光纤知识点归纳

合集下载

光纤通信知识点归纳

光纤通信知识点归纳

第1章概述1、光纤通信的基本概念:利用光导纤维传输光波信号的通信方式。

光纤通信工作波长在于近红外区:0.8~1.8μm的波长区,对应频率: 167~375THz。

对于SiO2光纤,在上述波长区内的三个低损耗窗口,是目前光纤通信的实用工作波长,即0.85μm、1.31μm及1.55μm。

2、光纤通信系统的基本组成:(P2图1-3)目前采用比较多的系统形式是强度调制/直接检波(IM/DD)的光纤数字通信系统。

该系统主要由光发射机、光纤、光接收机以及长途干线上必须设置的光中继器组成。

1)在点对点的光纤通信系统中,信号的传输过程:由电发射机输出的脉码调制信号送入光接收机,光接收机将电信号转换成光信号耦合进光纤,光接收机将光纤送过来的光信号转换成电信号,然后经过对电信号的处理以后,使其恢复为原来的脉码调制信号送入电接收机,最后由信息宿恢复用户信息。

2)光发射机中的重要器件是能够完成电-光转换的半导体光源,目前主要采用半导体发光二极管(LED)和半导体激光二极管(LD)。

3)光接收机中的重要部件是能够完成光-电转换的光电检测器,目前主要采用光电二极管(PIN)和雪崩光电二极管(APD)。

特性参数:灵敏度4)一般地,大容量、长距离光纤传输: 单模光纤+半导体激光器LD小容量、短距离光纤传输: 多模光纤+半导体发光二极管LED5)光纤线路系统:功能:把来自光发射机的光信号,以尽可能小的畸变和衰减传输到光接收机。

组成:光纤、光纤接头和光纤连接器要求:较小的损耗和色散参数3、光纤通信的特点:优点:(1),传输频带宽,通信容量大。

(2)传输损耗小,中继距离长:石英光纤损耗低达0.19 dB/km,用光纤比用同轴电缆或波导管的中继距离长得多。

(3)保密性能好:光波仅在光纤芯区传输,基本无泄露。

(4)抗电磁干扰能力强:光纤由电绝缘的石英材料制成,不受电磁场干扰。

(5)体积小、重量轻。

(6)原材料来源丰富、价格低廉。

缺点:1)不能远距离传输;2)传输过程易发生色散。

光纤工程知识点总结高中

光纤工程知识点总结高中

光纤工程知识点总结高中一、光纤的基本概念1. 光纤的定义光纤是一种利用高折射率的材料包裹着低折射率的材料制成的细长柔软的光导纤维。

2. 光纤的结构光纤通常由芯、包层和包覆层三部分组成。

其中芯用于传输光信号,包层用于隔离芯和包覆层,包覆层则用于保护整个光纤。

3. 光纤的工作原理光纤的工作原理是利用全反射的原理,使光线在光纤内部不断地发生反射,从而实现对光信号的传输。

二、光纤的特性1. 带宽光纤的带宽指的是光信号能够传输的频率范围,通常以兆赫兹(MHz)或千兆赫兹(GHz)来表示。

2. 衰减光纤传输过程中会有信号的衰减,即信号的能量损失。

一般用分贝(dB)来表示。

3. 色散光纤传输过程中会发生色散现象,即不同波长的光信号传输速度不同,造成信号波形的失真。

4. 抗干扰性光纤传输的信号不易受外界电磁干扰影响,具有很好的抗干扰性。

5. 安全性光纤传输的信号不会被拦截,具有较高的安全性。

三、光纤的应用1. 通信领域光纤在通信领域得到广泛应用,包括电话、宽带网络、电视信号等。

光纤在医疗设备中的应用也较为广泛,包括内窥镜、光电探测器等。

3. 工业领域光纤在工业领域中用于测量、传感等方面。

4. 军事领域光纤在军事领域中用于通信、激光武器等方面。

四、光纤的制造工艺1. 拉制法通过拉制法制作的光纤具有较高的质量,通常用于生产高性能的光纤。

2. 化学气相沉积法化学气相沉积法制作的光纤制作工艺较为简单,适用于大规模生产光纤。

3. 拉丝法拉丝法是一种传统的光纤制作工艺,制作出的光纤一般质量较一般。

五、光纤网络1. 光纤通信网络光纤通信网络是一种使用光纤作为主要传输介质的通信网络,具有较大的传输带宽和传输距离。

2. 光纤局域网光纤局域网是一种利用光纤传输数据的局域网络,具有较高的传输速度和安全性。

3. 光纤传感网络光纤传感网络是一种利用光纤进行信息采集和传输的网络,用于监测温度、压力、颤动等参数。

4. 光纤分布式传感网络光纤分布式传感网络是一种将光纤直接作为传感器使用的网络,可以实现对危险区域的实时监控。

光缆的基本知识

光缆的基本知识

光缆的基本知识光缆的基本知识一、光纤与光纤通信的特点光纤是导光纤维的简称。

光纤通信是以光波为载频,以导光纤维为传输媒质的一种通信方式。

由于光纤通信是利用导光纤维传输光信号来实现通信的,因此比起其他通信方式有许多突出的优点。

1、传输频带宽,通信容量大由信息理论知道,载波频率越高通信容量越大,因目前使用的广播频率比微波频率高103—104倍,所以通信容量约可增加103—104倍。

2、损耗低目前实用的光纤均为石英光纤,要减小光纤损耗主要是靠提高玻璃纤维的纯度来达到。

由于目前制成的石英玻璃介质的纯度极高,所以光纤的损耗极低。

已接近理论极限值。

由于管线的损耗低,因此中继距离可以很长,在通信线路中可减少中继站的数量,降低成本且提高了通信质量。

3、不受电磁干扰因为光纤是非金属的介质材料,因此它不受电磁干扰。

4、串音小,保密性好光在光纤传输时,向外泄漏的光能很小,因此树根光纤之间不会产生干扰,既不产生串话,又难以被窃听。

因此光纤通信比传统的无因多模光纤其传输光波有很多模式,它的折射率分布为渐变型,适用于中容量,中距离通信。

单模光纤其传输的广播及一个,纤芯的直径仅几微米,它适用于大容量长距离通信。

所以,单模光纤已在国内得到了广泛应用。

三、光缆的结构、种类和命名方法:1、光缆的结构(1)、缆芯由于光缆主要是靠光纤来完成传输信息任务的,因此缆芯是由光纤芯线组成的。

(2)、加强构件由于光纤脆弱容易断裂,因此在光缆结构上加一根或多根加强构件,以承受安装时产生的拉伸负荷。

加强构件可用金属丝,也可用非金属的纤维增强塑料或玻璃纤维制成,利用非金属加强构件组成的无金属光缆,能更有效的防止雷击。

(3)、护层光缆的护层主要是对已形成缆的光纤芯线起保护作用,避免受外部机械力和环境损坏。

因此要求护层具有耐压力、防潮、湿度特性好、重量轻、耐化学侵蚀、阻燃等特点。

光缆的护层分内护层和外护层,内护层有塑料护层及金属护套两种。

外护层是指铠装层和外被层。

光纤通信技术知识点简要(考试必备)

光纤通信技术知识点简要(考试必备)

光纤通信.1.光纤结构光纤是由中心的纤芯和外围的包层同轴组成的圆柱形细丝。

纤芯的折射率比包层稍高,损耗比包层更低,光能量主要在纤芯内传输。

包层为光的传输提供反射面和光隔离,并起一定的机械保护作用。

设纤芯和包层的折射率分别为n1和n2,光能量在光纤中传输的必要条件是n1>n2。

2.光纤主要有三种基本类型: 突变型多模光纤,渐变型多模光纤, 单模光纤. 相对于单模光纤而言,突变型光纤和渐变型光纤的纤芯直径都很大,可以容纳数百个模式,所以称为多模光纤3.光纤主要用途:突变型多模光纤只能用于小容量短距离系统。

渐变型多模光纤适用于中等容量中等距离系统。

单模光纤用在大容量长距离的系统。

1.55μm 色散移位光纤实现了10 Gb/s容量的100 km的超大容量超长距离系统。

色散平坦光纤适用于波分复用系统,这种系统可以把传输容量提高几倍到几十倍。

三角芯光纤有效面积较大,有利于提高输入光纤的光功率,增加传输距离。

偏振保持光纤用在外差接收方式的相干光系统,这种系统最大优点是提高接收灵敏度,增加传输距离。

4.分析光纤传输原理的常用方法:几何光学法.麦克斯韦波动方程法5.几何光学法分析问题的两个出发点: 〓数值孔径〓时间延迟. 通过分析光束在光纤中传播的空间分布和时间分布. 几何光学法分析问题的两个角度: 〓突变型多模光纤〓渐变型多模光纤.6.产生信号畸变的主要原因是光纤中存在色散,损耗和色散是光纤最重要的传输特性:损耗限制系统的传输距离, 色散则限制系统的传输容量.7.色散是在光纤中传输的光信号,由于不同成分的光的时间延迟不同而产生的一种物理效应. 色散的种类:模式色散、材料色散、波导色散.8. 波导色散纤芯与包层的折射率差很小,因此在交界面产生全反射时可能有一部分光进入包层之内,在包层内传输一定距离后又可能回到纤芯中继续传输。

进入包层内的这部分光强的大小与光波长有关,即相当于光传输路径长度随光波波长的不同而异。

光纤基础知识

光纤基础知识

光纤基础知识光纤,是一种光导纤维,广泛应用于通信、医疗、工业等领域。

它可以高效传输光信号,具有较大的带宽和低的衰减,被认为是现代通信技术的重要组成部分。

本文将介绍光纤的基本原理、结构和常见应用。

一、光纤的基本原理光纤的传输基于光的全反射原理。

当光从一种介质射向密度较大的介质时,会发生全反射现象。

利用这个特性,将光信号封装在一根玻璃或塑料纤维中,通过纤维内部的反射来传输光信号。

二、光纤的结构1. 光纤芯:光纤芯是光信号传输的核心部分,通常由高纯度的二氧化硅或塑料材料制成。

光信号在光纤芯内进行全反射,不会发生衰减。

2. 光纤包层:光纤包层是包围光纤芯的一层材料,通常由折射率较低的材料制成。

它的作用是减少光信号的损失,并保持光信号沿着光纤传输的方向。

3. 光纤护套:光纤护套是外部的保护层,通常由聚氨脂或聚乙烯等材料制成。

它可以保护光纤免受机械和环境损坏。

三、光纤的工作原理光纤的传输过程可以分为发射、传输和接收三个过程。

1. 发射:发射端通过光源产生光信号,并将信号输入光纤芯中。

常用的光源有激光器和发光二极管等。

2. 传输:光信号在光纤芯中以全内反射的方式传输,信号可以在光纤中长距离传输而不发生明显衰减。

3. 接收:接收端利用光探测器接收传输过来的光信号,并将其转换为电信号进行进一步处理和传输。

四、光纤的优势与应用光纤具有许多优势,使其成为通信和其他行业首选的传输介质。

1. 大带宽:光纤具有较大的带宽,可以支持高速数据传输和大容量通信。

2. 长传输距离:光信号在光纤中传输衰减较小,可以实现较长的传输距离。

3. 抗干扰性:光纤不受电磁干扰和射频干扰,适用于复杂环境和电磁敏感设备。

4. 安全性:光纤传输的信号无法被窃听,具有较高的安全性。

光纤的应用广泛,包括但不限于以下领域:1. 通信领域:光纤用于电话、互联网和有线电视等通信网络,提供高速、可靠的通信服务。

2. 医疗领域:光纤在内窥镜、光纤导光束等医疗设备中得到应用,用于检测、诊断和手术。

(完整word版)光纤光缆的基础知识

(完整word版)光纤光缆的基础知识

光纤光缆的基础知识一、光纤1.光纤的定义光纤是光导纤维的简称,即用来通光传输的石英玻璃丝。

2.光纤的结构组成和作用1)光纤的构成:光纤是由光折射率较高的纤芯和折射率较低的包层组成,为了保护光纤不受外力和环境的影响,在包层的外面都加上一层塑料护套(也叫涂覆层)。

2)光纤各组成部分的作用:纤芯:siO2+GeO2(作用是导光通信)包层:siO2(作用是使全反射成为可能)涂覆层:光固化丙烯酸环氧树脂或热固化的硅酮树脂(作用是防止光纤表面受损产生微裂纹,将光纤表面与环境中的水分、化学物质隔开,防止已有的微小裂纹逐步生长扩大)3.光纤的分类A:按组成光纤的材料分类:玻璃(石英)光纤、塑料光纤;B:按光纤横截面上折射率分布分类:有突变型光纤(普通单模光纤)、渐变型光纤(多模光纤)、阶跃型光纤等;C:按光纤传输模式分类:多模光纤、单模光纤等.单模光纤中光偏振状态要传输过程中是否保持不变,又可分为偏振模保持光纤和非偏振模保持光纤;D:按工作波长窗口分类:长波长光纤和短波长光纤等注:单模光纤是指只能传输一种模式(基模或最低阶模)的光纤,其信号畸变很小。

多模光纤是一种能承载多种模式的光纤,即能够允许多个传导模的通过。

模是指光在光纤中的传输方式(单模/多模)。

单模光纤具有很小的芯径,以确保其传输单模,但是其包层直径要比芯径在十多倍,以避免光的损耗。

单模光纤以其衰减小、频带宽、容量大、成本低和易于扩容等优点,作为一种理想的光通信媒介,在全世界得到及为广泛的应用。

4.光纤的特性A:几何特性和光学特性(主要针对单模光纤)纤芯直径:A、多模光纤(50um/62。

5um两种标称直径)B、单模光纤(8.3um)包层直径:125。

0±1.0um包层不圆度:≤1。

0%涂层外径:245±5.0um纤芯、包层同心度:≤0。

5um翘曲度:曲率半径≥4.0m模场直径:指光纤中基模场的电场强度随空间的分布。

它描述了单模光纤中光能集中程度的参量。

光纤基础知识简介

光纤基础知识简介

光纤简介一、光纤概述光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。

微细的光纤封装在塑料护套中,使得它能够弯曲而不至于断裂。

通常,光纤一端的发射装置使用发光二极管〔light emitting diode,LED〕或一束激光将光脉冲传送至光纤,光纤另一端的接收装置使用光敏元件检测脉冲。

二、光纤工作波长光是一种电磁波。

可见光部分波长范围是:390nm—760nm(纳米),大于760nm部分是红外光,小于390nm部分是紫外光。

μμμμ,μμμm以上的损耗趋向加大。

三、光纤分类光纤的分类主要是从工作波长、折射率分布、传输模式、原材料和制造方法上作一归纳的,各种分类如下。

〔1〕工作波长:紫外光纤、可观光纤、近红外光纤μμμm〕。

〔2〕折射率分布:阶跃〔SI〕型光纤、近阶跃型光纤、渐变〔GI〕型光纤、其它〔如三角型、W型、凹陷型等〕。

〔3〕传输模式:单模光纤〔含偏振保持光纤、非偏振保持光纤〕、多模光纤。

〔4〕原材料:石英光纤、多成分玻璃光纤、塑料光纤、复合材料光纤〔如塑料包层、液体纤芯等〕、红外材料等。

按被覆材料还可分为无机材料〔碳等〕、金属材料〔铜、镍等〕和塑料等。

〔5〕制造方法:预塑有汽相轴向沉积〔VAD〕、化学汽相沉积〔CVD〕等,拉丝法有管律法〔Rod intube〕和双坩锅法等。

四、单模光纤与多模光纤光纤是一种光波导,因而光波在其中传播也存在模式问题。

所谓“模”是指以一定角速度进入光纤的一束光。

模式是指传输线横截面和纵截面的电磁场结构图形,即电磁波的分布情况。

一般来说,不同的模式有不同的的场结构,且每一种传输线都有一个与其对应的基模或主模。

基模是截止波长最长的模式。

除基模外,截止波长较短的其它模式称为高次模。

根据光纤能传输的模式数目,可将其分为单模光纤和多模光纤。

多模光纤允许多束光在光纤中同时传播,从而形成模分散〔因为每一个模光进入光纤的角度不同它们到达另一端点的时间也不同,这种特征称为模分散〕。

光纤基础知识

光纤基础知识

光纤基础知识光纤是光导玻璃纤维的简称,就是用来导光的透明介质纤维,它是一种新型的光波导。

光纤外径一般为125 μm~140 μm,芯径一般为3 μm~100 μm。

1.光纤的结构一根实用化的光纤是由多层透明介质构成的,一般为同心圆柱形细丝,为轴对称结构,可以分为三部分:折射率较高的纤芯、折射率较低的包层和外面的涂覆层。

其外形如图2.1所示,其结构如图2.2所示。

图2.1 光纤外形示意图图2.2 光纤的结构示意图光纤的结构一般是双层或多层的同心圆柱体,如图2.2所示。

中心部分是纤芯,纤芯以外的部分称为包层。

纤芯的作用是传导光波,包层的作用是将光波封闭在光纤中传播。

为了达到传波的目的,需要使光纤材料的折射率n,大于包层1。

为了实现纤芯和包层的折射率差,必须使纤芯和包层材料有所材料的折射率n2不同。

目前实用的光纤主要是石英。

如果在石英中掺入折射率高于石英的掺杂剂,则就可作为纤芯材料。

同样如果在石英中掺入折射率比石英低的掺杂剂,则就可以作为包层材料,经过这样掺杂后,上述的目的就可达到了。

也就是说,光纤是由两种不同折射率的玻璃材料拉制而成的。

(1)纤芯位于光纤的中心部位,是光波的主要传输通道。

直径d1=4 μm~50 μm,单模光纤的纤芯为4 μm~10 μm,多模光纤的纤芯为50 μm。

纤芯的成分是高纯度SiO2,掺有极少量的掺杂剂(如GeO2,P2O5),作用是提高纤芯对光的折射率(n1),以传输光信号。

(2)包层位于纤芯的周围。

直径d2=125 μm,其成分也是含有极少量掺杂剂的高纯度SiO2。

而掺杂剂(如B2O3)的作用则是适当降低包层对光的折射率(n2),使之略低于纤芯的折射率,即n1>n2,它使得光信号封闭在纤芯中传输。

(3)涂覆层光纤的最外层为涂覆层,包括一次涂覆层,缓冲层和二次涂覆层。

一次涂覆层一般使用丙烯酸酯、有机硅或硅橡胶材料;缓冲层一般为性能良好的填充油膏;二次涂覆层一般多用聚丙烯或尼龙等高聚物。

光纤知识汇总

光纤知识汇总

光纤知识汇总光纤基础知识汇总关键词:光纤--光导纤维(OF:Optical Fiber,或简称Fiber)纤芯直径—描述格式50/125μ,50/125μ红色部份指光纤内径,50/125μ红色部份指光纤外径。

多模光纤--中心玻璃芯较粗(50或62.5μm),内芯径固定,可传多种模式的光。

单模光纤--中心玻璃芯较细(芯径一般为8~10μm),内芯径根据厂家和规格略有差异。

光纤通讯波长—常见波长为850nm(多模常用)、1310nm(多模、单模均可)、1550nm(单模常用)(人肉眼可见光波长为400到700nm之间,但在多模光纤中所用的850nm波长的激光束会含有部份红色光谱,因此可见;而单模光纤采用1310nm和1550nm的波长通讯,所以就不要尝试看单模光纤中的光了,你不是神,看不到的)1.光纤的类型项目中常见光纤订货类型:OM1 OM2 OM3 OS1 OS2OM1 普通多模光纤,62.5/125μ,传输距离≈300M(千兆),传输距离≈100M(万兆)OM2 普通多模光纤,50/125μ,传输距离≈550M(注:OM2可以传输万兆,距离远小于OM3光纤,≈80M)OM3 万兆多模光纤,50/125μ,传输距离≈300M (万兆),传输距离≈1000M(千兆)OM4 万兆多模光纤,50/125μ,传输距离≈550M (万兆)OS1/OS2 单模光纤(均为G.652光纤,OS1满足G.652的A、B参数,OS2满足G.652的C、D参数),8-10/125μ,传输距离根距传输速度不同可达到10KM~60KM➢短距离千兆传输推荐OM2光纤;由于纤芯差别,信号从OM1光纤传入OM2光纤时会产生衰减,因此不建议OM1、OM2光纤混合安装。

➢短距离万兆传输推荐OM3光纤;OM3光纤向下兼容OM2光纤。

➢300米-500米距离的万兆传输推荐采用OM4光纤,OM4光纤向下兼容OM3、OM2光纤。

光缆的类型我们说的光纤一般指1对,即2根光纤芯(请大家养成习惯,以免不同的讲法造成误解)。

光纤基础知识详解

光纤基础知识详解

光纤基础知识一、光纤的构造、种类、接线、规格光纤的构造通讯用光纤是由通过内部全反射来传输光信号的玻璃构成的。

玻璃光纤的标准直径为125微米(0.125毫米),表面覆盖有直径250微米或900微米的树脂保护涂敷层。

玻璃光纤的传送光的中心部分称为“纤芯”,其周围的包层的折射率比纤芯低,从而限制了光的流失。

石英玻璃非常脆弱,因此覆有保护涂层。

通常有三种典型的光纤涂敷层。

一次涂敷光纤覆有直径为0.25毫米紫外线固化丙烯酸树脂涂敷层的光纤。

其直径非常小,增加了光缆内可容纳光纤的密度,使用非常普遍。

二次涂敷光纤亦称为紧包缓冲层光纤或半紧包缓冲层光纤。

光纤表面覆有直径为0.9毫米的热塑性树脂。

与0.25毫米的光纤相比,其具有更坚固,易操作的优点。

广泛应用于局域网布线及光纤数量较少的光缆。

带状光纤带状光纤提高了连接器组装的效率,有利于多芯融接,从而提高了作业效率。

带状光纤由4根、8根或12根不同颜色的光纤组成,芯纤数最大可达1,000根。

光纤表层覆有紫外线固化丙烯酸脂材料,使用标准光纤剥套钳便可轻松去除涂敷层,方便多芯融接或取出单个光纤。

使用多芯融接机,带状光纤可一次性融接,在光纤数量多的光缆中能轻易识别出来。

光纤种类以下是对最常用的通信光纤种类的描述。

MMF(多模光纤)- OM1光纤或多模光纤(62.5⁄125)- OM2⁄OM3光纤(G.651光纤或多模光纤(50⁄125))SMF(单模光纤)- G.652(色散非位移单模光纤)- G.653(色散位移光纤)- G.654(截止波长位移光纤)- G.655(非零色散位移光纤)- G.656(低斜率非零色散位移光纤)- G.657(耐弯光纤)只要光预算允许,技术上来讲,任何合适的光纤都可应用于FTTx技术,但FTTx技术最常用的光纤为G.652和G.657。

G.651(多模光纤)G.651主要应用于局域网,不适用于长距离传输,但在300至500米的范围内,G.651是成本较低的多模传输光纤。

光纤重要基础知识点

光纤重要基础知识点

光纤重要基础知识点
光纤是一种用于传输光信号的细长柔韧的光学纤维。

光纤作为一种高效、高速、大带宽的通信传输介质,在现代通信领域中发挥着重要的
作用。

下面我们将介绍一些光纤的重要基础知识点。

1. 光纤的结构:光纤由一个或多个玻璃或塑料制成的芯线和包裹在外
面的护套组成。

光纤的芯线是光信号传输的核心部分,护套则起到保
护和绝缘的作用。

2. 光纤的工作原理:光信号通过光纤内的多次全反射来进行传输。


光信号从光纤的一端进入时,在芯线内部不断发生全反射,从而使光
信号沿着光纤的长度传播。

光信号会在光纤两端的光接口处进行转换,从光纤中释放出或接收光信号。

3. 光纤的优势:相比传统的电缆传输方式,光纤具有许多优势。

光纤
传输速度快,能够支持大容量的数据传输;光纤抗干扰能力强,不受
电磁干扰和辐射影响;光纤传输距离远,信号衰减较小;光纤重量轻、体积小,便于安装和布线等。

4. 光纤的应用领域:光纤广泛应用于通信、互联网、计算机网络、医疗、军事、航天等领域。

在通信领域中,光纤网络被广泛应用于长途
电话、宽带接入、数据中心连接等。

5. 光纤的分类:根据光纤的制作材料和结构不同,可以将光纤分为多
种类型,如单模光纤和多模光纤、塑料光纤和玻璃光纤等。

每种类型
的光纤在不同的应用场景中有着各自的特点和适用性。

总的来说,了解光纤的基础知识对于我们理解现代通信技术的发展和
使用具有重要意义。

光纤作为一种高效可靠的通信传输介质,不断推动着信息技术的进步和创新。

光纤光缆干货基础知识点

光纤光缆干货基础知识点

光纤光缆干货基础知识点1.简述光纤的组成答:光纤由两个基本部分组成:由透明的光学材料制成的芯和包层、涂敷层。

2.描述光纤线路传输特性的基本参数有哪些?答:包括损耗、色散、带宽、截止波长、模场直径等。

3. 产生光纤衰减的原因有什么?答:光纤中光功率沿纵轴逐渐减小。

光功率减小与波长有关。

光纤链路中,光功率减小主要原因是散射、吸收,以及连接器和熔接接头造成的光功率损耗。

衰减的单位为dB。

产生原因:使光纤产生衰减的原因很多,主要有:吸收衰减,包括杂质吸收和本征吸收;散射衰减,包括线性散射、非线性散射和结构不完整散射等;其它衰减,包括微弯曲衰减等。

其中最主要的是杂质吸收引起衰减。

4.光纤的带宽与什么有关?答:光纤的带宽指的是:在光纤的传递函数中,光功率的幅值比零频率的幅值降低50%或3dB时的调制频率。

光纤的带宽近似与其长度成反比,带宽长度的乘积是一常量。

光纤中由光源光谱成分中不同波长的不同群速度所引起的光脉冲展宽的现象。

5.信号在光纤中传播的色散特性怎样描述?答:可以用脉冲展宽、光纤的带宽、光纤的色散系数三个物理量来描述。

6.什么是截止波长?答:是指光纤中只能传导基模的最短波长。

对于单模光纤,其截止波长必须短于传导光的波长。

7.光纤的色散对光纤通信系统的性能会产生什么影响?答:光纤的色散将使光脉冲在光纤中传输过程中发生展宽。

影响误码率的大小,和传输距离的长短,以及系统速率的大小。

8.光时域反射计(OTDR)的测试原理是什么?有何功能?答:OTDR基于光的背向散射与菲涅耳反射原理制作,利用光在光纤中传播时产生的后向散射光来获取衰减的信息,可用于测量光纤衰减、接头损耗、光纤故障点定位以及了解光纤沿长度的损耗分布情况等,是光缆施工、维护及监测中必不可少的工具。

其主要指标参数包括:动态范围、灵敏度、分辨率、测量时间和盲区等。

9.常见光测试仪表中的“1310nm”或“1550nm”指的是什么?答:指的是光信号的波长。

关于光纤的知识点总结

关于光纤的知识点总结

关于光纤的知识点总结光纤的基本结构包括纤芯、包层和包覆层。

纤芯是光信号传输的主要部分,包层是用来保护纤芯并起到光波导的作用,包覆层则是用来保护光纤整体并增强其机械性能。

光纤的基本工作原理是利用全反射来限制光信号在纤芯内传输,并且减少光信号的衰减。

光纤的优点主要有带宽大、传输速度快、信号衰减小、抗干扰性强等。

这些优点使得光纤在通信领域得到广泛应用,如长距离通信、高速宽带接入、光纤传感等。

此外,光纤还被广泛应用于医疗和工业领域,如光纤内窥镜、光谱分析和激光焊接等。

在光纤通信领域,光纤传输系统主要包括光源、光纤、检测器和探测器等组件。

其中,光源主要用于产生光信号,光纤用于传输光信号,检测器用于接收和解码光信号,探测器用于监测光纤系统的工作状态。

光纤传输系统通过这些组件的相互配合,可以实现高速、稳定、安全的光信号传输。

光纤的制造工艺主要包括拉制法、浸镀法和溅射法等。

拉制法是最常用的光纤制造工艺,其主要过程包括预制棒制备、预拉制备、拉制和收线,并通过这一系列工艺流程,可以制备出高质量的光纤。

而浸镀法主要是利用光纤预拉制备的玻璃棒浸入气相腔中,通过化学反应得到光纤。

溅射法是一种将材料溅射到基片上的制备方法,通过控制溅射材料和基片的相对位置和温度,可以得到所需的光纤材料。

光纤的性能主要包括传输损耗、带宽、波长、色散和非线性等。

传输损耗是光信号在光纤中传输过程中损失的光功率,带宽是光纤支持的频率范围,波长是光信号的波长范围,色散是光信号在光纤中传输过程中频率的扩散,非线性是光信号在高功率或长距离传输过程中的非线性效应。

通过对这些性能的研究和优化,可以提高光纤的传输效率和性能稳定性。

光纤的发展趋势主要包括高带宽、长距离传输、低成本和多功能化等。

随着通信需求的增加,对光纤传输系统的带宽和距离要求也越来越高,因此未来光纤的应用将更加趋向于高速、稳定和长距禿传输。

而随着光纤制造技术的不断发展,光纤制造成本将会降低,使光纤技术的普及更加便宜。

光纤基础知识汇总

光纤基础知识汇总

光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。

微细的光纤封装在塑料护套中,使得它能够弯曲而不至于断裂。

通常,光纤的一端的发射装置使用发光二极管或一束激光将光脉冲传送至光纤,光纤的另一端的接收装置使用光敏元件检测脉冲。

在日常生活中,由于光在光导纤维的传导损耗比电在电线传导的损耗低得多,光纤被用作长距离的信息传递。

光纤结构1、光纤(Optical Fiber)的典型结构是多层同轴圆柱体,自内向外由纤芯、包层和涂敷层三部分组成。

纤芯作用——传导光波成分——高纯度SiO2+极少量掺杂剂(如P2O5)掺杂目的是提高纤芯对光的折射率包层作用——为光的传输提供反射面和光隔离,并起一定的机械保护作用。

将光波限制在纤芯中传播成分——高纯度SiO2+极少量掺杂剂(如B2O3)掺杂目的是使折射率略低于纤芯折射率设纤芯和包层的折射率分别为n1和n2,光能量在光纤中传输的必要条件是n1>n2。

涂覆层作用——保护光纤不受水汽的侵蚀和机械擦伤。

同时增加光纤柔韧性。

一次涂覆层:丙烯酸酯,有机硅或硅橡胶材料缓冲层:一般为性能良好的填充油膏二次涂覆层:聚丙烯或尼龙等高聚物光纤分类(1)按照制造光纤所用的材料分类有:石英系光纤;多组分玻璃光纤;塑料包层石英芯光纤;全塑料光纤。

2)按折射率分布情况分类:光纤主要有三种基本类型:(多模阶跃折射率光纤)——纤芯折射率为n1保持不变,到包层突然变为n2。

这种光纤一般纤芯直径2a=50~80μm,光线以折线形状沿纤芯中心轴线方向传播,特点是信号畸变大。

渐变型多模光纤(多模渐变射率光纤)——在纤芯中心折射率最大为n1,沿径向r向外围逐渐变小,直到包层变为n2。

这种光纤一般纤芯直径2a为50μm,光线以正弦形状沿纤芯中心轴线方向传播,特点是信号畸变小。

单模光纤——折射率分布和突变型光纤相似,纤芯直径只有8~10 μm,光线以直线形状沿纤芯中心轴线方向传播。

光纤光学知识点总结

光纤光学知识点总结

光纤光学知识点总结第一部分:光的基本特性1. 光的波动特性光是一种电磁波,具有波动和粒子性质。

其中,波动特性表现为光波具有波长、频率、振幅和相位等特性,而粒子性质表现为光子是光的基本粒子,具有动量和能量。

2. 光的传播方式光的传播方式主要有直线传播和曲线传播两种。

直线传播是指光在均匀介质中以直线传播的方式进行传播,而曲线传播是指光在非均匀介质中因受到折射、反射等影响而沿曲线传播。

3. 光的衍射和干涉光的衍射是指光波在遇到缝隙或障碍物时产生偏折现象,而干涉是指两束光波相遇时产生互相干涉的现象。

衍射和干涉是光波的特有现象,是光学研究中重要的现象之一。

第二部分:光纤的基本结构和工作原理1. 光纤的基本结构光纤由芯、包层和外被组成。

其中,芯是光信号传输的核心部分,包层是为了保护芯而设置的,而外被则是为了保护整根光纤而设置的。

2. 光纤的传输特性光纤的传输特性主要包括色散、衰减和非线性失真等。

其中,色散是指不同波长的光波由于折射率的不同而产生的传输延迟差异,衰减是指光在传输过程中能量的损失,而非线性失真是指光波在非线性介质中传输时产生的波形失真现象。

3. 光纤的工作原理光纤的工作原理主要包括全内反射、多模传输和单模传输等。

其中,全内反射是指光在光纤中由于折射率不同而产生的全内反射现象,多模传输是指光纤中可以传输多个模式的光信号,而单模传输是指光纤中只能传输一个模式的光信号。

第三部分:光纤的应用领域1. 通信领域光纤在通信领域有着广泛的应用,主要包括长途通信、城域通信、局域通信和家庭通信等。

其中,长途通信是指利用光纤进行跨国、跨洲的通信传输,城域通信是指利用光纤进行城市范围内的通信传输,局域通信是指利用光纤进行企业或园区内的通信传输,而家庭通信是指利用光纤进行家庭内部的通信传输。

2. 医疗领域光纤在医疗领域有着广泛的应用,主要包括内窥镜、激光治疗和医学影像等。

其中,内窥镜是指利用光纤传输光源,使医生可以在体内进行观察和手术,激光治疗是指利用光纤传输激光能量进行疾病治疗,而医学影像是指利用光纤传输光源,进行医学图像的采集和传输。

光纤基础知识点

光纤基础知识点

1、第一根光纤是什么时候出现的?其损耗是多少?答:第一根光纤大约是1950年出现的。

传输损耗高达1000dB/km 左右。

2、试述光纤通信系统的组成及各部分的关系。

答:光纤通信系统主要由光发送机、光纤光缆、中继器和光接收机组成。

系统中光发送机将电信号转换为光信号,并将生成的光信号注入光纤光缆,调制过的光信号经过光纤长途传输后送入光接收机,光接收机将光纤送来的光信号还原成原始的电信号,完成信号的传送。

中继器就是用于长途传输时延长光信号的传输距离。

3、光纤通信有哪些优缺点?答:光纤通信具有容量大,损耗低、中继距离长,抗电磁干扰能力强,保密性能好,体积小、重量轻,节省有色金属和原材料等优点;但它也有抗拉强度低,连接困难,怕水等缺点。

1.光纤是由哪几部分组成的?各部分有何作用?答:光纤是由折射率较高的纤芯、折射率较低的包层和外面的涂覆层组成的。

纤芯和包层是为满足导光的要求;涂覆层的作用是保护光纤不受水汽的侵蚀和机械擦伤,同时增加光纤的柔韧性。

4.简述光纤的导光原理。

答:光纤之所以能够导光就是利用纤芯折射率略高于包层折射率的特点,使落于数值孔径角)内的光线都能收集在光纤中,并在芯包边界以内形成全反射,从而将光线限制在光纤中传播。

7.均匀光纤纤芯和包层的折射率分别为n 1=1.50,n 2=1.45,光纤的长度L=10Km 。

试求:(1)光纤的相对折射率差Δ;(2)数值孔径NA ;(3)若将光纤的包层和涂敷层去掉,求裸光纤的NA 和相对折射率差Δ。

解:(1)%3.31.5245.11.5 2n n -n 222212221=⨯-=∆= (2) 0.39 0.03321.521=⨯⨯=∆=n NA(3)若将光纤的包层和涂敷层去掉,则相当于包层的折射率n 2=1,则%1.281.5211.5 2n n -n 222212221=⨯-=∆=1.12 0.28121.521=⨯⨯=∆=n NA 而 sin 0φ=NA 最大为1,所以说只要光纤端面的入射角在90O以内,就可以在光纤中形成全反射。

光纤光缆21条基础知识

光纤光缆21条基础知识

光纤光缆基础知识1. 光纤的结构是怎么样的?光纤裸纤一般分为三层:纤芯、包层和涂覆层。

光纤的结构:光纤纤芯和包层是由不同折射率的玻璃组成,中心为高折射率玻璃纤芯(掺锗二氧化硅),中间为低折射率硅玻璃包层(纯二氧化硅)。

光以一特定的入射角度射入光纤,在光纤和包层间发生全发射(由于包层的折射率稍低于纤芯),从而可以在光纤中传播。

涂覆层的主要作用是保护光纤不受外界的损伤,同时又增加光纤的柔韧性。

正如前面所述,纤芯和包层都是玻璃材质,不能弯曲易碎,涂覆层的使用则起到保护并延长光纤寿命的作用。

2.光缆的组成光纤由纯石英以特别的工艺拉丝成比头发还细中间有几介质的玻璃管,它的质地脆易断,因此需要外加一层保护层。

光纤外层加上塑料保护套管及塑料外皮就成了光缆。

光缆包含光纤,光纤就是光缆内的玻璃纤维,广泛上来说光纤是光缆,都是一种传输介质。

但严格意义上讲,两者是不相同的产品,光纤和光缆的区别:光纤是一种传输光束的细而柔软的媒质。

多数光纤在使用前必须由几层保护结构包覆,包覆后的缆线即被称为光缆。

所以光纤是光缆的核心部分,光纤经过一些构件极其附属保护层的保护就构成了光缆。

3.光纤的工作波长?光是由它的波长来定义,在光纤通信中,使用的光是在红外区域中的光,此处光的波长大于可见光。

在光纤通信中,典型的波长是800到1600nm,其中最常用的波长是850nm、1310nm和1550nm。

在选择传输波长时,主要综合考虑光纤损耗和散射。

目的是通过向最远的距离、以最小的光纤损耗来传输最多的数据。

在传输中信号强度的损耗就是衰减。

衰减度与波形的长度有关,波形越长,衰减越小。

光纤中使用的光在850、1310、1550nm处的波长较长,故此光纤的衰减较小,这也导致较少的光纤损耗。

并且这三个波长几乎具有零吸收,最为适合作为可用光源在光纤中传输。

4.最小色散波长和最小损耗波长在目前商用光纤中,什么波长的光具有最小色散?什么波长的光具有具有最小损耗?1310nm波长的光具有最小色散,1550nm波长的光具有最小损耗。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、光纤通信的基本概念:利用光导纤维传输光波信号的通信方式。

光纤通信工作波长在于近红外区:0.8~1.8μm 的波长区,对应频率: 167~375THz 。

对于SiO2光纤,在上述波长区内的三个低损耗窗口,是目前光纤通信的实用工作波长,即0.85μm 、1.31μm 及1.55μm 。

2、光纤通信系统的基本组成:(P2图1-3)目前采用比较多的系统形式是强度调制/直接检波(IM/DD )的光纤数字通信系统。

该系统主要由光发射机、光纤、光接收机以及长途干线上必须设置的光中继器组成。

接 收发 射1)在点对点的光纤通信系统中,信号的传输过程:由电发射机输出的脉码调制信号送入光接收机,光接收机将电信号转换成光信号耦合进光纤,光接收机将光纤送过来的光信号转换成电信号,然后经过对电信号的处理以后,使其恢复为原来的脉码调制信号送入电接收机,最后由信息宿恢复用户信息。

2)光发射机中的重要器件是能够完成电-光转换的半导体光源,目前主要采用半导体发光二极管(LED)和半导体激光二极管(LD)。

3)光接收机中的重要部件是能够完成光-电转换的光电检测器,目前主要采用光电二极管(PIN )和雪崩光电二极管(APD )。

特性参数:灵敏度4)一般地,大容量、长距离光纤传输 : 单模光纤+半导体激光器LD小容量、短距离光纤传输 : 多模光纤+半导体发光二极管LED5)光纤线路系统:功能:把来自光发射机的光信号,以尽可能小的畸变和衰减传输到光接收机。

组成:光纤、光纤接头和光纤连接器要求:较小的损耗和色散参数3、光纤通信的特点:优点:(1),传输频带宽,通信容量大。

(2)传输损耗小,中继距离长:石英光纤损耗低达0.19 dB/km ,用光纤比用同轴电缆或波导管的中继距离长得多。

(3)保密性能好:光波仅在纤芯中传输,基本无泄露。

(4)抗电磁干扰能力强:光纤由电绝缘的石英材料制成,不受电磁场干扰。

(5)体积小、重量轻。

(6)原材料来源丰富、价格低廉。

缺点:1)不能远距离传输;2)传输过程易发生色散。

4、(1)光纤通信在通信网中的未来发展趋势:GFP 、ASON 、全光网(◊ 波分复用技术(WDM )◊ 相干光通信◊ 超长波长光纤通信 ◊ 光集成技术 ◊光孤子通信) (2)相应技术手段:时分复用 TDM ;波分复用 WDM ;光时分复用 OTDM ;光放大技术;色散补偿技术。

(3)技术现状:PDH 、SDH 、WDM 、光电收发器、EPON超高速度、超大容量以及超长距离传输的光纤通信一直是人们追求的目标,光纤到户和全光网是人们希望早日实现的梦想。

目前1.6Tbit/s的WDM系统已经大量使用,随着技术和业务的不断发展,WDM技术正从长途传输领域向城域网领域扩展。

未来的高速通信网是全光网。

它是以光节点代替电节点,节点之间也是全光化,具有良好的透明性、开放性、兼容性以及可靠性,并且能够提供巨大的带宽,网络结构简单,组网非常灵活。

要形成一个已WDM技术与光交换技术为主的光网络层,建立起真正的全光网络,必须要解决的问题是消除电光瓶颈,而光纤到户FTTH是解决从Internet 主干网到用户的“最后一公里”瓶颈现象的最好方案。

第2章光导纤维1、光纤的结构:目前,通信用的光纤绝大多数用石英材料做成的横截面积很小的双层同心圆柱体。

光纤由涂覆层、纤芯、包层组成。

折射率高的中心部分叫做纤芯,其折射率为n1,直径为2a;折射率低的外围部分称为包层,其折射率为n2,直径为2b。

纤芯:纤芯位于光纤的中心部位(直径d1= 9 ~50μm)。

多模光纤的纤芯为50μm,单模光纤的纤芯为9~10μm。

成份:高纯度的二氧化硅。

还掺有极少量的掺杂剂(如二氧化锗,五氧化二磷)。

作用:适当提高纤芯对光的折射率(n1),用于传输光信号。

包层:位于纤芯的周围(直径d2= 125μm),含有极少量掺杂剂的高纯度二氧化硅。

作用:适当降低包层对光的折射率(n2),使之略低于纤芯的折射率,即n1> n2,这是光纤结构的关键,它是使光信号封闭在纤芯中传输。

涂敷层:由丙烯酸酯、硅橡胶和尼龙组成。

作用:增加光纤的机械强度与可弯曲性。

2、光纤的分类:目前在通信中使用较为广泛的光纤有两种:紧套光纤与松套光纤。

1)、按照光纤横截面折射率分布不同来划分:①阶跃型光纤:纤芯折射率n1沿半径方向保持一定,包层折射率n2沿半径方向也保持一定,而且纤芯和包层的折射率在边界处呈阶梯型变化的光纤称为阶跃型光纤,称为:均匀光纤。

②渐变型光纤:如果纤芯折射率n1随着半径加大而逐渐减小,而包层中折射率n2是均匀的,这种光纤称为渐变型光纤,又称为:非均匀光纤。

2)按照纤芯中传输模式的数量划分:多模光纤:在一定的工作波下,多模光纤是能传输多种模式的介质波导。

多模光纤可以采用阶跃折射率分布,也可采用渐变折射率分布多模光纤的纤芯直径约为50μm。

模式色散,仅适用于低速率、短距离通信单模光纤:光纤中只传输一种模式时,叫做单模光纤单模光纤的纤芯直径较小,约为4~10μm。

适用于大容量、长距离的光纤通信。

3)按照传输波长分类:(1)短波长光纤:0.85μm(0.8~0.9μm)作用:用于短距离市话中继线路或专用通信网等线路.(2)长波长光纤:1.3~1.6μm (主要1.3μm 和1.55μm 两个窗口)作用:用于干线传输。

4)按照使用材料的不同来分:玻璃光纤、全塑光纤、石英系列光纤。

3、阶跃型光纤的导光原理1)相对折射指数差: 弱导波光纤: 2)导波:携带信息的光波在光纤的纤芯中,由纤芯和包层的界面引导前进,这种波称为导波。

形成导波的条件:能在纤芯界面上产生全反射的子午线才能在纤芯中形成导波,即子午射线只有满足: 才能在纤芯中形成导波(即满足全反射条件 )。

3)数值孔径NA :表示光纤捕捉入射光线的能力。

4)阶跃型光纤中的光射线种类子午射线 :子午线在端面上的投影是一条直线斜射线:是不经过光纤轴线的空间折线。

4、渐变型光纤的导光原理1)渐变型的子午线不是直线,而是曲线。

在轴线处折射指数最大;在纤芯和包层的交界面处折射指数最小为n2,即n2=n(a).2)得到最佳折射指数分布的前提条件:(1)均匀的激励;(2)恒定的光中心波长;(3)相同传输损耗的模式;最佳折射指数分布:这种在最大程度上减少模式色散的 n(r) 分布,称为渐变型光纤的最佳折射指数分布。

双曲正割型和平方律型3)渐变型(平方律)光纤的最佳折射指数分布表达为:212])(21)[0()(a r n r n ∆-=4)渐变型光纤的本地数值孔径 NA渐变型光纤纤芯折射指数 n 1 随半径r 变化。

因此,数值孔径NA 是纤芯端面上位置的函数。

故,渐变型光纤纤芯在某一点的数值孔径可表示为:比较:阶跃型光纤的数值孔径渐变型光纤的数值孔径 NA 表征的意义:当折射指数越大时,本地数值孔径也越大,表示光纤捕捉射线的能力就越强。

轴线处的折射指数最大,捕捉射线的能力最强。

例题:已知:渐变型光纤的折射指数分布为: 试求:该光纤的本地数值孔径。

解: 2122212n n n -=∆121n n n -≈∆2221sin n n -≤φ)()()(22a n r n r NA -=21)(21)0()(⎥⎦⎤⎢⎣⎡∆-=a a r n r n )()()(22a n r n r NA -= )()(21)0()(22a n r a n r NA a -⎥⎦⎤⎢⎣⎡∆-=⎥⎦⎤⎢⎣⎡∆--⎥⎦⎤⎢⎣⎡∆-=∴a a a a n r a n r NA )(21)0()(21)0()(225、用波动理论法分析光纤的导光原理(1)阶跃型光纤的标量近似解法归一化频率:P26导波的数量:P32单模传输条件: 0<V <2.40483(2)渐变型光纤的标量近似解法归一化频率:P26 最大导波数量:P37截止条件V <Vc ;远离截止:V →∞ 例题:已知:渐变光纤纤芯的折射指数为n1=1.5,相对折射指数差△=0.01、纤芯半径a=25μm 。

若λ0 =1μm ,求:该光纤的归一化频率值及其中传播的模数量。

解: 代入数据可得归一化频率为:最大传播模式数量 = 261例题:已知:阶跃型光纤,若n1=1.5,λ0=1.31μm ,(1)若 △=0.01,当保证单模传输时,纤芯半径a 应取多大?(2)若纤芯半径a=5μm ,应怎样选择△才能保证单模传输?解:(1)单模传输的条件 0<V<2.404832)若纤芯半径a=5μm 0< √2△* 1.5 * * 5 <2.46、阶跃光纤的折射率主要由于以下两方面的原因使得折射指数呈渐变趋势:—— 纤芯材料和包层材料各不同,在制造过程中,相互扩散渗透,使得在纤芯包层交界处折射率由n 1逐渐过度到n 2,呈“圆形”变化—— MCVD 工艺制造过程中,在预制棒制作阶段,使得纤芯r =0处,折射指数下陷。

7、单模光纤的特征参数:(1)衰减系数(2)截止波长λc : 当λ>λc 时,光纤才能传输基模。

(3)模场直径d :沿芯径方向上,相对该场强最大点功率下降了1/e 的两点之间的距离,称为单模光纤的模场直径⎥⎦⎤⎢⎣⎡-∆=∴a r a n r NA )(1)0(2)(2a k n V 012∆= 002λπ=k 3216.32=V a k n V 012∆= ak n V 012∆= ak n V 012∆= 40483.22001<∆<a k n 40483.225.101.0200<⨯⨯⨯<a λπ36358.20<<a 02λπ四种新型单模光纤:1).色散位移单模光纤(DSF)G.653常规石英单模光纤:在1.55μm处损耗最小;在1.31μm时色散系数趋于零;色散位移单模光纤(DSF):将零色散点移到1.55μm单模光纤的色散= 材料色散+ 波导色散。

实现方法:通过改变光纤的结构参数,加大波导色散值。

图示色散位移光纤的色散•2).非零色散光纤NZDF存在问题:在色散位移光纤线路中采用光纤放大器会使得光纤中的光功率密度加大,引起非线性效应。

当应用到WDM系统中造成光波间能量交换,引起信道间干扰。

解决方法:将零色散波长移至1.54-1.565范围内,减小其色散值。

约为1.0~4.0PS/km·nm。

3)、色散平坦光纤DFF为了挖掘光纤的潜力,充分利用光纤的有效带宽,最好使光纤在整个光纤通信的长波段(1.3~1.6μm)都保持低损耗和低色散,即研制了一种新型光纤为了实现在一个比较宽的波段内得到平坦的低色散特性,采用的方法是利用光纤的不同折射率分布来达到目的。

4)色散补偿光纤DCF•色散补偿又称为光均衡,它主要是利用一段光纤来消除光纤中由于色散的存在使得光脉冲信号发生的展宽和畸变。

相关文档
最新文档