2016年西藏自治区中考数学试题及答案

合集下载

2016年青海省中考数学试题及答案

2016年青海省中考数学试题及答案

2016年青海省中考数学试题第Ⅰ卷 (选择题 共30分)一、选择题(本大题共10题,每题3分,共30分.在每题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上) 1. 31-的相反数是 A .31B .3-C .3D .31-2.下列计算正确的是A .a a a 632=⋅B .()623a a =-C .a a a 326=÷D .()3362a a -=-3.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是A .cm 3,cm 4,cm 8B .cm 8,cm 7,cm 15C .cm 5,cm 5,cm 11D .cm 13,cm 12,cm 204.在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是ABCD5.下列几何体中,主视图和俯视图都为矩形的是ABCD6.赵老师是一名健步走运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图1所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是 A .2.1,3.1B .4.1,3.1C .4.1,35.1D .3.1,3.17.将一张长方形纸片折叠成如图2所示的形状,则=∠ABC A .︒73B .︒56C .68︒D .︒146图1图2 图38.如图3,在ABC ∆中,︒=∠90B ,43tan =∠C ,cm AB 6=,动点P 从点A 开始沿边AB 向点B 以s cm 1的速度移动,动点Q 从点B 开始沿边BC 向点C 以s cm 2的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,在运动过程中,PBQ ∆的最大面积是 A .218cmB .212cmC .29cmD .23cm9.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有A .103块B .104块C .105块D .106块10.如图4,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰直角ABC ∆,使︒=∠90BAC ,设点B 的横坐标为x ,点C 的纵坐标为y ,能表示y 与x 的函数关系的图象大致是图4 A B C D第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共10题,每题2分,共20分.不需写出解答过程,请把最后结果填在答题卡对应的位置上) 11.因式分解:a a 242+ = .12.青海日报讯:十五年免费教育政策已覆盖我省所有贫困家庭,首批惠及学生近1.86万人.将1.86万用科学记数法表示为 .13.若式子1+x 有意义,则x 的取值范围是 .14.若一个多边形的内角和是它的外角和的2倍,则这个多边形的边数是 . 15.已知052=-+x x ,则代数式()()()()22312-++---x x x x x 的值为 .16.如图5,在菱形ABCD 中,E ,F 分别是AD ,BD 的中点,若2=EF ,则菱形ABCD 的周长是 .图5图617.如图6,OP 平分AOB ∠,︒=∠15AOP ,PC ∥OA ,OA PD ⊥于点D ,4=PC则=PD .18.⊙O 的半径为1,弦2=AB ,弦3=AC ,则BAC ∠度数为 .19.如图7,为保护门源百里油菜花海,由“芬芳浴”游客中心A 处修建通往百米..观景长廊BC 的两条栈道AB ,AC .若︒=∠56B ,︒=∠45C ,则游客中心A 到观景长廊BC 的距离AD 的长约为 米.(s i n 560.︒≈,t a n 561.︒≈)图7图820.如图8,已知正方形ABCD 的边长为3,E ,F 分别是AB ,BC 边上的点,且︒=∠45EDF .将DAE∆绕点D 逆时针旋转︒90,得到DCM ∆.若1=AE ,则FM 的长为 .三、解答题(本大题共8题,第21、22题每题7分,第23、24、25题每题8分,第26、27题每题10分,第28题12分,共70分.解答时将文字说明、证明过程或演算步骤写在答题卡相应的位置上) 21.(本题共7分)计算:012016)21(3127-+-+-.22.(本题共7分)化简:1221421222+-+÷-+-+x x x x x x x ,然后在不等式x ≤2的非负整数解中选择一个适当的数代入求值.23.(本题共8分)如图9,一次函数m x y +=的图像与反比例函数xky =的图象交于A ,B 两点, 且与x 轴交于点C ,点A 的坐标为(2,1).(1)求m 及k 的值;(2)求点C 的坐标,并结合图象写出不等式组0<m x +≤xk的解集. 图9如图10,在□ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:CF AB =;(2)连接DE ,若AB AD 2=,求证:AF DE ⊥.图1025.(本题共8分)随着我省“大美青海,美丽夏都”影响力的扩大,越来越多的游客慕名而来.根据青海省旅游局《2015年国庆长假出游趋势报告》绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)2015年国庆期间,西宁周边景区共接待游客 万人,扇形统计图中“青海湖”所对应的圆心角的度数是 ,并补全条形统计图;(2)预计2016年国庆节将有80万游客选择西宁周边游,请估计有多少万人会选择去贵德旅游? (3)甲乙两个旅行团在青海湖、塔尔寺、原子城三个景点中,同时选择去同一个 景点的概率是多少?请用画树状图或列表法加以说明,并列举所有等可能的结果.如图11,D 为⊙O 上一点,点C 在直径BA 的延长线上,且CBD CDA ∠=∠. (1)求证:CD 是⊙O 的切线;(2)过点B 作⊙O 的切线交CD 的延长线于点E ,6=BC ,32=BD AD .求BE 的长.图1127.(本题共10分)青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资5.340万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.28.(本题共12分)如图12,在平面直角坐标系中,四边形ABCD 是以AB 为直径的⊙M 的内接四边形,点A ,B 在x 轴上,MBC ∆是边长为2的等边三角形,过点M 作直线l 与x 轴垂直,交⊙M 于点E ,垂足为点M ,且点D 平分 .(1)求过A ,B ,E 三点的抛物线的解析式; (2)求证:四边形AMCD 是菱形;(3)请问在抛物线上是否存在一点P ,使得ABP ∆的面积等于定值5?若存在,请求出所有的点P 的坐标;若不存在,请说明理由.青海省2016年高中招生考试数学试题参考答案一、选择题(本大题共10题,每题3分,共30分)1.A 2.B 3.D 4.D 5.B6.B 7.A 8.C 9.C 10.A二、填空题(本大题共10题,每题2分,共20分)11.()122+a a 12.51061.8⨯13.x ≥1- 14.615.2 16.1617.2 18.︒15或︒75 19.60 20.25 三、解答题(本大题共8题,第21、22题每题7分,第23、24、25题每题8分,第26、27每题10分,第28题12分,共70分)21.解:原式=121333-+-+ =3422.解:原式=()()()()211122122+-⋅-++-+x x x x x x x =12212+--+x x x x =1222++-x x x=12+x∵不等式x ≤2的非负整数解是0,1,2答案不惟一,如: 把0=x 代入212=+x23.解:(1)由题意可得:点A (2,1)在函数m x y +=的图象上∴12=+m 即1-=m ∵A (2,1)在反比例函数xky =的图象上 ∴12=k∴2=k(2)∵一次函数解析式为1y x =-,令0y =,得1x = ∴点C 的坐标是(1,0)由图象可知不等式组0<m x +≤xk的解集为1<x ≤224.证明:(1)∵四边形ABCD 是平行四边形 ∴AB ∥DF (平行四边形两组对边分别平行) ∴F BAE ∠=∠(两直线平行,内错角相等) ∵E 是BC 中点∴CE BE = 在AEB ∆和FEC ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠EC BE FEC AEB F BAE ∴AEB ∆≌FEC ∆(AAS )∴CF AB =(全等三角形对应边相等) (2)∵四边形ABCD 是平行四边形 ∴AB CD =(平行四边形的对边相等)∵CF AB =,DF DC CF =+ ∴2DF CF = ∴AB DF 2=∵AB AD 2= ∴DF AD = ∵AEB ∆≌FEC ∆∴EF AE =(全等三角形对应边相等)∴AF ED ⊥ (等腰三角形三线合一) 25.解:(1)50,︒108,图形补全正确(2)6809.650⨯=(万人) 估计将有9.6万人会选择去贵德旅游.(3)设A ,B ,C 分别表示青海湖、塔尔寺、原子城.树状图如下:由此可见,共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种. ∴P(同时选择去同一个景点)31=26.(1)证明:连结OD ∵OD OB =∴BDO OBD ∠=∠∵CBD CDA ∠=∠ ∴ODB CDA ∠=∠又∵AB 是O ⊙的直径∴90ADB ∠=︒ ∴︒=∠+∠90ODB ADO ∴︒=∠+∠90CDA ADO即︒=∠90CDO ∴CD OD ⊥ ∵OD 是O ⊙半径∴CD 是O ⊙的切线(经过半径外端并且垂直于这条半径的直线是圆的切线) (2)解:∵C C ∠=∠,CBD CDA ∠=∠∴CDA ∆∽CBD ∆∴BD ADBC CD =∵32=BD AD 6=BC ∴4=CD∵CE ,BE 是O ⊙的切线 ∴DE BE = BC BE ⊥∴222EC BC BE =+ 即()22264BE BE +=+解得25=BE27.解:(1)设每个站点造价x 万元,自行车单价为y 万元.根据题意可得⎩⎨⎧=+=+5.340220512011272040y x y x解得:⎩⎨⎧==1.01y x答:每个站点造价为1万元,自行车单价为1.0万元.(2)设2016年到2018年市政府配置公共自行车数量的年平均增长率为a .根据题意可得:()220517202=+a解此方程:()14444112=+a 12211±=+a 即:%75431==a ,12332-=a (不符合题意,舍去)答:2016年到2018年市政府配置公共自行车数量的年平均增长率为%75. 28.解:(1)由题意可知MBC ∆为等边三角形 点A ,B ,C ,E 均在⊙M 上∴2====ME MC MB MA又∵MB CO ⊥ ∴1==BO MO∴A (3-,0),B (1,0),E (1-,2-) 抛物线顶点E 的坐标为(1-,2-)设函数解析式为()212-+=x a y (0≠a )把点B (1,0)代入()212-+=x a y解得:21=a ∴二次函数解析式为 ()21212-+=x y (2)连接DM ,∵MBC ∆为等边三角形∴︒=∠60CMB ∴︒=∠120AMC∵点D 平分弧AC ∴︒=∠=∠=∠6021AMC CMD AMD ∵MA MC MD ==∴MCD ∆,MDA ∆是等边三角形 ∴AD MA CM DC ===∴四边形AMCD 为菱形(四条边都相等的四边形是菱形)(3)存在. 理由如下:设点P 的坐标为(m ,n ) ∵12ABP S AB n ∆= ,4=AB ∴5421=⨯⨯n 即52=n 解得25±=n 当25=n 时,()2521212=-+m解此方程得:21=m ,42-=m即点P 的坐标为(2,25),(4-,25) 当25-=n 时,()2521212-=-+m此方程无解∴所求点P 坐标为(2,25),(4-,25)(注:每题只给出一种解法,如有不同解法请参照评分标准给分)。

2016年西藏中考数学试卷(解析版)

2016年西藏中考数学试卷(解析版)

A.(4,0)
B.(3,0)
C.(0,3)
二、填空题(本题共 6 个小题,每小题 3 分,共 18 分)
第 2 页(共 12 页)
D.(5,0)
13.(3 分)分解因式:a2b﹣b=

14.(3 分)如图是反比例函数图象的一部分,面积为 4 的矩形 OBAC 的边 OB 在 x 轴上,
顶点 A 在反比例函数图象上,则这个反比例函数的解析式为
∵a∥b,∠1=70°, ∴∠3=∠1=70°, ∵∠2+∠3=180°, ∴∠2=180°﹣∠3=110°, 故选:C. 5.【解答】解:∵不透明袋子中装有 9 个球,其中有 2 个红球、3 个黑球、4 个白球, ∴从袋子中随机取出 1 个球,则它是红球的概率是 ,
故选:A.
6.【解答】解:A、
不是最简二次根式,错误;
第 4 页(共 12 页)
(1)求抛物线的解析式; (2)当点 P 在直线 OA 上方时,求线段 PC 的最大值; (3)过点 A 作 AD⊥x 轴于点 D,在抛物线上是否存在点 P,使得以 P、A、C、D 四点 为顶点的四边形是平行四边形?若存在,求 m 的值;若不存在,请说明理由.
第 5 页(共 12 页)
2016 年西藏中考数学试卷
一、填空题(本题共 12 个小题,每题 3 分,共 36 分) 1.(3 分)2016 的倒数是( )
A.﹣2016
B.2016
C.
D.﹣
2.(3 分)国家惠民政策在西藏开花结果,西藏人民的收入逐年增加,去年卓玛家总收入约
为 165000 元,165000 用科学记数法表示为( )

15.(3 分)如图,菱形 ABCD 的周长是 32,点 O 是对角线 AC 与 BD 的交点,点 E 是边 AD

西藏中考数学试卷答案与解析

西藏中考数学试卷答案与解析

70°, 70°.
综上,可得
另外两个内角分别是: 40°, 100°或 70°, 70°.
故选: C.
点评:( 1)此题主要考查了等腰三角形的性质和应用,考查了分类讨论思想的应用,要熟
练掌握,解答此题的关键是要明确等腰三角形的性质:
① 等腰三角形的两腰相等;
② 等腰三角形的两个底角相等. ③ 等腰三角形的顶角平分线、底边上的中线、底边 上的高相互重合.
故答案为∠ 1=∠ 2(答案不唯一) .
点评:本 题考查了平行线的判定,判定两直线平行的题,可围绕截线找同位角、内错角和同
旁内角.本题是一道探索性条件开放性题目,能有效地培养学生
“执果索因 ”的思维方
式与能力.
15.( 3 分)( 2014?西藏)若扇形的圆心角为 60°,弧长为 2π,则扇形的半径为 6 .
2.( 3 分)( 2014?西藏)太阳的半径约为 696000 千米,将 696000 用科学记数法表示为 ( )
A . 0.696×106
6
B. 6.96×10
4
C. 69.6×10
5
D. 6.96×10
考点 :科 学记数法 —表示较大的数. 分析:科 学记数法的表示形式为 a×10n 的形式,其中 1≤|a|< 10, n 为整数.确定 n 的值时,
B 、是轴对称图形,故本选项正确; C 、不是轴对称图形,故本选项错误; D 、不是轴对称图形,故本选项错误. 故选: C. 点评:本 题考查了轴对称图形的概念. 轴对称图形的关键是寻找对称轴, 可重合.
图形两部分折叠后
4.( 3 分)( 2014 ?西藏)下列计算正确的是(

学习必备
欢迎下载
A . a6÷a2=a3

西藏拉萨市中考数学试卷

西藏拉萨市中考数学试卷

西藏拉萨市中考数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·安徽) 截至2016年底,国家开发银行对“一代一路”沿线国家累计贷款超过1600亿美元,其中1600亿用科学记数法表示为()A . 16×1010B . 1.6×1010C . 1.6×1011D . 0.16×10122. (2分) (2020八下·玉州期末) 对于的理解错误的是()A . 是实数B . 是最简二次根式C .D . 能与进行合并3. (2分)如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A . 美B . 丽C . 萃D . 县4. (2分) (2020八下·高邮期末) 下列调查方式,你认为最合适的是()A . 要调查一批灯管的使用寿命,采用全面调查的方式B . 扬泰机场对旅客进行登机前安检,采用抽样调查方式C . 为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,采用普查方式D . 试航前对我国国产航母各系统的检查,采用抽样调查方式5. (2分)(2019·湘西) 下列立体图形中,主视图是圆的是()A .B .C .D .6. (2分) (2019七上·施秉月考) 如图,用4根火柴棒可搭出1个小正方形,用7根火柴棒可搭出2个小正方形,按照这样的方式,搭10个小正方形需火柴棒()A . 30根B . 31根C . 32根D . 33根7. (2分)按下列图示的程序计算,若开始输入的值为x=3,则最后输出的结果是()A . 6B . 21C . 156D . 2318. (2分)如图,两个同心圆的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为()A . 2πB . 4πC . 6πD . 8π9. (2分) (2017九上·宁县期中) 在平面直角坐标系内,一次函数y=ax+b与二次函数y=ax2+2x+b的图象可能是()A .B .C .D .10. (2分)把△ABC三边的长度都扩大为原来的3倍,则锐角A的正弦值()A . 不变B . 缩小为原来的C . 扩大为原来的3倍D . 不能确定二、填空题 (共6题;共6分)11. (1分)如图,在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP 与△M1N1P1 ,关于某一点中心对称,则对称中心的坐标为________12. (1分)(2019·嘉善模拟) 如图,网格中小正方形的边长为1,点A、B、C都落在格点上,则sinA=________.13. (1分)(2018·烟台) 如图,反比例函数y= 的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k=________.14. (1分)(2020·沈阳模拟) 如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC 的值为________.15. (1分)(2019·丹阳模拟) 如图,在平面直角坐标系xOy中,点B(-1,4),点A(-7,0),点P是直线上一点,且∠ABP=45°,则点P的坐标为________.16. (1分)(2020·达县) 2019年是中华人民共和国成立70周年,天安门广场举行了盛大的国庆阅兵式和群众游行活动.其中,群众游行队伍以“同心共筑中国梦”为主题,包含有“建国创业”“改革开放”“伟大复兴”三个部分,某同学要统计本班学生最喜欢哪个部分,制作扇形统计图.以下是打乱了的统计步骤:①绘制扇形统计图②收集三个部分本班学生喜欢的人数③计算扇形统计图中三个部分所占的百分比其中正确的统计顺序是________.三、解答题 (共9题;共75分)17. (5分) (2020七下·嘉兴期末) 计算:(1) +(2)()18. (5分)(2019·三明模拟) 先化简,再求值:,其中.19. (10分)(2016·广东) 如图,已知△ABC中,D为AB的中点.(1)请用尺规作图法作边AC的中点E,并连结DE(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若DE=4,求BC的长.20. (11分)(2020·兰州模拟) 如图,有四张质地完全相同的卡片,正面分别写有四个角度,现将这四张卡片洗匀后,背面朝上.(1)若从中任意抽取--张,求抽到锐角卡片的概宰;(2)若从中任意抽取两张,求抽到的两张角度恰好互补的概率.21. (10分) (2016八下·东莞期中) 如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.(1)求∠BAC的度数.(2)若AC=2,求AD的长.22. (10分)(2020·湖州) 某企业承接了27000件产品的生产任务,计划安排甲、乙两个东间的共50名工人,合作生产20天完成.已知甲、乙两个车间利用现有设备,工人的工作效率为:甲车间每人每天生产25件,乙车间每人每天生产30件.(1)求甲、乙两个车间各有多少名工人参与生产?(2)为了提前完成生产任务,该企业设计了两种方案:方案一:甲车间租用先进生产设备,工人的工作效率可提高20%,乙车间维持不变;方案二:乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.设计的这两种方案,企业完成生产任务的时间相同.①求乙车间需临时招聘的工人数;②若甲车间租用设备的租金每天900元,租用期间另需一次性支付运输等费用1500元;乙车间需支付临时招聘的工人每人每天200元.问:从新增加的费用考虑,应选择哪种方案能更节省开支?请说明理由.23. (6分)(2015·杭州) 如图,在△ABC中(BC>AC),∠ACB=90°,点D在AB边上,DE⊥AC于点E.(1)若 = ,AE=2,求EC的长;(2)设点F在线段EC上,点G在射线CB上,以F,C,G为顶点的三角形与△EDC有一个锐角相等,FG交CD 于点P.问:线段CP可能是△CFG的高线还是中线?或两者都有可能?请说明理由.24. (3分)如图,在平面直角坐标系中,已知B(8,0),C(0,6),P(﹣3,3),现将一直角三角板EPF 的直角顶点放在点P处,EP交y轴于N,FP交x轴于M,把△EPF绕点P旋转:(1)如图甲,①求OM+ON的值;②求BM﹣CN的值;(2)如图乙,①求ON﹣OM的值;②求BM+CN的值.25. (15分)如图,正方形ABCD边长为6.菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,且AH=2,连接CF.(1)当DG=2时,求证:菱形EFGH为正方形;(2)设DG=x,试用含x的代数式表示△FCG的面积.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共75分)17-1、17-2、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、24-1、24-2、25-1、25-2、。

西藏中考数学试题(含答案)

西藏中考数学试题(含答案)

2022年中考往年真题练习: 西藏中考数学试卷一、挑选题(本大题共12小题, 每小题3分, 满分36分)1.﹣5的相反数是()A.﹣5 B.5C.±5 D.2.已知地球上海洋面积约为361 000 000km2, 361 000 000这个数用科学记数法可表示为() A.3. 61×106B.3. 61×107C.3. 61×108D.3. 61×1093.平面直角坐标系中, 点P的坐标为(﹣5, 3) , 则点P关于y轴的对称点的坐标是() A.(5, 3) B.(﹣5, ﹣3) C.(3, ﹣5) D.(﹣3, 5)4.一元二次方程的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.不能确定5.2022年中考往年真题练习: 7月27日国际奥委会的会旗将在伦敦上空升起, 会旗上的图案由五个圆环组成.如图, 在这个图案中反映出的两圆的位置关系有()A.内切、相交B.外离、内切C.外切、外离D.外离、相交6.如图是每个面上都有一个汉字的正方体的一种展开图, 那么在原正方体的表面上, 与汉字“美“相正确的面上的汉字是()A.我B.爱C.长D.沙7.已知等腰三角形的两边的长分别为3和6, 则它的周长为()A.9B.12 C.15 D.12或158.2022年中考往年真题练习: 全区中学生运动会, 需要从3名男生和2名女生中随机抽取1名志愿者, 则女生被抽中的概率是()A.B.C.D.9.下列各式计算正确的是()A.(a+b) 2=a2+b2B.a2•a3=a5C.a6+a6=a12D.a10÷a2=a510.下列各命题中, 真命题是()A.不在同一直线上的三个点确定一个圆B.三角形的外心是三角形三条高的交点C.邻边相等的四边形是菱形D.三角形的一个外角大于三角形任意一个内角11.如图, AB切⊙O于点B, 延长AO交⊙O于点C, 连接BC.若∠A=40°, 则∠C=() A.20°B.25°C.40°D.50°12.若式子有意义, 则x的取值范围为()A.x≤2 B.x≤2且x≠1 C.x≥2 D.x≥1二、填空题(本大题共6小题, 每小题3分, 满分18分)13.某样本数据是2, 2, x, 4, 4, 6, 加入这个样本的众数是2, 则x的值是_________.14.在实数范围内分解因式: x2﹣3=_________.15.如图, 已知直线a∥b, ∠1=50°, 则∠2=_________°.16.如图, 小明从纸上剪下一个圆形和一个扇形纸片, 用它们恰好能围成一个圆锥模型.若圆的半径为1, 扇形的圆心角为120°, 则此扇形的半径为_________.17.如图, 点P在∠AOB的平分线上, 若使△AOP≌△BOP, 则需添加的一个条件是_________.(只写一个即可, 不添加辅助线)18.用同样大小的小圆按下图所示的方式摆图形, 第1个图形需要1个小圆, 第2个图形需3个小圆, 第3个图形需要6个小圆, 第4个图形需要10个小圆, 按照这样的规律摆下去, 则第n个图形需要小圆_________个(用含n的代数式表示) .三、解答题(本大题共7小题, 满分46分)19.计算: .20.解方程:21.为了加快西藏旅游业发展, 某旅行社开发了“坐皮筏、看蓝天、游碧水”的旅游项目.一只皮筏艇由河岸的A处景点沿直线方向开往对岸的B处景点(如图) , 若两侧的河岸平行, 河宽为900m, AB 与河岸的夹角是60°, 皮筏艇的航行速度为204m/min, 求皮筏艇从A处景点开到B处景点所需的时间(≈1. 7) .22.某班观看电影《和雷锋在一起的日子》, 有甲、乙两种电影票, 甲种票每张24元, 乙种票每张18元.加入全班35名同学购票用去750元, 那么甲、乙两种电影票各几张?23.如图, 四边形ABCD是菱形, AE⊥BC交CB的延长线于点E, AF⊥CD交CD的延长线于点F.求证: AE=AF.24.如图, 在⊙O中, 弦BC垂直于半径OA, 垂足为E, D是优弧上一点, 连接BD, AD, OC,∠ADB=30°.(1) 求∠AOC的度数;(2) 若弦BC=6cm, 求图中阴影部分的面积.25.为了落实国家的惠农政策, 某地政府制定了农户投资购买收割机的补贴方法, 其中购买Ⅰ、Ⅱ型收割机所投资的金额与政府补贴的额度存在下表所示的函数对应关系:Ⅰ型收割机Ⅱ型收割机投资金额x(万元) x 5 x 2 4补贴金额x(万元) y1=kx 2 y2=ax2+bx 2. 4 3. 2(1) 分别求出y1和y2的函数解析式;(2) 旺叔准备投资10万元购买Ⅰ、Ⅱ两型收割机.请你设计一个能获得最大补贴金额的方案, 并求出按此方案能获得的补贴金额.2022年中考往年真题练习: 西藏中考数学试卷参考答案与试题解析一、挑选题(本大题共12小题, 每小题3分, 满分36分)1.﹣5的相反数是()A.﹣5 B.5C.±5 D.考点分相反数。

2016年青海省中考数学试卷-答案

2016年青海省中考数学试卷-答案

青海省2016年初中毕业升学考试数学答案解析一、填空题1.【答案】312【解析】3-的相反数是312=,所以18的立方根是12. 【提示】根据求一个数的相反数的方法就是在这个数的前边添加“-”,以及求一个数的立方根的方法求解即可.【考点】立方根,相反数.2.【答案】2(2)(2)b a a +-42x【解析】22282(4)2(2)(2)a b b b a b a a -=-=+-;624842x x x ÷=.故答案是:2(2)(2)b a a +-,42x .【提示】因式分解的步骤:一提公因式;二看公式,公式包括平方差公式与完全平方差公式。

因式分解必须进行到不能再分解为止.【考点】整式的除法,提公因式法与公式法的综合运用.3.【答案】151.24810⨯【解析】将1 248 000 000 000 000用科学记数法表示为151.24810⨯.故答案为:151.24810⨯.【提示】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值>1时,n 是正数,当原数的绝对值<1时,n 是负数.【考点】科学记数法表示较大的数.4.【答案】3x ≥-且2x ≠【解析】函数y =有意义,得: 3020x x +≥⎧⎨-≠⎩解得3x ≥-且2x ≠故答案为:3x ≥-且2x ≠.【提示】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【考点】函数自变量的取值范围.5.【答案】65【解析】∵AB CD ∥,∴180ABC BCD ∠+∠=,而150ABC ∠=∠=,130BCD ∴∠=,∵CA 平分∠BCD ,65ACD BCD ∴∠=∠=,∵AB ∥CD ,265ACD ∴∠=∠=.故答案为65.【提示】先根据平行线的性质得180ABC BCD ∠+∠=,根据对顶角相等得150ABC ∠=∠=,则:130BCD ∠=,再利用角平分线定义得到1652ACD BCD ∠=∠=,然后根据平行线的性质得到∠2的度数. 【考点】平行线的性质.6.【答案】38【解析】∵AD ∥BC ,71B ∠=,∴71EAD B ∠=∠=,∵AD 是∠EAC 的平分线,∴2271142EAC EAD ∠=∠=⨯=,∴38BAC ∠=,故答案为38°. 【提示】先用平行线求出∠EAD ,再用角平分线求出∠EAC ,最后用邻补角求出∠BAC .【考点】三角形的外角性质,平行线的性质.7.【答案】2 【解析】∵直线12y x =与双曲线k y x =在第一象限的交点为A (2,m ), ∴1212m =⨯=, ∴A (2,1),∴212k xy ==⨯=.故答案为:2.【提示】先把A (2,m )代入直线12y x =得出m 的值,故可得出A 点坐标,再代入双曲线k y x =,求出k 的值即可. 【考点】反比例函数与一次函数的交点问题.8.【答案】500π.【解析】∵OA OA =',OC OC =',AC AC='' ∴AOC AOC''≌ ∴刮雨刷AC 扫过的面积=扇形AOA′的面积﹣扇形COC′的面积=224555004ππ-=(cm 2), 故答案为:500π.【提示】易证三角形AOC 与三角形A′OC′全等,故刮雨刷AC 扫过的面积等于扇形AOA′的面积减去扇形COC′的面积.【考点】扇形面积的计算,旋转的性质.9.【答案】35y x =+ 【解析】由题意,得3174x x y +=++,化简,得35y x =+.故答案为35y x =+. 【提示】根据从盒子中随机取出一颗白棋子的概率为14列出关系式,进而可得y 与x 之间的关系式. 【考点】概率公式.10.【答案】40【解析】∵AB 为⊙O 的直径,∴9050ACB CAB ∠=∠=,又,∴40ABC ∠=,∴40ADC ABC ∠=∠=,故答案为:40.【提示】根据直径所对的圆周角为直角求出90ACB ∠=,得到∠B 的度数,根据同弧所对的圆周角相等得到答案.【考点】圆周角定理.11.【答案】245【解析】在菱形ABCD 中,AC ⊥BD ,∵86AC BD ==,, ∴111184632222OA AC OB BD ==⨯===⨯=,,在Rt △AOB 中,5AB =, ∵DH ⊥AB ,∴菱形ABCD 的面积12AC BD AB DH ==, 即16852DH ⨯⨯= 解得245DH =, 故答案为:245. 【提示】根据菱形的对角线互相垂直平分求出OA 、OB ,再根据勾股定理列式求出AB ,然后利用菱形的面积列式计算即可得解.【考点】菱形的性质.12.【答案】631y m n =+()【解析】观察,发现规律:3121=⨯+(),15341=⨯+(),35561=⨯+(), ∴78163x =⨯+=(),1y mn =+(). 故答案为:63,1y mn =+(). 【提示】观察给定图形,发现右下的数字=右上数字×(左下数字+1),依此规律即可得出结论.【考点】规律型:图形的变化类,规律型:数字的变化类.二、选择题13.【答案】C【解析】A.32a a +,不能合并,故本选项错误;B.2336ab a b =-(-),故本选项错误;C.22122a a a a -=-(),故本选项正确;D.2222a b a ab b +=++(),故本选项错误.故选C.【提示】直接利用合并同类项、积的乘方与幂的乘方的性质与整式乘法的知识求解即可求得答案.【考点】整式的混合运算.14.【答案】D【解析】A.有4条对称轴,B.有6条对称轴,C.有4条对称轴,D.有2条对称轴,故选D.【提示】根据对称轴的概念求解.【考点】轴对称图形.15.【答案】C【解析】30240x x +>⎧⎨-≤⎩解得:3x >﹣,2x ≤,故原不等式组的解集是32x ≤﹣<,故选C.【提示】根据解一元一次不等式组的方法可以求出原不等式组的解集,从而可以解答本题.【考点】解一元一次不等式组,在数轴上表示不等式的解集.16.【答案】B【解析】2680x x +=-(x 4)(x 2)0--=∴1242x x ==,,由三角形的三边关系可得:腰长是4,底边是2,所以周长是:44210.++=故选:B.【提示】用因式分解法可以求出方程的两个根分别是4和2,根据等腰三角形的三边关系,腰应该是4,底是2,然后可以求出三角形的周长.【考点】解一元二次方程-因式分解法,三角形三边关系,等腰三角形的性质.17.【答案】D【解析】由于总共有11个人,且他们的分数互不相同,第6的成绩是中位数,要判断是否进入前6名,故应知道中位数的多少.故选D.【提示】11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【考点】中位数的应用,统计量的选择.18.【答案】B【解析】设普通列车的平均行驶速度为x km/h ,则高铁列车的平均速度为(x +160)km/h , 根据题意,可得:4804804160x x -=+, 故选:B.【提示】设普通列车的平均行驶速度为x km/h ,则高铁列车的平均速度为(x +160)km/h ,根据乘坐高铁列车比乘坐普通快车能提前4h 到达”可列方程.【考点】由实际问题抽象出分式方程.19.【答案】B【解析】当点P 在AD 上时,△ABP 的底AB 不变,高增大,所以△ABP 的面积S 随着时间t 的增大而增大,当点P 在DE 上时,△ABP 的底AB 不变,高不变,所以△ABP 的面积S 不变,当点P 在EF 上时,△ABP 的底AB 不变,高减小,所以△ABP 的面积S 随着时间t 的减小,当点P 在FG 上时,△ABP 的底AB 不变,高不变,所以△ABP 的面积S 不变,当点P 在GB 上时,△ABP 的底AB 不变,高减小,所以△ABP 的面积S 随着时间t 的减小,故选:B.【提示】根据点P 在AD 、DE 、EF 、FG 、GB 上时,△ABP 的面积S 与时间t 的关系确定函数图象.【考点】动点问题的函数图象.20.【答案】A【解析】在图中标上字母E ,如图所示.∵正方形ABCD 的边长为2,△CDE 为等腰直角三角形,∴222DE CE CD DE CE +==,,∴221.S S S +=观察,发现规律:2124S ==,212S S ==,321S S ==,431122S S ==,…, ∴312n n S =﹣(). 当9n =时,93691122S ==﹣()(), 故选:A.【提示】根据等腰直角三角形的性质可得出221S S S +=,写出部分S n 的值,根据数的变化找出变化规律“312n n S =﹣()”,依此规律即可得出结论. 【考点】勾股定理.21.【答案】-6【解析】963936.=-+-=-+=-原式【提示】本题涉及负指数幂、二次根式化简、绝对值、特殊角的三角函数值等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【考点】实数的运算,特殊角的三角函数值.22.【解析】222411(x 2)(x 2)(x 2)11(x 2)22x x x x x x x x x --+-⨯--+--=⨯--+=-原式=当2x ===原式 【提示】先计算括号内减法、同时将除法转化为乘法,再约分即可化简,最后代入求值即可.【考点】分式的化简求值.23.【答案】证明:(1)∵四边形ABCD 是平行四边形,∴AD ∥CB ,AD CB =,∴DAE BCF ∠=∠,在△ADE 和△CBF 中,AD CB DAE BCF AE CF =⎧⎪∠=∠⎨⎪=⎩∴ADE CBF ∆∆≌,(2)由(1),可得∴ADE CBF ∆∆≌,∴ADE CBF ∠=∠,∵DEF DAE ADE ∠=∠+∠,BFE BCF CBF ∠=∠+∠,∴DEF BFE ∠=∠,∴DE ∥BF ,又∵DE BF =,∴四边形DEBF 是平行四边形.【提示】(1)根据全等三角形的判定方法,判断出ADE CBF ∆∆≌,即可推得.DE BF =(2)首先判断出DE ∥BF ,然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF 是平行四边形即可.【考点】平行四边形的判定与性质,全等三角形的判定与性质.24.【答案】(1)20m(2)48m【解析】(1)如图,过点E 作EM ⊥AB ,垂足为M .设AB 为x .Rt △ABF 中,45AFB ∠=,∴BF AB x ==,∴25BC BF FC x =+=+,在Rt △AEM 中,22AEM ∠=,2AM AB BM AB CE x =-=-=-,tan 22AM ME =, 则22255x x -=+, 解得:20x =.即教学楼的高20m.(2)由(1)可得25202545ME BC x ==+=+=.在Rt △AME 中,cos22ME AE =. ∴cos22ME AE =, 即A 、E 之间的距离约为48m 【提示】(1)首先构造直角三角形△AEM ,利用tan 22AM ME =,求出即可, (2)利用Rt △AME 中,cos22ME AE =,求出AE 即可 【考点】解直角三角形的应用.25.【答案】(1)如图,连接OM ,∵直线CD 切⊙O 于点M ,∴90OMD ∠=,∴90BME OMB ∠+∠=,∵AB 为⊙O 的直径,∴90AMB ∠=.∴90AMO OMB ∠+∠=,∴BME AMO ∠=∠,∵OA OM =,∴MAB AMO ∠=∠,∴BME MAB ∠=∠,(2)由(1)有,BME MAB ∠=∠,∵BE ⊥CD ,∴90BEM AMB ∠=∠=,∴BME BAM ∆∆∽, ∴BM BEAB BM =,∴2BM BE AB =,(3)由(1)有,BME MAB ∠=∠, ∵3sin 5BAM ∠=, ∴3sin 5BME ∠=,在Rt △BEM 中,185BE =, ∴3sin 5BEBAM BM ∠==,∴6BM =,在Rt △ABM 中,3sin 5BAM ∠=, ∴3sin 5BE BAM BM ∠==, ∴5103AB BM ==,根据勾股定理得,8AM =.【提示】(1)由切线的性质得出90BME OMB ∠+∠=,再由直径得出90AMB ∠=,利用同角的余角相等判断出结论,(2)由(1)得出的结论和直角,判断出BME BAM ∆∆∽,即可得出结论,(3)先在Rt △BEM 中,用三角函数求出BM ,再在Rt △ABM 中,用三角函数和勾股定理计算即可.【考点】圆的综合题.26.【答案】(1)200(2)(3)1925人(4)12【解析】(1)该地区调查的九年级学生数为:11055%200÷=,故答案为:200,(2)B 去向的学生有:20011016470---=(人),C 去向所占的百分比为:16200100%8%÷⨯=,补全的统计图如下图所示:(选B 的为70人,C 占8%)(3)该地区今年初中毕业生中读普通高中的学生有:350055%1925⨯=(人),即该地区今年初中毕业生中读普通高中的学生有1925人,(4)由题意可得,61122P ==(甲) 即选中甲同学的概率是12. 【提示】(1)根据统计图可以得到本次调查的九年级学生数,(2)根据题目中的数据可以得到统计图中未知的数据,从而可以解答本题,(3)根据统计图中的数据可以估计该地区今年初中毕业生中读普通高中的学生人数,(4)根据题意可以画出相应的树状图,从而可以求得选中甲同学的概率.【考点】列表法与树状图法,用样本估计总体,扇形统计图,条形统计图.27.【答案】(1)证明:如图1,∵△ABD 和△ACE 是等边三角形,∴AB AD =,AC AE =,60DAB EAC ∠=∠=,∴DAB BAC EAC BAC ∠+∠=∠+∠,即DAC BAE ∠=∠,∴ABE ADC ∆∆≌(2)证明:如图2,90BOC ∠=,理由是:∵四边形ABFD 和四边形ACGE 都是正方形,∴AB AD =,AC AE =90DAB EAC ∠=∠=,∴BAE DAC ∠=∠,∴ADC ABE ∆∆≌,∴BEA DCA ∠=∠,∵90EAC ∠=,∴90AMC DCA ∠+∠=,∵BOC OME BEA AMC DCA ∠=∠+∠=∠+∠,∴90BOC ∠=(3)如图3,同理得:ADC ABM ∆∆≌,∴BME DCA ∠=∠,∵BOC BME OEM DCA AEC ∠=∠+∠=∠+∠,∵正五边形ACIGM , ∴3601801085EAC ∠=-=,∴72DCA AEC ∠+∠=,∴72BOC ∠=,故答案为:72(4)如图4,∠BOC 的度数360n ,理由是为:同理得:ADC ABM ∆∆≌,∴BME DCA ∠=∠,∵BOC BME OEM DCA AEC ∠=∠+∠=∠+∠,∵正n 边形AC…M , ∴360180EAC n∠=-, ∴180DCA AEC ∠+∠= ∴360BOC n∠=.【提示】(1)根据等边三角形证明AB AD =,AC AE =,再利用等式性质得DAC BAE ∠=∠,根据SAS 得出ABE ADC ≌.(2)根据正方形性质证明ABE ADC ≌,得B E A D C A ∠=∠,再由正方形ACEG 的内角90EAC ∠=和三角形外角和定理得90BOC ∠=,(3)根据正五边形的性质证明:ADC ABM ≌,再计算五边形每一个内角的度数为108°,由三角形外角定理求出72BOC ∠=,(4)根据正n 边形的性质证明:ADC ABM ≌,再计算n 边形每一个内角的度数为360180n -,由三角形外角定理求出360BOC n ∠=. 【考点】四边形综合题.28.【答案】(1)248433y x x =﹣﹣ (2)4(3)E (58-,2916-) 【解析】(1)∵二次函数243y x x c b +=+的图象与x 轴交于A (3,0),B (﹣1,0), ∴493034103b c b c ⎧⨯++=⎪⎪⎨⎪⨯--=⎪⎩, 解得:834b c ⎧=-⎪⎨⎪=-⎩,∴248433y x x =﹣﹣, (2)过点D 作DM ⊥y 轴于点M , ∵22484164(x 1)3333y x =--=--, ∴点D (1,163-)、点C (0,﹣4), 则:1161161134134232324ACD AOMD CDM AOCS S S S ==⨯+⨯-⨯-⨯-⨯⨯=梯形﹣﹣()() (3)四边形APEQ 为菱形,E 点坐标为(58-,2916-).理由如下: 如图2,E 点关于PQ 与A 点对称,过点Q 作,QF ⊥AP 于F ,∵AP AQ t ==,AP EP =,AQ EQ =∴AP AQ QE EP ===,∴四边形AQE P 为菱形,∵FQ ∥OC , ∴AF FQ AQ AO OC AC==, ∴345AF FQ t == ∴35AF t =,45FQ t = ∴Q (335t -,45t -), ∵EQ AP t ==,∴E (335t t --,45t -),∵E 在二次函数248433y x x =﹣﹣上, ∴244888(3)(3)453535t -=----, ∴14564t =,或0t =(与A 重合,舍去), ∴E (58-,2916-). 【提示】(1)将A ,B 点坐标代入函数243y x bx c =+中,求得b 、c ,进而可求解析式, (2)由解析式先求得点D 、C 坐标,再根据ACD CDM AOC AOMD S S S S =梯形﹣﹣,列式计算即可,(3)注意到P ,Q 运动速度相同,则△APQ 运动时都为等腰三角形,又由A 、E 对称,则AP EP =,AQ EQ =,易得四边形四边都相等,即菱形.利用菱形对边平行且相等的性质可用t 表示E 点坐标,又E 在E 函数上,所以代入即可求t ,进而E 可表示.【考点】二次函数综合题.。

2016年西藏中考数学试卷(含解析版)

2016年西藏中考数学试卷(含解析版)

2016年西藏中考数学试卷一、填空题(本题共12个小题,每题3分,共36分)1.(3分)2016的倒数是()A.﹣2016B.2016C.D.﹣2.(3分)国家惠民政策在西藏开花结果,西藏人民的收入逐年增加,去年卓玛家总收入约为165000元,165000用科学记数法表示为()A.16.5×104B.0.165×105C.1.65×104D.1.65×105 3.(3分)某校九年级一班甲乙两名同学在5次体育测试中,平均成绩相同,2=3.7,S乙2=2.6,成绩更稳定的是且两人5次测试成绩的方差分别为S甲()A.甲B.乙C.两人一样D.无法确定4.(3分)如图,直线a∥b,若∠1=70°,则∠2的度数为()A.100°B.70°C.110°D.20°5.(3分)不透明口袋中有2个红球、3个黑球、4个白球,这些球除颜色外无其他差别,从中随机摸出1个球,是红球的概率为()A.B.C.D.6.(3分)下列二次根式为最简二次根式的是()A.B.C.D.7.(3分)下列运算正确的是()A.2x•3x=6x B.3x﹣2x=x C.(2x)2=4x D.(x2)4=x6 8.(3分)下面立体图形的左视图是()A.B.C.D.9.(3分)下列图形中不是中心对称图形的是()A.B.C.D.10.(3分)等腰三角形的两边分别为3和6,则这个三角形的周长是()A.9B.12C.15D.12或15 11.(3分)如图,四边形ABCD是⊙O的内接四边形,若∠ABC=110°,则∠AOC的度数是()A.40°B.140°C.70°D.110°12.(3分)如图,矩形OABC的边OA在x轴上,OA=8,OC=4,把△ABC沿直线AC折叠,得到△ADC,CD交x轴于点E,则点E的坐标是()A.(4,0)B.(3,0)C.(0,3)D.(5,0)二、填空题(本题共6个小题,每小题3分,共18分)13.(3分)分解因式:a2b﹣b=.14.(3分)如图是反比例函数图象的一部分,面积为4的矩形OBAC的边OB 在x轴上,顶点A在反比例函数图象上,则这个反比例函数的解析式为.15.(3分)如图,菱形ABCD的周长是32,点O是对角线AC与BD的交点,点E是边AD的中点,则OE的长为.16.(3分)如图,圆锥的底面半径r是3,高h是4,则它的侧面积是.17.(3分)已知圆的半径是10,一条弦长为16,则圆心到这条弦的距离是.18.(3分)下列图形是用围棋子按一定规律摆放的,根据摆放规律,第20个图中围棋子的个数是.三、解答题19.(5分)计算:|﹣|+(2016+π)0+()﹣2﹣2sin45°.20.(5分)解一元一次不等式,并把它的解集在数轴上表示出来.2﹣x>21.(6分)某校数学兴趣小组课外活动时,需要测量一个水塘的宽度,扎西设计了如下方案:如图所示,先在平地上取一点O,从O点不经过水塘可以直接到达水塘两端的点A和点B,连接AO并延长到点C,使OC=OA,连接BO 并延长到点D,使OD=OB.测量出CD的长就是水塘两端AB的距离,扎西设计的方案正确吗?若正确请写出证明过程;若不正确请说明理由.22.(6分)列分式方程解应用题:已知一台机器每小时磨青稞的质量比一个人每小时手工磨青稞的10倍还多20kg,这台机器磨3200kg青稞所用的时间和这个人手工磨300kg青稞所用的时间相同,求这个人每小时手工磨青稞多少千克?23.(6分)如图,两建筑物的水平距离BD为30m,从A点分别测得C点的俯角为30°、D点的俯角为45°,求这两建筑物的高度AB和CD.24.(8分)如图,AB为⊙O的直径,AC为⊙O的弦,AD⊥CD,且∠BAC=∠CAD.(1)求证:CD是⊙O的切线;(2)若AD=1,CD=2,求⊙O的半径.25.(10分)已知:如图,抛物线y=ax2+4x+c经过原点O(0,0)和点A(3,3),P为抛物线上的一个动点,过点P作x轴的垂线,垂足为B(m,0),并与直线OA交于点C.(1)求抛物线的解析式;(2)当点P在直线OA上方时,求线段PC的最大值;(3)过点A作AD⊥x轴于点D,在抛物线上是否存在点P,使得以P、A、C、D四点为顶点的四边形是平行四边形?若存在,求m的值;若不存在,请说明理由.2016年西藏中考数学试卷参考答案与试题解析一、填空题(本题共12个小题,每题3分,共36分)1.(3分)2016的倒数是()A.﹣2016B.2016C.D.﹣【考点】17:倒数.【分析】直接利用倒数的定义分析得出答案.【解答】解:2016的倒数是.故选:C.【点评】此题主要考查了倒数的定义,正确把握互为倒数之间关系是解题关键.2.(3分)国家惠民政策在西藏开花结果,西藏人民的收入逐年增加,去年卓玛家总收入约为165000元,165000用科学记数法表示为()A.16.5×104B.0.165×105C.1.65×104D.1.65×105【考点】1I:科学记数法—表示较大的数.【专题】17:推理填空题.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:165000=1.65×105,故选:D.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.(3分)某校九年级一班甲乙两名同学在5次体育测试中,平均成绩相同,2=3.7,S乙2=2.6,成绩更稳定的是且两人5次测试成绩的方差分别为S甲()A.甲B.乙C.两人一样D.无法确定【考点】W1:算术平均数;W7:方差.【专题】1:常规题型;542:统计的应用.【分析】根据方差的意义解答.2=3.7>S乙2=2.6,【解答】解:∵S甲∴成绩更稳定的是乙,故选:B.【点评】本题考查的是方差的意义,掌握方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立是解题的关键.4.(3分)如图,直线a∥b,若∠1=70°,则∠2的度数为()A.100°B.70°C.110°D.20°【考点】JA:平行线的性质.【专题】1:常规题型;551:线段、角、相交线与平行线.【分析】由a∥b知∠3=∠1=70°,根据邻补角即可得出答案.【解答】解:如图,∵a∥b,∠1=70°,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=180°﹣∠3=110°,故选:C.【点评】本题主要考查平行线的性质,解题的关键是掌握两直线平行,同位角相等的性质.5.(3分)不透明口袋中有2个红球、3个黑球、4个白球,这些球除颜色外无其他差别,从中随机摸出1个球,是红球的概率为()A.B.C.D.【考点】X4:概率公式.【专题】1:常规题型;543:概率及其应用.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【解答】解:∵不透明袋子中装有9个球,其中有2个红球、3个黑球、4个白球,∴从袋子中随机取出1个球,则它是红球的概率是,故选:A.【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.6.(3分)下列二次根式为最简二次根式的是()A.B.C.D.【考点】74:最简二次根式.【专题】1:常规题型.【分析】根据最简二次根式的定义对各选项分析判断利用排除法求解.【解答】解:A、不是最简二次根式,错误;B、不是最简二次根式,错误;C、不是最简二次根式,错误;D、是最简二次根式,正确;故选:D.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.7.(3分)下列运算正确的是()A.2x•3x=6x B.3x﹣2x=x C.(2x)2=4x D.(x2)4=x6【考点】35:合并同类项;47:幂的乘方与积的乘方;49:单项式乘单项式.【专题】1:常规题型.【分析】直接利用单项式乘以单项式以及积的乘方运算法则和幂的乘方运算法则分别化简得出答案.【解答】解:A、2x•3x=6x2,故此选项错误;B、3x﹣2x=x,正确;C、(2x)2=4x2,故此选项错误;D、(x2)4=x8,故此选项错误;故选:B.【点评】此题主要考查了单项式乘以单项式以及积的乘方运算和幂的乘方运算,正确掌握相关运算法则是解题关键.8.(3分)下面立体图形的左视图是()A.B.C.D.【考点】U1:简单几何体的三视图.【专题】1:常规题型.【分析】直接利用几何体的形状得出其左视图即可.【解答】解:立体图形的左视图是:.故选:C.【点评】此题主要考查了简单几何体的三视图,正确掌握左视图的观察角度是解题关键.9.(3分)下列图形中不是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【专题】1:常规题型.【分析】根据中心对称图形的概念:把一个图形绕着某个点旋转180°,能够和原来的图形重合,就是中心对称图形.【解答】解:A、不是中心对称图形,符合题意;B、是中心对称图形,不合题意;C、是中心对称图形,不合题意;D、是中心对称图形,不合题意.故选:A.【点评】此题考查了中心对称图形的概念.要注意,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10.(3分)等腰三角形的两边分别为3和6,则这个三角形的周长是()A.9B.12C.15D.12或15【考点】K6:三角形三边关系;KH:等腰三角形的性质.【分析】首先根据三角形的三边关系推出腰长为6,底边长为3,即可推出周长.【解答】解:若3为腰长,6为底边长,∵3+3=6,∴腰长不能为3,底边长不能为6,∴腰长为6,底边长为3,∴周长=6+6+3=15.故选:C.【点评】本题主要考查等腰三角形的性质、三角形三边关系,关键在于推出腰长和底边的长.11.(3分)如图,四边形ABCD是⊙O的内接四边形,若∠ABC=110°,则∠AOC的度数是()A.40°B.140°C.70°D.110°【考点】M5:圆周角定理.【专题】55:几何图形.【分析】先根据圆内接四边形的性质求出∠D,再利用圆周角定理解答.【解答】解:∵∠ABC=110°∴∠D=180°﹣∠B=70°∴∠AOC=2∠D=140°.故选:B.【点评】本题考查圆周角定理,关键是利用了圆周角定理,圆内接四边形的性质求解.12.(3分)如图,矩形OABC的边OA在x轴上,OA=8,OC=4,把△ABC沿直线AC折叠,得到△ADC,CD交x轴于点E,则点E的坐标是()A.(4,0)B.(3,0)C.(0,3)D.(5,0)【考点】D5:坐标与图形性质;LB:矩形的性质;PB:翻折变换(折叠问题).【专题】556:矩形菱形正方形.【分析】根据翻折的性质和平行线的性质可以求得EA=EC,然后根据勾股定理即可求得OE的长,进而求得点E的坐标.【解答】解:由题意可得,BC∥OA,∠BCA=∠ACD,∴∠BCA=∠CAE,∴∠ACD=∠CAE,∴EC=EA,设OE=a,则AE=8﹣a,EC=8﹣a,∵∠COE=90°,OC=4,∴a2+42=(8﹣a)2,解得,a=3,∴点E的坐标是(3,0),故选:B.【点评】本题考查翻折变换、坐标与图形的性质、矩形的性质、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本题共6个小题,每小题3分,共18分)13.(3分)分解因式:a2b﹣b=b(a+1)(a﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】首先提取公因式b,进而利用平方差公式分解因式得出答案.【解答】解:a2b﹣b=b(a2﹣1)=b(a+1)(a﹣1).故答案为:b(a+1)(a﹣1).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确运用平方差公式是解题关键.14.(3分)如图是反比例函数图象的一部分,面积为4的矩形OBAC的边OB 在x轴上,顶点A在反比例函数图象上,则这个反比例函数的解析式为y=﹣.【考点】G2:反比例函数的图象;G5:反比例函数系数k的几何意义;G6:反比例函数图象上点的坐标特征;G7:待定系数法求反比例函数解析式.【专题】11:计算题.【分析】设反比例函数解析式y=,根据反比例函数解析式中k的几何意义得|k|=4,然后利用反比例函数的性质和绝对值的意义得k=﹣4,从而可写出反比例函数解析式.【解答】解:设反比例函数解析式y=,∵面积为4的矩形OBAC的边OB在x轴上,∴|k|=4,而k<0,∴k=﹣4,所以反比例函数解析式为y=﹣.【点评】本题考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k≠0),把已知条件(自变量与函数的对应值)代入解析式中求出k得到反比例函数解析式;也考查了反比例函数解析式中k的几何意义.15.(3分)如图,菱形ABCD的周长是32,点O是对角线AC与BD的交点,点E是边AD的中点,则OE的长为4.【考点】KP:直角三角形斜边上的中线;KX:三角形中位线定理;L8:菱形的性质.【专题】556:矩形菱形正方形.【分析】先根据菱形的性质得到AD=8,AC⊥BD,然后根据三角形直角三角形斜边上的中线性质求解.(也可以利用三角形中位线定理);【解答】解:∵四边形ABCD为菱形周长=32,∴AD=8,AC⊥BD,∴∠AOD=90°∵E为AD的中点,∴OE=AD=4.故答案为4.【点评】本题考查了菱形的性质:有一组邻边相等的平行四边形叫做菱形.熟练掌握菱形的性质(菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角).16.(3分)如图,圆锥的底面半径r是3,高h是4,则它的侧面积是15π.【考点】MP:圆锥的计算.【专题】55:几何图形.【分析】先求圆锥的母线,再根据公式求侧面积.【解答】解:由勾股定理得:母线l==5,=•2πr•l=πrl=π×3×5=15π.∴S侧故答案为:15π【点评】本题考查了圆锥的计算,熟练掌握圆锥的母线和侧面积公式是关键.17.(3分)已知圆的半径是10,一条弦长为16,则圆心到这条弦的距离是6.【考点】M2:垂径定理.【专题】55:几何图形.【分析】过点O作OD⊥AB于点D,由垂径定理可求出BD的长,在Rt△BOD 中,利用勾股定理即可得出OD的长.【解答】解:如图所示:过点O作OD⊥AB于点D,∵OB=10,AB=16,OD⊥AB,∴BD=AB=×16=8,在Rt△BOD中,OD=.故答案为:6【点评】本题考查的是垂径定理,根据题意画出图形,利用勾股定理求出OD 的长是解答此题的关键.18.(3分)下列图形是用围棋子按一定规律摆放的,根据摆放规律,第20个图中围棋子的个数是420.【考点】38:规律型:图形的变化类.【专题】2A:规律型;51:数与式.【分析】根据已知图形得出图n中围棋子数量为n(n+1),据此可得.【解答】解:∵图1中棋子的数量2=1×2,图2中棋子的数量6=2×3,图3中棋子的数量12=3×4,……∴第20个图中围棋子的个数是20×21=420,故答案为:420.【点评】本题主要考查图形的变化规律,解题的关键是根据题意得出图n中围棋子数量为n(n+1).三、解答题19.(5分)计算:|﹣|+(2016+π)0+()﹣2﹣2sin45°.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】1:常规题型.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=+1+4﹣2×=+1+4﹣=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(5分)解一元一次不等式,并把它的解集在数轴上表示出来.2﹣x>【考点】C4:在数轴上表示不等式的解集;C6:解一元一次不等式.【专题】11:计算题;524:一元一次不等式(组)及应用.【分析】不等式去分母,去括号,移项合并,把x系数化为1,即可求出解集.【解答】解:去分母得:6﹣3x>x﹣6,移项合并得:4x<12,解得:x<3,【点评】此题考查了解一元一次不等式,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.21.(6分)某校数学兴趣小组课外活动时,需要测量一个水塘的宽度,扎西设计了如下方案:如图所示,先在平地上取一点O,从O点不经过水塘可以直接到达水塘两端的点A和点B,连接AO并延长到点C,使OC=OA,连接BO 并延长到点D,使OD=OB.测量出CD的长就是水塘两端AB的距离,扎西设计的方案正确吗?若正确请写出证明过程;若不正确请说明理由.【考点】KE:全等三角形的应用.【专题】1:常规题型.【分析】由题意可证明△AOB≌△COD,AB=DC,故方案可行.【解答】解:扎西设计的方案正确,理由:∵AO=OC,BO=DO,在△AOB和△COD中,,∴△AOB≌△COD(SAS),∴AB=DC,∴测出DC的距离即为AB的长.【点评】此题主要考查了全等三角形的应用,正确掌握全等三角形的判定方法是解题关键.22.(6分)列分式方程解应用题:已知一台机器每小时磨青稞的质量比一个人每小时手工磨青稞的10倍还多20kg,这台机器磨3200kg青稞所用的时间和这个人手工磨300kg青稞所用的时间相同,求这个人每小时手工磨青稞多少千克?【考点】B7:分式方程的应用.【专题】522:分式方程及应用.【分析】设这个人每小时手工磨青稞x千克,则一台机器每小时磨青稞的质量是(10x+20)千克,根据“这台机器磨3200kg青稞所用的时间和这个人手工磨300kg青稞所用的时间相同”列出方程并解答.【解答】解:设这个人每小时手工磨青稞x千克,则一台机器每小时磨青稞的质量是(10x+20)千克,依题意得:=解得x=30经检验 x=30是所列方程的根,且符合题意.答:这个人每小时手工磨青稞30千克.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.23.(6分)如图,两建筑物的水平距离BD为30m,从A点分别测得C点的俯角为30°、D点的俯角为45°,求这两建筑物的高度AB和CD.【考点】TA:解直角三角形的应用﹣仰角俯角问题.【专题】55:几何图形.【分析】首先分析图形:延长DC与水平线交于点E,根据题意构造直角三角形;本题涉及两个直角三角形,应利用其公共边构造关系式,进而可求出答案.【解答】解:延长DC与水平线交于点E,∵AE∥BD,∴∠EAD=∠ADB=45°,∵∠B=90°,∴∠BAD=∠ADB=45°,∴AB=BD=30,在Rt△ACE中,tan∠EAC=,∴CE=AEtan∠EAC=≈17.3,∴CD=DE﹣CE=30﹣17.3=12.7,答:建筑物AB、CD的高分别为30m、12.7m【点评】本题考查直角三角形的解法,首先构造直角三角形,再借助角边关系、三角函数的定义解题.24.(8分)如图,AB为⊙O的直径,AC为⊙O的弦,AD⊥CD,且∠BAC=∠CAD.(1)求证:CD是⊙O的切线;(2)若AD=1,CD=2,求⊙O的半径.【考点】KQ:勾股定理;M5:圆周角定理;ME:切线的判定与性质.【专题】55A:与圆有关的位置关系.【分析】(1)由AD⊥CD可得∠CAD+∠ACD=90°,由OA=OC可得∠OCA=∠OAC=∠CAD,则结论可得.(2)根据△ACD∽△ABC可求AB,即可得半径.【解答】证明(1)如图:连接BC,OC∵OA=OC∴∠OAC=∠OCA,且∠CAD=∠OAC∴∠OCA=∠CAD∵AD⊥CD∴∠CAD+∠ACD=90°∴∠OCA+∠ACD=90°∴OC⊥CD且OC为半径∴CD是⊙O的切线(2)∵AD⊥CD,AD=1,CD=2∴AC=,∵AB是直径∴∠ACB=90°∵∠ACB=∠ADC=90°,∠BAC=∠CAD∴△ACD∽△ABC∴∴AB=5【点评】本题考查了圆的切线的性质和判定,勾股定理,相似三角形的判定和性质,关键是灵活运用这些性质解决问题.25.(10分)已知:如图,抛物线y=ax2+4x+c经过原点O(0,0)和点A(3,3),P为抛物线上的一个动点,过点P作x轴的垂线,垂足为B(m,0),并与直线OA交于点C.(1)求抛物线的解析式;(2)当点P在直线OA上方时,求线段PC的最大值;(3)过点A作AD⊥x轴于点D,在抛物线上是否存在点P,使得以P、A、C、D四点为顶点的四边形是平行四边形?若存在,求m的值;若不存在,请说明理由.【考点】HF:二次函数综合题.【专题】16:压轴题.【分析】(1)利用待定系数法即可解决问题;(2)设P(m,﹣m2+4m),C(m,m)可得PC=PD﹣CD=﹣m2+4m﹣m=﹣m2+3m,利用二次函数的性质即可解决问题;(3)由(2)可知,由AD=3,当点P在直线OA的上方时,线段PC的最大值是.推出点P在直线OA的下方,过点D作DP∥OA交抛物线于P和P′,此时四边形ADPC和四边形ADP′C′是平行四边形,求出直线DP的解析式,利用方程组即可解决问题;【解答】(1)解:把O(0,0)和点A(3,3)代入y=ax2+4x+c得到,解得,∴抛物线的解析式为y=﹣x2+4x.(2)解:0<m<3,PC=PD﹣CD,∵D(m,0),PD⊥x轴,P在y=﹣x2+4x上,C在OA上,A(3,3),∴P(m,﹣m2+4m),C(m,m)∴PC=PD﹣CD=﹣m2+4m﹣m=﹣m2+3m,=﹣(m﹣)2+,∵﹣1<0,开口向下,∴有最大值,当D(,0)时,PC max=,答:当点P在直线OA的上方时,线段PC的最大值是.(3)由(2)可知,∵AD=3,当点P在直线OA的上方时,线段PC的最大值是.∴点P在直线OA的下方,过点D作DP∥OA交抛物线于P和P′,此时四边形ADPC和四边形ADP′C′是平行四边形,∵直线OA的解析式为y=x,∴直线DP的解析式为y=x﹣3,由,解得或,∴m的值为.【点评】本题主要考查对用待定系数法求二次函数的解析式,平行四边形的判定和性质,二次函数的最值等知识,解题的关键是灵活运用所学知识解决问题,学会构建一次函数,利用方程组确定两个函数的交点坐标,属于中考压轴题.祝福语祝你考试成功!。

【数学】2016年青海省数学中考真题(解析版)

【数学】2016年青海省数学中考真题(解析版)

2016年青海省中考真题一、填空题(本大题共12小题,每空2分,共30分)1.(4分)﹣3的相反数是;的立方根是.2.(4分)分解因式:2a2b﹣8b=,计算:86÷42=.3.(2分)据科学计算,我国广阔的陆地每年从太阳得到的能量相当于燃烧1 248 000 000 000 000千克的煤所产生的能量,该数字用科学记数法表示为千克.4.(2分)函数y=的自变量的取值范围是.5.(2分)如图,直线AB∥CD,CA平分∠BCD,若∠1=50°,则∠2=.6.(2分)如图,已知∠CAE是△ABC的外角,AD∥BC,且AD是∠EAC的平分线,若∠B=71°,则∠BAC=.7.(2分)如图,直线y=与双曲线y=在第一象限的交点为A(2,m),则=.8.(2分)如图,AC是汽车挡风玻璃前的雨刷器,如果AO=45cm,CO=5cm,当AC绕点O 顺时针旋转90°时,则雨刷器AC扫过的面积为cm2(结果保留π).9.(2分)已知一个围棋盒子中装有7颗围棋子,其中3颗白棋子,4颗黑棋子,若往盒子中再放入颗白棋子和y颗黑棋子,从盒子中随机取出一颗白棋子的概率为,则y与之间的关系式是.10.(2分)如图,在⊙O中,AB为直径,CD为弦,已知∠CAB=50°,则∠ADC=.11.(2分)如图,菱形ABCD中,对角线AC与BD相交于点O,且AC=8,BD=6,则菱形ABCD的高DH=.12.(4分)如图,下列各图形中的三个数之间均具有相同的规律,依此规律,那么第4个图形中的=,一般地,用含有m,n的代数式表示y,即y=.二、选择题(本大题共8小题,每小题3分,共24分)13.(3分)下列运算正确的是()A.a3+a2=2a5B.(﹣ab2)3=a3b6C.2a(1﹣a)=2a﹣2a2D.(a+b)2=a2+b214.(3分)以下图形中对称轴的数量小于3的是()A.B.C.D.15.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.16.(3分)已知等腰三角形的腰和底的长分别是一元二次方程2﹣6+8=0的根,则该三角形的周长为()A.8 B.10 C.8或10 D.1217.(3分)在“我的阅读生活”校园演讲比赛中,有11名学生参加比赛,他们决赛的最终成绩各不相同,其中一名学生想知道自己能否进入前6名,除了要了解自己的成绩外,还要了解这11名学生成绩的()A.众数B.方差C.平均数D.中位数18.(3分)穿越青海境内的兰新高铁极大地改善了沿线人民的经济文化生活,该铁路沿线甲,乙两城市相距480m,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度比普通列车快160m/h,设普通列车的平均行驶速度为m/h,依题意,下面所列方程正确的是()A.﹣=4 B.=4C.=4 D.=419.(3分)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.20.(3分)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.()6B.()7C.()6D.()7三、解答题(本大题共3小题,第21题5分,第22题6分,第23题7分,共18分)21.(5分)计算:﹣32+6cos 45°﹣+|﹣3|22.(6分)先化简,后求值:(﹣)÷,其中=2.23.(7分)如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:(1)DE=BF;(2)四边形DEBF是平行四边形.四、(本大题共3小题,第24题8分,第25题9分,第26题9分,共26分)24.(8分)如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin 22°≈,cos 22°,tan 22)25.(9分)如图,AB为⊙O的直径,直线CD切⊙O于点M,BE⊥CD于点E.(1)求证:∠BME=∠MAB;(2)求证:BM2=BE•AB;(3)若BE=,sin∠BAM=,求线段AM的长.26.(9分)我省某地区为了了解2016年初中毕业生毕业去向,对部分九年级学生进行了抽样调查,就九年级学生毕业后的四种去向:A.读普通高中;B.读职业高中;C.直接进入社会就业;D.其他(如出国等)进行数据统计,并绘制了两幅不完整的统计图(如图1,如图2)(1)填空:该地区共调查了名九年级学生;(2)将两幅统计图中不完整的部分补充完整;(3)若该地区2016年初中毕业生共有3500人,请估计该地区今年初中毕业生中读普通高中的学生人数;(4)老师想从甲,乙,丙,丁4位同学中随机选择两位同学了解他们毕业后的去向情况,请用画树状图或列表的方法求选中甲同学的概率.五、(本大题共2小题,第27题10分,第28题12分,共22分)27.(10分)如图1,2,3分别以△ABC的AB和AC为边向△ABC外作正三角形(等边三角形)、正四边形(正方形)、正五边形,BE和CD相交于点O.(1)在图1中,求证:△ABE≌△ADC.(2)由(1)证得△ABE≌△ADC,由此可推得在图1中∠BOC=120°,请你探索在图2中,∠BOC的度数,并说明理由或写出证明过程.(3)填空:在上述(1)(2)的基础上可得在图3中∠BOC=(填写度数).(4)由此推广到一般情形(如图4),分别以△ABC的AB和AC为边向△ABC外作正n边形,BE和CD仍相交于点O,猜想得∠BOC的度数为(用含n的式子表示).28.(12分)如图1(注:与图2完全相同),二次函数y=2+b+c的图象与轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.(1)求该二次函数的解析式;(2)设该抛物线的顶点为D,求△ACD的面积(请在图1中探索);(3)若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标(请在图2中探索).参考答案一、填空题(本大题共12小题,每空2分,共30分)1.3【解析】﹣3的相反数是3;∵=,∴的立方根是.故答案为:3、.2.2b(a+2)(a﹣2)24【解析】2a2b﹣8b=2b(a+2)(a﹣2);86÷42=24.故答案是:2b(a+2)(a﹣2);24.3.1.248×1015【解析】将1248000000000000用科学记数法表示为1.248×1015.故答案为:1.248×1015.4.﹣3≤<2或>2【解析】函数y=有意义,得.解得﹣3≤<2或>2,故答案为:﹣3≤<2或>2.5.65°【解析】∵AB∥CD,∴∠ABC+∠BCD=180°,而∠ABC=∠1=50°,∴∠BCD=130°,∵CA平分∠BCD,∴∠ACD=∠BCD=65°,∵AB∥CD,故答案为65°.6.38°【解析】∵AD∥BC,∠B=71°,∴∠EAD=∠B=71°,∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=2×71°=142°,∴∠BAC=38°,故答案为38°.7.2【解析】∵直线y=与双曲线y=在第一象限的交点为A(2,m),∴m=×2=1,∴A(2,1),∴=y=2×1=2.故答案为:2.8.500π【解析】∵OA=OA′,OC=OC′,AC=A′C′∴△AOC≌△A′OC′∴刮雨刷AC扫过的面积=扇形AOA′的面积﹣扇形COC′的面积=×π=500π(cm2),故答案为:500π.9.y=3+5【解析】由题意,得=,化简,得y=3+5.故答案为y=3+5.10.40°【解析】∵AB为⊙O的直径,∴∠ACB=90°,又∠CAB=50°,∴∠ABC=40°,故答案为:40°.11.4.8【解析】在菱形ABCD中,AC⊥BD,∵AC=8,BD=6,∴OA=AC=×8=4,OB=BD=×6=3,在Rt△AOB中,AB==5,∵DH⊥AB,∴菱形ABCD的面积=AC•BD=AB•DH,即×6×8=5•DH,解得DH=4.8,故答案为:4.8.12.63m(n+1)【解析】观察,发现规律:3=1×(2+1),2+1=3,15=3×(4+1),3+1=4,35=5×(6+1),5+1=6,∴=7×(8+1)=63,y=m(n+1)(其中n=m+1).故答案为:63;m(n+1).二、选择题(本大题共8小题,每小题3分,共24分)13.C【解析】A、a3+a2,不能合并;故本选项错误;B、(﹣ab2)3=﹣a3b6,故本选项错误;C、2a(1﹣a)=2a﹣2a2,故本选项正确;D、(a+b)2=a2+2ab+b2,故本选项错误.故选C.14.D【解析】A、有4条对称轴;B、有6条对称轴;C、有4条对称轴;D、有2条对称轴.故选D.15.C【解析】由①,得>﹣3,由②,得≤2,故原不等式组的解集是﹣3<≤2,故选C.16.B【解析】2﹣6+8=0(﹣4)(﹣2)=0∴1=4,2=2,由三角形的三边关系可得:腰长是4,底边是2,所以周长是:4+4+2=10.故选B.17.D【解析】由于总共有11个人,且他们的分数互不相同,第6的成绩是中位数,要判断是否进入前6名,故应知道中位数的多少.故选D.18.B【解析】设普通列车的平均行驶速度为m/h,则高铁列车的平均速度为(+160)m/h,根据题意,可得:﹣=4,故选B.19.B【解析】当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;故选B.20.A【解析】在图中标上字母E,如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察,发现规律:S1=22=4,S2=S1=2,S3=S2=1,S4=S3=,…,∴S n=()n﹣3.当n=9时,S9=()9﹣3=()6,故选A.三、解答题(本大题共3小题,第21题5分,第22题6分,第23题7分,共18分)21.解:原式=﹣9+6×﹣2+3﹣=﹣9+3﹣2+3﹣=﹣6.22.解:原式=×=×=,当=2+时,原式===.23.证明:(1)∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB,∴∠DAE=∠BCF,在△ADE和△CBF中,∴△ADE≌△CBF,∴DE=BF.(2)由(1),可得△ADE≌△CBF,∴∠ADE=∠CBF,∵∠DEF=∠DAE+∠ADE,∠BFE=∠BCF+∠CBF,∴∠DEF=∠BFE,∴DE∥BF,又∵DE=BF,∴四边形DEBF是平行四边形.四、(本大题共3小题,第24题8分,第25题9分,第26题9分,共26分)24.解:(1)如图,过点E作EM⊥AB,垂足为M.设AB为.Rt△ABF中,∠AFB=45°,∴BF=AB=,∴BC=BF+FC=+25,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=﹣2,tan22°=,则=,解得:=20.即教学楼的高20m.(2)由(1)可得ME=BC=+25=20+25=45.在Rt△AME中,cos 22°=.∴AE=,即A、E之间的距离约为48m25.解:(1)如图,连接OM,∵直线CD切⊙O于点M,∴∠OMD=90°,∴∠BME+∠OMB=90°,∵AB为⊙O的直径,∴∠AMB=90°.∴∠AMO+∠OMB=90°,∴∠BME=∠AMO,∵OA=OM,∴∠MAB=∠AMO,∴∠BME=∠MAB;(2)由(1)有,∠BME=∠MAB,∵BE⊥CD,∴∠BEM=∠AMB=90°,∴△BME∽△BAM,∴,∴BM2=BE•AB;(3)由(1)有,∠BME=∠MAB,∵sin∠BAM=,∴sin∠BME=,在Rt△BEM中,BE=,∴sin∠BME==,∴BM=6,在Rt△ABM中,sin∠BAM=,∴sin∠BAM==,∴AB=BM=10,根据勾股定理得,AM=8.26.解:(1)该地区调查的九年级学生数为:110÷55%=200,故答案为:200;(2)B去向的学生有:200﹣110﹣16﹣4=70(人),C去向所占的百分比为:16÷200×100%=8%,补全的统计图如右图所示,(3)该地区今年初中毕业生中读普通高中的学生有:3 500×55%=1 925(人),即该地区今年初中毕业生中读普通高中的学生有1 925人;(4)由题意可得,P(甲)=,即选中甲同学的概率是.五、(本大题共2小题,第27题10分,第28题12分,共22分)27.证明:(1)如图1,∵△ABD和△ACE是等边三角形,∴AB=AD,AC=AE,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE,∴△ABE≌△ADC;(2)如图2,∠BOC=90°,理由是:∵四边形ABFD和四边形ACGE都是正方形,∴AB=AD,AC=AE,∠DAB=∠EAC=90°,∴∠BAE=∠DAC,∴△ADC≌△ABE,∴∠BEA=∠DCA,∵∠EAC=90°,∴∠AMC+∠DCA=90°,∵∠BOC=∠OME+∠BEA=∠AMC+∠DCA,∴∠BOC=90°;(3)如图3,同理得:△ADC≌△ABE,∴∠BEM=∠DCA,∵∠BOC=∠BEM+∠OME=∠DCA+∠AMC,∵正五边形ACIGE,∴∠EAC=180°﹣=108°,∴∠DCA+∠AMC=72°,∴∠BOC=72°;故答案为:72°;(4)如图4,∠BOC的度数为,理由是:同理得:△ADC≌△ABE,∴∠BEA=∠DCA,∵∠BOC=∠BEA+∠OME=∠DCA+∠AMC,∵正n边形AC…E,∴∠EAC=180°﹣,∴∠DCA+∠AMC=180°﹣(180﹣)°,∴∠BOC=.28.解:(1)∵二次函数y=2+b+c的图象与轴交于A(3,0),B(﹣1,0),∴,解得:,∴y=2﹣﹣4;(2)过点D作DM⊥y轴于点M,∵y=2﹣﹣4=(﹣1)2﹣,∴点D(1,﹣)、点C(0,﹣4),则S△ACD=S梯形AOMD﹣S△CDM﹣S△AOC=×(1+3)×﹣×(﹣4)×1﹣×3×4=4;(3)四边形APEQ为菱形,E点坐标为(﹣,﹣).理由如下如图2,E点关于PQ与A点对称,过点Q作,QF⊥AP于F,∵AP=AQ=t,AP=EP,AQ=EQ∴AP=AQ=QE=EP,∴四边形AQEP为菱形,∵FQ∥OC,∴==,∴==∴AF=t,FQ=t•∴Q(3﹣t,﹣t),∵EQ=AP=t,∴E(3﹣t﹣t,﹣t),∵E在二次函数y=2﹣﹣4上,∴﹣t=(3﹣t)2﹣(3﹣t)﹣4,∴t=,或t=0(与A重合,舍去),∴E(﹣,﹣).。

2016年青海省中考数学试卷(含解析版)

2016年青海省中考数学试卷(含解析版)

2016年青海省中考数学试卷一、填空题(本大题共12小题,每空2分,共30分)1.(4分)﹣3的相反数是;的立方根是.2.(4分)分解因式:2a2b﹣8b=,计算:8x6÷4x2=.3.(2分)据科学计算,我国广阔的陆地每年从太阳得到的能量相当于燃烧1248000000000000千克的煤所产生的能量,该数字用科学记数法表示为千克.4.(2分)函数y=的自变量x的取值范围是.5.(2分)如图,直线AB∥CD,CA平分∠BCD,若∠1=50°,则∠2=.6.(2分)如图,已知∠CAE是△ABC的外角,AD∥BC,且AD是∠EAC的平分线,若∠B=71°,则∠BAC=.7.(2分)如图,直线y=x与双曲线y=在第一象限的交点为A(2,m),则k =.8.(2分)如图,AC是汽车挡风玻璃前的雨刷器,如果AO=45cm,CO=5cm,当AC绕点O顺时针旋转90°时,则雨刷器AC扫过的面积为cm2(结果保留π).9.(2分)已知一个围棋盒子中装有7颗围棋子,其中3颗白棋子,4颗黑棋子,若往盒子中再放入x颗白棋子和y颗黑棋子,从盒子中随机取出一颗白棋子的概率为,则y与x之间的关系式是.10.(2分)如图,在⊙O中,AB为直径,CD为弦,已知∠CAB=50°,则∠ADC=.11.(2分)如图,菱形ABCD中,对角线AC与BD相交于点O,且AC=8,BD=6,则菱形ABCD的高DH=.12.(4分)如图,下列各图形中的三个数之间均具有相同的规律,依此规律,那么第4个图形中的x=,一般地,用含有m,n的代数式表示y,即y=.二、选择题(本大题共8小题,每小题3分,共24分)13.(3分)下列运算正确的是()A.a3+a2=2a5B.(﹣ab2)3=a3b6C.2a(1﹣a)=2a﹣2a2D.(a+b)2=a2+b214.(3分)以下图形中对称轴的数量小于3的是()A. B. C. D.15.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.16.(3分)已知等腰三角形的腰和底的长分别是一元二次方程x2﹣6x+8=0的根,则该三角形的周长为()A.8B.10C.8或10D.1217.(3分)在“我的阅读生活”校园演讲比赛中,有11名学生参加比赛,他们决赛的最终成绩各不相同,其中一名学生想知道自己能否进入前6名,除了要了解自己的成绩外,还要了解这11名学生成绩的()A.众数B.方差C.平均数D.中位数18.(3分)穿越青海境内的兰新高铁极大地改善了沿线人民的经济文化生活,该铁路沿线甲,乙两城市相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度比普通列车快160km/h,设普通列车的平均行驶速度为xkm/h,依题意,下面所列方程正确的是()A.﹣=4B.=4C.=4D.=419.(3分)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.20.(3分)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.()6B.()7C.()6D.()7三、解答题(本大题共3小题,第21题5分,第22题6分,第23题7分,共18分)21.(5分)计算:﹣32+6cos45°﹣+|﹣3|22.(6分)先化简,后求值:(x﹣)÷,其中x=2.23.(7分)如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:(1)DE=BF;(2)四边形DEBF是平行四边形.四、(本大题共3小题,第24题8分,第25题9分,第26题9分,共26分)24.(8分)如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A 在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈,cos22°,tan22)25.(9分)如图,AB为⊙O的直径,直线CD切⊙O于点M,BE⊥CD于点E.(1)求证:∠BME=∠MAB;(2)求证:BM2=BE•AB;(3)若BE=,sin∠BAM=,求线段AM的长.26.(9分)我省某地区为了了解2016年初中毕业生毕业去向,对部分九年级学生进行了抽样调查,就九年级学生毕业后的四种去向:A.读普通高中;B.读职业高中;C.直接进入社会就业;D.其他(如出国等)进行数据统计,并绘制了两幅不完整的统计图(如图1,如图2)(1)填空:该地区共调查了名九年级学生;(2)将两幅统计图中不完整的部分补充完整;(3)若该地区2016年初中毕业生共有3500人,请估计该地区今年初中毕业生中读普通高中的学生人数;(4)老师想从甲,乙,丙,丁4位同学中随机选择两位同学了解他们毕业后的去向情况,请用画树状图或列表的方法求选中甲同学的概率.五、(本大题共2小题,第27题10分,第28题12分,共22分)27.(10分)如图1,2,3分别以△ABC的AB和AC为边向△ABC外作正三角形(等边三角形)、正四边形(正方形)、正五边形,BE和CD相交于点O.(1)在图1中,求证:△ABE≌△ADC.(2)由(1)证得△ABE≌△ADC,由此可推得在图1中∠BOC=120°,请你探索在图2中,∠BOC的度数,并说明理由或写出证明过程.(3)填空:在上述(1)(2)的基础上可得在图3中∠BOC=(填写度数).(4)由此推广到一般情形(如图4),分别以△ABC的AB和AC为边向△ABC外作正n边形,BE和CD仍相交于点O,猜想得∠BOC的度数为(用含n的式子表示).28.(12分)如图1(注:与图2完全相同),二次函数y=x2+bx+c的图象与x轴交于A (3,0),B(﹣1,0)两点,与y轴交于点C.(1)求该二次函数的解析式;(2)设该抛物线的顶点为D,求△ACD的面积(请在图1中探索);(3)若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t秒时,△APQ沿PQ 所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标(请在图2中探索).2016年青海省中考数学试卷参考答案与试题解析一、填空题(本大题共12小题,每空2分,共30分)1.(4分)﹣3的相反数是3;的立方根是.【考点】14:相反数;24:立方根.【专题】17:推理填空题.【分析】根据求一个数的相反数的方法就是在这个数的前边添加“﹣”,以及求一个数的立方根的方法求解即可.【解答】解:﹣3的相反数是3;∵=,∴的立方根是.故答案为:3、.【点评】此题主要考查了立方根的求法,以及相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.(4分)分解因式:2a2b﹣8b=2b(a+2)(a﹣2),计算:8x6÷4x2=2x4.【考点】4H:整式的除法;55:提公因式法与公式法的综合运用.【分析】通过提取公因式法进行因式分解;单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式.【解答】解:2a2b﹣8b=2b(a+2)(a﹣2);8x6÷4x2=2x4.故答案是:2b(a+2)(a﹣2);2x4.【点评】本题考查了整式的整除,提公因式法与公式法的综合运用.熟练掌握运算性质是解题的关键.3.(2分)据科学计算,我国广阔的陆地每年从太阳得到的能量相当于燃烧1248000000000000千克的煤所产生的能量,该数字用科学记数法表示为 1.248×1015千克.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将1248000000000000用科学记数法表示为1.248×1015.故答案为:1.248×1015.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(2分)函数y=的自变量x的取值范围是﹣3≤x<2或x>2.【考点】E4:函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:函数y=有意义,得.解得﹣3≤x<2或x>2,故答案为:﹣3≤x<2或x>2.【点评】本题考查了函数值变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.5.(2分)如图,直线AB∥CD,CA平分∠BCD,若∠1=50°,则∠2=65°.【考点】JA:平行线的性质.【专题】11:计算题.【分析】先根据平行线的性质得∠ABC+∠BCD=180°,根据对顶角相等得∠ABC=∠1=50°,则∠BCD=130°,再利用角平分线定义得到∠ACD=∠BCD=65°,然后根据平行线的性质得到∠2的度数.【解答】解:∵AB∥CD,∴∠ABC+∠BCD=180°,而∠ABC=∠1=50°,∴∠BCD=130°,∵CA平分∠BCD,∴∠ACD=∠BCD=65°,∵AB∥CD,∴∠2=∠ACD=65°.故答案为65°.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.6.(2分)如图,已知∠CAE是△ABC的外角,AD∥BC,且AD是∠EAC的平分线,若∠B=71°,则∠BAC=38°.【考点】JA:平行线的性质;KF:角平分线的性质.【分析】先用平行线求出∠EAD,再用角平分线求出∠EAC,最后用邻补角求出∠BAC.【解答】解:∵AD∥BC,∠B=71°,∴∠EAD=∠B=71°,∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=2×71°=142°,∴∠BAC=38°,故答案为38°.【点评】此题是三角形外角性质的题目,主要考查了平行线的性质,角平分线的定义,邻补角的意义,解本题的关键是掌握平行线的性质和角平分线的意义.7.(2分)如图,直线y=x与双曲线y=在第一象限的交点为A(2,m),则k=2.【考点】G8:反比例函数与一次函数的交点问题.【分析】先把A(2,m)代入直线y=x得出m的值,故可得出A点坐标,再代入双曲线y=,求出k的值即可.【解答】解:∵直线y=x与双曲线y=在第一象限的交点为A(2,m),∴m=×2=1,∴A(2,1),∴k=xy=2×1=2.故答案为:2.【点评】本题考查的是反比例函数与一次函数的交点问题,解答此类题目时要先求出已知点的坐标,再代入含有未知数的函数解析式.8.(2分)如图,AC是汽车挡风玻璃前的雨刷器,如果AO=45cm,CO=5cm,当AC绕点O顺时针旋转90°时,则雨刷器AC扫过的面积为500πcm2(结果保留π).【考点】MO:扇形面积的计算;R2:旋转的性质.【分析】易证三角形AOC与三角形A′OC′全等,故刮雨刷AC扫过的面积等于扇形AOA′的面积减去扇形COC′的面积.【解答】解:∵OA=OA′,OC=OC′,AC=A′C′∴△AOC≌△A′OC′∴刮雨刷AC扫过的面积=扇形AOA′的面积﹣扇形COC′的面积=×π=500π(cm2),故答案为:500π.【点评】本题主要考查了根据扇形面积公式计算扇形面积的能力,解题时注意利用面积相等将图形转化为熟悉的面积.9.(2分)已知一个围棋盒子中装有7颗围棋子,其中3颗白棋子,4颗黑棋子,若往盒子中再放入x颗白棋子和y颗黑棋子,从盒子中随机取出一颗白棋子的概率为,则y与x之间的关系式是y=3x+5.【考点】X4:概率公式.【分析】根据从盒子中随机取出一颗白棋子的概率为列出关系式,进而可得y与x之间的关系式.【解答】解:由题意,得=,化简,得y=3x+5.故答案为y=3x+5.【点评】此题主要考查了概率的求法,即如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10.(2分)如图,在⊙O中,AB为直径,CD为弦,已知∠CAB=50°,则∠ADC=40°.【考点】M5:圆周角定理.【分析】根据直径所对的圆周角为直角求出∠ACB=90°,得到∠B的度数,根据同弧所对的圆周角相等得到答案.【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,又∠CAB=50°,∴∠ABC=40°,∴∠ADC=∠ABC=40°,故答案为:40°.【点评】本题考查的是圆周角定理,掌握直径所对的圆周角为直角和同弧所对的圆周角相等是解题的关键.11.(2分)如图,菱形ABCD中,对角线AC与BD相交于点O,且AC=8,BD=6,则菱形ABCD的高DH= 4.8.【考点】L8:菱形的性质.【分析】根据菱形的对角线互相垂直平分求出OA、OB,再根据勾股定理列式求出AB,然后利用菱形的面积列式计算即可得解.【解答】解:在菱形ABCD中,AC⊥BD,∵AC=8,BD=6,∴OA=AC=×8=4,OB=BD=×6=3,在Rt△AOB中,AB==5,∵DH⊥AB,∴菱形ABCD的面积=AC•BD=AB•DH,即×6×8=5•DH,解得DH=4.8,故答案为:4.8.【点评】本题考查了菱形的对角线互相垂直平分的性质,勾股定理,根据菱形的面积的两种表示方法列出方程是解题的关键.12.(4分)如图,下列各图形中的三个数之间均具有相同的规律,依此规律,那么第4个图形中的x=63,一般地,用含有m,n的代数式表示y,即y=m(n+1).【考点】37:规律型:数字的变化类;38:规律型:图形的变化类.【分析】观察给定图形,发现右下的数字=右上数字×(左下数字+1),依此规律即可得出结论.【解答】解:观察,发现规律:3=1×(2+1),2+1=3,15=3×(4+1),3+1=4,35=5×(6+1),5+1=6,∴x=7×(8+1)=63,y=m(n+1)(其中n=m+1).故答案为:63;m(n+1).【点评】本题考查了规律型中的图形的变化类以及数字的变化类,解题的关键是找出变换规律“右下的数字=右上数字×(左下数字+1)”.本题属于基础题,难度不大,解决该题型题目时,根据图形中数字的变化找出变化规律是关键.二、选择题(本大题共8小题,每小题3分,共24分)13.(3分)下列运算正确的是()A.a3+a2=2a5B.(﹣ab2)3=a3b6C.2a(1﹣a)=2a﹣2a2D.(a+b)2=a2+b2【考点】4I:整式的混合运算.【分析】直接利用合并同类项、积的乘方与幂的乘方的性质与整式乘法的知识求解即可求得答案.【解答】解:A、a3+a2,不能合并;故本选项错误;B、(﹣ab2)3=﹣a3b6,故本选项错误;C、2a(1﹣a)=2a﹣2a2,故本选项正确;D、(a+b)2=a2+2ab+b2,故本选项错误.故选:C.【点评】此题考查了合并同类项、积的乘方与幂的乘方的性质与整式乘法.注意掌握符号与指数的变化是解此题的关键.14.(3分)以下图形中对称轴的数量小于3的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据对称轴的概念求解.【解答】解:A、有4条对称轴;B、有6条对称轴;C、有4条对称轴;D、有2条对称轴.故选:D.【点评】本题考查了轴对称图形,解答本题的关键是掌握对称轴的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.15.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】根据解一元一次不等式组的方法可以求出原不等式组的解集,从而可以解答本题.【解答】解:由①,得x>﹣3,由②,得x≤2,故原不等式组的解集是﹣3<x≤2,故选:C.【点评】本题考查解一元一次不等式组、在数轴上表示不等式的解集,解题的关键是明确解一元一次不等式组的方法.16.(3分)已知等腰三角形的腰和底的长分别是一元二次方程x2﹣6x+8=0的根,则该三角形的周长为()A.8B.10C.8或10D.12【考点】A8:解一元二次方程﹣因式分解法;K6:三角形三边关系;KH:等腰三角形的性质.【分析】用因式分解法可以求出方程的两个根分别是4和2,根据等腰三角形的三边关系,腰应该是4,底是2,然后可以求出三角形的周长.【解答】解:x2﹣6x+8=0(x﹣4)(x﹣2)=0∴x1=4,x2=2,由三角形的三边关系可得:腰长是4,底边是2,所以周长是:4+4+2=10.故选:B.【点评】本题考查的是用因式分解法解一元二次方程,用十字相乘法因式分解求出方程的两个根,然后根据三角形的三边关系求出三角形的周长.17.(3分)在“我的阅读生活”校园演讲比赛中,有11名学生参加比赛,他们决赛的最终成绩各不相同,其中一名学生想知道自己能否进入前6名,除了要了解自己的成绩外,还要了解这11名学生成绩的()A.众数B.方差C.平均数D.中位数【考点】W A:统计量的选择.【分析】11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有11个人,且他们的分数互不相同,第6的成绩是中位数,要判断是否进入前6名,故应知道中位数的多少.故选:D.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.18.(3分)穿越青海境内的兰新高铁极大地改善了沿线人民的经济文化生活,该铁路沿线甲,乙两城市相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度比普通列车快160km/h,设普通列车的平均行驶速度为xkm/h,依题意,下面所列方程正确的是()A.﹣=4B.=4C.=4D.=4【考点】B6:由实际问题抽象出分式方程.【分析】设普通列车的平均行驶速度为xkm/h,则高铁列车的平均速度为(x+160)km/h,根据“乘坐高铁列车比乘坐普通快车能提前4h到达”可列方程.【解答】解:设普通列车的平均行驶速度为xkm/h,则高铁列车的平均速度为(x+160)km/h,根据题意,可得:﹣=4,故选:B.【点评】本题主要考查分式方程的应用,理解题意抓住相等关系并以此列出方程是关键.19.(3分)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.【考点】E7:动点问题的函数图象.【专题】16:压轴题.【分析】根据点P在AD、DE、EF、FG、GB上时,△ABP的面积S与时间t的关系确定函数图象.【解答】解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;故选:B.【点评】本题考查的是动点问题的函数图象,正确分析点P在不同的线段上△ABP的面积S与时间t的关系是解题的关键.20.(3分)如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.()6B.()7C.()6D.()7【考点】KQ:勾股定理.【分析】根据等腰直角三角形的性质可得出S2+S2=S1,写出部分S n的值,根据数的变化找出变化规律“S n=()n﹣3”,依此规律即可得出结论.【解答】解:在图中标上字母E,如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察,发现规律:S1=22=4,S2=S1=2,S3=S2=1,S4=S3=,…,∴S n=()n﹣3.当n=9时,S9=()9﹣3=()6,故选:A.【点评】本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“S n=()n﹣3”.本题属于中档题,难度不大,解决该题型题目时,写出部分S n的值,根据数值的变化找出变化规律是关键.三、解答题(本大题共3小题,第21题5分,第22题6分,第23题7分,共18分)21.(5分)计算:﹣32+6cos45°﹣+|﹣3|【考点】2C:实数的运算;T5:特殊角的三角函数值.【分析】本题涉及负指数幂、二次根式化简、绝对值、特殊角的三角函数值等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣9+6×﹣2+3﹣=﹣9+3﹣2+3﹣=﹣6.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负指数幂、二次根式化简、绝对值、特殊角的三角函数值等考点的运算.22.(6分)先化简,后求值:(x﹣)÷,其中x=2.【考点】6D:分式的化简求值.【分析】先计算括号内减法、同时将除法转化为乘法,再约分即可化简,最后代入求值即可.【解答】解:原式=×=×=,当x=2+时,原式===.【点评】本题主要考查分式的化简求值能力,熟练掌握分式的混合运算顺序是解题的关键.23.(7分)如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:(1)DE=BF;(2)四边形DEBF是平行四边形.【考点】KD:全等三角形的判定与性质;L7:平行四边形的判定与性质.【专题】14:证明题.【分析】(1)根据全等三角形的判定方法,判断出△ADE≌△CBF,即可推得DE=BF.(2)首先判断出DE∥BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF是平行四边形即可.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB,∴∠DAE=∠BCF,在△ADE和△CBF中,∴△ADE≌△CBF,∴DE=BF.(2)由(1),可得△ADE≌△CBF,∴∠ADE=∠CBF,∵∠DEF=∠DAE+∠ADE,∠BFE=∠BCF+∠CBF,∴∠DEF=∠BFE,∴DE∥BF,又∵DE=BF,∴四边形DEBF是平行四边形.【点评】此题主要考查了平行四边形的判定和性质的应用,以及全等三角形的判定和性质的应用,要熟练掌握.四、(本大题共3小题,第24题8分,第25题9分,第26题9分,共26分)24.(8分)如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A 在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈,cos22°,tan22)【考点】T8:解直角三角形的应用.【分析】(1)首先构造直角三角形△AEM,利用tan22°=,求出即可;(2)利用Rt△AME中,cos22°=,求出AE即可【解答】解:(1)如图,过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+25,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,tan22°=,则=,解得:x=20.即教学楼的高20m.(2)由(1)可得ME=BC=x+25=20+25=45.在Rt△AME中,cos22°=.∴AE=≈=48m,即A、E之间的距离约为48m【点评】此题主要考查了解直角三角形的应用,根据已知得出tan22°=是解题关键25.(9分)如图,AB为⊙O的直径,直线CD切⊙O于点M,BE⊥CD于点E.(1)求证:∠BME=∠MAB;(2)求证:BM2=BE•AB;(3)若BE=,sin∠BAM=,求线段AM的长.【考点】MR:圆的综合题.【分析】(1)由切线的性质得出∠BME+∠OMB=90°,再由直径得出∠AMB=90°,利用同角的余角相等判断出结论;(2)由(1)得出的结论和直角,判断出△BME∽△BAM,即可得出结论,(3)先在Rt△BEM中,用三角函数求出BM,再在Rt△ABM中,用三角函数和勾股定理计算即可.【解答】解:(1)如图,连接OM,∵直线CD切⊙O于点M,∴∠OMD=90°,∴∠BME+∠OMB=90°,∵AB为⊙O的直径,∴∠AMB=90°.∴∠AMO+∠OMB=90°,∴∠BME=∠AMO,∵OA=OM,∴∠MAB=∠AMO,∴∠BME=∠MAB;(2)由(1)有,∠BME=∠MAB,∵BE⊥CD,∴∠BEM=∠AMB=90°,∴△BME∽△BAM,∴,∴BM2=BE•AB;(3)由(1)有,∠BME=∠MAB,∵sin∠BAM=,∴sin∠BME=,在Rt△BEM中,BE=,∴sin∠BME==,∴BM=6,在Rt△ABM中,sin∠BAM=,∴sin∠BAM==,∴AB=BM=10,根据勾股定理得,AM=8.【点评】此题是圆的综合题,主要考查了切线的性质,直径所对的圆周角是直径,相似三角形的性质和判定,三角函数,解本题的关键是判断出,△BME∽△BAM.26.(9分)我省某地区为了了解2016年初中毕业生毕业去向,对部分九年级学生进行了抽样调查,就九年级学生毕业后的四种去向:A.读普通高中;B.读职业高中;C.直接进入社会就业;D.其他(如出国等)进行数据统计,并绘制了两幅不完整的统计图(如图1,如图2)(1)填空:该地区共调查了200名九年级学生;(2)将两幅统计图中不完整的部分补充完整;(3)若该地区2016年初中毕业生共有3500人,请估计该地区今年初中毕业生中读普通高中的学生人数;(4)老师想从甲,乙,丙,丁4位同学中随机选择两位同学了解他们毕业后的去向情况,请用画树状图或列表的方法求选中甲同学的概率.【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图;X6:列表法与树状图法.【分析】(1)根据统计图可以得到本次调查的九年级学生数;(2)根据题目中的数据可以得到统计图中未知的数据,从而可以解答本题;(3)根据统计图中的数据可以估计该地区今年初中毕业生中读普通高中的学生人数;(4)根据题意可以画出相应的树状图,从而可以求得选中甲同学的概率.【解答】解:(1)该地区调查的九年级学生数为:110÷55%=200,故答案为:200;(2)B去向的学生有:200﹣110﹣16﹣4=70(人),C去向所占的百分比为:16÷200×100%=8%,补全的统计图如右图所示,(3)该地区今年初中毕业生中读普通高中的学生有:3500×55%=1925(人),即该地区今年初中毕业生中读普通高中的学生有1925人;(4)由题意可得,P(甲)=,即选中甲同学的概率是.【点评】本题考查列表法与树状图法、用样本估计总体、扇形统计图、条形统计图,解题的关键是明确题意,找出所求问题需要的条件.五、(本大题共2小题,第27题10分,第28题12分,共22分)27.(10分)如图1,2,3分别以△ABC的AB和AC为边向△ABC外作正三角形(等边三角形)、正四边形(正方形)、正五边形,BE和CD相交于点O.(1)在图1中,求证:△ABE≌△ADC.(2)由(1)证得△ABE≌△ADC,由此可推得在图1中∠BOC=120°,请你探索在图2中,∠BOC的度数,并说明理由或写出证明过程.(3)填空:在上述(1)(2)的基础上可得在图3中∠BOC=72°(填写度数).(4)由此推广到一般情形(如图4),分别以△ABC的AB和AC为边向△ABC外作正n边形,BE和CD仍相交于点O,猜想得∠BOC的度数为(用含n的式子表示).【考点】LO:四边形综合题.【分析】(1)根据等边三角形证明AB=AD,AC=AE,再利用等式性质得∠DAC=∠BAE,根据SAS得出△ABE≌△ADC;(2)根据正方形性质证明△ABE≌△ADC,得∠BEA=∠DCA,再由正方形ACEG的内角∠EAC=90°和三角形外角和定理得∠BOC=90°;(3)根据正五边形的性质证明:△ADC≌△ABE,再计算五边形每一个内角的度数为108°,由三角形外角定理求出∠BOC=72°;(4)根据正n边形的性质证明:△ADC≌△ABE,再计算n边形每一个内角的度数为180°﹣,由三角形外角定理求出∠BOC=.【解答】证明:(1)如图1,∵△ABD和△ACE是等边三角形,∴AB=AD,AC=AE,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE,∴△ABE≌△ADC;。

西藏自治区内地西藏初中班招生统一考试试卷-数学-试卷b《精选文档》

西藏自治区内地西藏初中班招生统一考试试卷-数学-试卷b《精选文档》

机密★启用前 西藏自治区20XX 年内地西藏初中班招生统一考试试卷 数学 注意事项: 1﹒全卷共8页,七大题,满分100分。

2﹒考试时间为90分钟。

3﹒遵守考试纪律,姓名、考号等考生个人信息只能在密封区域内规定的地方 填写。

一、知识大集锦。

(每空1分,共25分) 1.如果罗布向西走18米,记作+18米,那么罗布向东走18米,记作米。

2.一个三角形三个内角的度数的比是1︰2︰1,按边分类,它是一个 三角形,按角分类是三角形。

3.在下面的横线上填上合适的单位名称或数。

我国的陆地面积是960万 一瓶墨水约是60 6.05吨= 吨 千克 5时30分= 时 4.每人每天大约要吃6克盐,100人八月份大约吃盐 千克。

密☆☆☆封☆☆☆装☆☆☆订☆☆☆线☆☆☆ 内 ☆☆☆不☆☆☆得☆☆☆答☆☆☆题5.一段布剪去它的23,还剩50米,这段布原有米。

6.三个连续自然数的和是15,这三个数的最小公倍数是。

7.甲数是18,甲、乙两数的比是3︰5,乙数是。

8.一根木料锯成4段要4分钟,锯成7段要分钟。

9.要焊接一个体积为125立方厘米的正方体框架,需要厘米铁丝。

10.一个圆柱体和一个圆锥体等底等高,它们的体积相差48立方分米,圆锥的体积是立方分米,圆柱的体积是立方分米。

11.过一点到已知直线的线段中,最短。

12.“六一”儿童节,超市对小学生用品八折优惠,用原来买12 支铅笔的钱,“六一”儿童节可买支。

13.第五次火车提速前,火车从杭州到北京要16小时,第五次提速20%后,从杭州到北京需小时。

14.王燕连续掷了3次硬币,2次正面朝上,1次反面朝上,如果再掷一次,反面朝上的可能性是。

15.一个长方体的表面积是60平方厘米,把这个长方体平均分开,正好是两个相等的正方体,每个正方体的表面积是平方厘米。

16.一个比例的两个内项互为倒数,一个外项是7,另一个外项是。

17.一项工作甲单独做要10小时完成,乙单独做要8小时完成,甲的工作效率是乙工作效率的 %。

西藏中考数学试题

西藏中考数学试题

西藏中考数学试题一、选择题1、下列函数中,与函数y = 2x的图象关于原点对称的是()。

A. y = - 2xB.y = 2/xC. y = - 2/xD.y = x2、在下列图形中,既是轴对称图形,又是中心对称图形的是()。

A.平行四边形B.等边三角形C.菱形D.直角三角形3、如果一个三角形的三边长分别为a,b,c,且满足a:b:c=3:2:1,则a+b+c的最小值为()。

A. 18B. 24C. 30D. 36二、填空题4、在平面直角坐标系中,点A(1,2)关于原点的对称点为________。

41、在一个等腰三角形中,已知两条边的长度分别为5和7,则它的周长为________。

411、在一次数学测试中,小明得了88分,小华得了96分,则他们两人的平均分为________。

4111、在一个长方形中,已知其对角线的长度为10,则其长和宽的和为________。

本文在一块矩形田地中,已知其对角线的长度为15,则其长和宽的和为________。

本文如果一个分式的值为零,那么这个分式的分子和分母的根分别为________和________。

本文在一个等腰梯形中,已知其上底为5,下底为11,则其两条对角线的长度之和为________。

三、解答题11.在一次数学考试中,小明和小华分别解答了一道二次函数问题。

小明用了一个简单的方法就解出了这道题,而小华则用常规的方法慢慢计算出了答案。

最终两人的答案都正确。

请根据这个故事,谈谈你在数学学习中对“简单”和“复杂”的理解。

12.在一个直角三角形中,已知两条边的长度分别为3和4,求斜边的长度。

13.在一个等腰三角形中,已知其底边长为6,求腰的长度。

西藏自治区中考数学试题是一份精心设计的试卷,旨在评估学生在数学方面的知识和技能。

这份试卷不仅考察了学生对基础数学概念的理解,还考察了他们的计算能力、问题解决能力和推理能力。

以下是对西藏自治区中考数学试题的一些详细分析。

一、试题结构西藏自治区中考数学试题的结构相对稳定,通常包括选择题、填空题和解答题等几个部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档