且38S S =,7k S S =,则k 的值为A.4B.11C.2D.1224. 等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则前9项的和S 9等于A.66B.99C.144D.29725. 等差数列{a n }中,a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1等于A.-1221B.-21.5C.-20.5D.-2026. 等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值为A.95B.100C.115D.12527. 在等差数列}{n a 中,,,83125S S a =-=则前n 项和n s 的最小值为 txjyA.80-B.76-C.75-D.74-28. 等差数列{a n }中,若a 3+ a 4+ a 5+ a 6+ a 7=450 则前9项和S 9=A.1620B.810C.900D.67529. 已知等差数列{}n a 的前n 项和为n S ,若5418a a =-,则8S 等于A.144B.72C.54D.3630. 在等差数列{a n }中,前n 项和S n =36n -n 2,则S n 中最大的是A.S 1B.S 9C.S 17D.S 1831. 将含有k 项的等差数列插入4和67之间,结果仍成一新的等差数列,并且新的等差数列所有项的和为781,则k 的值为A.20B.21C..22D.2432. 设数列{}n a 是等差数列,且n S a a ,6,682=-=是数列 {}n a 的前n 项和,则A.S 4<S 3B.S 4==S 2C.S 6<S 3D.S 6=S 333. 已知等差数列前n 项和为S n ,若S 15<0,S 14>0,则此数列中绝对值最小的项为A.第6项B.第7项C.第8项D.第9项34. 设等差数列{}n a 的前n 项和为n S ,已知20092007120102010,2,20092007S S a S =--==则 A.2008- B.2008 C.2010- D.201035. 已知等差数列{}n a 中,10795=-+a a a ,记n n a a a S +++= 21,则13S 的值为A.130B.260C.156D.16836. 已知等差数列{}n a 的前n 项和为n S ,且424a a -=,39S =,则数列{}n a 的通项公 式为A.n a n =B.2n a n =+C.21n a n =-D.21n a n =+37. 等差数列{}n a 中,14739a a a ++=,36927a a a ++=,则数列{}n a 前9项和9S 等于A.297B.144C.99D.6638. 等差数列{}n a 的前n 项和)3,2,1(⋅⋅⋅=n S n 当首项1a 和公差d 变化时,若1185a a a ++是一个定值,则下列各数中为定值的是A. 15SB. 16SC.17SD.18S39. 在公差为2的等差数列{}n a 中,如果前17项和为1734S =,那么12a 的值为A. 2B. 4C. 6D. 840. 已知等差数列30,240,18,}{49===-n n n n a S S S n a 若项和为的前,则n 的值为A.18B.17C.16D.1541. 已知等差数列854,18,}{S a a S n a n n 则若项和为的前-==A.18B.36C.54D.7242. 设函数()f x =,类比课本推导等差数列的前n 项和公式的推导方法计算(4)(3)...(0)(1)...(4)(5)f f f f f f -+-++++++的值为A.2B. 2C.2D. 243. 在等差数列{a n }中,,3321=++a a a 165302928=++a a a ,则此数列前30项和等于A.810B.840C.870D.90044. 设数列}{n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项为A.1B.2C.4D.645. 已知等差数列{}n a 的公差0<d ,若10,248264=+=⋅a a a a ,则该数列的前n 项和n S 的最大值为A.50B.45C.40D.3546. 等差数列{}n a 中,11a =,3514a a +=,其前n 项和100n S =,则n =A.9B.10C.11D.1247. 若}{n a 是等差数列,首项01>a ,020082007>+a a ,020082007<⋅a a ,则使数列}{n a 的前n 项和n S 为正数的最大自然数n 是A.4013B. 4014C. 4015D. 401648. 设数列{n a }是等差数列,且n S a a ,6,682=-=是数列{n a }的前n 项和,则A.S 4<S 5B.S 4=S 5C.S 6<S 5D.S 6=S 549. 已知等差数列{}n a 的通项公式()211,2,3n a n n =-=,,记11T a =,1121122,,n n n n n n T a n T T a a n -+-++⎧⎪=⎨++⎪⎩为奇数,为偶数(2,3,n =),那么2n T = A.21n + B.1162n - C.25 436n n n n ⎧⎨-+≠⎩,=1,,1D.232n n + 50. 已知数列2),1(2,}{a a S S n a n n n n 则且项和为的前-=等于A.4B.2C.1D.—2 51. 等差数列1062,}{a a a S n a n n ++若项和为的前为一个确定的常数,则下列各个和中,也为确定的常数的是A.S 6B.S 11C.S 12D.S 1352. 设n S 是等差数列{}n a 的前n 项和,若3163=S S 则=126S S A.310 B.13 C.81 D.91 53. 已知等差数列{}n a 的前n 项和为n S ,若9S =18,n S =240,4n a -=30,则n 的值为A.18B.17C.16D.1554. 若等差数列{}n a 的前5项和525S =,且23a =,则7a =A.12B.13C.14D.1555. 已知{}n a 是等差数列,124a a +=,7828a a +=,则该数列前10项和10S 等于A.64B.100C.110D.12056. 等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,且3457-+=n n T S n n ,则使得nn b a 为整数的正整数n 的个数是A.3B.4C.5D.657. 数列{}n a 是公差为2-的等差数列,若509741=+++a a a ,则=++++99963a a a a A.-182 B.-82 C.-148 D.-7858. 设A .B .C 三点共线(该直线不过原点O ),数列{a n }是等差数列,S n 是该数列的前n 项和 =a 1+a 200,则S 200=A.200B.100C.50D.30059. 一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为A.14B.16C.18D.2060. 等差数列{a n }中,a 1>0,公差d <0, S n 为其前n 项和,对任意自然数n ,若点(n, S n )在以下4条曲线中的某一条上,则这条曲线应是61. 已知等差数列{a n }前n 项和S n 有最大值且11011-<a a ,当S n 是最小正数时,n = A.17 B.18 C.19 D.2062. 记等差数列{}n a 的前n 项和为n S ,若112a =,420S =,则6S = A.16 B.24 C.36 D.4863. 设|a n |是等差数列,若a 2=3,a 7=13,则数列{a n }前8项的和为A.128B.80C.64D.5664. 已知等差数列}{n a 的前n 项和为S n ,若OC a OA a OB 20043+=,且A 、B 、C 三点共线(该直线不过原点O ),则S 2006 =A.1003B. 1004C. 2006D.200765. 等差数列{}n a 的前n 项和为n S ,若1697=+a a ,77=S ,则12a 的值是A.15B.30C.31D.6466. 已知数列{a n }、{b n }都是公差为1的等差数列,其首项分别为a 1、b 1,且a 1+b 1=5,a 1、b 1∈N *,设C n =a b (n ∈N *),则数列{C n }前10项和等于A.55B.70C.85D.10067. 已知,)1()1()1(22102nn n x a x a x a a x x x ++++=++++++ 若 ++21a a n a n -=+-291,那么自然数n 的值为A. 3B.4C.5D.668. 已知等差数列{a n }的前n 项和为S n ,若m >1,m ∈N*,且21121,38m m m m a a a S -+-+==,则m 等于A.11B.10C.9D.869. 已知等差数列{a n }中, S n 是它的前n 项和,若S 16>0, S 17<0, 则当S n 取最大值时,n 的值为 A.16 B.9 C.8 D.1070. 已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得n na b 为整数的正整数n 的个数是 A.2 B.3 C.4 D.571. 设数列}{n a 是等差数列,且n S a a ,6,673=-=是数列}{n a 的前n 项和,则A.54S S =B.56S S =C.64S S >D.56S S <72. 已知数列{-2n+25},其前n 项和S n 达到最大值时,n 为A.10B.11C.12D.13 73. 若n S 是等差数列{}n a 的前n 项和,其首项10a >,991000a a +>,991000a a ⋅<,则使0n S >成立的最大自然数n 是A.198B.199C.200D.20174. 设等差数列{}n a 满足81335a a =.且10a >.n S 为其前n 项之和.则n S 中最大的是A.10SB.11SC.20SD.21S75. 已知S n 是等差数列{a n }的前n 项和,且a 2+a 4+a 7+a 15=40,则S 13的值为A.20B.65C.130D.26076. 等差数列{}n a 的通项公式是12+=n a n ,其前n 项和为n S ,则数列⎭⎬⎫⎩⎨⎧n S n 的前10项和为A.75B.70C.120D.10077. 在等差数列}{n a 中,若30,240,1849===-n n a S S ,则n 的值为A.14B.15C.16D.1778. 在等差数列{}n a 中,若C a a a =++1383,则其前n 项和n S 的值等于5C 的是A.15SB.17SC.8SD.7S79. 设{}n a 是等差数列,1359a a a ++=,69a =,则这个数列的前6项和等于 A.12 B.24 C.36 D.4880. {}n a 是等差数列,10110,0S S ><,则使n a <0的最小的n 值是A.5B.6C.7D.881. 等差数列}{n a 的前n 项和为n S ,若10173=+a a ,则19S 的值是A.55B.95C.100D.不能确定82. 在等差数列{a n }中,a 1>0,且3a 8=5a 13,则S n 中最大的是A.S 21B.S 20C.S 11D.S 10 83. 设S n 是等差数列前n 项的和,若9535=a a ,则59S S 等于 A.1 B.-1 C.2 D.21 84. 已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为A.180B.-180C.90D.-9085. 若{a n }是等差数列,首项a 1>0,a 2003+a 2004>0,a 2003·a 2004<0,则使前n 项和S n >0成立的最大自然数n 是A.4005B.4006C.4007D.400886. 已知等差数列{}n a 中,247,15a a ==,则前10项的和10S =A.100B.210C.380D.40087. 设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12= A .310 B.13 C.18 D .1988. 设等差数列{a }的前n 项的和为S n ,若a 1>0,S 4=S 8,则当S n 取得最大值时,n 的值为A.5B.6C.7D.889. 已知等差数列{a n }的前n 项和为S n ,若1O a B =200OA a OC +,且A 、B 、C 三点共线(该直线不过原点O ),则S 200=A.100B. 101C.200D.20190. 已知等差数列{a n }的前20项的和为100,那么a 7·a 14的最大值为A.25B.50C.100D.不存在91. 若某等差数列{a n }中,a 2+a 6+a 16为一个确定的常数,则其前n 项和S n 中也为确定的常数 的是A.S 17B.S 15C.S 8D.S 792. 在等差数列{a n }中,a 10<0,a 11>0,且a 11>|a 10|,则{a n }的前n 项和S n 中最大的负数为A.S 17B.S 18C.S 19D.S 2093. 等差数列}{n a 的公差为d ,前n 项的和为S n ,当首项a 1和d 变化时,1182a a a ++是一个定值,则下列各数中也为定值的是A.S 7B.S 8C.S 13D.S 1594. 在等差数列{ a n }中,S 4 =1, S 8 =4,则a 17 + a 18 + a 19+ a 20 的值是A .7B .8C .9D .1095. 设a 1, a 2, a 3,……和b 1, b 2, b 3,……都是等差数列,且a 1=25, b 1=75, a 100+b 100=100,则数列a 1+b 1, a 2+b 2,……的前100项的和是A.0B.100C.10000D.不确定96. 等差数列{a n }中,若前15项的和S 15=90,则a 8等于245D. C.12 445B. 6.A 97. 已知S k 表示数列{a k }前k 项和,且S k + S k+1 = a k +1 (k ∈N*),那么此数列是A .递增数列B . 递减数列C .常数列D . 摆动数列98. 设S n 是等差数列{a n }的前n 项和,若31a a =95,则59S S 等于txjy A.-1 B. 21 C.1 D.2 99. 等差数列{a n }中,a n -4=30,且前9项的和S 9=18,前n 项和为S n =240,则n 等于A.15B.16C.17D.18100. 等差数列{a n }中,若a 10=10,a 19=100,前n 项和S n =0,则n 等于A.7B.9C.17D.19参考答案(仅供参考)1 2 3 4 5 6 7 8 9 10 11 12 13 14 15D C A B A D A C C B C B D A B16 17 18 19 20 21 22 23 24 25 26 27 28 29 30C D B D B C D A B C A C B B D31 32 33 34 35 36 37 38 39 40 41 42 43 44 45A B C C A C C A D D D B B B B46 47 48 49 50 51 52 53 54 55 56 57 58 59 60B B B D A B A D B B B B BC C61 62 63 64 65 66 67 68 69 70 71 72 73 74 75C D C A A C B B C D A C A C C76 77 78 79 80 81 82 83 84 85 86 87 88 89 90A B A B B B B A A B B A B A A91 92 93 94 95 96 97 98 99 100B C C C C A C C A C欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

等差数列(巧妙求和)

等差数列(巧妙求和)

等差数列(巧妙求和)若干个数排成一列,称为数列..。

数列中的每一个数称为一项.,其中第一项称为首项..,最后一项称为末项..。

数列中数的个数称为项数..。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

通项公式:第n项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)÷项数÷21.有一个数列,4、10、16、22……52,这个数列共有多少项?2.等差数列中,首项=1,末项=39,公差=2。

这个等差数列共有多少项?3.有一个等差数列:2、5、8、11……101,这个等差数列共有多少项?4.已知等差数列11、21、26……1001,问这个数列共有多少项?5.有一等差数列:3、7、11、15……这个等差数列的第100项是多少?6.等差数列中,首项=3,公差=2,项数=10。

它的末项是多少?7.求等差数列1、4、7、10……这个等差数列的第30项?8.求等差数列2、6、10、14……这个等差数列的第100项?9.有这样的一列数,1、2、3、4……99、100。

请你求出这列数各项相加的和。

10.计算下面各题(1)、1+2+3+4+……+49+50(2)、4+5+6+7+8+9+……+73+74(3)、100+99+98+……+61+6011.求等差数列2、4、6……48、50的和。

12.计算下面各题(1)2+6+10+14+18+22(2)5+10+15+20+……+95+100(3)9+18+29+36+……+261+27013.※※计算(2+4+6+......+100)-(1+3+5+ (99)14.※※用简便方法计算下面各题。

(1)(2+4+6+......+200)-(1+3+5+ (199)(2)1+2-3+4+5-6+7+8-9+……+58+59-60内容:巧妙求和(中间数×项数)①、21+22+23+24+25+26+27+28+29=()②、197+198+199+200+201+202+203=()③、76+77+78+79+80+81+82+83+84=()④、14+16+18+20+22+24+26=()⑤、45+50+55+60+65+70+75=()⑥、1+2+3+4+……+97+98+99=()。

等差数列前n项和公式基础训练题(含详解)

等差数列前n项和公式基础训练题(含详解)
;③ ;
④ ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.
11.
【解析】
【分析】
根据 得到 , ,计算得到答案.
【详解】
; ,解得
故答案为:
【点睛】
本题考查了等差数列的通项公式和前 项和,意在考查学生对于等差数列公式的灵活运用.
12.
【解析】
【分析】
利用 来求 的通项.
A.18B.36C.45D.60
7.设 为等差数列, , 为其前n项和,若 ,则公差 ()
A. B. C.1D.2
8.等差数列 的前 项和为 ,已知 , ,则当 取最大值时 的值是()
A.5B.6C.7D.8
9.已知 是数列 的前 项和,且 ,则 ().
A.72B.88C.92D.98
10.设 为等差数列 的前 项的和 , ,则数列 的前2017项和为( )
所以 ,所以 .
故答案为: .
【点睛】
本题考查等差数列公差的计算,难度较易.已知等差数列中的两个等量关系,可通过构造方程组求解等差数列的公差,还可以通过等差数列的下标和性质求解公差.
20.已知数列{an}的前n项和为Sn=n2+3n+5,则an=______.
参考答案
1.A
【解析】
设 ,根据 是一个首项为a,公差为a的等差数列,各项分别为a,2a,3a,4a. .
2.B
【解析】
【分析】
根据等差数列的性质,求出 ,再由前n项和公式,即可求解.
【详解】
∵ ,
∴ ,∴
∴由 得 ,∴ .
故选:B.
【点睛】
本题考查等差数列性质的灵活应用,以及等差数列的前n项和公式,属于中档题.

数列求和 经典练习题(含答案解析)

数列求和 经典练习题(含答案解析)

1.在等差数列{a n }中,已知a 6+a 9+a 12+a 15=34,求前20项之和.解法一 由a 6+a 9+a 12+a 15=34 得4a 1+38d =34=20a 1+190d=5(4a 1+38d)=5×34=170由等差数列的性质可得:a 6+a 15=a 9+a 12=a 1+a 20 ∴a 1+a 20=17 S 20=1702.已知等差数列{a n }的公差是正数,且a 3·a 7=-12,a 4+a 6=-4,求它的前20项的和S 20的值.解法一 设等差数列{a n }的公差为d ,则d >0,由已知可得由②,有a 1=-2-4d ,代入①,有d 2=4 再由d >0,得d =2 ∴a 1=-10最后由等差数列的前n 项和公式,可求得S 20=180 解法二 由等差数列的性质可得: a 4+a 6=a 3+a 7 即a 3+a 7=-4 又a 3·a 7=-12,由韦达定理可知: a 3,a 7是方程x 2+4x -12=0的二根 解方程可得x 1=-6,x 2=2又=+×S 20a d 20120192解法二 S =(a +a )202=10(a a )20120120×+(a 2d)(a bd)12 a 3d a 5d = 41111++=-①+++-②⎧⎨⎩∵ d >0 ∴{a n }是递增数列 ∴a 3=-6,a 7=23. 等差数列{a n }的前n 项和S n =m ,前m 项和S m =n(m >n),求前m +n 项和S m+n .解法一 设{a n }的公差d 按题意,则有=-(m +n)解法二 设S x =Ax 2+Bx(x ∈N)①-②,得A(m 2-n 2)+B(m -n)=n -m ∵m ≠n ∴ A(m +n)+B=-1 故A(m +n)2+B(m +n)=-(m +n) 即S m+n =-(m +n)4.设x ≠y ,且两数列x ,a 1,a 2,a 3,y 和b 1,x ,d =a =2a 10S 1807120--a 373,=-,=S na d m S ma d n (m n)a d =n mn 1m11=+=①=+=②①-②,得-·+·-n n m m m n m n ()()()()--⎧⎨⎪⎪⎩⎪⎪-+-121212即+-∴··a d =11m n S m n a m n m n d m n a m n d m n++=++++-=+++-+12121211()()()()()Am Bm n An Bn m22+=①+=②⎧⎨⎪⎩⎪b b y b 234,,,均为等差数列,求.b b a a 4321--5.在等差数列{a n }中,设前m 项和为S m ,前n 项和为S n ,且S m =S n ,m ≠n ,求S m+n .且S m =S n ,m ≠n∴S m+n =06. 在等差数列{a n }中,已知a 1=25,S 9=S 17,问数列前多少项和最大,并求出最大值.解法一 建立S n 关于n 的函数,运用函数思想,求最大值.∵a 1=25,S 17=S 9 解得d =-2∴当n=13时,S n 最大,最大值S 13=169解法二 因为a 1=25>0,d =-2<0,所以数列{a n }是递减等分析解 d =y x 51(1)=y x52(2)可采用=由a a m na ab b m n ----------21433264(2)(1)÷,得b b a a 432183--=解 S (m n)a (m n)(m n 1)d(m n)[a (m n 1)d]m+n 11∵=++++-=+++-1212∴+-=+-整理得-+-+-ma m(m 1)d na n(n 1)d(m n)a (m n)(m n 1)=011112122d即-++-由≠,知++-=(m n)[a (m n 1)d]=0m n a (m n 1)d 0111212根据题意:+×,=+×S =17a d S 9a d 1719117162982∴=+--+--+S 25n (2)=n 26n =(n 13)169n 22n n ()-12∵a 1=25,S 9=S 17∴a n =25+(n -1)(-2)=-2n +27即前13项和最大,由等差数列的前n 项和公式可求得S 13=169. 解法三 利用S 9=S 17寻找相邻项的关系. 由题意S 9=S 17得a 10+a 11+a 12+…+a 17=0 而a 10+a 17=a 11+a 16=a 12+a 15=a 13+a 14 ∴a 13+a 14=0,a 13=-a 14 ∴a 13≥0,a 14≤0 ∴S 13=169最大.解法四 根据等差数列前n 项和的函数图像,确定取最大值时的n . ∵{a n }是等差数列 ∴可设S n =An 2+Bn二次函数y=Ax 2+Bx 的图像过原点,如图3.2-1所示∵S 9=S 17,∴取n=13时,S 13=169最大差数列,若使前项和最大,只需解≥≤,可解出.n a 0a 0n n n+1⎧⎨⎩∴×+××+×,解得-9252d =1725d d =29817162∴-+≥-++≥≤≥∴2n 2702(n 1)270n 13.5n 12.5n =13⎧⎨⎩⇒⎧⎨⎩∴对称轴 x =9+172=137.求数列的通项公式:(1){a n }中,a 1=2,a n+1=3a n +2(2){a n }中,a 1=2,a 2=5,且a n+2-3a n+1+2a n =0 思路:转化为等比数列.∴{a n +1}是等比数列 ∴a n +1=3·3n-1 ∴a n =3n -1∴{a n+1-a n }是等比数列,即 a n+1-a n =(a 2-a 1)·2n-1=3·2n-1再注意到a 2-a 1=3,a 3-a 2=3·21,a 4-a 3=3·22,…,a n -a n-1=3·2n-2,这些等式相加,即可以得到+2说明 解题的关键是发现一个等比数列,即化生疏为已知.(1)中发现{a n +1}是等比数列,(2)中发现{a n+1-a n }是等比数列,这也是通常说的化归思想的一种体现.8. 三个数成等比数列,若第二个数加4就成等差数列,再把这个等差数列的第3项加32又成等比数列,求这三个数.解法一 按等比数列设三个数,设原数列为a ,aq ,aq 2 由已知:a ,aq +4,aq 2成等差数列 即:2(aq +4)=a +aq 2①a ,aq +4,aq 2+32成等比数列 即:(aq +4)2=a(aq 2+32)解 (1)a =3a 2a 1=3(a 1)n+1n n+1n +++⇒(2)a 3a 2a =0a a =2(a a )n+2n+1n n+2n+1n+1n -+--⇒a =3[1222]=3=3(21)n 2n-2n 1+++…+·-21211n ----⇒aq 2=4a +②解法二 按等差数列设三个数,设原数列为b -d ,b -4,b +d由已知:三个数成等比数列 即:(b -4)2=(b -d)(b +d)b -d ,b ,b +d +32成等比数列 即b 2=(b -d)(b +d +32)解法三 任意设三个未知数,设原数列为a 1,a 2,a 3 由已知:a 1,a 2,a 3成等比数列a 1,a 2+4,a 3成等差数列 得:2(a 2+4)=a 1+a 3②a 1,a 2+4,a 3+32成等比数列 得:(a 2+4)2=a 1(a 3+32)③①,②两式联立解得:或-∴这三数为:,,或,,.a =2q =3a =29q =52618⎧⎨⎩⎧⎨⎪⎩⎪-29109509⇒8b d =162-①⇒32b d 32d =02--②①、②两式联立,解得:或∴三数为,,或,,.b =269d =83b =10d =82618⎧⎨⎪⎪⎩⎪⎪⎧⎨⎩-29109509得:①a =a a 2213说明 将三个成等差数列的数设为a -d ,a ,a +d ;将三个成简化计算过程的作用.9.证 ∵S n =a 1+a 1q +a 1q 2+…+a 1q n-1 S 2n =S n +(a 1q n +a 1q n+1+…+a 1q 2n-1) =S n +q n (a 1+a 1q +…+a 1q n-1) =S n +q n S n =S n (1+q n )类似地,可得S 3n =S n (1+q n +q 2n )说明 本题直接运用前n 项和公式去解,也很容易.上边的解法,灵活地处理了S 2n 、S 3n 与S n 的关系.介绍它的用意在于让读者体会利用结合律、提取公因式等方法将某些解析式变形经常是解决数学问题的关键,并且变得好,则解法巧. 10.数列{a n }是等比数列,其中S n =48,S 2n =60,求S 3n .解法一 利用等比数列的前n 项和公式若q=1,则S n =na 1,即na 1=48,2na 1=96≠60,所以q ≠1①、②、③式联立,解得:或a =29a =109a =509a =2a =6a =18123123-⎧⎨⎪⎪⎪⎩⎪⎪⎪⎧⎨⎪⎩⎪等比数列的数设为,,或,,是一种常用技巧,可起到a aq aq (a aq)2aq++.S S =S (S S )n 22n 2n 2n 3n ∴++++S +S =S [S (1q )]=S (22q q )n 22n 2n 2n n 2n2n 2nS (S S )=S [S (1q )S (1q q )]=S (22q q )S S =S (S S )n 2n 3n n n n n n 2n n 2n 2nn 22n 2n 2n 3n +++++++∴++∵S =a (1q )1n 1n --q=S n (1+q n +q 2n )解法二 利用等比数列的性质:S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列 ∴ (60-48)2=48·(S 3n -60) ∴ S 3n =63. 解法三 取特殊值法取n=1,则S 1=a 1=48,S 2n =S 2=a 1+a 2=60 ∴ a 2=12∵ {a n }为等比数列S 3n =S 3=a 1+a 2+a 3=6311.已知数列{a n }中,S n 是它的前n 项和,并且S n+1=4a n +2(n ∈N*),a 1=1(1)设b n =a n+1-2a n (n ∈N*),求证:数列{b n }是等比数列;解 (1)∵ S n+1=4a n +2 S n+2=4a n+1+2S =a (1)a (1)(1+)1q 2n 11--=--=+q qq q S q nn n n n 211()∴q =14S =a (1q )1qn 3n 13n --=-++-a q q q qn n n 12111()()∴S =48(1+116)=633n +14∴ q =a a a =3213=14(2)c =a 2(n N*){c }n nnn 设∈,求证:数列是等差数列.两式相减,得S n+2-S n+1=4a n+1=4a n (n ∈N*) 即:a n+2=4a n+1-4a n变形,得a n+2-2a n+1=2(a n+1-2a n ) ∵ b n =a n+1-2a n (n ∈N*) ∴ b n+1=2b n由此可知,数列{b n }是公比为2的等比数列. 由S 2=a 1+a 2=4a 1+2,a 1=1 可得a 2=5,b 1=a 2-2a 1=3 ∴ b n =3·2n-1将b n =3·2n-1代入,得说明 利用题设的已知条件,通过合理的转换,将非等差、非等比数列转化为等差数列或等比数列来解决(2) c =a 2(n N*)c =b 2n nnn+1n n+1∵∈∴-=-=-++++c a a a a n n n n n n nn 11112222c c =34(n N*)n+1n -∈由此可知,数列是公差的等差数列,它的首项,故+-·即:{c }d =34c =a 2c =(n 1)C =34n 11n n =-12123414n。

高中数学练习题及讲解库数列

高中数学练习题及讲解库数列

高中数学练习题及讲解库数列### 高中数学练习题及讲解:数列#### 练习题1:等差数列的求和题目:设等差数列 \(\{a_n\}\) 的首项 \(a_1 = 2\),公差 \(d = 3\),求前10项的和 \(S_{10}\)。

解答:等差数列的前 \(n\) 项和公式为:\[ S_n = \frac{n}{2}(2a_1 + (n-1)d) \]将已知条件代入公式:\[ S_{10} = \frac{10}{2}(2 \times 2 + (10-1) \times 3) \]\[ S_{10} = 5(4 + 27) \]\[ S_{10} = 5 \times 31 \]\[ S_{10} = 155 \]所以,前10项的和为155。

#### 练习题2:等比数列的通项公式题目:设等比数列 \(\{b_n\}\) 的首项 \(b_1 = 5\),公比 \(q = 2\),求第5项 \(b_5\)。

解答:等比数列的通项公式为:\[ b_n = b_1 \times q^{(n-1)} \]将已知条件代入公式:\[ b_5 = 5 \times 2^{(5-1)} \]\[ b_5 = 5 \times 2^4 \]\[ b_5 = 5 \times 16 \]\[ b_5 = 80 \]所以,第5项 \(b_5\) 为80。

#### 练习题3:数列的递推关系题目:设数列 \(\{c_n\}\) 满足 \(c_1 = 1\),且 \(c_{n+1} = 2c_n + 1\),求 \(c_4\)。

解答:根据递推关系,我们可以逐步计算:\[ c_2 = 2c_1 + 1 = 2 \times 1 + 1 = 3 \]\[ c_3 = 2c_2 + 1 = 2 \times 3 + 1 = 7 \]\[ c_4 = 2c_3 + 1 = 2 \times 7 + 1 = 15 \]所以,\(c_4\) 为15。

数列求和和求通项方法总结(定版)(最新整理)

数列求和和求通项方法总结(定版)(最新整理)

等差等比数列、数列求和、求通项一、单选题1.已知等差数列的前项为,且,,则使得取最小值时的为{}n a n n S 1514a a +=-927S =-n S n ( ).A .1B .6C .7D .6或72.已知等比数列满足,,则( ){}n a 114a =()35441a a a =-2a =A .B .C .D .2112183.设等差数列的前项和为,若,,则的值为( ){}n a n n S 11m a =21121m S -=m A. B. C. D.34564.设等差数列的前项和为,若公差,,则的值为( ){}n a n n S 3d =68a =10S A.65B.62C.59D.565.等比数列中,若,是方程的两根,则的值为( ).{}n a 1a 10a 220x x --=47a a ⋅A.2B. C. D.12-1-6.已知等差数列的前项和为,且,,则( ){}n a n n S 452a =1015S =7a =A.B.1C.D.212327.公比为的等比数列中,,,则( )q {}n a 134a a ⋅=48a =1a q +=A. B.3或2C. D.3或-3328.设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6=( )A .31B .32C .63D .649.在各项均为正数的等比数列中,若,则的值为(){}n a 569a a =3132310log log log a a a ++⋅⋅⋅+A.12 B.10 C.8D.32log 5+10.已知数列满足,且,那么( ){}n a 12n n a a +=+12a =5a =A.8B.9C.10D.1111.已知等差数列中,,,则的值是( ){}n a 7916+=a a 41a =12a A .15B .30C .31D .6412.在等比数列中,,,则( ){}n a 212a =68a =4a =A.B.C.D.424±2±13.设等比数列的前项和为,若,则( ){}n a n n S 4813S S =816S S =A.B.C.D.19141521514.在等差数列中,,则等于(){}n a 372a a +=9S A.2B.18C.4D.915.在等比数列中,,,,则等于(){}n a 11a =2q =16n a =n A. B. C. D.345616.已知等差数列中,若,,则( ){}n a 21a =-45a =-5S =A. B. C. D.7-13-15-17-17.已知等比数列满足,且,则当时,{}n a 0,1,2,n a n >= 25252(3)nn a a n -⋅=≥1n ≥( )2123221log log log n a a a -+++= A .B .C .D .(21)n n -2(1)n +2n 2(1)n -18.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座层塔共挂了盏灯,且相邻两层中的下一层灯数是上一层灯数的倍,73812则塔的顶层共有灯( )A .盏B .盏C .盏D .盏123419.等差数列的公差是2,若成等比数列,则的前项和( ){a n }a 2,a 4,a 8{a n }n S n =A .B .C .D .n(n +1)n(n−1)n(n +1)2n(n−1)220.等差数列的前项和为,若,,则等于( ){}n a n n S 24S =410S =6S A. B. C. D.1218244221.已知等比数列中,,,则( ){}n a 2341a a a =67864a a a =456a a a =A. B.-8C.8D.168±22.一个等比数列的前项和为48,前项和为60,则前项和为( ){}n a n 2n 3n A.63B.108C.75D.8323.等差数列{a n }中,若a 2+a 4+a 9+a 11=32,则a 6+a 7= ( )A .9B .12C .15D .16二、填空题24.2与4的等比中项为_________.25.已知是等差数列,是其前项和,若,则的值是_____________.{}n a n S n 75230a a --=17S26.等差数列,的前项和分别为,,且,则______.{}n a {}n b n n S n T 313n n S n T n +=+220715a ab b +=+27.设是公差不为0的等差数列的前项和,且,则______.n S {}n a n 712a a =-1197S S a =+28.在各项均为正数的等比数列中,若,则的值为{}n a 10091011 3a a =333122019111log log log a a a +++ ____________.29.在等差数列中,已知,则______.{}n a 4816a a +=11S =数列求和及求通项一、数列求和的常用方法1、公式法:利用等差、等比数列的求和公式进行求和例题.在等差数列中,已知,.{}n a 15a =59113a a =(1)求数列的前项和的最大值;{}n a n n S (2)若,求数列前项和.n n b a ={}nb n nT练习.已知等差数列的前项和为,且,.{}n a n n S 35a =-424S =-(1)求数列的通项公式;{}n a (2)求数列的前项和的最小值.{}n a n n S 作业.已知数列是公差不为0的等差数列,首项,且成等比数列.{}n a 11a =124,,a a a(1)求数列的通项公式.{}n a (2)设数列满足求数列的前项和为.{}n b 2n an b =,{}n b n n T 2、错位相减法:求一个等差数列与等比数列的乘积的通项的前n 项和,均可用错位相减法例:已知数列,求前项和1312--=n n n a n nS 练习.已知的前n 项和,{}n a 243n S n n =-+(1)求数列的通项公式;{}n a (2)求数列的前n 项和.162n n a +-⎧⎫⎨⎬⎩⎭n T 作业1.设数列满足:,.{}n a 212321111 (333)n n a a a a n -++++=n ∈+N ⑴求;n a ⑵求数列的前项和.{}n a n n S2.设数列是公差为2的等差数列,数列满足,,.{}n a {}n b 11b =22b =()11n n n n a b b n b ++=+(1)求数列、的通项公式; {}n a {}n b (2)求数列的前项和;{}n n a b n n S 3、裂项相消法:将通项分解,然后重新组合,使之能消去一些项①形如,可裂项成,列出前项求和消去一些项)(1k n n a n +=)11(1kn n k a n +-=n ②形如,可裂项成,列出前项求和消去一些项kn n a n ++=1)(1n k n ka n -+=n 例:已知数列,求前项和1)2()1)(1(11=≥+-=a n n n a n ,n nS练习1.等比数列的各项均为正数,,,成等差数列,且满足.{}n a 52a 4a 64a 2434a a =Ⅰ求数列的通项公式;(){}n a Ⅱ设,,求数列的前n 项和.()()()1111n n n n a b a a ++=--*n N ∈{}n b n S 练习2.已知数列满足,且,等比数列中,.{}n a 0n a ≠1133n n n n a a a a ++-={}n b 2146,3,9b a b b ===(1)证明:数列为等差数列,并求数列的通项公式1n a ⎧⎫⎨⎬⎩⎭{}n a (2)求数列的前n 项和.{}1n n a a +n S作业1.在等差数列中,为其前项和,且{}n a n S n *()n N ∈335,9.a S ==(1)求数列的通项公式;{}n a (2)设,求数列的前项和。

等差数列求和练习题

等差数列求和练习题

等差数列求和练习题一、基础练习题1. 求和公式:已知等差数列的首项为a₁,公差为d,项数为n,求前n项和Sₙ。

解答:Sn = n/2 * (a₁ + an) = n/2 * (a₁ + a₁ + (n-1)d) = n/2 * (2a₁ + (n-1)d)2. 求和公式:已知等差数列的首项为a₁,公差为d,项数为n,求前n项和Sₙ。

解答:Sn = n/2 * (a₁ + an) = n/2 * (a₁ + a₁ + (n-1)d) = n/2 * (2a₁ + (n-1)d)二、练习题1. 求解下列等差数列的前n项和:(1)首项a₁ = 3,公差d = 2,项数n = 5解答:代入求和公式得:S₅ = 5/2 * (3 + 3 + (5-1)*2) = 5/2 * (6 + 8) = 5/2 * 14 = 35(2)首项a₁ = -2,公差d = 3,项数n = 8解答:代入求和公式得:S₈ = 8/2 * (-2 + (-2) + (8-1)*3) = 8/2 * (-4 + 21) = 8/2 * 17 = 68(3)首项a₁ = 1,公差d = 0,项数n = 10解答:代入求和公式得:S₁₀ = 10/2 * (1 + 1 + (10-1)*0) = 10/2 * (2 + 0) = 10/2 * 2 = 102. 求解下列等差数列的前n项和:(1)首项a₁ = 2,公差d = 4,项数n = 6解答:代入求和公式得:S₆ = 6/2 * (2 + 2 + (6-1)*4) = 6/2 * (4 + 20) = 6/2 * 24 = 72(2)首项a₁ = 0,公差d = -3,项数n = 7解答:代入求和公式得:S₇ = 7/2 * (0 + 0 + (7-1)*(-3)) = 7/2 * (0 - 18) = 7/2 * (-18) = -63(3)首项a₁ = 1,公差d = 1,项数n = 100解答:代入求和公式得:S₁₀₀ = 100/2 * (1 + 1 + (100-1)*1) = 100/2 * (2 + 99) = 100/2 * 101 = 5050三、进阶练习题1. 求解下列等差数列的前n项和:(1)首项a₁ = 3,公差d = 2,项数n为首项的二倍解答:由题可知n = a₁ * 2 = 3 * 2 = 6,代入求和公式得:S₆ = 6/2 * (3 + 3 + (6-1)*2) = 6/2 * (6 + 10) = 6/2 * 16 = 48(2)首项a₁ = -2,公差d = 3,项数n为首项的三倍解答:由题可知n = a₁ * 3 = -2 * 3 = -6,代入求和公式得:S₋₆ = -6/2 * (-2 + (-2) + (-6-1)*3) = -6/2 * (-4 + (-21)) = -6/2 * (-25) = 752. 求解下列等差数列的前n项和:(1)首项a₁ = 2,项数n为公差的四倍,公差d = 3解答:由题可知n = d * 4 = 3 * 4 = 12,代入求和公式得:S₁₂ = 12/2 * (2 + 2 + (12-1)*3) = 12/2 * (4 + 33) = 12/2 * 37 = 222(2)首项a₁ = 0,项数n为公差的五倍,公差d = -2解答:由题可知n = d * 5 = -2 * 5 = -10,代入求和公式得:S₋₁₀ = -10/2 * (0 + 0 + (-10-1)*(-2)) = -10/2 * (0 - 18) = -10/2 * (-18) = 90综上所述,通过练习题的求解,我们熟悉了等差数列的求和公式,并能够灵活运用求和公式解决不同条件下的等差数列求和问题。

(完整版)数列求和练习题

(完整版)数列求和练习题

数列求和1.在等差数列}{n a 中,5,142==a a ,则}{n a 的前5项和5S =( ) A.7 B.15 C.20 D.252.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( ). A .15B .12C .-12D .-153.数列112,314,518,7116,…的前n 项和S n 为( ).A .n 2+1-12n -1B .n 2+2-12nC .n 2+1-12nD .n 2+2-12n -14.已知数列{a n }的通项公式是a n =1n +n +1,若前n 项和为10,则项数n 为( ). A .11B .99C .120D .1215. 已知数列{a n }的通项公式为a n =2n +1,令b n =1n(a 1+a 2+…+a n ),则数列{b n }的前10项和T 10=( )A .70B .75C .80D .856.已知数列{a n }的前n 项和S n =an 2+bn (a 、b ∈R),且S 25=100,则a 12+a 14等于( )A .16B .8C .4D .不确定 7.若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为( ).A .1-14nB .1-12n C.23⎝ ⎛⎭⎪⎫1-14n D.23⎝ ⎛⎭⎪⎫1-12n二、填空题8.数列{a n }的通项公式为a n =1n +n +1,其前n 项之和为10,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为________.9.等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2n =________.10.已知等比数列{a n }中,a 1=3,a 4=81,若数列{b n }满足b n =log 3a n ,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和S n =________.11.定义运算:⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,若数列{a n}满足⎪⎪⎪⎪⎪⎪a 1122 1=1且⎪⎪⎪⎪⎪⎪3 3a n a n +1=12(n ∈N *),则a 3=________,数列{a n }的通项公式为a n =________.12.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,那么数列{b n }=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和S n 为________.三、解答题13.已知等差数列{a n }的前n 项和为S n ,且a 3=5,S 15=225. (1)求数列{a n }的通项公式;(2)设b n =2a n +2n ,求数列{b n }的前n 项和T n .14.设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4. (1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .15.设{a n }是等差数列,{b n }是各项都为正数的等比数列,且a 1=b 1=1,a 3+b 5=21,a 5+b 3=13.(1)求{a n },{b n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n b n 的前n 项和S n .16.等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960. (1)求a n 与b n ; (2)求1S 1+1S 2+…+1S n.。

小学奥数等差数列求和习题及答案

小学奥数等差数列求和习题及答案

等差数列求和知识精讲一、定义:一个数列的前n 项的和为这个数列的和。

二、表达方式:常用n S 来表示 。

三:求和公式:和=(首项+末项)⨯项数2÷,1()2n n s a a n =+⨯÷。

对于这个公式的得到可以从两个方面入手:(思路1)1239899100++++++11002993985051=++++++++共50个101()()()() 101505050=⨯= (思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)100 2 10150 5050=+⨯÷=⨯=。

四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。

譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯; ② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯。

例题精讲:例1:求和:(1)1+2+3+4+5+6 = (2)1+4+7+11+13=(3)1+4+7+11+13+ (85)分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。

例如(3)式项数=(85-1)÷3+1=29和=(1+85)×29÷2=1247答案:(1)21 (2)36 (3)1247例2:求下列各等差数列的和。

(1)1+2+3+4+…+199(2)2+4+6+…+78(3)3+7+11+15+…+207分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差数列求和
引例:计算1+2+3+4+……+97+98+99+100
一、有关概念:
像1、2、3、4、5、6、7、8、9、……这样连起来的一串数称为数列;数列中每一个数叫这个数列的一项,排在第一个位置的叫首项,第二个叫第二项,第三个叫第三项,……,最后一项又叫末项;共有多少个数又叫项数;如果一个数列,从第二项开始,每一项与前一项之差都等于一个固定的数,我们就叫做等差数列。

这个固定的数就叫做“公差”。

二、有关公式:
和=(首项+末项)×项数÷2
末项=首项+公差×(项数-1)
公差=(末项-首项)÷(项数-1)
项数=(末项-首项)÷公差+1
三、典型例题:
例1、聪明脑筋转转转:
判断下列数列是否是等差数列?是的请打“√”,并把等差数列的首项,末项、公差及项数写出来,如果不是请打“×”。

判断首项末项公差项数
(1)1、2、4、8、16、32. ()()()()()(2)42、49、56、63、70、77. ()()()()()(3)5、1、4、1、3、1、2、1. ()()()()()(4)44、55、66、77、88、99、110()()()()()
例2、已知等差数列1,8,15,…,78.共12项,和是多少?(博易P27例2)(看ppt,推出公式)
例3、计算1+3+5+7+……+35+37+39
练习2:计算下列各题
(1)6+10+14+18+22+26+30 (3)1+3+5+7+……+95+97+99
(2)3+15+27+39+51+63 (4)2+4+6+8+……+96+98+100
(3)已知一列数4,6,8,10,…,64,共有31个数,这个数列的和是多少?
例5、有一堆圆木堆成一堆,从上到下,上面一层有10根,每向下一层增加一根,共堆了10层。

这堆圆木共有多少根?(博易P27例3)(看ppt)
练习3:
丹丹学英语单词,第一天学了6个单词,以后每一天都比前一天多学会一个,最后一天学会了26个。

丹丹在这些天中共学会了多少个单词?
等差数列求和练习题
一、判断下列数列是否是等差数列?是的请打“√”,并把等差数列的首项,末项及公差写出来,如果不是请打“×”。

判断首项末项公差
1. 2、4、6、8、10、12、14、16.()()()()
2. 1、3、6、8、9、11、12、14. ()()()()
3. 5、10、15、20、25、30、35. ()()()()
4. 3、6、8、9、12、16、20、26.()()()()
二、请计算下列各题。

(1)3+6+9+12+15+18+21+24+27+30+33
(2)4+8+12+16+20+24+28+32+36+40
(3)求3、6、9、12、15、18、21、这个数列各项相加的和。

(4)2+4+6+8+……+198+200
★(5)求出所有三位数的和。

(其他作业:练习册B 1题、4题、6题)。

相关文档
最新文档