立体几何专题复习解析

合集下载

高考立体几何专题复习公开课获奖课件

高考立体几何专题复习公开课获奖课件
(7)假如一种平面与另一种平面垂线平行, 则这两个平面互相垂直
第20页
面面垂直鉴定
假如一种平面通过另一种平面一条 垂线,则这两个平面互相垂直
推论:假如一种平面与另一种平面垂线 平行,则这两个平面互相垂直
第21页
面面垂直性质
假如两个平面垂直,则在一种平面内垂直 于它们交线直线垂直于另一种平面
推论:假如两个相交平面都与另一种平面 垂直,则这两个平面交线 l 垂直于另一种 平面
(3)推论:
假如一种平面内两条相交直线与另一种平面两条 相交直线分别平行,那么这两个平面平行。
第10页
(4)运用线面垂直:
假如两个平面分别垂直于同一条直线,那么这两 个平面平行。
(5)运用面面平行:
假如两个平面都平行于第三个平面,那么这两个 平面平行。
(6)运用距离:
假如一种平面上所有点到另一种平面距离相等, 那么这两个平面平行。
α
a
直线与平 面所成角
βA Pm
αB
二面角
00<θ≤900
00≤ θ≤900
00≤θ ≤1800
空间角计算环节:一作、二证、三算
第34页
空间中角解法小结
1、异面直线所成角措施 (1)平移法(2)补形法
2、直线与平面所成角措施
关键:抓垂足、斜足,找斜线在平面内射影。
3、二面角
找二面角棱,进而找棱两条垂线
第6页
(4)运用垂直
假如一条直线和一种平面分别与另一种平面垂 直,且直线不在这个平面内,则这条直线和这 个平面平行。
(5)运用平行 假如一条直线与两个平行平面中一种平 行且不在另一种平面内,则这条直线与 另一种平面平行。
(6)运用距离

高考数学(文)《立体几何》专题复习

高考数学(文)《立体几何》专题复习

(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解

专题8.7 高考解答题热点题型-立体几何(解析版)

专题8.7 高考解答题热点题型-立体几何(解析版)

高考理科数学一轮复习:题型全归纳与高效训练突破专题8.7高考解答题热点题型---立体几何目录一、题型综述 (1)二题型全归纳 (1)题型一空间点、线、面的位置关系及空. (1)题型二平面图形的折叠问题 (7)题型三立体几何中的探索性问题 (10)三、高效训练突破 (15)一、题型综述立体几何是每年高考的重要内容,基本上都是一道客观题和一道解答题,客观题主要考查考生的空间想象能力及简单的计算能力.解答题主要采用证明与计算相结合的模式,即首先利用定义、定理、公理等证明空间线线、线面、面面的平行或垂直关系,再利用空间向量进行空间角的计算求解.重在考查考生的逻辑推理及计算能力,试题难度一般不大,属中档题,且主要有以下几种常见的热点题型.二题型全归纳题型一空间点、线、面的位置关系及空.1证明点共面或线共面的常用方法(1)直接法:证明直线平行或相交,从而证明线共面.(2)纳入平面法:先确定一个平面,再证明有关点、线在此平面内..(3)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.2.证明空间点共线问题的方法(1)公理法:一般转化为证明这些点是某两个平面的公共点,再根据公理3证明这些点都在这两个平面的交线上(2)纳入直线法:选择其中两点确定一条直线,然后证明其余点也在该直线上.3.证明线共点问题的常用方法先证其中两条直线交于一点,再证其他直线经过该点.4.求异面直线所成角的方法(1)几何法①作:利用定义转化为平面角,对于异面直线所成的角,可固定一条,平移一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.①证:证明作出的角为所求角.①求:把这个平面角置于一个三角形中,通过解三角形求空间角.(2)向量法建立空间直角坐标系,利用公式|cos θ|=|m ·n ||m ||n |求出异面直线的方向向量的夹角.若向量夹角是锐角或直角,则该角即为异面直线所成角;若向量夹角是钝角,则异面直线所成的角为该角的补角.【例1】如图,AE ①平面ABCD ,CF ①AE ,AD ①BC ,AD ①AB ,AB =AD =1,AE =BC =2.(1)求证:BF ①平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值;(3)若二面角E -BD -F 的余弦值为13,求线段CF 的长. 【解题思路】由条件知AB ,AD ,AE 两两垂直,可以A 为坐标原点建立空间直角坐标系,用空间向量解决.(1)寻找平面ADE 的法向量,证明BF →与此法向量垂直,即得线面平行.(2)CE →与平面BDE 的法向量所成角的余弦值的绝对值,即为直线CE 和平面BDE 所成角的正弦值;(3)设CF =h ,用h 表示二面角E -BD -F 的余弦值,通过解方程得到线段长.【规范解答】 (1)证明:以A 为坐标原点,AB 所在的直线为x 轴,AD 所在的直线为y 轴,AE 所在的直线为z 轴,建立如图所示的空间直角坐标系.则A (0,0,0),B (1,0,0),设F (1,2,h ).依题意,AB →=(1,0,0)是平面ADE 的一个法向量,又BF →=(0,2,h ),可得BF →·AB →=0,又直线BF ①平面ADE ,所以BF ①平面ADE .(2)依题意,D (0,1,0),E (0,0,2),C (1,2,0),则BD →=(-1,1,0),BE →=(-1,0,2),CE →=(-1,-2,2).设n =(x ,y ,z )为平面BDE 的法向量,则⎩⎪⎨⎪⎧ n ·BD →=0,n ·BE →=0,即⎩⎪⎨⎪⎧-x +y =0,-x +2z =0,不妨令z =1,可得n =(2,2,1). 因此有cos 〈CE →,n 〉=CE →·n |CE →||n |=-49. 所以直线CE 与平面BDE 所成角的正弦值为49. (3)设m =(x 1,y 1,z 1)为平面BDF 的法向量,则⎩⎪⎨⎪⎧ m ·BD →=0,m ·BF →=0,即⎩⎪⎨⎪⎧-x 1+y 1=0,2y 1+hz 1=0, 不妨令y 1=1,可得m =⎝⎛⎭⎫1,1,-2h . 由题意,有|cos 〈m ,n 〉|=|m ·n ||m ||n |=⎪⎪⎪⎪4-2h 3 2+4h2=13, 解得h =87.经检验,符合题意. 所以线段CF 的长为87. 【例2】.如图,在三棱锥P ­ABC 中,P A ①底面ABC ,①BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ①平面BDE ;(2)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. 【解析】:如图,以A 为原点,分别以AB →,AC →,AP →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明:DE →=(0,2,0),DB →=(2,0,-2).设n =(x ,y ,z )为平面BDE 的法向量,则⎩⎪⎨⎪⎧n ·DE →=0,n ·DB →=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0. 不妨设z =1,可取n =(1,0,1).又MN →=(1,2,-1),可得MN →·n =0.因为MN ①平面BDE ,所以MN ①平面BDE .(2)依题意,设AH =h (0≤h ≤4),则H (0,0,h ),进而可得NH →=(-1,-2,h ),BE →=(-2,2,2).由已知,得|cos 〈NH →,BE →〉|=|NH →·BE →||NH →||BE →|=|2h -2|h 2+5×23=721, 整理得10h 2-21h +8=0,解得h =85或h =12. 所以,线段AH 的长为85或12. 【例3】如图,在几何体ACD -A 1B 1C 1D 1中,四边形ADD 1A 1与四边形CDD 1C 1均为矩形,平面ADD 1A 1①平面CDD 1C 1,B 1A 1①平面ADD 1A 1,AD =CD =1,AA 1=A 1B 1=2,E 为棱AA 1的中点.(1)证明:B 1C 1①平面CC 1E ;(2)求直线B 1C 1与平面B 1CE 所成角的正弦值.【解析】(1)证明:因为B 1A 1①平面ADD 1A 1,所以B 1A 1①DD 1,又DD 1①D 1A 1,B 1A 1∩D 1A 1=A 1,所以DD 1①平面A 1B 1C 1D 1,又DD 1①CC 1,所以CC 1①平面A 1B 1C 1D 1.因为B 1C 1①平面A 1B 1C 1D 1,所以CC 1①B 1C 1.因为平面ADD 1A 1①平面CDD 1C 1,平面ADD 1A 1∩平面CDD 1C 1=DD 1,C 1D 1①DD 1,所以C 1D 1①平面ADD 1A 1.经计算可得B 1E =5,B 1C 1=2,EC 1=3,从而B 1E 2=B 1C 21+EC 21,所以在①B 1EC 1中,B 1C 1①C 1E .又CC 1,C 1E ①平面CC 1E ,CC 1∩C 1E =C 1,所以B 1C 1①平面CC 1E .(2)如图,以点A 为坐标原点,建立空间直角坐标系,依题意得A (0,0,0),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0),则CE →=(-1,1,-1),B 1C →=(1,-2,-1).设平面B 1CE 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·B 1C →=0,m ·CE →=0,即⎩⎪⎨⎪⎧x -2y -z =0,-x +y -z =0,消去x 得y +2z =0, 不妨设z =1,可得m =(-3,-2,1)为平面B 1CE 的一个法向量,易得B 1C 1→=(1,0,-1),设直线B 1C 1与平面B 1CE 所成角为θ,则sin θ=|cos 〈m ,B 1C 1→〉|=⎪⎪⎪⎪⎪⎪m ·B 1C 1→|m |·|B 1C 1→|=⎪⎪⎪⎪⎪⎪-414×2=277,故直线B 1C 1与平面B 1CE 所成角的正弦值为277. 题型二 平面图形的折叠问题【解法】解决平面图形翻折问题的关键是抓住“折痕”,准确把握平面图形翻折前后的两个“不变”.(1)与折痕垂直的线段,翻折前后垂直关系不改变;(2)与折痕平行的线段,翻折前后平行关系不改变.【例1】如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把①DFC 折起,使点C 到达点P 的位置,且PF ①BF .(1)证明:平面PEF ①平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.【解题思路】(1)①翻折前后的不变关系,四边形ABFE 是矩形.①证明BF ①平面PEF .①证明平面PEF ①平面ABFD .(2)解法一:①建系:借助第(1)问,过P 作平面ABFD 的垂线为z 轴,垂足为原点,EF 所在直线为y 轴,建系.①求直线DP 的方向向量和平面ABFD 的法向量.①由公式计算所求角的正弦值.解法二:①作:过P 作PH ①EF 交EF 于点H ,连接DH .①证:证明PH ①平面ABFD ,得①PDH 为直线DP 与平面ABFD 所成角.①算:在Rt①PDH 中,PD 的长度是正方形ABCD 的边长,①PHD =90°,易知要求sin①PDH ,关键是求PH ;由此想到判断①PEF 的形状,进一步想到证明PF ①平面PED .【规范解答】(1)证明:由已知可得,BF ①PF ,BF ①EF ,又PF ∩EF =F ,所以BF ①平面PEF .又BF ①平面ABFD ,所以平面PEF ①平面ABFD .(2)解法一:作PH ①EF ,垂足为H .由(1)得,PH ①平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,建立如图所示的空间直角坐标系Hxyz ,设正方形ABCD 的边长为2.由(1)可得,DE ①PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故PE ①PF .所以PH =32,EH =32,则H (0,0,0),P ⎝⎛⎭⎫0,0,32, D ⎝⎛⎭⎫-1,-32,0,DP →=⎝⎛⎭⎫1,32,32,HP →=⎝⎛⎭⎫0,0,32为平面ABFD 的一个法向量. 设DP 与平面ABFD 所成角为θ,则sin θ=|HP →·DP →||HP →||DP →|=343=34. 所以DP 与平面ABFD 所成角的正弦值为34. 解法二:因为PF ①BF ,BF ①ED ,所以PF ①ED ,又PF ①PD ,ED ∩PD =D ,所以PF ①平面PED ,所以PF ①PE ,设AB =4,则EF =4,PF =2,所以PE =23,过P 作PH ①EF 交EF 于点H ,因为平面PEF ①平面ABFD ,所以PH ①平面ABFD ,连接DH ,则①PDH 即为直线DP 与平面ABFD 所成的角,因为PE ·PF =EF ·PH ,所以PH =23×24=3, 因为PD =4,所以sin①PDH =PH PD =34, 所以DP 与平面ABFD 所成角的正弦值为34. 题型三 立体几何中的探索性问题【技巧要点】对命题条件的探索的三种途径途径一:先猜后证,即先观察与尝试给出条件再证明.途径二:先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.途径三:将几何问题转化为代数问题【例1】(2020·湖北“四地七校”联考)在四棱锥P -ABCD 中,底面ABCD 是边长为22的正方形,平面P AC ①底面ABCD ,P A =PC =2 2.(1)求证:PB =PD ;(2)若点M ,N 分别是棱P A ,PC 的中点,平面DMN 与棱PB 的交点为点Q ,则在线段BC 上是否存在一点H ,使得DQ ①PH ?若存在,求BH 的长;若不存在,请说明理由.【解题思路】 (1)要证PB =PD ,想到在①PBD 中,证明BD 边上的中线垂直于BD ,联系题目条件想到用面面垂直的性质证明线面垂直.(2)借助第(1)问的垂直关系建立空间直角坐标系,求平面DMN 的法向量n ,分别依据P ,B ,Q 共线和B ,C ,H 共线,设PQ →=λPB →和BH →=tBC →,利用垂直关系列方程先求λ再求t ,确定点H 的位置.【规范解答】 (1)证明:记AC ∩BD =O ,连接PO ,①底面ABCD 为正方形,①OA =OC =OB =OD =2.①P A =PC ,①PO ①AC ,①平面P AC ①底面ABCD ,且平面P AC ∩底面ABCD =AC ,PO ①平面P AC ,①PO ①底面ABCD .①BD ①底面ABCD ,①PO ①BD .①PB =PD .(2)存在.以O 为坐标原点,射线OB ,OC ,OP 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系如图所示,由(1)可知OP =2.可得P (0,0,2),A (0,-2,0),B (2,0,0),C (0,2,0),D (-2,0,0),可得M (0,-1,1),N (0,1,1),DM →=(2,-1,1),MN →=(0,2,0).设平面DMN 的法向量n =(x ,y ,z ),①DM →·n =0,MN →·n =0,①⎩⎪⎨⎪⎧2x -y +z =0,2y =0. 令x =1,可得n =(1,0,-2).记PQ →=λPB →=(2λ,0,-2λ),可得Q (2λ,0,2-2λ),DQ →=(2λ+2,0,2-2λ),DQ →·n =0,可得2λ+2-4+4λ=0,解得λ=13. 可得DQ →=⎝⎛⎭⎫83,0,43. 记BH →=tBC →=(-2t,2t,0),可得H (2-2t,2t,0),PH →=(2-2t,2t ,-2),若DQ ①PH ,则DQ →·PH →=0,83(2-2t )+43×(-2)=0,解得t =12. 故BH = 2.故在线段BC 上存在一点H ,使得DQ ①PH ,此时BH= 2.【例2】如图,在四棱锥P­ABCD中,P A①平面ABCD,底面ABCD为菱形,E为CD的中点.(1)求证:BD①平面P AC;(2)若①ABC=60°,求证:平面P AB①平面P AE;(3)棱PB上是否存在点F,使得CF①平面P AE?说明理由.【解】(1)证明:因为P A①平面ABCD,所以P A①BD.因为底面ABCD为菱形,所以BD①A C.又P A∩AC=A,所以BD①平面P A C.(2)证明:因为P A①平面ABCD,AE①平面ABCD,所以P A①AE.因为底面ABCD为菱形,①ABC=60°,且E为CD的中点,所以AE①CD,所以AB①AE.又AB∩P A=A,所以AE ①平面P AB .因为AE ①平面P AE ,所以平面P AB ①平面P AE .(3)棱PB 上存在点F ,使得CF ①平面P AE .取F 为PB 的中点,取G 为P A 的中点,连接CF ,FG ,EG .则FG ①AB ,且FG =12AB . 因为底面ABCD 为菱形,且E 为CD 的中点,所以CE ①AB ,且CE =12AB . 所以FG ①CE ,且FG =CE .所以四边形CEGF 为平行四边形.所以CF ①EG .因为CF ①平面P AE ,EG ①平面P AE ,所以CF ①平面P AE .【例3】图1是由矩形ADEB ,Rt①ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,①FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ①平面BCGE ;(2)求图2中的二面角B -CG -A 的大小.【解析】:(1)证明:由已知得AD ①BE ,CG ①BE ,所以AD ①CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ①BE ,AB ①BC ,故AB ①平面BCGE .又因为AB ①平面ABC , 所以平面ABC ①平面BCGE .(2)作EH ①BC ,垂足为H .因为EH ①平面BCGE ,平面BCGE ①平面ABC ,所以EH ①平面ABC .由已知,菱形BCGE 的边长为2,①EBC =60°,可求得BH =1,EH = 3.以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系H ­xyz ,则A (-1,1,0),C (1,0,0),G (2,0,3),CG →=(1,0,3),AC →=(2,-1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧CG →·n =0AC →·n =0,即⎩⎨⎧x +3z =0,2x -y =0. 所以可取n =(3,6,-3).又平面BCGE 的法向量可取为m =(0,1,0),所以cos n ,m =n ·m |n ||m |=32. 因此二面角B ­CG ­A 的大小为30°.三、高效训练突破1.(2020·深圳模拟)已知四棱锥P­ABCD,底面ABCD为菱形,PD=PB,H为PC上的点,过AH的平面分别交PB,PD于点M,N,且BD①平面AMHN.(1)证明:MN①PC;(2)当H为PC的中点,P A=PC=3AB,P A与平面ABCD所成的角为60°,求AD与平面AMHN所成角的正弦值.【解析】(1)证明:连接AC、BD且AC∩BD=O,连接PO.因为ABCD为菱形,所以BD①AC,因为PD=PB,所以PO①BD,因为AC∩PO=O且AC、PO①平面P AC,所以BD①平面P AC,因为PC①平面P AC,所以BD①PC,因为BD①平面AMHN,且平面AMHN∩平面PBD=MN,所以BD①MN,MN①平面P AC,所以MN①P C.(2)由(1)知BD ①AC 且PO ①BD ,因为P A =PC ,且O 为AC 的中点,所以PO ①AC ,所以PO ①平面ABCD ,所以P A 与平面ABCD 所成的角为①P AO ,所以①P AO =60°,所以AO =12P A ,PO =32P A , 因为P A =3AB ,所以BO =36P A . 以OA →,OD →,OP →分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设P A =2,所以O (0,0,0),A (1,0,0),B (0,-33,0),C (-1,0,0),D (0,33,0),P (0,0,3),H (-12,0,32), 所以BD →=(0,233,0),AH →=(-32,0,32),AD →=(-1,33,0). 设平面AMHN 的法向量为n =(x ,y ,z ),所以⎩⎪⎨⎪⎧n ·BD →=0,n ·AH →=0,即⎩⎨⎧233y =0,-32x +32z =0, 令x =2,则y =0,z =23,所以n =(2,0,23),设AD 与平面AMHN 所成角为θ,所以sin θ=|cos 〈n ,AD →〉|=|n ·AD →|n ||AD →||=34. 所以AD 与平面AMHN 所成角的正弦值为34. 2.(2020·河南联考)如图所示,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,平面P AD ①平面ABCD ,①P AD 是边长为4的等边三角形,BC ①PB ,E 是AD 的中点.(1)求证:BE ①PD ;(2)若直线AB 与平面P AD 所成角的正弦值为154,求平面P AD 与平面PBC 所成的锐二面角的余弦值. 【解析】:(1)证明:因为①P AD 是等边三角形,E 是AD 的中点,所以PE ①AD .又平面P AD ①平面ABCD ,平面P AD ∩平面ABCD =AD ,PE ①平面P AD ,所以PE ①平面ABCD ,所以PE ①BC ,PE ①BE .又BC ①PB ,PB ∩PE =P ,所以BC ①平面PBE ,所以BC ①BE .又BC ①AD ,所以AD ①BE .又AD ∩PE =E 且AD ,PE ①平面P AD ,所以BE ①平面P AD ,所以BE ①PD .(2)由(1)得BE ①平面P AD ,所以①BAE 就是直线AB 与平面P AD 所成的角.因为直线AB 与平面P AD 所成角的正弦值为154, 即sin①BAE =154 ,所以cos①BAE =14. 所以cos①BAE =AE AB =2AB =14,解得AB =8,则BE =AB 2-AE 2=215.由(1)得EA ,EB ,EP 两两垂直,所以以E 为坐标原点,EA ,EB ,EP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则点P (0,0,23),A (2,0,0),D (-2,0,0),B (0,215,0),C (-4,215,0),所以PB →=(0,215,-23),PC →=(-4,215,-23).设平面PBC 的法向量为m =(x ,y ,z ),由⎩⎪⎨⎪⎧PB →·m =0,PC →·m =0,得⎩⎨⎧215y -23z =0,-4x +215y -23z =0, 解得⎩⎨⎧x =0,z =5y . 令y =1,可得平面PBC 的一个法向量为m =(0,1,5).易知平面P AD 的一个法向量为n =(0,1,0),设平面P AD 与平面PBC 所成的锐二面角的大小为θ,则cos θ=⎪⎪⎪⎪m ·n |m ||n |=⎪⎪⎪⎪⎪⎪(0,1,5)·(0,1,0)6×1=66. 所以平面P AD 与平面PBC 所成的锐二面角的余弦值为66. 3.(2020·云南师范大学附属中学3月月考)如图,在直三棱柱ABC ­A 1B 1C 1中,①ABC 是边长为2的正三角形,AA 1=26,D 是CC 1的中点,E 是A 1B 1的中点.(1)证明:DE ①平面A 1BC;(2)求点A 到平面A 1BC 的距离.【解析】 (1)证明:如图取A 1B 的中点F ,连接FC ,FE .因为E ,F 分别是A 1B 1,A 1B 的中点,所以EF ①BB 1,且EF =12BB 1. 又在平行四边形BB 1C 1C 中,D 是CC 1的中点,所以CD ①BB 1,且CD =12BB 1,所以CD ①EF ,且CD =EF . 所以四边形CFED 是平行四边形,所以DE ①CF .因为DE ①/平面A 1BC ,CF ①平面A 1BC ,所以DE ①平面A 1BC .(2)法一:(等体积法)因为BC =AC =AB =2,AA 1=26,三棱柱ABC ­A 1B 1C 1为直三棱柱,所以V 三棱锥A 1-ABC =13S ①ABC ×AA 1=13×34×22×26=2 2. 又在①A 1BC 中,A 1B =A 1C =27,BC =2,BC 边上的高h = A 1B 2-⎝⎛⎭⎫12BC 2=33, 所以S ①A 1BC =12BC ·h =3 3. 设点A 到平面A 1BC 的距离为d ,则V 三棱锥A -A 1BC =13S ①A 1BC ×d =13×33×d =3d . 因为V 三棱锥A 1-ABC =V 三棱锥A -A 1BC ,所以22=3d ,解得d =263, 所以点A 到平面A 1BC 的距离为263. 法二:(向量法)由题意知,三棱柱ABC ­A 1B 1C 1是正三棱柱.取AB 的中点O ,连接OC ,OE .因为AC =BC ,所以CO ①AB .又平面ABC ①平面ABB 1A 1,平面ABC ∩平面ABB 1A 1=AB ,所以CO ①平面ABB 1A 1.因为O 为AB 的中点,E 为A 1B 1的中点,所以OE ①AB ,所以OC ,OA ,OE 两两垂直.如图,以O 为坐标原点,以OA ,OE ,OC 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,3),A (1,0,0),A 1(1,26,0),B (-1,0,0).则BA 1→=(2,26,0),BC →=(1,0,3).设平面A 1BC 的法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧n ①BA 1→,n ①BC →,可得⎩⎪⎨⎪⎧n ·BA 1→=2x +26y =0,n ·BC →=x +3z =0,整理得⎩⎨⎧x +6y =0,x +3z =0,令x =6,则y =-1,z =- 2. 所以n =(6,-1,-2)为平面A 1BC 的一个法向量.而BA →=(2,0,0),所以点A 到平面A 1BC 的距离d =|BA →·n ||n |=6×26+1+2=263. 4.(2020·湖北十堰4月调研)如图,在三棱锥P -ABC 中,M 为AC 的中点,P A ①PC ,AB ①BC ,AB =BC ,PB =2,AC =2,①P AC =30°.(1)证明:BM ①平面P AC ;(2)求二面角B -P A -C 的余弦值.【答案】:见解析(1)证明:因为P A ①PC ,AB ①BC ,所以MP =MB =12AC =1,又MP 2+MB 2=BP 2,所以MP ①MB .因为AB =BC ,M 为AC 的中点,所以BM ①AC , 又AC ∩MP =M ,所以BM ①平面P AC .(2)法一:取MC 的中点O ,连接PO ,取BC 的中点E ,连接EO ,则OE ①BM ,从而OE ①AC . 因为P A ①PC ,①P AC =30°,所以MP =MC =PC =1. 又O 为MC 的中点,所以PO ①AC .由(1)知BM ①平面P AC ,OP ①平面P AC ,所以BM ①PO . 又BM ∩AC =M ,所以PO ①平面ABC .以O 为坐标原点,OA ,OE ,OP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图所示, 由题意知A ⎝⎛⎭⎫32,0,0,B ⎝⎛⎭⎫12,1,0,P ⎝⎛⎭⎫0,0,32,BP →=⎝⎛⎭⎫-12,-1,32,BA →=(1,-1,0), 设平面APB 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BP→=-12x -y +32z =0,n ·BA →=x -y =0,令x =1,得n =(1,1,3)为平面APB 的一个法向量,易得平面P AC 的一个法向量为π=(0,1,0),cos 〈n ,π〉=55, 由图知二面角B -P A -C 为锐角,所以二面角B -P A -C 的余弦值为55. 法二:取P A 的中点H ,连接HM ,HB ,因为M 为AC 的中点,所以HM ①PC ,又P A ①PC ,所以HM ①P A .由(1)知BM ①平面P AC ,则BH ①P A , 所以①BHM 为二面角B -P A -C 的平面角.因为AC =2,P A ①PC ,①P AC =30°,所以HM =12PC =12.又BM =1,则BH =BM 2+HM 2=52, 所以cos①BHM =HM BH =55,即二面角B -P A -C 的余弦值为55.5.(2020·合肥模拟)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,BF ①平面ABCD ,DE ①平面ABCD ,BF =DE ,M 为棱AE 的中点.(1)求证:平面BDM ①平面EFC ;(2)若DE =2AB ,求直线AE 与平面BDM 所成角的正弦值. 【答案】:见解析(1)证明:连接AC ,交BD 于点N ,连接MN , 则N 为AC 的中点,又M 为AE 的中点,所以MN ①EC . 因为MN ①平面EFC ,EC ①平面EFC , 所以MN ①平面EFC .因为BF ,DE 都垂直底面ABCD ,所以BF ①DE . 因为BF =DE ,所以四边形BDEF 为平行四边形,所以BD ①EF .因为BD ①平面EFC ,EF ①平面EFC , 所以BD ①平面EFC .又MN ∩BD =N ,所以平面BDM ①平面EFC . (2)因为DE ①平面ABCD ,四边形ABCD 是正方形,所以DA ,DC ,DE 两两垂直,如图,建立空间直角坐标系D ­xyz .设AB =2,则DE =4,从而D (0,0,0),B (2,2,0),M (1,0,2),A (2,0,0),E (0,0,4), 所以DB →=(2,2,0),DM →=(1,0,2), 设平面BDM 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DB →=0,n ·DM →=0,得⎩⎪⎨⎪⎧2x +2y =0,x +2z =0.令x =2,则y =-2,z =-1,从而n =(2,-2,-1)为平面BDM 的一个法向量. 因为AE →=(-2,0,4),设直线AE 与平面BDM 所成的角为θ,则 sin θ=|cos 〈n ·AE →〉|=⎪⎪⎪⎪⎪⎪n ·AE →|n |·|AE →|=4515, 所以直线AE 与平面BDM 所成角的正弦值为4515.6.(2020·河南郑州三测)如图①,①ABC 中,AB =BC =2,①ABC =90°,E ,F 分别为边AB ,AC 的中点,以EF 为折痕把①AEF 折起,使点A 到达点P 的位置(如图①),且PB =BE .(1)证明:EF ①平面PBE ;(2)设N 为线段PF 上的动点(包含端点),求直线BN 与平面PCF 所成角的正弦值的最大值. 【解析】:(1)证明:因为E ,F 分别为边AB ,AC 的中点,所以EF ①BC . 因为①ABC =90°,所以EF ①BE ,EF ①PE ,又BE ∩PE =E ,所以EF ①平面PBE . (2)取BE 的中点O ,连接PO ,因为PB =BE =PE ,所以PO ①BE .由(1)知EF ①平面PBE ,EF ①平面BCFE ,所以平面PBE ①平面BCFE . 又PO ①平面PBE ,平面PBE ∩平面BCFE =BE ,所以PO ①平面BCFE .过点O 作OM ①BC 交CF 于点M ,分别以OB ,OM ,OP 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B ⎝⎛⎭⎫12,0,0,P ⎝⎛⎭⎫0,0,32,C ⎝⎛⎭⎫12,2,0, F ⎝⎛⎭⎫-12,1,0,PC →=⎝⎛⎭⎫12,2,-32, PF →=⎝⎛⎭⎫-12,1,-32,由N 为线段PF 上一动点,得PN →=λPF →(0≤λ≤1),则可得N ⎝⎛⎭⎫-λ2,λ,32(1-λ),BN →=⎝⎛⎭⎫-λ+12,λ,32(1-λ).设平面PCF 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧PC →·m =0,PF →·m =0,即⎩⎨⎧12x +2y -32z =0,-12x +y -32z =0,取y =1,则x =-1,z =3,所以m =(-1,1,3)为平面PCF 的一个法向量.设直线BN 与平面PCF 所成的角为θ, 则sin θ=|cos 〈BN →,m 〉|=|BN →·m ||BN →|·|m |=25·2λ2-λ+1=25·2⎝⎛⎭⎫λ-142+78≤25·78=47035(当且仅当λ=14时取等号),所以直线BN 与平面PCF 所成角的正弦值的最大值为47035.7.(2020·山东淄博三模)如图①,已知正方形ABCD 的边长为4,E ,F 分别为AD ,BC 的中点,将正方形ABCD 沿EF 折成如图①所示的二面角,且二面角的大小为60°,点M 在线段AB 上(包含端点),连接AD .(1)若M 为AB 的中点,直线MF 与平面ADE 的交点为O ,试确定点O 的位置,并证明直线OD ①平面EMC ; (2)是否存在点M ,使得直线DE 与平面EMC 所成的角为60°?若存在,求此时二面角M ­EC ­F 的余弦值;若不存在,说明理由. 【答案】见解析【解析】:(1)因为直线MF ①平面ABFE ,故点O 在平面ABFE 内,也在平面ADE 内, 所以点O 在平面ABFE 与平面ADE的交线(即直线AE )上(如图所示).因为AO ①BF ,M 为AB 的中点,所以①OAM ①①FBM ,所以OM =MF ,AO =BF ,所以AO =2. 故点O 在EA 的延长线上且与点A 间的距离为2. 连接DF ,交EC 于点N ,因为四边形CDEF 为矩形, 所以N 是EC 的中点.连接MN ,则MN 为①DOF 的中位线,所以MN ①OD ,又MN ①平面EMC ,OD ①/ 平面EMC ,所以直线OD ①平面EMC . (2)由已知可得EF ①AE ,EF ①DE ,又AE ∩DE =E ,所以EF ①平面ADE .所以平面ABFE ①平面ADE ,易知①ADE 为等边三角形,取AE 的中点H ,则易得DH ①平面ABFE ,以H 为坐标原点,建立如图所示的空间直角坐标系,则E (-1,0,0),D (0,0,3),C (0,4,3),F (-1,4,0),所以ED →=(1,0,3),EC →=(1,4,3). 设M (1,t ,0)(0≤t ≤4),则EM →=(2,t ,0),设平面EMC 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·EM →=0,m ·EC →=0①⎩⎨⎧2x +ty =0,x +4y +3z =0,取y =-2,则x =t ,z =8-t 3,所以m =⎝ ⎛⎭⎪⎫t ,-2,8-t 3为平面EMC 的一个法向量.要使直线DE 与平面EMC 所成的角为60°,则82t 2+4+(8-t )23=32,所以23t 2-4t +19=32,整理得t 2-4t +3=0, 解得t=1或t =3,所以存在点M ,使得直线DE 与平面EMC 所成的角为60°,取ED 的中点Q ,连接QA ,则QA →为平面CEF 的法向量, 易得Q ⎝⎛⎭⎫-12,0,32,A (1,0,0),所以QA →=⎝⎛⎭⎫32,0,-32.设二面角M -EC -F 的大小为θ, 则|cos θ|=|QA →·m ||QA →|·|m |=|2t -4|3t 2+4+(8-t )23=|t -2|t2-4t +19. 因为当t =2时,cos θ=0,平面EMC ①平面CDEF ,所以当t =1时,cos θ=-14,θ为钝角;当t =3时,cos θ=14,θ为锐角.综上,二面角M -EC -F 的余弦值为±14.。

高考数学复习考点题型专题讲解20 立体几何中的轨迹问题

高考数学复习考点题型专题讲解20 立体几何中的轨迹问题

高考数学复习考点题型专题讲解 第20讲 立体几何中轨迹问题7类【题型一】由动点保持平行性求轨迹【典例分析】如图,在边长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 、N 分别是CC 1、C 1D 1、DD 1、CD 、BC 的中点,M 在四边形EFGH 边上及其内部运动,若MN ∥面A 1BD ,则点M 轨迹的长度是( )A B C D 【答案】D 【分析】连接GH 、HN ,有GH ∥BA 1,HN ∥BD ,证得面A 1BD ∥面GHN ,由已知得点M 须在线段GH 上运动,即满足条件,由此可得选项. 【详解】解:连接GH 、HN 、GN ,∵在边长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是CC 1、C 1D 1、DD 1、CD 的中点,N 是BC 的中点,则GH ∥BA 1,HN ∥BD ,又GH ⊄面A 1BD ,BA 1⊂面A 1BD ,所以//GH 面A 1BD ,同理可证得//NH 面A 1BD ,又GH HN H ⋂=,∴面A 1BD ∥面GHN ,又∵点M 在四边形EFGH 上及其内部运动,MN ∥面A 1BD ,则点M 须在线段GH 上运动,即满足条件,GH ,则点M a . 故选:D.【变式演练】1.在三棱台111A B C ABC -中,点D 在11A B 上,且1//AA BD ,点M 是三角形111A B C 内(含边界)的一个动点,且有平面//BDM 平面11A ACC ,则动点M 的轨迹是()A .三角形111ABC 边界的一部分 B .一个点 C .线段的一部分D .圆的一部分【答案】C 【分析】过D 作11//DE AC 交11B C 于E ,连接BE ,证明平面//BDE 平面11AAC C ,得M DE ∈,即得结论. 【详解】如图,过D 作11//DE AC 交11B C 于E ,连接BE ,1//BD AA ,BD ⊄平面11AAC C ,1AA ⊂平面11AAC C ,所以//BD 平面11AAC C ,同理//DE 平面11AAC C ,又BD DE D ⋂=,,BD DE ⊂平面BDE ,所以平面//BDE 平面11AAC C ,所以M DE ∈,(M 不与D 重合,否则没有平面BDM ), 故选:C .2.已知正方体1111ABCD A B C D -的棱长为2,E 、F 分别是棱1AA 、11A D 的中点,点P 为底面ABCD 内(包括边界)的一动点,若直线1D P 与平面BEF 无公共点,则点P 的轨迹长度为()A 1BCD 【答案】B 【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设点(),,0P a b ,计算出平面BEF 的一个法向量m 的坐标,由已知条件得出10D P m ⋅=,可得出a 、b 所满足的等式,求出点P 的轨迹与线段AD 、BC 的交点坐标,即可求得结果. 【详解】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()2,2,0B 、()2,0,1E 、()1,0,2F 、()10,0,2D ,设点(),,0P a b ,()0,2,1BE =-uur,()1,0,1EF =-,设平面BEF 的法向量为(),,m x y z =, 由200m BE y z m EF x z ⎧⋅=-+=⎨⋅=-+=⎩,取2z =,可得()2,1,2m =, ()1,,2D P a b =-,由题意可知,1//D P 平面BEF ,则1240D P m a b ⋅=+-=,令0b =,可得2a =;令2b =,可得1a =.所以,点P 的轨迹交线段AD 于点()2,0,0A ,交线段BC 的中点()1,2,0M ,所以,点P 的轨迹长度为AM =故选:B.3.在棱长为2的正方体1111ABCD A B C D -中,点E ,F 分别是棱11C D ,11B C 的中点,P 是上底面1111D C B A 内一点(含边界),若//AP 平面BDEF ,则Р点的轨迹长为()A .1BC .2D .【答案】B 【分析】由分别取棱11A B 、11A D 的中点M 、N ,连接MN ,由线面平行得面面平行,得动点轨迹,从而可计算其长度. 【详解】如图所示,分别取棱11A B 、11A D 的中点M 、N ,连接MN ,连接11B D , ∵M 、N 、E 、F 为所在棱的中点,∴11//MN B D ,11//EF B D ,∴//MN EF ,又MN ⊄平面BDEF ,EF ⊂平面BDEF ,∴//MN 平面BDEF ,连接NF ,由11//NF A B ,11NF A B =,11//A B AB ,11A B AB =,可得//NF AB ,NF AB =,则四边形ANFB 为平行四边形,则//AN FB ,而AN ⊄平面BDEF ,FB ⊂平面BDEF ,则//AN 平面BDEF . 又ANNM N =,∴平面//AMN 平面BDEF .又P 是上底面1111D C B A 内一点,且//AP 平面BDEF ,∴P 点在线段MN 上.又1112MN B D =,∴P【题型二】动点保持垂直性求轨迹【典例分析】在正方体1111ABCD A B C D -中,Q 是正方形11B BCC 内的动点,11AQ BC ⊥,则Q 点的轨迹是() A .点1B B .线段1B CC .线段11B CD .平面11B BCC【答案】B 【分析】如图,连接1AC ,证明1BC ⊥1B Q ,又1BC ⊥1B C ,即得解. 【详解】如图,连接1AC ,因为111111111111,,,,BC AQ BC A B AQ A B A AQ A B ⊥⊥=⊂平面11A B Q ,所以1BC ⊥平面11A B Q , 又1B Q ⊂平面11A B Q ,所以1BC ⊥1B Q ,又1BC ⊥1B C .所以点Q 在线段1B C 上.故选:B【变式演练】1.在正方体1111ABCD A B C D -中,点P 在侧面11BCC B 及其边界上运动,且保持1AP BD ⊥,则动点P 的轨迹为()A .线段1CBB .线段1BCC .1BB 的中点与1CC 的中点连成的线段D .BC 的中点与11B C 的中点连成的线段【答案】A 【分析】利用直线与平面垂直的判定可得1BD ⊥面1ACB ,又点P 在侧面11BCC B 及其边界上运动,并且总是保持AP 与1BD 垂直,得到点P 的轨迹为面1ACB 与面11BCC B 的交线. 【详解】如图,连接AC ,1AB ,1B C ,在正方体1111ABCD A B C D -中,有1BD ⊥平面1ACB ,又点P 在侧面11BCC B 及其边界上运动,∴故点P 的轨迹为平面1ACB 与平面11BCC B 的交线段1CB .故选:A.2.在棱长为1的正方体1111ABCD A B C D -中,M ,N 分别为1BD ,11B C 的中点,点P 在正方体的表面上运动,且满足MP CN ⊥.给出下列说法: ①点P 可以是棱1BB 的中点; ②线段MP 的最大值为34; ③点P 的轨迹是正方形;④点P 轨迹的长度为2 其中所有正确说法的序号是________.【答案】②④【分析】以D 为坐标原点,分别以DA ,DC ,1DD 为x 轴,y 轴,z 轴建立空间直角坐标系,求出MP 的坐标,从而得到MP 的最大值,即可判断选项②,通过分析判断可得点P 不可能是棱1BB 的中点,从而判断选项①,又1EF GH ==,EH FG ==,可判断选项③和选项④. 【详解】解:在正方体1111ABCD A B C D -中,以D 为坐标原点,1DC 为x 轴,y 轴, ∵该正方体的棱长为1,M ,N 分别为1BD ,11B C 的中点, ∴()0,0,0D ,M (12,12,12),1,1,12N ⎛⎫⎪⎝⎭,()0,1,0C ∴1,0,12CN ⎛⎫= ⎪⎝⎭,设(),,P x y z ,则111,,222MP x y z ⎛⎫=--- ⎪⎝⎭,∵MP CN ⊥,∴1110222x z ⎛⎫-+-= ⎪⎝⎭,即2430x z +-=当1x =时,14z =,当0x =时,34z =,取11,0,4E ⎛⎫ ⎪⎝⎭,11,1,4F ⎛⎫ ⎪⎝⎭,30,1,4G ⎛⎫ ⎪⎝⎭,30,0,4H ⎛⎫ ⎪⎝⎭,连结EF ,FG ,GH ,HE ,则()0,1,0EF GH ==,11,0,2EH FG ⎛⎫==- ⎪⎝⎭,∴四边形EFGH 为矩形,则0EF CN ⋅=,0EH CN ⋅=,即EF CN ⊥,EH CN ⊥,又EF 和EH 为平面EFGH 中的两条相交直线, ∴CN ⊥平面EFGH ,又111,,224EM ⎛⎫=- ⎪⎝⎭,111,,224MG ⎛⎫=- ⎪⎝⎭,∴M 为EG 的中点,则M ∈平面EFGH , 为使MP CN ⊥,必有点P ∈平面EFGH ,又点P 在正方体表面上运动,∴点P 的轨迹为四边形EFGH , 因此点P 不可能是棱1BB 的中点,故选项①错误;又1EF GH ==,EH FG ==,∴EF EH ≠,则点P 的轨迹不是正方形且矩形EFGH 周长为222+= 故选项③错误,选项④正确;∵1,0,12CN ⎛⎫= ⎪⎝⎭,111,,222MP x y z ⎛⎫=--- ⎪⎝⎭,又MP CN ⊥,则1110222x z ⎛⎫-+-= ⎪⎝⎭,即2430x z +-=,∴322x z =-,点P 在正方体表面运动, 则30212z ≤-≤,解1344z ≤≤,∴MP =故当14z =或34z =,0y =或1,MP 取得最大值为34,故②正确.故答案为:②④.3.如图,在正方体1111ABCD A B C D -中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点,且1A F 与平面1D AE 的垂线垂直,则下列说法不正确的是()A .1A F 与1D E 不可能平行B .1A F 与BE 是异面直线C .点F 的轨迹是一条线段D .三棱锥1F ABD -的体积为定值 【答案】A 【分析】设平面1D AE 与直线BC 交于G ,连接AG ,EG ,则G 为BC 的中点,分别取1B B ,11B C 的中点M ,N ,连接1A M ,MN ,1A N ,证明平面1//A MN 平面1D AE ,即可分析选项ABC 的正误;再由//MN EG ,得点F 到平面1D AE 的距离为定值,可得三棱锥1F ABD -的体积为定值判断D . 【详解】解:设平面1D AE 与直线BC 交于G ,连接AG ,EG , 则G 为BC 的中点,分别取1B B ,11B C 的中点M ,N , 连接1A M ,MN ,1A N ,如图,∵11//A M D E ,1A M Ë平面1D AE ,1D E ⊂平面1D AE , ∴1//A M 平面1D AE ,同理可得//MN 平面1D AE ,又1A M 、MN 是平面1A MN 内的两条相交直线,∴平面1//A MN 平面1D AE ,而1//A F 平面1D AE ,∴1A F ⊂平面1A MN , 得点F 的轨迹为一条线段,故C 正确;并由此可知,当F 与M 重合时,1A F 与1D E 平行,故A 错误;∵平面1//A MN 平面1D AE ,BE 和平面1D AE 相交,∴1A F 与BE 是异面直线,故B 正确; ∵//MN EG ,则点F 到平面1D AE 的距离为定值,∴三棱锥1F ABD -的体积为定值,故D 正确. 故选:A .【题型三】由动点保持等距(或者定距)求轨迹【典例分析】已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为底面ABCD 内一点,若P 到棱CD ,A 1D 1距离相等的点,则点P 的轨迹是()A .直线B .椭圆C .抛物线D .双曲线【答案】D【分析】以D 为坐标原点建立空间直角坐标系D xyz -,求出点P 的轨迹方程即可判断.【详解】如图示,过P 作PE ⊥AB 与E ,过P 作PF ⊥AD 于F ,过F 作FG ∥AA 1交A 1D 1于G ,连结PG ,由题意可知PE=PG以D 为坐标原点建立空间直角坐标系D xyz -,设(),,0P x y ,由PE=PG 得:1x -=()2211x y --=即点P 的轨迹是双曲线.故选:D.【变式演练】1.如图,在四棱锥P ABCD -中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为正方形ABCD 内(包括边界)的一个动点,且满足MP MC =.则点M 在正方形ABCD 内的轨迹为()A .B .C .D .【答案】A 【分析】如图,以D 为坐标原点,建立空间直角坐标系,设(),,0M x y ,正方形ABCD 的边长为a ,求出MC ,MP 的坐标,利用MP MC =可得x 与y 的关系,即可求解.【详解】如图,以D 为坐标原点,DA ,DC 所在的直线分别为x ,y 轴建立如图所示的空间直角坐标系,设正方形ABCD 的边长为a ,(),,0M x y ,则0x a ≤≤,0y a ≤≤,2a P ⎛ ⎝⎭,()0,,0C a ,则2MC x =2a MP ⎛= MP MC =,得2x y =,所以点M 在正方形ABCD 内的轨迹为一条线段()102y x x a =≤≤, 故选:A .2.如图,在棱长为4的正方体ABCD A B C D ''''-中,E 、F 分别是AD 、A D ''的中点,长为2的线段MN 的一个端点M 在线段EF 上运动,另一个端点N 在底面A B C D ''''上运动,则线段MN 的中点P 的轨迹(曲面)与正方体(各个面)所围成的几何体的体积为()A .43π B .23π C .6πD .3π 【答案】D 【分析】连接PF 、NF ,分析得出1FP =,可知点P 的轨迹是以点F 为球心,半径长为1的球面,作出图形,结合球体的体积公式可求得结果. 【详解】连接PF 、NF ,因为//AD A D '',AD A D ''=,且E 、F 分别为AD 、A D ''的中点, 故//AE A F '且AE A F '=,所以,四边形AA FE '为平行四边形,故//EF AA '且4EF AA ='=,AA '⊥平面A B C D '''',则EF ⊥平面A B C D '''', 因为FN ⊂平面A B C D '''',所以,EF FN ⊥,P 为MN 的中点,故112FP MN ==, 所以,点P 的轨迹是以点F 为球心,半径长为1的球面,如下图所示:所以,线段MN 的中点P 的轨迹(曲面)与正方体(各个面)所围成的几何体为球F 的14, 故所求几何体的体积为3141433V ππ=⨯⨯=.故选:D.3.四棱锥P ﹣OABC 中,底面OABC 是正方形,OP ⊥OA ,OA =OP =a .D 是棱OP 上的一动点,E 是正方形OABC 内一动点,DE 的中点为Q ,当DE =a 时,Q 的轨迹是球面的一部分,其表面积为3π,则a 的值是()A .B .C .D .6【答案】B 【分析】由题意结合选项可特殊化处理,即取OP 与底面垂直,求得Q 的轨迹,结合球的表面积求解.【详解】解:不妨令OP ⊥OC ,则OP ⊥底面OABC , 如图,∵D 是OP 上的动点,∴OD ⊥底面OABC ,可得OD ⊥OE ,又Q 为DE 的中点,∴OQ 1122DE a ==,即Q 的轨迹是以O 为球心,以12a 为半径的18球面,其表面积为S 214384a ππ=⨯⨯=,得a =故选:B .【题型四】由动点保持等角(或定角)求轨迹【典例分析】正方体1111ABCD A B C D -中,M ,N 分别为AB ,11A B 的中点,P 是边11C D 上的一个点(包括端点),Q 是平面1PMB 上一动点,满足直线MN 与直线AN 夹角与直线MN 与直线NQ 的夹角相等,则点Q 所在轨迹为()A .椭圆B .双曲线C .抛物线D .抛物线或双曲线【答案】D 【分析】根据题设分析可知:Q 点轨迹为以AN 为母线,MN 为轴,AB 为底面直径的圆锥体,及其关于11A B 反向对称的锥体与平面1PMB 的交线,应用数形结合,结合平面与双锥面相交所成曲线的性质判断Q所在轨迹的形状. 【详解】由题设,Q 点轨迹为以AN 为母线,MN 为轴,AB 为底面直径的圆锥体,及其关于11A B 反向对称的锥体与平面1PMB 的交线,如下图示:当P 是边11C D 上移动过程中,只与下方锥体有相交,Q 点轨迹为抛物线; 当P 是边11C D 上移动过程中,与上方锥体也有相交,Q 点轨迹为双曲线;故选:D【变式演练】1.如图,斜线段AB 与平面α所成的角为60︒,B 为斜足,平面α上的动点P 满足30PAB ∠=︒,则点P 的轨迹是()A .直线B .抛物线C .椭圆D .双曲线的一支【答案】C 【分析】由题可知点P 在以AB 为轴的圆锥的侧面上,再结合条件可知P 的轨迹符合圆锥曲线中椭圆定义,即得. 【详解】用垂直于圆锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线.此题中平面α上的动点P 满足30PAB ∠=︒,可理解为P 在以AB 为轴的圆锥的侧面上, 再由斜线段AB 与平面α所成的角为60︒,可知P 的轨迹符合圆锥曲线中椭圆定义. 故可知动点P 的轨迹是椭圆. 故选:C.2.如图所示,1111ABCD A B C D -为长方体,且AB =BC =2,1AA =4,点P 为平面1111A B C D 上一动点,若11PBC BC C ∠=∠,则P 点的轨迹为()A .抛物线B .椭圆C .双曲线D .圆【答案】B【分析】建立空间直角坐标系,利用空间向量的坐标运算和轨迹方程思想求得P 的轨迹方程,进而根据方程判定轨迹类型. 【详解】如图,建立直角坐标系,则()()10,0,4,0,2,0B C,1BC ==设(),,0P x y ,则向量(),,4BP x y =-,向量()10,2,4BC =-,111211cos ||CC BP BC PBC BC BP BC x ∠=====,∴()()2228416y x y +=++,即2243160x y y +-=,228644333x y ⎛⎫+-= ⎪⎝⎭,22831166439y x ⎛⎫- ⎪⎝⎭+=,这方程表示的轨迹是平面1111A B C D 上的椭圆,故选:B.3.在长方体1111ABCD A B C D -中,6AB AD ==,12AA =,M 为棱BC 的中点,动点P 满足APD CPM ∠=∠,则点P 的轨迹与长方体的侧面11DCC D 的交线长等于___________.【答案】23π【分析】由题意画出图形,由角的关系得到边的关系,然后再在平面11DCC D 内建系,求出P 的轨迹方程,确定点P 的轨迹与长方体的面11DCC D 的交线,进而求得交线长. 【详解】如下图所示:当P 在面11DCC D 内时,AD ⊥面11DCC D ,CM ⊥面11DCC D ; 又APD MPC ∠=∠,在Rt PDA 与Rt PCM 中,∵6AD =,则3MC =,∴tan tan AD MCAPD MPC PD PC∠==∠=,则63PD PC=,即2PD PC =. 在平面11DCC D 中,以DC 所在直线为x 轴,以DC 的垂直平分线为y 轴建立平面直角坐标系,则()3,0D -,()3,0C ,设(),P x y ,由2PD PC =整理得:221090x x y -++=,即()22516x y -+=.∴点P 的轨迹是以F (5,0)为圆心,半径为4的圆.设圆F 与面11DCC D 的交点为E 、M ,作EK 垂直x 轴于点K ,如图,则21sin 42EK EFK EF ∠===;∴6EFK π∠=;故点P 的轨迹与长方体的面11DCC D 的交线为劣弧ME ,所以劣弧ME 的长为2463ππ⨯=.故答案为:【题型五】投影求轨迹【典例分析】1822年,比利时数学家Dandelin 利用圆锥曲线的两个内切球,证明了用一个平面去截圆锥,可以得到椭圆(其中两球与截面的切点即为椭圆的焦点),实现了椭圆截线定义与轨迹定义的统一性.在生活中,有一个常见的现象:用手电筒斜照地面上的篮球,留下的影子会形成椭圆.这是由于光线形成的圆锥被地面所截产生了椭圆的截面.如图,在地面的某个占1A 正上方有一个点光源,将小球放置在地面,使得1AA 与小球相切.若15A A =,小球半径为2,则小球在地面的影子形成的椭圆的离心率为()A .23B .45 C .13D .25【答案】A 【分析】设21A F x =,从而可得15AA =,122A A x =+,23AA x =+,利用勾股定理可得10x =,再由离心率的定义即可求解. 【详解】在21Rt AA A 中,设21A F x =,2DA x ∴=15AA =,122A A x =+,23AA x =+,2225(2)(3)x x ∴++=+,10x ∴=, ∴长轴长12212A A a ==,6a =,624c =-=则离心率23c e a ==.故选:A【变式演练】1.如图,已知水平地面上有一半径为3的球,球心为O ',在平行光线的照射下,其投影的边缘轨迹为椭圆C .如图,椭圆中心为O ,球与地面的接触点为E ,4OE =.若光线与地面所成角为θ,椭圆的离心率e =__________.【答案】45【分析】根据平行投影计算出椭圆C 的短半轴长b ,再求出光线与水平面所成锐角的正弦,进而求得椭圆C 的长轴长2a 而得解. 【详解】连接OO ',则O OE θ'∠=,因为34,O E OE '==,如图:所以5OO '=,所以3sin 5O E OO θ'==' 在照射过程中,椭圆的短半轴长b 是球的半径R ,即3b =,过球心与椭圆长轴所在直线确定的平面截球面所得大圆及对应光线,如图:椭圆的长轴长2a 是AC ,过A 向BC 做垂线,垂足是B ,则,AB O O O E AC ''⊥⊥,由题意得:326sin sin 5AB R ACB θ==∠==,,又sin ABACB AC∠=, 则35AB AC =,10AC =,即2105a a ==,,所以椭圆的离心率为45c e a ====.故答案为:45【题型六】翻折与动点求轨迹(难点)【典例分析】如图,将四边形ABCD 中,ADC 沿着AC 翻折到1AD C ,则翻折过程中线段DB 中点M 的轨迹是()A .椭圆的一段B .抛物线的一段C .双曲线的一段D .一段圆弧【答案】D 【分析】过点D 作AC 的垂线,垂足为F ,过点点B 作AC 的垂线,垂足为E ,连接,DE BF ,再分别分析翻折前、后的变化量与不变量,在翻折后的图形中取BE 中点O ,进而可得答案. 【详解】解:在四边形ABCD 中,过点D 作AC 的垂线,垂足为F ,过点点B 作AC 的垂线,垂足为E ,连接,DE BF ,如图1,所以当四边形ABCD 确定时,DEF 和BEF 三边长度均为定值,当ADC 沿着AC 翻折到1AD C ,形成如图2的几何体,并取BE 中点O ,连接OM , 由于在翻折过程中,1DE D E =,所以由中位线定理可得112OM D E =为定值, 所以线段DB 中点M 的轨迹是以BE 中点O 为圆心的圆弧上的部分.故选:D【变式演练】1.已知△ABC 的边长都为2,在边AB 上任取一点D ,沿CD 将△BCD 折起,使平面BCD ⊥平面AC D .在平面BCD 内过点B 作BP ⊥平面ACD ,垂足为P ,那么随着点D 的变化,点P 的轨迹长度为() A .6π B .3π C .23π D .π【答案】C 【分析】根据题意,先确定点P 轨迹的形状,进而求出轨迹的长度即可. 【详解】由题意,在平面BCD 内作BQ ⊥CD ,交CD 于Q ,因为平面BCD ⊥平面ACD ,平面BCD 与平面ACD 交于CD ,所以BQ ⊥平面ACD ,又BP ⊥平面ACD ,所以P ,Q 两点重合,于是随着点D 的变化,BP ⊥CD 始终成立,可得在平面ABC 中,BP ⊥CP 始终成立,即得点P 的轨迹是以BC 为直径的圆的一部分,由题意知随着点D 的变化,∠BCD 的范围为0,3π⎡⎤⎢⎥⎣⎦,可得点P 的轨迹是以BC 为直径(半径为1)的圆的13,即得点P 的轨迹长度为2122133ππ⨯⨯=.故选:C.2.如图,等腰梯形ABCD 中,//AB CD ,2AB =,1AD BC ==,AB CD >,沿着AC 把ACD △折起至1ACD △,使1D 在平面ABC 上的射影恰好落在AB 上.当边长CD 变化时,点1D 的轨迹长度为()A .2πB .3π C .4π D .6π【答案】B 【分析】根据1D 的射影在边AB 上,且1AD 固定长度为1,所以1D 的轨迹在以A 为原点半径为1的圆上,因此考虑CD 的长度缩短到0时和CD 变长到AB 的长度两种情况,从而求出夹角大小,进而求出弧长. 【详解】因为1D 的射影在边AB 上,且1AD 固定长度为1,所以1D 的轨迹在以A 为原点半径为1的圆上.考虑极端情况:当CD 的长度缩短到0时,1,,C D D 都汇聚到线段AB 的中点(D 2);当CD 变长到AB 的长度时(1D 的射影为D 3),如图,设3AD t =,则32BD t =-,在13D D ARt中,22131D D t =-,同理:()22312CD t =+-,()22221313412D D CD CD t ⎡⎤=-=-+-⎣⎦∴()22141212t t t ⎡⎤-+-=-⇒=⎣⎦,即1D 在线段AB 上的投影与点A 的距离为12,从而1AD 与AB 夹角为3π,故点1D 的轨迹为1=33ππ⨯.故选:B.3.已知矩形ABCD 中,1AB =,AE =如图,将ABE △沿着BE 进行翻折,使得点A 与点S 重合,若点S 在平面BCDE 上的射影在四边形BCDE 内部(包含边界),则动点S 的轨迹长度是()A B C D【分析】过点A 作AM BE ⊥于点M ,交BC 于点G ,则点S 在平面BCDE 上的射影N 落在线段MG 上.由翻折过程可知,SM AM =S 的轨迹是以点M角,利用弧长公式求出弧长. 【详解】如图(1),过点A 作AM BE ⊥于点M ,交BC 于点G ,则点S 在平面BCDE 上的射影N 落在线段MG 上.在Rt ABE △中,1AB =,AEBE =AM ==翻折的过程中,动点S满足SM S 的轨迹是以点M.易得BM =,EM =,AME GMB ∽△△,所以12MG MB MA ME ==,则MG SM =<,如图(2),在圆M 中,0S M AG ⊥,1S G AG ⊥,所以点S 的轨迹是01S S ,且111co s 2MG S MG MS ∠==,则1π3SM G ∠=,10π6S MS ∠=,从而点S的轨迹长度为π6=【课后练习】1.(多选题)(海南省海口市北京师范大学海口附属学校12月月考)如图,已知正方体1111ABCD A B C D -的棱长为112,,M DD 的中点,N 为正方形ABCD 所在平面内一动点,则下列结论正确的是( )A .若N 到直线1BB 与直线DC 的距离相等,则N 的轨迹为抛物线 B .若2MN =,则MN 的中点的轨迹所围成图形的面积为π C .若1D N 与AB 所成的角为60,则N 的轨迹为双曲线 D .若MN 与平面ABCD 所成的角为60,则N 的轨迹为椭圆 【答案】ABC 【分析】A :由1BB ⊥平面ABCD ,可得NB 即为N 到直线1BB 的距离,由抛物线的定义即可判断;B :由题意可得MN 中点的轨迹为以MD ABCD 的圆,计算可判断;C :建立空间直角坐标系,设(N x ,y ,0),由1D N 与AB 所成的角为60°,可得点N 的轨迹方程,从而可判断;D :由MN 与平面ABCD 所成的角为MND ∠,计算可得DN 为定值,可判断点N 的轨迹为以D 为圆心,DN 为半径的圆,从而可判断. 【详解】对于A ,1BB ⊥平面ABCD ,NB 即为N 到直线1BB 的距离, 在平面ABCD 内,点N 到定点B 的距离与到定直线DC 的距离相等, ∴点N 的轨迹就是以B 为焦点,DC 为准线的抛物线,故A 正确; 对于B ,1BB ⊥平面ABCD ,NB 即为N 到直线1BB 的距离, 在平面ABCD 内,点N 到定点B 的距离与到定直线DC 的距离相等, ∴点N 的轨迹就是以B 为焦点,DC 为准线的抛物线,故B 正确; 对于C ,如图,建立空间直角坐标系,(0D ,0,0),1(0D ,0,2),(2A ,0,0),(2B ,2,0),设(N x ,y ,0),则1(D N x =,y ,2)-,(0AB =,2,0),111cos602D N AB D N ABx ⋅︒===⨯, 化简得2234y x -=,即2214134y x -=,∴N 的轨迹为双曲线,故C 正确;对于D ,MN 与平面ABCD 所成的角为MND ∠,∴60MND ∠=︒, 则DN =∴点N 的轨迹为以D D 错误. 故选:ABC ﹒2.(广东省六校高三上学期第三次联考数学试题)(多选题)如图的正方体1111ABCD A B C D -中,棱长为2,点E 是棱1DD 的中点,点F 在正方体表面上运动.以下命题正确的有()A .侧面11CDD C 上不存在点F ,使得11B F CD ⊥B .点D 到面1A BE 的距离与点1C 到面1A BE 的距离之比为13C .若点F 满足1//B F 平面1A BE ,则动点F 的轨迹长度为D .若点F 到点A F 的轨迹长度为 【答案】BD 【分析】先找到点F 满足1//B F 平面1A BE 的轨迹,可判断选项AC ,将平面1A BE 补全,利用比例判断选项B ,找到满足点F 到点A D 【详解】取11C D 中点M ,1C C 中点N ,连接1B M ,1B N ,MN ,易证11//B N A E ,又1B N ⊄平面1A BE ,1A E ⊂平面1A BE ,所以1//B N 平面1A BE , 又1//MN A B ,同理得到//MN 平面1A BE , 所以平面1//B MN 平面1A BE ,所以若点F 满足1//B F 平面1A BE ,则点F 在1B MN △的三边上运动,11MN B M B N ==F 的轨迹长度为C 错误;当点F 在侧面11CDD C 上运动时,点F 的运动轨迹为线段MN ,当F 运动到MN 中点时,因为△1B MN 是等腰三角形,所以1B F MN ⊥,又因为1//MN CD ,所以11B F CD ⊥,故A 错误;取CD 中点G ,连接BG ,EG ,易证1//A B EG ,则1,,,A B E G 共面,令1C D EG H ⋂=,则易得113DH C H =, 所以点D 到面1A BE 的距离与点1C 到面1A BE 的距离之比为13,故B 正确;F 到点A 则动点F 的轨迹在正方形11B BCC 和正方形11CC D D 及正方形1111D C B A 上,若在正方形11B BCC 上,则满足2222BF BA BF +=⇒=,所以在正方形11B BCC 上,动点F 的轨迹为以B ,同理点F 在正方形1111D C B A 及正方形11CC D D 面上运动时,轨迹分别为以1,A D的四分之一圆弧,所以动点F 3⨯=,所以D 正确; 故选:BD3.(多选题)(全国著名重点中学领航高考冲刺试卷(六))如图,在正方体1111ABCD A B C D -中,E为1AA 的中点,点F 在线段1AD 上运动,G 为底面ABCD 内一动点,则下列说法正确的是()A .11C F CB ⊥B .若1//FG CD ,则点G 在线段AC 上C .当点F 从A 向1D 运动时,三棱锥1D BFC -的体积由小变大D .若1GD ,GE 与底面ABCD 所成角相等,则动点G 的轨迹为圆的一部分 【答案】ABD 【分析】结合线面垂直的知识来判断A 选项的正确性.结合平面的知识来判断B 选项的正确性.结合锥体体积的求法来确定C 选项的正确性.结合阿波罗尼斯圆的知识来判断D 选项的正确性. 【详解】连接1A D ,∵1C F 在平面11ADD A 内的射影为1D F ,11CB A D ∥,且11A D D F ⊥,则1A D ⊥平面11C D F ,11A D C F ⊥,∴11C F CB ⊥,故A 正确;∵1FG CD ∥,∴FG 与1CD 确定唯一的平面α,而平面1ACD 与α有F ,1D ,C 三个不在一条直线上的公共点,∴平面1ACD 与α重合,又G 为底面ABCD 内一动点,则点G 必在平面1ACD 与平面ABCD 的交线AC 上,故B 正确;∵11AD BC ∥,1AD ⊄平面1DBC ,1BC ⊂平面1DBC ,∴1AD ∥平面1DBC ,故当点F 在1AD 上运动时,点F 到平面1DBC 的距离不变,于是三棱锥1F BDC -的体积不变,即三棱锥1D BFC -的体积不变,故C 错误;连接GD ,GA ,当1GD ,GE 与底面ABCD 所成角相等时,易得2GD GA =,∵AD 为定值,由阿波罗尼斯圆易知点G 的轨迹为圆的一部分,故D 正确. 阿波罗尼斯圆:已知平面上两点A ,B ,则所有满足PAk PB=(0k >且1k ≠)的点P 的轨迹是一个以定比m :n 内分和外分定线段AB 的两个分点的连线为直径的圆,此圆称为阿波罗尼斯圆. 故选:ABD4.(吉林省梅河口市第五中学第一次月考)在棱长为1的正方体1111ABCD A B C D -中,M ,N 分别为1AA ,1CC 的中点,O 为底面ABCD 的中心,点P 在正方体的表面上运动,且满足NP MO ⊥,则下列说法正确的是()A .点P 可以是棱1BB 的中点B .线段NPC .点P 的轨迹是平行四边形D .点P 轨迹的长度为1【答案】B 【分析】在正方体1111ABCD A B C D -中,以点D 为坐标原点,分别以DA 、DC 、1DD 方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,根据NP MO ⊥,确定点P 的轨迹,在逐项判断,即可得出结果. 【详解】在正方体1111ABCD A B C D -中,以点D 为坐标原点,分别以DA 、DC 、1DD 方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,因为该正方体的棱长为1,,M N 分别为1AA ,1CC 的中点,则()0,0,0D ,11,0,2M ⎛⎫ ⎪⎝⎭,10,1,2N ⎛⎫ ⎪⎝⎭,11,,022O ⎛⎫ ⎪⎝⎭,所以111,,222OM ⎛⎫=- ⎪⎝⎭,设(),,P x y z ,则1,1,2NP x y z ⎛⎫=-- ⎪⎝⎭,因为NP MO ⊥,所以0NP OM ⋅=所以()1111102222x y z ⎛⎫--+-= ⎪⎝⎭,即2221x y z -+=-,令0z =,当12x =时,1y =;当0x =时,12y =; 取1,1,02E ⎛⎫ ⎪⎝⎭,10,,02F ⎛⎫⎪⎝⎭,连接EF ,FN ,NE ,则11,,022EF ⎛⎫=-- ⎪⎝⎭,11,0,22EN ⎛⎫=- ⎪⎝⎭,则111110022222EF OM ⎛⎫⎛⎫⋅=-⨯+-⨯-+⨯= ⎪ ⎪⎝⎭⎝⎭,111110022222EN OM ⎛⎫⋅=-⨯+⨯-+⨯= ⎪⎝⎭,所以EF OM ⊥,EN OM ⊥,又EF EN E ⋂=,且EF ⊂平面EFN ,EN ⊂平面EFN , 所以OM ⊥平面EFN ,所以,为使NP OM ⊥,必有点P ∈平面EFN ,又点P 在正方体的表面上运动, 所以点P 的轨迹为正三角形EFN ,故C 错误;因此点P 不可能是棱1BB 的中点,故A 错误;线段NP 的最大值为NF =B 正确;点P =D 错误; 故选:B5.(广东省深圳市平冈高级中学高三上学期9月第一次月考)如图所示,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点,F 是侧面CDD 1C 1上的动点,且B 1F ∥平面A 1BE ,则F 在侧面CDD 1C 1上的轨迹的长度是()A .aB .2aC D【答案】D 【分析】过1B 做与平面1A BE 平行的平面,该平面与侧面11CDD C 的交线,即为满足条件的轨迹,求解即可. 【详解】设G ,H ,I 分别为CD ,CC 1,C 1D 1边上的中点, 连接B 1I ,B 1H ,IH ,CD 1,EG ,BG ,则1A B ∥1CD ∥GE , 所以A 1,B ,E ,G 四点共面,由1B H ∥11,A E A E ⊄平面B 1HI ,1B H ⊂平面B 1HI , 所以A 1E ∥平面B 1HI ,同理A 1B ∥平面B 1HI , 111A BA E A =,所以平面A 1BGE ∥平面B 1HI ,又因为B 1F ∥平面A 1BE ,所以F 落在线段HI 上,因为正方体ABCD -A 1B 1C 1D 1的棱长为a ,所以112HI CD ==,即F 在侧面CDD 1C 1.故选:D. 6.(湖南省永州市高三上学期第一次适应性考试)已知在三棱锥S ABC -中,D 为线段AB 的中点,点E 在SBC △(含边界位置)内,则满足//DE 平面SAC 的点E 的轨迹为() A .线段SB ,BC 的中点连接而成的线段B .线段SB 的中点与线段BC 靠近点B 的三等分点连接而成的线段 C .线段BC 的中点与线段SB 靠近点B 的三等分点连接而成的线段D .线段BC 靠近点B 的三等分点与线段SB 靠近点B 的三等分点连接而成的线段 【答案】A【分析】利用面面平行得到线面平行,即可. 【详解】解:如图所示,P 、Q 分别为线段SB ,BC 的中点, 所以//PQ SC ,//,DQ AC PQ ⊄平面SAC ,AC ⊂平面SAC ,所以//PQ 平面SAC ,同理//DQ 平面SAC ,PQ DQ Q =,所以平面//PDQ 平面SAC ,若DE ⊆平面PDQ ,则会有//DE 平面SAC , 故点E 的轨迹为线段SB ,BC 的中点连接而成的线段, 故选A.7.(辽宁省实验中学上学期联考)已知正六棱柱111111ABCDEF A B C D E F -点P 在棱1AA上运动,点Q 在底面ABCDEF 内运动,PQ =R 为PQ 的中点,则动点R 的轨迹与正六棱柱的侧面和底面围成的较小部分的体积为()A B C D 【答案】B【分析】根据题意,可判断出动点R 的轨迹为球,结合球的体积公式,即可求解. 【详解】由直角三角形的性质得AR ,所以点R 在以A 因为23BAF π∠=,所以动点R 的轨迹与正六棱柱的侧面和底面围成的较小部分16球,其体积为31463π⨯=⎝⎭.故选:B.8.四棱锥P OABC -中,底面OABC 是正方形,OP OA ⊥,OA OP a ==.D 是棱OP 上的一动点,E是正方形OABC 内一动点,DE 的中点为Q ,当DE a =时,Q 的轨迹是球面的一部分,其表面积为3π,则a 的值是()A .B .C .D .6【答案】B【分析】 首先假设OP OC ⊥,将四棱锥P OABC -放在正方体中,然后根据直角三角形斜边中线等于斜边的一半求得12OQ a =,得到点Q 的轨迹,最后根据题意列出方程求出a 的值 . 【详解】由题意不妨设OP OC ⊥,又OP OA ⊥,底面OABC 是正方形,所以可将四棱锥P OABC -放在一个正方体内,所以DO ⊥面OABC ,又OE ⊂面OABC ,则DO OE ⊥,又DE 的中点为Q , 所以1122OQ DE a ==,即Q 的轨迹是以O 为球心,12OQ a =为半径的球,且点Q 恒在正方体内部, 又因为8个一样的正方体放在一起,点Q 的轨迹就可以围成一个完整的球,所以Q 的轨迹是以O 为球心,12OQ a =为半径的球的18球面,所以2114382a ππ⎛⎫⨯= ⎪⎝⎭,解得a = 故选:B9.棱长为a 的正方体1111ABCD A B C D -中,点P 在平面..1111D C B A 内运动,点1B 到直线DP 的距离为定值,若动点P 的轨迹为椭圆,则此定值可能..为()A B C D 【答案】A【分析】设1B DP α∠=,分析出点P 在以1DB 为轴的圆锥的侧面上,计算出d <,并分析出45a ¹o ,可得出d ≠,由此可得出合适的选项. 【详解】如下图所示:因为点1B 到直线DP 的距离为定值,所以,点P 在以1DB 为轴的圆锥的侧面上,因为点P 的轨迹为椭圆,即圆锥被平面1111D C B A 所截的截面为椭圆,设圆锥轴截面的半顶角为α,则点1B 到直线DP 的距离为1sin sin d B D αα==<, 当截面与圆锥的母线平行时,即45α=时,截面为抛物线,不合乎题意,所以,6sin 452d ≠=. 综合选择,可知A 选项合乎题意.故选:A.10.(上海市建平中学期中)已知菱形ABCD 边长为2,60ABC ∠=︒,沿对角线AC 折叠成三棱锥B ACD '-,使得二面角B AC D '--为60°,设E 为B C '的中点,F 为三棱锥B ACD '-表面上动点,且总满足AC EF ⊥,则点F 轨迹的长度为()A .B .CD 【答案】D【分析】。

届数学统考第二轮专题复习第12讲立体几何学案理含解析

届数学统考第二轮专题复习第12讲立体几何学案理含解析

第12讲立体几何高考年份全国卷Ⅰ全国卷Ⅱ全国卷Ⅲ2020证明线面垂直,求二面角的余弦值·T18证明线面平行、面面垂直,求线面角的正弦值·T20点面的位置关系,求二面角的正弦值·T192019证明线面平行,求二面角的正弦值·T18证明线面垂直,求二面角的正弦值·T17翻折问题,证明四点共面、面面垂直,求二面角的大小·T192018翻折问题,证明面面垂直,求线面角的正弦值·T18证明线面垂直,给出二面角求线面角的正弦值·T20证明面面垂直,求二面角的正弦值·T191。

[2020·全国卷Ⅱ]如图M4—12-1,已知三棱柱ABC—A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.图M4—12-12.[2020·全国卷Ⅰ]如图M4—12-2,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE=AD.△ABC是底面的内接正三DO.角形,P为DO上一点,PO=√66(1)证明:PA⊥平面PBC;(2)求二面角B-PC-E的余弦值。

图M4—12-23.[2019·全国卷Ⅲ]如图M4—12—3,图①是由矩形ADEB,Rt △ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图②。

(1)证明:图②中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图②中的二面角B—CG-A的大小.①②图M4-12—3平行、垂直关系的证明1如图M4—12-4,在四棱锥P—ABCD中,四边形ABCD为平行四边形,E为侧棱PD的中点,O为AC与BD的交点。

立体几何复习专题及答案-高中数学

立体几何复习专题及答案-高中数学

立体几何复习专题姓名: 班级:考点一、空间中的平行关系1.如图,在三棱锥P ABC -中,02,3,90PA PB AB BC ABC ====∠=,平面PAB ⊥平面ABC ,D 、E 分别为AB 、AC 的中点. (1)求证:DE //平面PBC ; (2)求证:AB PE ⊥;(3)求三棱锥B PEC -的体积.2. 如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =,(Ⅰ)设G H ,分别为PB AC ,的中点,求证:GH ∥平面PAD ; (Ⅱ)求证:PA ⊥平面PCD ;3.如图,七面体ABCDEF 的底面是凸四边形ABCD ,其中2AB AD ==,120BAD ∠=︒,AC ,BD 垂直相交于点O ,2OC OA =,棱AE ,CF 均垂直于底面ABCD .(1)证明:直线DE 与平面BCF 不.平行;4.(2014新课标Ⅱ)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D AE C --为60°,AP =1,AD =3,求三棱锥E ACD -的体积.考点二、空间中的垂直关系5.如图,在四面体ABCD 中,E ,F 分别是线段AD ,BD 的中点,90ABD BCD ∠=∠=,2EC =,2AB BD ==,直线EC 与平面ABC 所成的角等于30.(1)证明:平面EFC ⊥平面BCD ;6.已知某几何体的直观图和三视图如下图所示,其中正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(1)求证:BN ⊥平面11C B N ;(2)设M 为AB 中点,在C B 边上求一点P ,使//MP 平面1C NB ,求CBPP 的值.7.(2016全国I )如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF为正方形,2AF FD =,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60.(I )证明:平面ABEF⊥平面EFDC ;(II )求二面角E BC A --的余弦值.考点三、折叠问题和探究性问题中的位置关系8.如图 1,在直角梯形ABCD 中, //,AB CD AB AD ⊥,且112AB AD CD ===.现以AD 为一边向外作正方形ADEF ,然后沿边AD 将正方形ADEF 翻折,使ADEF 平面与平面ABCD 垂直, M 为ED 的中点,如图 2.(1)求证: //AM 平面BEC ;(2)求证: BC ⊥平面BDE ; .9.如图,在边长为4的正方形ABCD 中,点E,F 分别是AB,BC 的中点,点M 在AD 上,且14AM AD =,将AED,DCF 分别沿DE,DF 折叠,使A,C 点重合于点P ,如图所示2.()1试判断PB 与平面MEF的位置关系,并给出证明;()2求二面角M EF D --的余弦值.10.如图所示,直角梯形ABCD 中,//AD BC ,AD AB ⊥,22AB BC AD ===,四边形EDCF 为矩形,3CF =,平面EDCF ⊥平面ABCD . (1)求证:DF //平面ABE ;(2)求平面ABE 与平面EFB 所成锐二面角的余弦值. (3)在线段DF 上是否存在点P ,使得直线BP 与平面ABE 所成角的正弦值为34,若存在,求出线段BP 的长,若不存在,请说明理由.11.如图1,在边长为4的正方形ABCD中,E是AD的中点,F是CD的中点,现-.将三角形DEF沿EF翻折成如图2所示的五棱锥P ABCFE(1)求证:AC//平面PEF;(2)若平面PEF⊥平面ABCFE,求直线PB与平面PAE所成角的正弦值.12.(2011•浙江)如图,在三棱锥P﹣ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2(1)证明:AP⊥BC;(2)在线段AP上是否存在点M,使得二面角A﹣MC﹣β为直二面角?若存在,求出AM的长;若不存在,请说明理由.13.如图,在直三棱柱111ABC A B C -中,底面ABC 为等边三角形,122CC AC ==.(Ⅰ)求三棱锥11C CB A -的体积;(Ⅱ)在线段1BB 上寻找一点F ,使得1CF AC ⊥,请说明作法和理由.考点四、知空间角求空间角问题14.(2014天津)如图四棱锥P ABCD -的底面ABCD 是平行四边形,2BA BD ==2AD =,5PA PD ==E ,F 分别是棱AD ,PC 的中点.(Ⅰ)证明: EF ∥平面PAB ; (Ⅱ)若二面角P AD B --为60°, (ⅰ)证明:平面PBC ⊥平面ABCD(ⅱ)求直线EF 与平面PBC 所成角的正弦值. PCDBF15.四棱锥P ABCD -中,底面ABCD 为矩形,PA ABCD ⊥平面,E 为PD 的中点.(1)证明://E PB A C 平面;(2)设13AP AD ==,,三棱锥P ABD -的体积34V =,求二面角D -AE -C 的大小16.如图,四棱锥P ABCD -中, PA ⊥底面ABCD ,底面ABCD 是直角梯形,90ADC ∠=︒, //AD BC , AB AC ⊥, 2AB AC ==,点E 在AD 上,且2AE ED =.(Ⅰ)已知点F 在BC 上,且2=CF FB ,求证:平面PEF ⊥平面PAC ;(Ⅱ)当二面角--A PB E 的余弦值为多少时,直线PC 与平面PAB 所成的角为45︒?立体几何专题参考答案1. (1)证明:∵在△ABC 中,D 、E 分别为AB 、AC 的中点,∴DE ∥BC . ∵DE ⊄平面PBC 且BC ⊂平面PBC ,∴DE ∥平面PBC . (2)证明:连接PD .∵PA =PB ,D 为AB 的中点,∴PD ⊥AB .∵DE ∥BC ,BC ⊥AB ,∴DE ⊥AB .又∵PD 、DE 是平面PDE 内的相交直线, ∴AB ⊥平面PDE .∵PE ⊂平面PDE ,∴AB ⊥PE .(3)解:∵PD ⊥AB ,平面PAB ⊥平面ABC ,平面PAB ∩平面ABC =AB ,∴PD ⊥平面ABC ,可得PD 是三棱锥P -BEC 的高. 又∵33,2BECPD S==,1332B PEC P BEC BEC V V S PD --∆∴==⨯=. 2.(I )见解析;(II )见解析;(III )33. (I )证明:连接BD ,易知AC BD H ⋂=,BH DH =,又由BG PG =,故GHPD ,又因为GH ⊄平面PAD ,PD ⊂平面PAD , 所以GH ∥平面PAD .(II )证明:取棱PC 的中点N ,连接DN ,依题意,得DN PC ⊥, 又因为平面PAC ⊥平面PCD ,平面PAC平面PCD PC =,所以DN ⊥平面PAC ,又PA ⊂平面PAC ,故DN PA ⊥, 又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD . 3.(1)见解析;(2)23535本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

专题38 立体几何中的距离、截面、折叠问题(解析版)

专题38  立体几何中的距离、截面、折叠问题(解析版)
因为 平面 ,所以 ,所以 为二面角 的平面角.
结合图1可知, 为 中点,故 ,从而
所以 ,所以二面角 的平面角的余弦值为 .
向量法:以 点为原点,建立空间直角坐标系 如图所示,
则 , , ,所以 ,
设 为平面 的法向量,则 ,即 ,
解得 ,令 ,得 ,由(Ⅰ)知, 为平面 的一个法向量,
所以 ,即二面角 的平面角的余弦值为 .
2、平面外一点P到平面α的距离:如图,已知平面α的法向量为n,A是平面α内的定点,P是平面α外一点,过点P作平面α的垂线l,交平面α于点Q,则n是直线l的方向向量,且点P到平面α的距离PQ= = =
基本题型:
1.(多选)已知正方体ABCD-A1B1C1D1的棱长为1,点E,O分别是A1B1,A1C1的中点,点P在正方体内部且满足 = + + ,则下列说法正确的是()
【解析二】由题意可知,该平面与在正方体的截面为对边平行的六边形,如图所示,则截面面积为
所以当 时,
7.(2017新课标Ⅰ)如图,圆形纸片的圆心为 ,半径为5 cm,该纸片上的等边三角形 的中心为 . 、 、 为圆 上的点, , , 分别是以 , , 为底边的等腰三角形。沿虚线剪开后,分别以 , , 为折痕折起 , , ,使得 、 、 重合,得到三棱锥。当 的边长变化时,所得三棱锥体积(单位: )的最大值为_______。
所以 , , , .
得 , .
设平面 的法向量 ,平面 的法向量 ,
平面 与平面 夹角为 ,则 ,得 ,取 ,
,得 ,取 ,从而 ,
即平面 与平面 夹角的余弦值为 .
9.(2015浙江)如图,已知 , 是 的中点,沿直线 将 翻折成 ,所成二面角 的平面角为 ,则
10.(2012浙江)已知矩形 , , .将 沿矩形的对角线 所在的直线进行翻折,在翻折过程中,

福建省永春县第一中学高中数学立体几何多选题专题复习含解析

福建省永春县第一中学高中数学立体几何多选题专题复习含解析

福建省永春县第一中学高中数学立体几何多选题专题复习含解析一、立体几何多选题1.在棱长为1的正方体1111ABCD A B C D -中,P 为底面ABCD 内(含边界)一点.( ) A .若13A P =,则满足条件的P 点有且只有一个 B .若12A P =,则点P 的轨迹是一段圆弧 C .若1//A P 平面11B D C ,则1A P 长的最小值为2D .若12A P =且1//A P 平面11B DC ,则平面11A PC 截正方体外接球所得截面的面积为23π【答案】ABD 【分析】选项A ,B 可利用球的截面小圆的半径来判断;由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD 上,1A P 长的最大值为2;结合以上条件点P 与B 或D 重合,利用12sin 60A P r =︒,求出63r =,进而求出面积. 【详解】对A 选项,如下图:由13A P =,知点P 在以1A 为球心,半径为3的球上,又因为P 在底面ABCD 内(含边界),底面截球可得一个小圆,由1A A ⊥底面ABCD ,知点P 的轨迹是在底面上以A 为圆心的小圆圆弧,半径为22112r A P A A =-=,则只有唯一一点C满足,故A 正确;对B 选项,同理可得点P 在以A 为圆心,半径为22111r A P A A =-=的小圆圆弧上,在底面ABCD 内(含边界)中,可得点P 轨迹为四分之一圆弧BD .故B 正确;对C 选项,移动点P 可得两相交的动直线与平面11B D C 平行,则点P 必在过1A 且与平面11B D C 平行的平面内,由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD上,则1A P 长的最大值为12A B =,则C 不正确; 对选项D ,由以上推理可知,点P 既在以A 为圆心,半径为1的小圆圆弧上,又在线段BD 上,即与B 或D 重合,不妨取点B ,则平面11A PC 截正方体外接球所得截面为11A BC 的外接圆,利用2126622,,sin 60333A B r r S r ππ==∴=∴==︒.故D 正确.故选:ABD 【点睛】(1)平面截球所得截面为圆面,且满足222=R r d +(其中R 为球半径,r 为小圆半径,d 为球心到小圆距离);(2)过定点A 的动直线平行一平面α,则这些动直线都在过A 且与α平行的平面内.2.如图,在棱长为2的正方体1111ABCD A B C D -,中,E 为棱1CC 上的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F ,B ,E ,G ,H 为过三点B ,E ,F 的平面BMN 与正方体1111ABCD A B C D -的棱的交点,则下列说法正确的是( )A .//HF BEB .三棱锥的体积14B BMN V -=C .直线MN 与平面11A B BA 所成的角为45︒D .11:1:3D G GC = 【答案】ABD 【分析】面面平行性质定理可得出A 正确;等体积法求得B 正确;直线MN 与平面11A B BA 所成的角为1B MN ∠,求其正切值不等于1即可得出C 错误;利用面面平行性质定理和中位线求出11,D G GC 长度即可得出D 正确. 【详解】解:对于A.在正方体1111ABCD A B C D -中平面11//ADA D 平面11BCB C , 又平面11ADA D 平面BMN HF =,平面11BCB C ⋂平面BMN BE =,有平面与平面平行的性质定理可得//HF BE ,故正确; 对于B.因为1:1:2A F FA =,所以111332B M A B ==, 又E 为棱1CC 上的中点,所以14B N =, 所以1111234432B BMN N B BM V V --⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭,故正确; 对于C.由题意及图形可判定直线MN 与平面11A B BA 所成的角为1B MN ∠, 结合B 选项可得1114tan 13B N B MN B M ∠==≠,故错误; 对于D.同A 选项证明方法一样可证的11//GC B M ,因为E 为棱1CC 上的中点,1C 为棱1B N 上的中点,所以1113=22GC B M = 所以11G=2D ,所以11:1:3D G GC =,故正确. 故选:ABD 【点睛】求体积的常用方法:(1)直接法:对于规则的几何体,利用相关公式直接计算;(2)等体积法:选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面可作为三棱锥的底面进行等体积变换;(3)割补法:首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算.3.在长方体1111ABCD A B C D -中,AB =12AD AA ==,P 、Q 、R 分别是AB 、1BB 、1A C 上的动点,下列结论正确的是( )A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥C .当1AR A C ⊥时,1ARD R ⊥D .当113AC A R =时,1//D R 平面1BDC 【答案】ABCD 【分析】本题先建立空间直角坐标系,再运用空间向量在立体几何中的应用逐一判断即可. 【详解】如图所示,建立空间直角坐标系,设(2,,0)P a,0a ⎡∈⎣,(2,)Q b ,[]0,2b ∈,设11A R AC λ=,得到(22,,22)R λλ--,[]0,1λ∈. 1(2,,2)D P a =-,(2,0,)CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;1(22,2)D R λλ=--,12(22)2D R CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确;1AR A C ⊥,则1(2,22)(2)412440AR AC λλλλλ⋅=--⋅--=+-+=,解得:15λ=,此时12282()()05555AR D R ---⋅=⋅=,1AR D R ⊥,C 正确;113AC A R =,则44(,)333R,142(,)333D R =-,设平面1BDC 的法向量为(,,)n x y z =,则100n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得(3,n =-,故10n D R ⋅=,故1//D R 平面1BDC ,D 正确.故选:ABCD.【点睛】本题考查了空间向量在立体几何中的应用,是偏难题.4.(多选题)如图所示,正方体1111ABCD A B C D -中,1AB =,点P 在侧面11BCC B 及其边界上运动,并且总是保持1AP BD ⊥,则以下四个结论正确的是( )A .113P AA D V -=B .点P 必在线段1BC 上 C .1AP BC ⊥D .AP ∥平面11AC D【答案】BD 【分析】 对于A ,1111111113326P AA D AA DV S CD -=⋅=⨯⨯⨯⨯=, 对于B,C,D ,如图以D 为坐标原点可建立空间直角坐标系,利用空间向量判即可. 【详解】对于A ,因为点P 在平面11BCC B ,平面11BCC B ∥平面1AA D , 所以点P 到平面1AA D 即为C 到平面1AA D 的距离,即为正方体棱长, 所以1111111113326P AA D AA DV S CD -=⋅=⨯⨯⨯⨯=,A 错误; 对于B ,以D 为坐标原点可建立如下图所示的空间直角坐标系:则11(1,0,0),(,1,),(1,1,0),(0,0,1),(1,1,1),(0,1,0)A P x z B D B C 所以11(1,1,),(1,1,1),(1,0,1)AP x z BD BC =-=--=--, 因为1AP BD ⊥,所以1110AP BD x z ⋅=--+=,所以x z =,即(,1,)P x x , 所以(,0,)CP x x =,所以1CP xBC =-,即1,,B C P 三点共线, 所以点P 必在线段1B C 上,B 正确;对于C ,因为1(1,1,),(1,0,1)AP x x BC =-=-, 所以111AP BC x x ⋅=-+=, 所以1AP BC ⊥不成立,C 错误;对于D ,因为11(1,0,1),(0,1,1),(0,0,0)A C D , 所以11(1,0,1),(0,1,1)DA DC ==, 设平面11AC D 的法向量为(,,)n x y z =,则1100n DA x z n DC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩, 令1x =,则1,1z y =-=,所以(1,1,1)n =-, 所以110AP n x x ⋅=-+-=,所以AP n ⊥, 所以AP ∥平面11AC D ,D 正确, 故选:BD 【点睛】此题考查了空间线线垂直的判定,线面平行的判定,三棱锥的体积,考查空间想象能力,考查计算能力,属于较难题.5.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E ,F ,且22EF =.则下列结论正确的是( )A .三棱锥A BEF -的体积为定值B .当E 向1D 运动时,二面角A EF B --逐渐变小C .EF 在平面11ABB A 内的射影长为12D .当E 与1D 重合时,异面直线AE 与BF 所成的角为π4【答案】AC 【分析】对选项分别作图,研究计算可得. 【详解】选项A:连接BD ,由正方体性质知11BDD B 是矩形,1112212224BEF S EF BB ∆∴=⋅=⨯=连接AO 交BD 于点O由正方体性质知AO ⊥平面11BDD B ,所以,AO 是点A 到平面11BDD B 的距离,即22AO =112213312A BEF BEF V S AO -∆∴=⨯==A BEF V -∴是定值.选项B:连接11A C 与11B D 交于点M ,连接11,AD AB , 由正方体性质知11AD AB =,M 是11B D 中点,AM EF ∴⊥ ,又1BB EF ⊥,11//BB AAA EFB ∴--的大小即为AM 与1AA 所成的角,在直角三角形1AA M 中,12tan 2MAA ∠=为定值. 选项C:如图,作1111,,,FH A B EG A B ET EG ⊥⊥⊥ 在直角三角形EFT 中,221cos 452FT EF =⨯=⨯=12HG FT ∴== 选项D:当E 与1D 重合时,F 与M 重合,连接AC 与BD 交于点R ,连接1D R ,1//D R BM 异面直线AE 与BF 所成的角,即为异面直线1AD 与1D R 所成的角, 在三角形1AD R 中,22111132,2AD D R MB BB M B ===+=2AR =由余弦定理得1cos AD R ∠= 故选:AC 【点睛】本题考查空间几何体性质问题.求解思路:关键是弄清(1)点的变化,点与点的重合及点的位置变化;(2)线的变化,应注意其位置关系的变化;(3)长度、角度等几何度量的变化.求空间几何体体积的思路:若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法;若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.6.在边长为2的等边三角形ABC 中,点,D E 分别是边,AC AB 上的点,满足//DE BC 且AD ACλ=,(()01λ∈,),将ADE 沿直线DE 折到A DE '△的位置.在翻折过程中,下列结论不成立的是( )A .在边A E '上存在点F ,使得在翻折过程中,满足//BF 平面A CD 'B .存在102λ∈⎛⎫⎪⎝⎭,,使得在翻折过程中的某个位置,满足平面A BC '⊥平面BCDEC .若12λ=,当二面角A DE B '--为直二面角时,||A B '=D .在翻折过程中,四棱锥A BCDE '-体积的最大值记为()f λ,()f λ【答案】ABC 【分析】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,即可判断出结论.对于B ,102λ∈⎛⎫ ⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,即可判断出结论. 对于C ,12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,可得AM ⊥平面BCDE .可得A B '=.对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()313BCDE f S λλλ=⋅=-,()01λ∈,,利用导数研究函数的单调性即可得出.【详解】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,如图所示,则可得FN 平行且等于BG ,即四边形BGNF 为平行四边形, ∴//NG BE ,而GN 始终与平面ACD 相交,因此在边A E '上不存在点F ,使得在翻折过程中,满足//BF 平面A CD ',A 不正确.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,因此不满足平面A BC '⊥平面BCDE ,因此B 不正确. 对于C.12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,如图所示:可得AM ⊥平面BCDE , 则22223111010()1()21cos120222A B AM BM '=+=++-⨯⨯⨯︒=≠,因此C 不正确;对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅=-,()01λ∈,,()213f λλ'=-,可得3λ=()f λ取得最大值()31231339f λ⎛⎫=-=⎪⎝⎭,因此D 正确. 综上所述,不成立的为ABC. 故选:ABC. 【点睛】本题考查了利用运动的观点理解空间线面面面位置关系、四棱锥的体积计算公式、余弦定理、利用导数研究函数的单调性极值与最值,考查了推理能力空间想象能力与计算能力,属于难题.7.如图所示,在长方体1111ABCD A B C D -中,11,2,AB BC AA P ===是1A B 上的一动点,则下列选项正确的是( )A .DP 35B .DP 5C .1AP PC +6D .1AP PC +的最小值为1705【答案】AD 【分析】DP 的最小值,即求1DA B △底边1A B 上的高即可;旋转11A BC 所在平面到平面11ABB A ,1AP PC +的最小值转化为求AC '即可.【详解】求DP 的最小值,即求1DA B △底边1A B 上的高,易知115,2A B A D BD ===,所以1A B 边上的高为355h =111,AC BC ,得11A BC ,以1A B 所在直线为轴,将11A BC 所在平面旋转到平面11ABB A ,设点1C 的新位置为C ',连接AC ',则AC '即为所求的最小值,易知11122,2,cos 10AA AC AAC ''==∠=-, 所以217042222()105AC '=+-⨯⨯⨯-=.故选:AD. 【点睛】本题考查利用旋转求解线段最小值问题.求解翻折、旋转问题的关键是弄清原有的性质变化与否, (1)点的变化,点与点的重合及点的位置变化;(2)线的变化,翻折、旋转前后应注意其位置关系的变化;(3)长度、角度等几何度量的变化.8.在正方体1111ABCD A B C D -中,如图,,M N 分别是正方形ABCD ,11BCC B 的中心.则下列结论正确的是( )A .平面1D MN 与11BC 的交点是11B C 的中点 B .平面1D MN 与BC 的交点是BC 的三点分点 C .平面1D MN 与AD 的交点是AD 的三等分点 D .平面1D MN 将正方体分成两部分的体积比为1∶1 【答案】BC 【分析】取BC 的中点E ,延长DE ,1D N ,并交于点F ,连FM 并延长分别交,BC AD 于,P Q ,连1,D Q PN 并延长交11B C 与H ,平面四边形1D HPQ 为所求的截面,进而求出,,P Q H 在各边的位置,利用割补法求出多面体11QPHD C CD 的体积,即可求出结论.【详解】如图,取BC 的中点E ,延长DE ,1D N ,并交于点F , 连接FM 并延长,设FM BC P ⋂=,FM AD Q ⋂=, 连接PN 并延长交11B C 于点H .连接1D Q ,1D H ,则平面四边形1D HPQ 就是平面1D MN 与正方体的截面,如图所示.111111////,22NE CC DD NE CC DD ==,NE ∴为1DD F ∆的中位线,E ∴为DF 中点,连BF , ,,90DCE FBE BF DC AB FBE DCE ∴∆≅∆==∠=∠=︒, ,,A B F ∴三点共线,取AB 中点S ,连MS ,则12//,,23BP FB MS BP MS BC MS FS =∴==, 22111,33236BP MS BC BC PE BC ∴==⨯=∴=,E 为DF 中点,11//,233PE DQ DQ PE BC AD ∴===N 分别是正方形11BCC B 的中心,11113C H BP C B ∴==所以点P 是线段BC 靠近点B 的三等分点, 点Q 是线段AD 靠近点D 的三等分点, 点H 是线段11B C 靠近点1C 的三等分点. 做出线段BC 的另一个三等分点P ', 做出线段11A D 靠近1D 的三等分点G ,连接QP ',HP ',QG ,GH ,1H QPP Q GHD V V '--=, 所以111113QPHD C CD QPHQ DCC D V V V -==多面体长方体正方体 从而平面1D MN 将正方体分成两部分体积比为2∶1. 故选:BC.【点睛】本题考查直线与平面的交点及多面体的体积,确定出平面与正方体的交线是解题的关键,考查直观想象、逻辑推理能力,属于较难题.9.如图所示,在棱长为1的正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交棱1AA 于点E ,交棱1CC 于点F ,得四边形1BFD E ,在以下结论中,正确的是( )A .四边形1BFD E 有可能是梯形B .四边形1BFD E 在底面ABCD 内的投影一定是正方形C .四边形1BFDE 有可能垂直于平面11BB D DD .四边形1BFDE 面积的最小值为6 【答案】BCD 【分析】四边形1BFD E 有两组对边分别平行知是一个平行四边形四边形;1BFD E 在底面ABCD 内的投影是四边形ABCD ;当与两条棱上的交点是中点时,四边形1BFD E 垂直于面11BB D D ;当E ,F 分别是两条棱的中点时,四边形1BFD E 的面积最小为62.【详解】过1BD 作平面与正方体1111ABCD A B C D -的截面为四边形1BFD E , 如图所示,因为平面11//ABB A 平面11DCC D ,且平面1BFD E 平面11ABB A BE =.平面1BFD E平面1111,//DCC D D F BE D F =,因此,同理1//D E BF ,故四边形1BFD E 为平行四边形,因此A 错误;对于选项B ,四边形1BFD E 在底面ABCD 内的投影一定是正方形ABCD ,因此B 正确; 对于选项C ,当点E F 、分别为11,AA CC 的中点时,EF ⊥平面11BB D D ,又EF ⊂平面1BFD E ,则平面1BFD E ⊥平面11BB D D ,因此C 正确;对于选项D ,当F 点到线段1BD 的距离最小时,此时平行四边形1BFD E 的面积最小,此时点E F 、分别为11,AA CC 的中点,此时最小值为16232⨯⨯=,因此D 正确. 故选:BCD【点睛】关键点睛:解题的关键是理解想象出要画的平面是怎么样的平面,有哪些特殊的性质,考虑全面即可正确解题.10.如图,正四棱锥S -BCDE 底面边长与侧棱长均为a ,正三棱锥A -SBE 底面边长与侧棱长均为a ,则下列说法正确的是( )A .AS ⊥CDB .正四棱锥S -BCDE 的外接球半径为2a C .正四棱锥S -BCDE 的内切球半径为212a ⎛⎫- ⎪ ⎪⎝⎭ D .由正四棱锥S -BCDE 与正三棱锥A -SBE 拼成的多面体是一个三棱柱 【答案】ABD 【分析】取BE 中点H ,证明BE ⊥平面SAH 即可证AS CD ⊥;设底面中心为1O ,有1122O B O S a ==,可求得球半径为22a ;用等体积法求内切球半径即可判断;由////SA DE BC 且==SA DE BC 可知多面体是一个三棱柱.【详解】 如图所示:A 选项:取BE 中点H 连接,AH SH ,正三棱锥A SBE -中,,AH BE SH BE ⊥⊥ 又AHSH H =,所以BE ⊥平面SAH ,则BE AS ⊥,又//BE CD 所以AS CD ⊥ ,故A 正确;B 选项:设底面中心为1O ,球心为O 半径为R ,因为正四棱锥S -BCDE 外接球球心在1O S 上,所以OS OB R ==,因为,正四棱锥S -BCDE 底面边长与侧棱长均为a所以112O B O S ==,由()22211OB O B O S OS =+-得22222R a R ⎛⎫⎛⎫=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭解得2R =,故B 正确; C 选项:设内切球半径为r,易求得侧面面积为221sin 23S a π=⋅=,由等体积法得222111432334a a a r a r ⋅=⋅+⋅⋅⋅解得4a r = ,故C 错;D 选项:取SE 中点F ,连结AF ,DF ,BF ,则BFD ∠和BFA ∠分别是D SE B --和A SE B --的二面角的平面角,由)22222221cos 2322BF DF BD BFD BF DF a ⎫⎫+-⎪⎪+-⎝⎭⎝⎭∠===-⋅⎛⎫⎪⎝⎭22222221cos 232a AF BF BA AFD AF BF ⎫⎫+-⎪⎪+-⎝⎭⎝⎭∠===⋅⎫⎪⎝⎭,故BFD ∠与BFA ∠互补,所以ASDE 共面,又因为AS AE ED SD ===,则ASDE 为平行四边形,故////AS ED BC 故正四棱锥S -BCDE 与正三棱锥A -SBE 拼成的多面体是一个三棱柱,所以D 正确 故选:ABD 【点睛】求外接球半径的常用方法:(1)补形法:侧面为直角三角形或正四面体或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;(2)利用球的性质:几何体在不同面均对直角的棱必然是球的直径;(3)定义法:到各个顶点距离均相等的点为球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.。

立体几何专题复习(自己精心整理)

立体几何专题复习(自己精心整理)

专题一证明平行垂直问题题型一证明平行关系(1)如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是C1C,B1C1的中点.求证:MN∥平面A1BD。

(2)在正方体AC1中,M,N,E,F分别是A1B1,A1D1,B1C1,C1D1的中点,求证:平面AMN∥平面EFDB.思考题1(1)如图所示,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点,求证:平面EFG∥平面PBC.(2)如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=22,M是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.求证:PQ∥平面BCD。

题型二证明垂直关系(微专题)微专题1:证明线线垂直(1)已知空间四边形OABC中,M为BC中点,N为AC中点,P为OA中点,Q为OB中点,若AB=OC。

求证:PM⊥QN.(2)(2019·山西太原检测)如图,直三棱柱ABC-A1B1C1中,AA1=AB=AC=1,E,F分别是CC1,BC的中点,AE⊥A1B1,D为棱A1B1上的点,求证:DF⊥AE。

微专题2:证明线面垂直(3)在正方体ABCD-A1B1C1D1中,求证:BD1⊥平面ACB1.(4)(2019·河南六市一模)在如图所示的几何体中,ABC-A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,∠ADC=60°.若AA1=AC,求证:AC1⊥平面A1B1CD。

微专题3:证明面面垂直(5)已知正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点,求证:平面DEA⊥平面A1FD1.(6)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=错误!PD,求证:平面PQC⊥平面DCQ。

思考题2(1)(2019·北京东城区模拟)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥BP交BP于点F,求证:PB⊥平面EFD。

高中数学《立体几何》专题复习 (3)

高中数学《立体几何》专题复习 (3)

高中数学《立体几何》专题复习 三1.(2017·唐山模拟)正三棱锥的高和底面边长都等于6,则其外接球的表面积为( ) A .64π B .32π C .16π D .8π答案 A解析 如图,作PM ⊥平面ABC 于点M ,则球心O 在PM 上,PM =6,连接AM ,AO ,则OP =OA =R(R 为外接球半径),在Rt △OAM 中,OM =6-R ,OA =R ,又AB =6,且△ABC 为等边三角形,故AM =2362-32=23,则R 2-(6-R)2=(23)2,则R =4,所以球的表面积S =4πR 2=64π.2.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( ) A .16π B .20π C .24π D .32π答案 C解析 由V =Sh ,得S =4,得正四棱柱底面边长为2.画出球的轴截面可得,该正四棱柱的对角线即为球的直径,所以球的半径为R =1222+22+42= 6.所以球的表面积为S =4πR 2=24π.故选C.3.若一个正方体的体积是8,则这个正方体的内切球的表面积是( ) A .8π B .6π C .4π D .π答案 C解析 设正方体的棱长为a ,则a 3=8.因此内切球直径为2,∴S 表=4πr 2=4π.4.(2017·课标全国Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径长为2的同一个球的球面上,则该圆柱的体积为( ) A .π B.3π4 C.π2 D.π4 答案 B解析 根据已知球的半径长是1,圆柱的高是1,如图,所以圆柱的底面半径r =22-122=32,所以圆柱的体积V =πr 2h =π×(32)2×1=34π.故选B. 5.(2018·安徽合肥模拟)已知球的直径SC =6,A ,B 是该球球面上的两点,且AB =SA =SB =3,则三棱锥S -ABC 的体积为( ) A.324B.924 C.322 D.922答案 D解析 设该球球心为O ,因为球的直径SC =6,A ,B 是该球球面上的两点,且AB =SA =SB =3,所以三棱锥S -OAB 是棱长为3的正四面体,其体积V S -OAB =13×12×3×332×6=924,同理V O -ABC =924,故三棱锥S -ABC 的体积V S -ABC =V S -OAB +V O -ABC =922,故选D.6.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( ) A.3172B .210 C.132 D .310 答案 C解析 如图,由球心作平面ABC 的垂线,则垂足为BC 的中点M. 又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =(52)2+62=132. 7.(2018·广东惠州一模)已知一个水平放置的各棱长均为4的三棱锥形容器内有一小球O(质量忽略不计),现从该三棱锥形容器的顶端向内注水,小球慢慢上浮,当注入的水的体积是该三棱锥体积的78时,小球与该三棱锥各侧面均相切(与水面也相切),则小球的表面积等于( ) A.76π B.43πC.23π D.12π 答案 C解析 由题知,没有水的部分的体积是三棱锥形容器的体积的18,三棱锥形容器的体积为13·34·42·63·4=1623,所以没有水的部分的体积为223.设其棱长为a ,则其体积为13×34a 2×63a =223,∴a =2,设小球的半径为r ,则4×13×3×r =223,解得r =66,∴球的表面积为4π×16=23π,故选C.8.如图,ABCD -A 1B 1C 1D 1是棱长为1的正方体,S -ABCD 是高为1的正四棱锥,若点S ,A 1,B 1,C 1,D 1在同一个球面上,则该球的体积为( ) A.25π16 B.49π16 C.81π16 D.243π128答案 C解析 如图所示,O 为球心,设OG 1=x ,则OB 1=SO =2-x ,同时由正方体的性质可知B 1G 1=22,则在Rt △OB 1G 1中,OB 12=G 1B 12+OG 12,即(2-x)2=x 2+(22)2,解得x =78,所以球的半径R =OB 1=98,所以球的表面积S =4πR 2=81π16,故选C. 9.(2018·郑州质检)四棱锥P -ABCD 的五个顶点都在一个球面上,该四棱锥的三视图如图所示,E ,F 分别是棱AB ,CD 的中点,直线EF 被球面所截得的线段长为22,则该球的表面积为( )A .9πB .3πC .22πD .12π答案 D解析 该几何体的直观图如图所示,该几何体可看作由正方体截得,则正方体外接球的直径即为PC.由直线EF 被球面所截得的线段长为22,可知正方形ABCD 对角线AC 的长为22,可得正方形ABCD 的边长a =2,在△PAC 中,PC =22+(22)2=23,球的半径R =3,∴S 表=4πR 2=4π×(3)2=12π.10.(2014·湖南)一块石材表示的几何体的三视图如图所示.将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4答案 B解析 此几何体为一直三棱柱,底面是边长为6,8,10的直角三角形,侧棱为12,故其最大球的半径为底面直角三角形内切圆的半径,故其半径为r =12×(6+8-10)=2,故选B.11.(2017·天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________. 答案 92π解析 设正方体的棱长为a ,则6a 2=18,得a =3,设该正方体外接球的半径为R ,则2R =3a =3,得R =32,所以该球的体积为43πR 3=43π(32)3=92π.12.若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.答案63π解析 设正四面体的棱长为a ,则正四面体的表面积为S 1=4·34·a 2=3a 2,其内切球半径为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2π6a 2=63π. 13.已知一圆柱内接于球O ,且圆柱的底面圆的直径与母线长均为2,则球O 的表面积为________. 答案 8π解析 圆柱的底面圆的直径与母线长均为2,所以球的直径为22+22=8=22,即球半径为2,所以球的表面积为4π×(2)2=8π.14.(2017·衡水中学调研卷)已知正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的球面上,若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________. 答案33解析 方法一:先在一个正方体中找一个满足条件的正三棱锥,再利用正方体的性质解题.如图,满足题意的正三棱锥P -ABC 可以是正方体的一部分,其外接球的直径是正方体的体对角线,且面ABC 与体对角线的交点是体对角线的一个三等分点,所以球心到平面ABC 的距离等于体对角线长的16,故球心到截面ABC 的距离为16×23=33.方法二:用等体积法:V P -ABC =V A -PBC 求解).15.(2018·四川成都诊断)已知一个多面体的三视图如图所示,其中正视图与侧视图都是直角边长为1的等腰直角三角形,俯视图是边长为1的正方形,若该多面体的顶点都在同一个球面上,则该球的表面积为________.答案3π解析由三视图知几何体为四棱锥,且四棱锥的一条侧棱垂直于底面,高等于1,其底面是边长为1的正方形,∴四棱锥的外接球即是边长为1的正方体的外接球,∴外接球的直径为3,∴外接球的表面积S=4π×(32)2=3π.16.(2018·河北唐山模拟)已知矩形ABEF所在的平面与矩形ABCD所在平面互相垂直,AD=2,AB=3,AF=332,M为EF的中点,则多面体M-ABCD的外接球的表面积为________.答案16π解析记多面体M-ABCD的外接球的球心为O,如图,过点O分别作平面ABCD和平面ABEF的垂线,垂足分别为Q,H,连接MH并延长,交AB于点N,连接OM,NQ,AQ,设球O的半径为R,球心到平面ABCD的距离为d,即OQ=d,∵矩形ABEF所在的平面与矩形ABCD所在的平面互相垂直,AF=332,M为EF的中点,∴MN=332,∴AN=NB=32,NQ=1,∴R2=(4+92)2+d2=12+(332-d)2,∴d=32,R2=4,∴多面体M-ABCD的外接球的表面积为4πR2=16π.1.(2017·课标全国Ⅱ,文)长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为________.答案14π解析依题意得,长方体的体对角线长为32+22+12=14,记长方体的外接球的半径为R,则有2R=14,R=142,因此球O的表面积等于4πR2=14π.2.(2018·湖南长沙一中模拟)如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为()A .8π B.25π2C .12π D.41π4答案 D解析 根据三视图得出,几何体是正方体中的一个四棱锥O -ABCD ,正方体的棱长为2,A ,D 为所在棱的中点.根据几何体可以判断,球心应该在过A ,D 的平行于正方体底面的中截面上,设球心到平面BCO的距离为x ,则到AD 的距离为2-x ,所以R 2=x 2+(2)2,R 2=12+(2-x)2,解得x =34,R=414,该多面体外接球的表面积为4πR 2=414π,故选D. 3.(2014·陕西,理)已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( ) A.32π3B .4πC .2π D.4π3答案 D解析 因为该正四棱柱的外接球的半径是四棱柱体对角线的一半,所以半径r =1212+12+(2)2=1,所以V 球=4π3×13=4π3.故选D.4.(2018·洛阳统一考试)如图是某几何体的三视图,则该几何体的外接球的表面积为( )A .200πB .150πC .100πD .50π答案 D解析 由三视图知,该几何体可以由一个长方体截去3个角后得到,该长方体的长、宽、高分别为5、4、3,所以其外接球半径R 满足2R =42+32+52=52,所以该几何体的外接球的表面积为S =4πR 2=4π×(522)2=50π,故选D.5.(2018·广东清远三中月考)某一简单几何体的三视图如图所示,则该几何体的外接球的表面积是( )A .13πB .16πC .25πD .27π答案 C解析 由三视图可知该几何体是底面为正方形的长方体,底面对角线为4,高为3,设外接球半径为r ,则2r =(22)2+(22)2+32=5,∴r =52,∴长方体外接球的表面积S =4πr 2=25π.6.(2018·福建厦门模拟)已知球O 的半径为R ,A ,B ,C 三点在球O 的球面上,球心O 到平面ABC 的距离为32R ,AB =AC =BC =23,则球O 的表面积为( ) A.163π B .16π C.643π D .64π答案 D解析 因为AB =AC =BC =23,所以△ABC 为正三角形,其外接圆的半径r =232sin60°=2,设△ABC 外接圆的圆心为O 1,则OO 1⊥平面ABC ,所以OA 2=OO 12+r 2,所以R 2=(32R)2+22,解得R 2=16,所以球O 的表面积为4πR 2=64π,故选D.7.(2018·四川广元模拟)如图,边长为2的正方形ABCD 中,点E ,F 分别是AB ,BC 的中点,将△ADE ,△EBF ,△FCD 分别沿DE ,EF ,FD 折起,使得A ,B ,C 三点重合于点A ′,若四面体A ′EFD 的四个顶点在同一个球面上,则该球的半径为________.答案62解析 由题意可知△A ′EF 是等腰直角三角形,且A ′D ⊥平面A ′EF.由于△A ′EF 可以补全为边长为1的正方形,则该四面体必能补全为长、宽、高分别为1,1,2的正四棱柱,三棱锥的外接球与正四棱柱的外接球是同一个球,易知正四棱柱的外接球的直径为12+12+22= 6.故球的半径为62. 8.(2017·德州模拟)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,该几何体的体积是________;若该几何体的所有顶点在同一球面上,则球的表面积是________.答案 133π解析 由三视图知该几何体是底面为1的正方形,高为1的四棱锥,故体积V =13×1×1×1=13,该几何体与棱长为1的正方体具有相同的外接球,外接球直径为3,该球表面积S =4π×(32)2=3π,正方体、长方体的体对角线即为外接球的直径.。

高三第二轮专题复习资料:立体几何题型与方法(文科)

高三第二轮专题复习资料:立体几何题型与方法(文科)

专题二:立体几何题型与方法(文科)一、 考点回顾1.平面(1)平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。

(2)证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样,可根据公理2证明这些点都在这两个平面的公共直线上。

(3)证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。

(4)证共面问题一般用落入法或重合法。

(5)经过不在同一条直线上的三点确定一个面. 2. 空间直线.(1)空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内。

(2)异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)(3)平行公理:平行于同一条直线的两条直线互相平行.(4)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.(5)两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (l 1或l 2在这个做出的平面内不能叫l 1与l 2平行的平面) 3. 直线与平面平行、直线与平面垂直.(1)空间直线与平面位置分三种:相交、平行、在平面内.(2)直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)(3)直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)(4)直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), 得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA . ● 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.(5)a.垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)] b.射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上。

高考数学复习考点题型专题讲解16 立体几何中的折叠、探究问题

高考数学复习考点题型专题讲解16 立体几何中的折叠、探究问题

高考数学复习考点题型专题讲解专题16 立体几何中的折叠、探究问题高考定位 1.立体几何中的折叠问题是历年高考命题的一大热点与难点,主要包括两个方面:一是平面图形的折叠问题,多涉及到空间中的线面关系、体积的求解以及空间角、距离的求解等问题;二是几何体的表面展开问题,主要涉及到几何体的表面积以及几何体表面上的最短距离等;2.以空间向量为工具,探究空间几何体中线面关系或空间角存在的条件,计算量较大,一般以解答题的形式考查,难度中等偏上.1.(2019·全国Ⅲ卷)图①是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图②.(1)证明:图②中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图②中的平面BCG与平面CGA夹角的大小.(1)证明由已知得AD∥BE,CG∥BE,所以AD∥CG,所以AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,且BE∩BC=B,BE,BC⊂平面BCGE,所以AB⊥平面BCGE.又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE . (2)解 作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,平面BCGE ∩平面ABC =BC , 所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH = 3.以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系H -xyz ,则A (-1,1,0),C (1,0,0),G (2,0,3),CG →=(1,0,3),AC →=(2,-1,0). 设平面ACGD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧CG →·n =0,AC →·n =0,即⎩⎨⎧x +3z =0,2x -y =0. 所以可取n =(3,6,-3).又平面BCGE 的法向量可取m =(0,1,0), 设平面BCG 与平面CGA 夹角的大小为θ, 所以cos θ=|cos 〈n ,m 〉|=|n ·m ||n ||m |=32.因此平面BCG 与平面CGA 夹角的大小为30°.2.(2021·全国甲卷)已知直三棱柱ABC -A 1B 1C 1中,侧面AA 1B 1B 为正方形,AB =BC =2,E ,F 分别为AC 和CC 1的中点,D 为棱A 1B 1上的点,BF ⊥A 1B 1.(1)证明:BF⊥DE;(2)当B1D为何值时,平面BB1C1C与平面DFE所成的二面角的正弦值最小?(1)证明因为E,F分别是AC和CC1的中点,且AB=BC=2,侧面AA1B1B为正方形,所以CF=1,BF= 5.如图,连接AF,由BF⊥A1B1,AB∥A1B1,得BF⊥AB,于是AF=BF2+AB2=3,所以AC =AF2-CF2=2 2.由AB2+BC2=AC2,得BA⊥BC.∵三棱柱ABC-A1B1C1为直三棱柱,∴BB1⊥AB且BB1⊥BC,则BA,BC,BB1两两互相垂直,故以B为坐标原点,以BA,BC,BB1所在直线分别为x,y,z轴建立空间直角坐标系B -xyz,则B(0,0,0),E(1,1,0),F(0,2,1),BF→=(0,2,1).设B1D=m(0≤m≤2),则D(m,0,2),于是DE→=(1-m,1,-2).所以BF →·DE →=0,所以BF ⊥DE .(2)解 易知平面BB 1C 1C 的一个法向量为n 1=(1,0,0). 设平面DFE 的法向量为n 2=(x ,y ,z ), 则⎩⎪⎨⎪⎧DE →·n 2=0,EF →·n 2=0,又由(1)得DE →=(1-m ,1,-2),EF →=(-1,1,1), 所以⎩⎨⎧(1-m )x +y -2z =0,-x +y +z =0,令x =3,得y =m +1,z =2-m ,于是,平面DFE 的一个法向量为n 2=(3,m +1,2-m ), 所以cos 〈n 1,n 2〉=32⎝⎛⎭⎪⎫m -122+272.设平面BB 1C 1C 与平面DFE 所成的二面角为θ, 则sin θ=1-cos 2〈n 1,n 2〉=1-92⎝ ⎛⎭⎪⎫m -122+272,故当m =12时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小为33,即当B 1D =12时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小.热点一 折叠问题解答折叠问题的关键是分清翻折前后图形的位置和数量关系的变与不变,一般地,位于“折痕”同侧的点、线、面之间的位置和数量关系不变,而位于“折痕”两侧的点、线、面之间的位置关系会发生变化;对于不变的关系应在平面图形中处理,而对于变化的关系则要在立体图形中解决.考向1 折叠后的位置关系及空间角例1(2022·青岛模拟)在直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =2CD =4,E ,F 分别为AD ,BC 的中点,沿EF 将四边形EFCD 折起,使得DE ⊥BF (如图2).(1)求证:平面ABFE ⊥平面EFCD ;(2)若直线AC 与平面ABFE 所成角的正切值为63,求平面CEB 与平面EBF 夹角的余弦值.(1)证明 由题设条件,得EF ∥AB ∥CD ,AB ⊥AD , 则DE ⊥EF ,又DE ⊥BF 且BF ∩EF =F ,BF ,EF ⊂平面ABFE , 则DE ⊥平面ABFE , 又DE ⊂平面EFCD , 故平面ABFE ⊥平面EFCD .(2)解 如图过点C 作CG ⊥EF ,交EF 于点G ,连接AG ,因为平面ABFE ⊥平面 EFCD ,且平面ABFE ∩平面EFCD =EF , 所以CG ⊥平面ABFE ,故直线AC 与平面ABFE 所成的角为∠CAG , 设DE =h ,则在Rt△CAG 中 ,CG =DE =h ,AG =EG 2+EA 2=h 2+4,所以tan∠CAG =CG AG =h h 2+4=63,解得h =22,如图,建立空间直角坐标系E -xyz ,则E (0,0,0),B (22,4,0),C (0,2,22), 所以EC →=(0,2,22),EB →=(22,4,0), 则平面EBF 的法向量为m =(0,0,1), 设平面CEB 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·EC →=2y +22z =0,n ·EB →=22x +4y =0,令y =-2,则n =(2,-2,1),则平面CEB 与平面EBF 夹角的余弦值为 |cos 〈m·n 〉|=|m·n ||m |·|n |=77.所以平面CEB 与平面EBF 夹角的余弦值为77. 易错提醒 注意图形翻折前后变与不变的量以及位置关系.对照前后图形,弄清楚变与不变的元素后,再立足于不变的元素的位置关系与数量关系去探求变化后的元素在空间中的位置与数量关系.考向2 展开后的数字特征例2 (1)(2022·青岛质检)如图所示,在直三棱柱ABC-A1B1C1中,底面为直角三角形,∠ACB=90°,AC=6,BC=CC1=2,P是BC1上一动点,则CP+PA1的最小值是________.(2)如图,一立在水平地面上的圆锥形物体的母线长为4 m,一只小虫从圆锥的底面圆上的点P出发,绕圆锥表面爬行一周后回到点P处.若该小虫爬行的最短路程为4 3 m,则圆锥底面圆的半径等于________m.答案(1)5 2 (2)4 3解析(1)如图,以BC1为轴,把平面BCC1翻折到与平面A1BC1共面,则A1BCC1在同一个平面内,图中A1C就是所求最小值.通过计算可得∠A1C1B=90°,∠BC1C=45°,所以∠A1C1C=135°,由余弦定理可得A1C=5 2.(2)圆锥顶点记为O,把圆锥侧面沿母线OP展开成如图所示的扇形,由题意OP=4,PP′=43,则cos∠POP′=42+42-(43)22×4×4=-12,又∠POP′为△POP′一内角,所以∠POP′=2π3.设底面圆的半径为r,则2πr=2π3×4,所以r=4 3 .易错提醒几何体表面上的最短距离要注意棱柱的侧面展开图可能有多种,如长方体的表面展开图等,要把不同展开图中的最短距离进行比较,找出其中的最小值.训练1 如图1,在直角梯形ABCD中,AB∥DC,∠D=90°,AB=2,DC=3,AD=3,CE=2ED.沿BE将△BCE折起,使点C到达点C1的位置,且AC1=6,如图2.(1)求证:平面BC1E⊥平面ABED;(2)求直线BC1与平面AC1D所成角的正弦值.(1)证明在图①中,连接AE,由已知得AE=2.图①∵CE∥AB,CE=AB=AE=2,∴四边形ABCE为菱形.连接AC交BE于点F,则CF⊥BE.在Rt△ACD中,AC=32+(3)2=23,所以AF=CF= 3.图②如图②中,由翻折,可知C1F=3,C1F⊥BE.∵AC1=6,AF=C1F=3,∴AF2+C1F2=AC21,∴C1F⊥AF,又BE∩AF=F,BE⊂平面ABED,AF⊂平面ABED,∴C1F⊥平面ABED.又C1F⊂平面BC1E,所以平面BC1E⊥平面ABED.(2)解如图②,建立空间直角坐标系,则D(0,0,0),A(3,0,0),B(3,2,0),C 1⎝⎛⎭⎪⎫32,32,3, 所以BC 1→=⎝ ⎛⎭⎪⎫-32,-12,3,DA →=(3,0,0),DC 1→=⎝ ⎛⎭⎪⎫32,32,3,设平面AC 1D 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DA →·n =0,DC 1→·n =0,即⎩⎨⎧3x =0,32x +32y +3z =0, 令z =3,则x =0,y =-2,所以n =(0,-2,3)为平面AC 1D 的一个法向量. 设直线BC 1与平面AC 1D 所成的角为θ,则sin θ=|cos 〈BC 1→,n 〉|=|BC 1→·n ||BC 1→||n |=42×7=277.所以直线BC 1与平面AC 1D 所成角的正弦值为277. 热点二 探究问题与空间向量有关的探究性问题主要有两类:一类是探究线面的位置关系;另一类是探究线面角或平面与平面的夹角满足特定要求时的存在性问题.解题思路:先建立空间直角坐标系,引入参数(有些是题中已给出),设出关键点的坐标,然后探究这样的点是否存在,或参数是否满足要求,从而作出判断. 考向1 探究线面位置关系例3(2022·济南质检)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =2,E ,F 分别为棱AA 1,CC 1的中点,G 为棱DD 1上的动点.(1)求证:B,E,D1,F四点共面;(2)是否存在点G,使得平面GEF⊥平面BEF?若存在,求出DG的长;若不存在,说明理由.(1)证明如图,连接D1E,D1F,取BB1的中点为M,连接MC1,ME,因为E为AA1的中点,所以EM∥A1B1∥C1D1,且EM=A1B1=C1D1,所以四边形EMC1D1为平行四边形,所以D1E∥MC1,又F为CC1的中点,所以BM∥C1F,且BM=C1F,所以四边形BMC1F为平行四边形,所以BF∥MC1.所以BF∥D1E,所以B,E,D1,F四点共面.(2)解以D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,假设存在满足题意的点G (0,0,t ), 由已知B (1,1,0),E (1,0,1),F (0,1,1),则EF →=(-1,1,0),EB →=(0,1,-1),EG →=(-1,0,t -1), 设平面BEF 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·EF →=0,n 1·EB →=0,即⎩⎨⎧-x 1+y 1=0,y 1-z 1=0,取x 1=1,则y 1=1,z 1=1,n 1=(1,1,1).设平面GEF 的法向量为n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 2·EF →=0,n 2·EG →=0,即⎩⎨⎧-x 2+y 2=0,-x 2+(t -1)z 2=0, 取x 2=t -1,则y2=t-1,z2=1,n2=(t-1,t-1,1). 因为平面GEF⊥平面BEF,所以n1·n2=0所以t-1+t-1+1=0,所以t=1 2,所以存在满足题意的点G,使得平面GEF⊥平面BEF,且DG的长为1 2 .考向2 与空间角有关的探究性问题例4 如图,四棱锥P-ABCD的底面ABCD是等腰梯形,AB∥CD,BC=CD=1,AB=2.△PBC 是等边三角形,平面PBC⊥平面ABCD,点M在棱PC上.(1)当M为棱PC的中点时,求证:AP⊥BM;(2)是否存在点M,使得平面DMB与平面MBC夹角的余弦值为34?若存在,求CM的长;若不存在,请说明理由.(1)证明连接AC,由底面ABCD是等腰梯形且AB=2,BC=CD=1,得∠ABC=π3,在△ABC中,由余弦定理得AC=3,∴AC2+BC2=AB2,∴∠ACB=π2,∴AC⊥BC.又∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,AC⊂平面ABCD,∴AC ⊥平面PBC , ∵BM ⊂平面PBC ,∴AC ⊥BM ,又M 为棱PC 的中点,且△PBC 是等边三角形, ∴BM ⊥PC ,又∵PC ∩AC =C ,PC ⊂平面APC ,AC ⊂平面APC , ∴BM ⊥平面APC , ∵AP ⊂平面APC , ∴AP ⊥BM .(2)解 假设存在点M ,使得平面DMB 与平面MBC 夹角的余弦值为34.过点P 作PO ⊥BC 交BC 于点O ,∵平面PBC ⊥平面ABCD ,平面PBC ∩平面ABCD =BC ,PO ⊂平面PBC ,∴PO ⊥平面ABCD ,取AB 的中点E ,连接OE ,则OE ∥CA ,由(1)知OE ⊥平面PBC ,因此以O 为原点,以OC ,OE ,OP 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系O -xyz .∴O (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,C ⎝ ⎛⎭⎪⎫12,0,0,B ⎝ ⎛⎭⎪⎫-12,0,0,D ⎝ ⎛⎭⎪⎫1,32,0,则DB →=⎝ ⎛⎭⎪⎫-32,-32,0,CP →=⎝ ⎛⎭⎪⎫-12,0,32.设CM →=tCP→(0<t ≤1),则M ⎝⎛⎭⎪⎫1-t 2,0,32t .则DM →=⎝ ⎛⎭⎪⎫-t -12,-32,32t ,设平面DMB 的法向量为a =(x ,y ,z ), 则⎩⎪⎨⎪⎧a ·DM →=-1+t 2x -32y +32tz =0,a ·DB →=-32x -32y =0,令x =3,则y =-3,z =t -2t,∴a =⎝⎛⎭⎪⎫3,-3,t -2t 为平面DMB 的一个法向量, 易知平面MBC 的一个法向量为b =(0,1,0), 则|cos 〈a ,b 〉|=|a·b||a||b|=33+9+⎝⎛⎭⎪⎫t -2t 2=312+⎝⎛⎭⎪⎫t -2t 2=34, 则⎝ ⎛⎭⎪⎫t -2t 2=4,即t -2t =-2,解得t =23,故CM =|CM →|=23|CP →|=23.所以存在点M ,使得平面DMB 与平面MBC 夹角的余弦值为34,且CM 的长为23.规律方法 解决立体几何中探索性问题的基本方法(1)通常假设问题中的数学对象存在或结论成立,再在这个前提下进行推理,如果能推出与条件吻合的数据或事实,说明假设成立,并可进一步证明,否则假设不成立.(2)探索线段上是否存在满足条件的点时,一定注意三点共线的应用.训练2(2022·盐城模拟)如图,三棱柱ABC -A 1B 1C 1的所有棱长都为2,B 1C =6,AB ⊥B 1C .(1)求证:平面ABB 1A 1⊥平面ABC ;(2)在棱BB 1上是否存在点P ,使直线CP 与平面ACC 1A 1所成角的正弦值为45,若不存在,请说明理由,若存在, 求BP 的长.(1)证明 如图,取AB 的中点D ,连接CD ,B 1D ,因为三棱柱ABC -A 1B 1C 1的所有棱长都为2, 所以AB ⊥CD ,CD =3,BD =1. 又因为AB ⊥B 1C ,且CD ∩B 1C =C ,CD ,B 1C ⊂平面B 1CD , 所以AB ⊥平面B 1CD . 又因为B 1D ⊂平面B 1CD , 所以AB ⊥B 1D .在Rt△B 1BD 中,BD =1,B 1B =2, 所以B 1D = 3.在△B 1CD 中,CD =3,B 1D =3,B 1C =6,所以CD 2+B 1D 2=B 1C 2, 所以CD ⊥B 1D ,又因为AB ⊥B 1D ,AB ∩CD =D ,AB ,CD ⊂平面ABC , 所以B 1D ⊥平面ABC . 又因为B 1D ⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面ABC .(2)解 假设存在,以DC ,DA ,DB 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (0,1,0),B (0,-1,0),C (3,0,0),B 1(0,0,3), 因此BB 1→=(0,1,3),AC →=(3,-1,0),AA 1→=BB 1→=(0,1,3), CB →=(-3,-1,0). 因为点P 在棱BB 1上, 设BP →=λBB 1→=λ(0,1,3),其中0≤λ≤1.则CP →=CB →+BP →=CB →+λBB 1→=(-3,-1+λ,3λ). 设平面ACC 1A 1的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AC →=0,n ·AA 1→=0,得⎩⎪⎨⎪⎧3x -y =0,y +3z =0,取x =1,则y =3,z =-1,所以平面ACC 1A 1的一个法向量为n =(1,3,-1). 因为直线CP 与平面ACC 1A 1所成角的正弦值为45,所以|cos 〈n ,CP →〉|=|n ·CP →||n ||CP →|=⎪⎪⎪⎪⎪⎪-235×3+(λ-1)2+3λ2=45, 化简得16λ2-8λ+1=0,解得λ=14,所以|BP →|=14|BB 1→|=12, 故BP 的长为12.一、基本技能练1.(2022·丽水质检)如图1,矩形ABCD 中,点E ,F 分别是线段AB ,CD 的中点,AB =4,AD =2,将矩形ABCD 沿EF 翻折.(1)若所成二面角的大小为π2(如图2),求证:直线CE ⊥平面DBF ; (2)若所成二面角的大小为π3(如图3),点M 在线段AD 上,当直线BE 与平面EMC 所成角为π4时,求平面DEM 和平面EMC 夹角的余弦值. (1)证明 由题设易知:四边形BEFC 是边长为2的正方形,BF ,EC 是其对角线, 所以BF ⊥EC ,又平面BEFC ⊥平面AEFD ,平面BEFC ∩平面AEFD =EF ,DF ⊥EF ,DF ⊂平面AEFD , 所以DF ⊥平面BEFC , 又EC ⊂平面BEFC ,则DF ⊥EC ,又DF ∩BF =F ,BF ,DF ⊂平面BDF ,则EC ⊥平面BDF .(2)解 过E 作Ez ⊥平面AEFD ,而AE ,EF ⊂平面AEFD ,则Ez ⊥AE ,Ez ⊥EF ,而AE ⊥EF , 可建立如图所示的空间直角坐标系,由题设知:∠BEA =∠CFD =π3,所以E (0,0,0),B (1,0,3),C (1,2,3),M (2,m ,0)且0≤m ≤2, 则EB →=(1,0,3),EC →=(1,2,3),EM →=(2,m ,0),若n =(x ,y ,z )是平面EMC 的法向量,则⎩⎪⎨⎪⎧EC →·n =x +2y +3z =0,EM →·n =2x +my =0,令x =m ,则n =(m ,-2,4-m3), |cos 〈EB →,n 〉|=|EB →·n ||EB →||n |=1m 2-2m +73=12,可得m=1,则n =(1,-2,3),又l =(0,0,1)是平面EMD 的一个法向量, 所以|cos 〈l ,n 〉|=|l ·n ||l ||n |=322=64,所以平面DEM 和平面EMC 夹角的余弦值为64.2.如图,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求平面PAC 与平面ACS 夹角的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面PAC ?若存在,求SC ∶SE 的值;若不存在,试说明理由.(1)证明 连接BD 交AC 于点O ,连接SO ,由题意知SO ⊥AC . 在正方形ABCD 中,AC ⊥BD .因为BD ∩SO =O ,BD ,SO ⊂平面SBD ,所以AC ⊥平面SBD ,又SD ⊂平面SBD ,所以AC ⊥SD .(2)解 由题设知,SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz ,如图.设底面边长为a ,则高SO =62a , 则B ⎝ ⎛⎭⎪⎫22a ,0,0,S ⎝ ⎛⎭⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎫-22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0, 又SD ⊥平面PAC ,则平面PAC 的一个法向量为DS →=⎝ ⎛⎭⎪⎫22a ,0,62a , 平面SAC 的一个法向量为OD →=⎝ ⎛⎭⎪⎫-22a ,0,0, 设平面PAC 与平面ACS 夹角的大小为θ.则cos θ=|cos 〈DS →,OD →〉|=|DS →·OD →||DS →||OD →|=12, 所以平面PAC 与平面ACS 夹角的大小为π3. (3)解 在棱SC 上存在一点E 使BE ∥平面PAC .理由如下:由(2)知DS →是平面PAC 的一个法向量,且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝ ⎛⎭⎪⎫0,-22a ,62a ,BC →=⎝ ⎛⎭⎪⎫-22a ,22a ,0. 设CE →=tCS→,t ∈[0,1], 则BE →=BC →+CE →=BC →+tCS →=⎝ ⎛⎭⎪⎫-22a ,22a (1-t ),62at .因为BE ∥平面PAC ,所以BE →·DS →=0,所以-12a 2+32a 2t =0,解得t =13. 故侧棱SC 上存在一点E ,使得BE ∥平面PAC ,此时SC ∶SE =3∶2.3.(2022·全国名校大联考)如图1,直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,E 为AD 边上的点,且AD =2AE =2AB =2BC =2.将△ABE 沿BE 向上折起,使得异面直线AB 与ED 所成的角为60°,F 为线段AD 上一点,如图2.(1)若DE ⊥CF ,求AF FD的值; (2)求平面ABC 与平面AED 所成锐二面角的余弦值.解 (1)如图①中,连接CE .图①由题意可知,△ABE ,△CED ,△BCE 均为等腰直角三角形,因为BC ∥ED ,所以∠ABC 即为异面直线AB 与ED 所成的角,所以∠ABC =60°,所以AC =1.取BE 的中点O ,连接OC ,OA ,OD ,则OA ⊥BE ,OC ⊥BE ,且OA =OC =22,因为OA 2+OC 2=AC 2,所以OA ⊥OC ,因为BE ∩OC =O ,BE ,OC ⊂平面BCDE .所以OA ⊥平面BCDE .连接EF ,因为DE ⊥EC ,DE ⊥CF ,CE ∩CF =C ,CE ,CF ⊂平面ECF ,所以DE ⊥平面ECF , 又DE ⊂平面BCDE ,所以平面ECF ⊥平面BCDE ,故OA ∥平面ECF .连接OD 交CE 于点G ,连接FG ,因为平面AOD ∩平面ECF =FG ,所以OA ∥GF ,故AF FD =OG GD =OE CD =12.图②(2)如图②,以O 为坐标原点,OB ,OC ,OA 所在直线分别为x ,y ,z 轴,建立空间直角坐标系O -xyz .则A ⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,B ⎝ ⎛⎭⎪⎫22,0,0, E ⎝ ⎛⎭⎪⎫-22,0,0,D ⎝ ⎛⎭⎪⎫-2,22,0. 所以AB →=⎝ ⎛⎭⎪⎫22,0,-22, BC →=⎝ ⎛⎭⎪⎫-22,22,0,AE →=⎝ ⎛⎭⎪⎫-22,0,-22,ED →=⎝ ⎛⎭⎪⎫-22,22,0. 设平面ABC 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 1·AB →=0,n 1·BC →=0,即⎩⎪⎨⎪⎧22x 1-22z 1=0,-22x 1+22y 1=0, 令x 1=2,则y 1=2,z 1=2,所以平面ABC 的一个法向量为n 1=(2,2,2),设平面AED 的法向量为n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧n 2·AE →=0,n 2·ED →=0,即⎩⎪⎨⎪⎧-22x 2-22z 2=0,-22x 2+22y 2=0, 令x 2=2,则y 2=2,z 2=-2,所以平面AED 的一个法向量为n 2=(2,2,-2),所以|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=|2×2+2×2-2×2|22+22+22·22+22+(-2)2=13, 故平面ABC 与平面AED 所成锐二面角的余弦值为13. 二、创新拓展练4.如图1,四边形ABCD 为梯形,AD ∥BC ,BM ⊥AD 于点M ,CN ⊥AD 于点N ,∠A =45°,AD =4BC =4,AB =2,现沿CN 将△CDN 折起,使△ADN 为正三角形,且平面ADN ⊥平面ABCN ,过BM 的平面与线段DN ,DC 分别交于点E ,F ,如图2.(1)求证:EF⊥DA;(2)在棱DN上(不含端点)是否存在点E,使得直线DB与平面BMEF所成角的正弦值为3 4,若存在,请确定E点的位置;若不存在,说明理由.(1)证明因为BM⊥AD,CN⊥AD,所以BM∥CN.在四棱锥D-ABCN中,CN⊂平面CDN,BM⊄平面CDN,所以BM∥平面CDN.又平面BMEF∩平面CDN=EF,所以BM∥EF.因为平面ADN⊥平面ABCN且交于AN,BM⊥AN,所以BM⊥平面ADN,即EF⊥平面ADN.又DA⊂平面ADN,所以EF⊥DA.(2)解存在,E为棱DN上靠近N点的四等分点.因为∠A=45°,AD=4BC=4,AB=2,所以AM=MN=BM=CN=1,DN=2,因为DA=DN,连接DM ,所以DM ⊥AN .又平面ADN ⊥平面ABCN 且交于AN ,故DM ⊥平面ABCN .如图,以M 为坐标原点,分别以MA ,MB ,MD 所在直线为x ,y ,z 轴建立空间直角坐标系,则D (0,0,3),B (0,1,0),M (0,0,0),N (-1,0,0),DB →=(0,1,-3),BM →=(0,-1,0),ND →=(1,0,3). 设NE →=λND →(0<λ<1),则E (λ-1,0,3λ),ME →=(λ-1,0,3λ).设平面BMEF 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧BM →·n =0,ME →·n =0,即⎩⎨⎧-y =0,(λ-1)x +3λz =0,不妨令x =3λ,则z =1-λ,n =(3λ,0,1-λ).设直线DB与平面BMEF所成的角为α,则有sin α=|cos〈n,DB→〉|=|n·DB→||n||DB→|=|3(λ-1)|23λ2+(1-λ)2=34.解得λ=14或λ=-12(舍去),所以NE→=14ND→,即在棱DN上存在点E,使得直线DB与平面BMEF所成角的正弦值为3 4,此时E为棱DN上靠近N点的四等分点.。

专题五 立体几何专题复习

专题五 立体几何专题复习

专题五、立体几何1、线面平行的证法:面∥线面线面线线∥线⇒⎪⎭⎪⎬⎫⊄⊂①关键是在平面内找(用直尺平移到平面内)一条直线与已知直线平行②在证线线平行时,常用到三角形中位线定理或平行四边形对边平行2、线面垂直的证法:αα面线面线线线线线线线⊥⇒⎪⎪⎭⎪⎪⎬⎫⊂⊥⊥l b a b a b l al ,关键是在平面内找两条相交直线与已知直线垂直 3、面面垂直的证法βαβα面面面线面线⊥⇒⎭⎬⎫⊂⊥l l4、面面垂直的作用(证明线面垂直)αββαβα面线线线面线线面面面面⊥⇒⎪⎪⎭⎪⎪⎬⎫⊥⊂=⊥l m l l m注:在条件中寻找线线垂直时,常用结论有①勾股定理逆定理 ②等腰三角形三线合一 ③直径所对圆周角是直角一、考点分析:(理科)考点一:三视图与表面积、体积的结合三视图的识别,多以考查组合体为主,大部分是已知部分(或全部)三视图,进而考查立体图形直观图的还原及计算问题。

几何体的表面积和体积的综合,往往以球为载体,结合棱柱、棱锥。

近三年高考题2011年(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为(15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥O ABCD -的体积为 。

2012年(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A )6 (B )9 (C )12 (D )18(11)已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为 (A )26 (B )36 (C )23 (D )222013年(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为考点二:空间线面关系的判断该部分的基础是平面的性质、空间直线与直线的位置关系,重点是空间线面平行和垂直关系的判定和性质,面面平行和垂直关系的判定和性质.在复习中要牢牢掌握四个公理和八个定理及其应用,重点掌握好平行关系和垂直关系的证明方法. 考点三:求空间角考查空间角的计算为主,解决这类问题往往有两种方法:传统几何法和向量法,这两种方法各有所长,传统几何法的主要思想是把立体问题转化为平面问题,难点在逻辑推理、空间想象能力;向量法在建立空间坐标系后把问题转化成坐标运算,其难点在代数运算。

高考数学复习典型题型专题讲解与练习37 立体几何图形-

高考数学复习典型题型专题讲解与练习37 立体几何图形-

高考数学复习典型题型专题讲解与练习专题37立体几何图形题型一棱柱的几何特征【例1】下列命题正确的是()A.棱柱的每个面都是平行四边形B.一个棱柱至少有五个面C.棱柱有且只有两个面互相平行D.棱柱的侧面都是矩形【答案】B【解析】对于A,棱柱的上下底面可以是三角形或者是梯形,故A不正确;对于B,面最少的就是三棱柱,共有五个面,B正确;对于C,长方体是棱柱,但是上下、左右、前后都是互相平行的,C不正确;对于D,斜棱柱的侧面可以不是矩形,D错误.【变式1-1】下列关于四棱柱的说法:①四条侧棱互相平行且相等;②两对相对的侧面互相平行;③侧棱必与底面垂直;④侧面垂直于底面.其中正确结论的个数为()A.1B.2C.3D.4【答案】A【解析】由题意,根据棱柱的定义:侧棱垂直于底面的四棱柱叫做直四棱柱,由四棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等,①正确;②两对相对的侧面互相平行,不正确,如下图:左右侧面不平行.本题题目说的是“四棱柱”不一定是“直四棱柱”,所以,③④不正确.【变式1-2】下列命题正确的是().A .有两个面互相平行,其余各面都是四边形的几何体叫作棱柱B .棱柱中互相平行的两个面叫作棱柱的底面C .棱柱的侧面是平行四边形,而底面不是平行四边形D .棱柱的侧棱都相等,侧面是平行四边形【答案】D【解析】由棱柱的定义可知,只有D 正确,对于选项,,A B C 分别构造反例图形如下:A :平面ABCD 与平面1111D CB A 平行,四边形ABCD 与1111DC B A 相似不全等,故A 错;B :正六棱柱的相对侧面11ABB A 与11EDD E 平行,但不是底面,故B 选项错误;C :直四棱柱底面ABCD 是菱形,故C 选项错误.故选:D .【变式1-3】(多选题)下列说法错误的是( )A .有2个面平行,其余各面都是梯形的几何体是棱台B .多面体至少有3个面C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面为平行四边形【答案】ABC【解析】选项A错误,反例如图①;一个多面体至少有4个面,如三棱锥有4个面,不存在有3个面的多面体,所以选项B错误;选项C错误,反例如图②,上、下底面是全等的菱形,各侧面是全等的正方形,它不是正方体;根据棱柱的定义,知选项D正确.①②题型二棱锥和棱台的几何特征【例2】下列说法正确的是()A.有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥B.有两个面平行且相似,其余各面都是梯形的多面体是棱台C.如果一个棱锥的各个侧面都是等边三角形,那么这个棱锥可能为六棱锥D.如果一个棱柱的所有面都是长方形,那么这个棱柱是长方体【答案】D【解析】A:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面围成的多面体是棱锥,其余各面的三角形必须有公共的顶点,故A错误;B:棱台是由棱锥被平行于棱锥底面的平面所截而得的,而有两个面平行且相似,其余各面都是梯形的多面体不一定是棱台,因为侧棱延长不一定交于一点,故B 错误;C:当棱锥的各个侧面的共顶点的角之和是360 时,各侧面构成平面图形,构不成棱锥,由此推导出这个棱锥不可能为六棱锥,即选项C错误;D:若每个侧面都是长方形,则说明侧棱与底面垂直,又底面也是长方形,符合长方体的定义,即选项D正确.故选:D.【变式2-1】(多选)下列说法正确的是()A.如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等B.五棱锥只有五条棱C.一个棱柱至少有五个面D.棱台的各侧棱延长后交于一点【答案】CD【解析】四棱锥的底面是正方形,它的侧棱可以相等,也可以不相等,A错误;五棱锥除了五条侧棱外,底面上还有五条棱,故共10条棱,B错误;一个棱柱最少有三个侧面,两个底面,故至少有五个面,C正确;棱台是由平行于棱锥底面的截面截得,故棱台的各侧棱延长后交于一点,D正确.【变式2-2】下列命题中,正确的是()A.有两个侧面是矩形的棱柱是直棱柱B.底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱C.侧面都是矩形的四棱柱是长方体D.侧面都是等腰三角形的棱锥是正棱锥【答案】B【解析】对于A,根据直棱柱的概念,侧棱垂直于底面的棱柱是直棱柱,有两个侧面是矩形的棱柱可能是斜棱柱,只有相邻的两个侧面是矩形时,才是直棱柱,故A不正确;对于B,有相邻两个侧面与底面垂直的棱柱,可知侧棱垂直于底面,又底面为正多边形,故B正确;对于C,侧面都是矩形的直棱柱,底面不是矩形,不是长方体,故C不正确;对于D,侧面都是等腰三角形,底面不是正多边形的棱锥不是正棱锥,故D不正确.【变式2-3】下列说法正确的是________.①一个棱锥至少有四个面;②如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等;③五棱锥只有五条棱;④用与底面平行的平面去截三棱锥,得到的截面三角形和底面三角形相似.【答案】①④【解析】①正确.②不正确,四棱锥的底面是正方形,它的侧棱可以相等.也可以不等.③不正确,五棱锥除了五条侧棱外,还有五条底边,故共10条棱.④正确.题型三旋转体的几何特征类型1 旋转体的概念【例3-1】一个直角三角形绕斜边所在直线旋转360°形成的空间几何体为()A.一个圆锥B.一个圆锥和一个圆柱C.两个圆锥D.一个圆锥和一个圆台【答案】C【解析】此直角三角形被斜边上的高线所在直线分成两个小的直角三角形,绕斜边所在直线旋转360°,相当于绕小直角三角形的直角边所在直线旋转360°,得到的空间几何体是两个同底的圆锥.故选C.【变式3-1】(1)如图,第一排的图形绕虚线旋转一周能形成第二排中的某个几何体.请写出第一排、第二排中相应的图形的对应关系________.A.B.C.D.【答案】(1)~C,(2)~B,(3)~D,(4)~A【解析】对于(1),旋转所得是半球,对应C;对于(2)旋转所得是两个圆锥,对应B;对于(3)旋转所得是一个圆锥和一个圆柱,对应D;对于(4)旋转所得是圆锥,对应A.故填:(1)~C,(2)~B,(3)~D,(4)~A.【变式3-1】(2)如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为( )A.一个球体B.一个球体中间挖去一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体【答案】B【解析】圆面旋转一周形成球,圆中的矩形旋转一周形成一个圆柱,所以选B.【变式3-1】(3)经过旋转可以得到图中几何体的是()A. B. C. D.【答案】A【解析】上部为一个圆锥,下部是一个与圆锥同底的圆台,圆锥可由一直角三角形以一直角边所在的直线为轴旋转一周得到,圆台可由一直角梯形以垂直于两底的腰所在的直线为轴旋转一周得到,通过上述判断再对选项中的平面图形适当分割,只有A符合.故选A.【变式3-1】(4)以一个等边三角形的底边所在的直线为旋转轴旋转一周所得的几何体是A.一个圆柱 B.一个圆锥 C.两个圆锥 D.一个圆台【答案】C【解析】以一个等边三角形的底边所在的直线为旋转轴旋转一周所得的几何体是两个圆锥。

专题11 立体几何 11.3平行与垂直证明 题型归纳讲义-2022届高三数学一轮复习(解析版)

专题11 立体几何 11.3平行与垂直证明 题型归纳讲义-2022届高三数学一轮复习(解析版)
因为点 E 是 AC 中点,点 F 为 AB 的中点,
所以 EF∥BC.
又因为 EF⊄平面 PBC,BC⊂平面 PBC,
△PAD 是正三角形,平面 PAD⊥平面 PBD.
(Ⅰ)求证:PA⊥BD;
(Ⅱ)设二面角 P﹣BD﹣A 的大小为α,直线 PA 与平面 PBC 所成角的大小为β,求 cos
(α+β)的值.
【解答】(Ⅰ)证明:∵∠BAD=45°,AD=1,�� = 2,
∴由余弦定理,得:
BD=
1 + 2 − 2 × 1 × 2 × ���45° =1,…(2 分)
性质定理
行,则过这条直线的任一
∵l∥α,
平面与此平面的交线与
l⊂β,α∩β
该直线平行(简记为“线面
=b,∴l∥b
平行⇒线线平行”)
2.平面与平面平行的判定定理和性质定理
文字语言
判定定理
图形语言
符号语言
一个平面内的两条相交
∵a∥β,b
直线与另一个平面平行,
∥β,a∩b
则这两个平面平行(简记
=P,a⊂α,
⊥AC,
所以 PA⊥面 ABC,
因为 BC⊂平面 ABC,
所以 PA⊥BC.
又因为 AB⊥BC,且 PA∩AB=A,
所以 BC⊥面 PAB.
….(9 分)
(Ⅲ)解:当点 F 是线段 AB 中点时,过点 D,E,F 的平面内的任一条直线都与平面 PBC
平行.
取 AB 中点 F,连 EF,连 DF.
由(Ⅰ)可知 DE∥平面 PBC.
��
理由.
【解答】(Ⅰ)证明:取 AB 中点 O,连接 EO,DO.
因为 EA=EB,所以 EO⊥AB. …(2 分)

高考数学复习总结专题05 立体几何(选择题、填空题) (解析版)

高考数学复习总结专题05 立体几何(选择题、填空题) (解析版)

立体几何(选择题、填空题)1.【2020年高考全国Ⅰ卷理数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()515 1 5 1 5 1A. B. C. D.4 2 4 2【答案】C【解析】【分析】1设C D a,PE b,利用P O2 CD PE 得到关于a,b的方程,解方程即可得到答案.22a【详解】如图,设C D a,PE b,则P O PE 2 2 2 ,OE b41 a2 1 b b由题意P O2 ab,即b 2 ab,化简得4() 2 210,2 4 2 a ab1 5解得(负值舍去).a 4故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.2.【2020年高考全国I I卷理数】如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为()A. EB. FC.GD.H【答案】A【解析】【分析】根据三视图,画出多面体立体图形,即可求得M 点在侧视图中对应的点.【详解】根据三视图,画出多面体立体图形,D D B C上的点在俯视图中对应的点为N,3 4上的点在正视图中都对应点M,直线1 4∴在正视图中对应M ,在俯视图中对应N 的点是D4,线段D D,上的所有点在侧试图中都对应E ,∴点3 4D4在侧视图中对应的点为E .故选:A【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.A, B,C 为球O 的球面上的三个点,⊙O为 A B C的外接圆,若⊙O3. 【2020 年高考全国Ⅰ卷理数】已知11的面积为 4π , AB BC AC OO ,则球O的表面积为()1A. 64πB. 48πC. 36πD. 32π【答案】A 【解析】 【分析】由已知可得等边 AB C 的外接圆半径,进而求出其边长,得出O O的值,根据球的截面性质,求出球的半 1径,即可得出结论. 【详解】设圆O半径为 ,球的半径为 R ,依题意, r 14,r 2 , A B C为等边三角形,得r2由正弦定理可得 AB 2rsin 60 2 3 ,O O AB 2 3 ,根据球的截面性质O O 平面 ABC , 11 O O O A ,R OA O O2 O A 2 OO 1 2 r 4 , 21 1 1 1 O 球2 的表面积 S 4R 64 .故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题. 4. 【2020 年高考全国Ⅲ理数】下图为某几何体的三视图,则该几何体的的表面积是( )A.6+4 2B.4+4 2C.6+2 3D.4+2 3【答案】C【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【详解】根据三视图特征,在正方体中截取出符合题意的立体图形1根据立体图形可得:S△ABC S△AD C S△C DB 22 22根据勾股定理可得:AB A D DB 2 2△A DB是边长为22的等边三角形根据三角形面积公式可得:1 1 3S △A D B AB AD s in60(22) 2 2 32 2 2该几何体的表面积是:3223623.故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题. 5. 【2020 年高考全国 I I 卷理数】已知△ABC 是面积为若球 O 的表面积为 16π,则 O 到平面 ABC 的距离为( 3 9 34的等边三角形,且其顶点都在球 O 的球面上. )3 A. 3 B.C. 1D.22【答案】C 【解析】 【分析】根据球O 的表面积和 ABC 的面积可求得球O 的半径 R 和 AB C 外接圆半径 ,由球的性质可知所求距r 离 2 2 .d R r 【详解】设球O 的半径为 R ,则 4 R 16 ,解得: R 2 . 2 设 AB C 外接圆半径为 ,边长为 a,r 9 3ABC是面积为 的等边三角形, 41 3 9 32 a 22 9 a 2 ,解得: a 3,r a 2 93 , 2 24 3 4 3 4球心 O 到平面 ABC 2 2 的距离d R r 43 1.故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明 确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.6. 【2019 年高考全国Ⅰ卷理数】已知三棱锥 P −AB C 的四个顶点在球 O 的球面上,PA=PB=P C ,△ABC 是边 长为 2 的正三角形,E ,F 分别是 PA ,AB 的中点,∠CEF =90°,则球 O 的体积为A .8 6B . 4 6 D . 6C . 2 6 【答案】D【解析】解法一: PA P B PC, ABC 为边长为 2 的等边三角形,P ABC为正三棱锥,△ PB AC ,又 E , F 分别为 PA , AB 的中点,EF ∥PB ,EF AC ,又 EF CE ,C E AC C,EF 平面 PAC ,∴ PB 平面 PAC ,APB PA PB PC 2 ,P ABC 为正方体的一部分, 2R 2 2 2 6 ,即6 4 4 6 68 R, V R 3 π 6,故选 D . P A, AB 2 3 3解法二:设 PA PB PC 2x ,E, F 分别为 的中点, 1EF ∥PB ,且 EF PB x ,△ABC 为边长为 2 的等边三角形,C F 3 ,21 又 CEF 90,CE 3 x 2, AE PA x , 2 x 243 x 22 x2△AEC 中,由余弦定理可得 cos EAC作 PD AC 于 D ,,A D 1 x 2 4 3 x 4x 21PA PC \ D AC cos EAC , , 为 的中点, ,PA 2x 2x1 2 2x 2 1 2,x 2,x ,PA PB PC 2 ,2 2又 AB=B C=A C=2 , PA , PB , PC 两两垂直,6 2R 2 2 2 6 ,R,24 4 6 68 V R 3 6 ,故选 D. 3 3【名师点睛】本题主要考查学生的空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到 三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.7. 【2019 年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 C .α,β平行于同一条直线 【答案】BB .α内有两条相交直线与β平行 D .α,β垂直于同一平面【解析】由面面平行的判定定理知: 内两条相交直线都与 平行是∥的充分条件,由面面平行性质定理知,若∥,则必要条件,故选 B .内任意一条直线都与 平行,所以平行是∥内两条相交直线都与的【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用 面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易 犯的错误为定理记不住,凭主观臆断,如:“若 a ,b ,a b ,则 ∥ ∥”此类的错误.8. 【2019 年高考全国Ⅲ卷理数】如图,点 N 为正方形 AB C D 的中心,△EC D 为正三角形,平面 EC D ⊥平 面 ABC D ,M 是线段 E D 的中点,则A .B M =E N ,且直线 B M ,EN 是相交直线 B .B M ≠EN ,且直线 B M ,E N 是相交直线C .B M =E N ,且直线 B M ,E N 是异面直线D .B M ≠EN ,且直线 B M ,EN 是异面直线 【答案】B【解析】如图所示,作 EO C D 于O ,连接O N ,B D ,易得直线 B M ,E N 是三角形 EB D 的中线,是 相交直线.过 M 作 MF OD 于 F ,连接 BF ,AB C D ,E O C D, E O 平面C DE ,EO平面C D E 平面 平面 ABC D , M F 平面 AB C D ,△MFB 与△EO N 均为直角三角 形 . 设 正 方 形 边 长 为 2 , 易 知 E O 3,ON 1,EN 2 ,3 5M F,BF ,BM 7 ,B M EN ,故选 B .2 2【名师点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.解答本题时,先利 用垂直关系,再结合勾股定理进而解决问题.9. 【2018 年高考全国Ⅰ卷理数】某圆柱的高为 2,底面周长为 16,其三视图如图.圆柱表面上的点 M 在正 视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到 N 的路径中,最短路径的长度为A . 2 17B . 2 5 D .2C .3 【答案】B【解析】根据圆柱的三视图以及其本身的特征,知点 M 在上底面上,点 N 在下底面上,且可以确定点 M 和点 N 分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处, 所以所求的最短路径的长度为 ,故选 B .【名师点睛】该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需 要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平 铺,利用平面图形的相关特征求得结果.10. 【2018 年高考全国Ⅰ卷理数】已知正方体的棱长为 1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为3 342 3 3 A .C .B .D .3 2 43 2【答案】A【解析】根据相互平行的直线与平面所成的角是相等的,AB C D A B C D 中,1所以在正方体 1 1 1AB D AA , A B , A D 所成的角是相等的,11 11 1平面 与线 1 1AB D 所以平面 与正方体的每条棱所在的直线所成角都是相等的,11 C BD 1同理,平面 也满足与正方体的每条棱所在的直线所成角都是相等的,AB D C BD要求截面面积最大,则截面的位置为夹在两个面与1中间,且过棱的中点的正六边形,且1 12边长为,223 2 3 34所以其面积为S 6,故选A.4 2【名师点睛】该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.即首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.11.【2018年高考全国Ⅲ卷理数】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【答案】A【解析】本题主要考查空间几何体的三视图.由题意知,俯视图中应有一不可见的长方形,且俯视图应为对称图形.故选A.12.【2018年高考全国Ⅲ卷理数】设A ,,,是同一个半径为的球的球面上四点,△A B C 为等边三B C D 4角形且其面积为A.12 3,则三棱锥D ABC 体积的最大值为9 3B.18 3D.54 3C.24 3【答案】B【解析】如图所示,设点 M 为三角形 ABC 的重心,E 为 AC 中点,当点 D 在平面 ABC 上的射影为 M 时,三棱锥 D ABC 的体积最大,此时,O D OB R 4,3 S △AB CAB 9 3 ,AB 6 ,点 M 为三角形 ABC 的重心,2 4 2B M BE 2 3 ,3 Rt △OB M 中,有O M OB 2 2 2,D M O D O M 4 2 6,B M1V DABCm ax9 36 18 3 ,故选 B. 3【名师点睛】本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公 式,判断出当点 D 在平面 ABC 上的射影为三角形 AB C 的重心时,三棱锥 DABC 体积最大很关键,2由 M 为三角形 ABC 的重心,计算得到 B M BE 2 3 ,再由勾股定理得到 O M ,进而得到结果, 3属于较难题型.13. 【2018 年高考全国Ⅱ卷理数】在长方体 AB C D A B C D 中,AB BC 1,AA 3 ,则异面直线 A D 与 1 1 1 1 11 D B 所成角的余弦值为1 1 A .5 5 B . D .6 5 2 C .52【答案】C【解析】方法一:用一个与原长方体相同的长方体拼到原长方体的前面,B P ∥A D D B DP= 5B P 2,,则11如图,则 1,连接 DP ,易求得 1 DB P A D DB与所成的角,11是异面直线1 D B2 1 B P 2 DP 25 4 5 5 由余弦定理可得cos DB P 1. 12DB PB 4 5 5 1 1故选 C.方法二:以 D 为坐标原点,DA,D C,D D 所在直线分别为 x ,y ,z 轴建立空间直角坐标系, 1D 0, 0, 0, A 1, 0, 0,B 1, 1, 3,D 0, 0, 3A D1, 0, 3 ,DB 1, 1, 3 ,则 ,所以 1 1 1 1cos AD , DB A D DB A D DB 1 3 2 5 5 1 1因为 , 1 15 1 15 A D DB 所以异面直线 与 所成角的余弦值为 1,故选 C. 15【名师点睛】先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角 与线线角相等或互补关系求结果.利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”, 构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”, 求出直线的方向向量或平面的法向量;第四,破“应用公式关”. ABC A B C 中, ABC 120 BC CC 1,AB 2 ,,113. 【2017 年高考全国Ⅱ卷理数】已知直三棱柱1 1 1 AB BC 所成角的余弦值为1则异面直线 与 13 15 5 A .B .D .2 103 C . 53【答案】CAB C D A B C D ,1【解析】如图所示,补成直四棱柱 1 1 1则所求角为 BC D,BC 2, BD 2 21 221cos 60 3,C D AB 5 ,11 1 1 BC12 5105 易得 C D 12 BD 2BC 12 ,因此cos BC D,故选 C . 1C D1【名师点睛】平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为 共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是(0,],当所作的角为钝角时,应取它的补角作为两条异面2直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围.14.【2017年高考全国Ⅰ卷理数】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12D.16C.14【答案】B【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)212,故选.B2【名师点睛】三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图.15.【2017年高考全国Ⅱ卷理数】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90 C.42B.63 D.36【答案】B【解析】由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积V 32 436,上半部分是一个底面半径为,高为的圆柱的一半,其体积3 611 V (3 26) 27,故该组合体的体积V V V36 27 63.21 2 2故选 B .【名师点睛】在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规 则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何 体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空 间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用 相应体积公式求解.16. 【2017 年高考全国Ⅲ卷理数】已知圆柱的高为 1,它的两个底面的圆周在直径为 2 的同一个球的球面上,则该圆柱的体积为3π π A .C .B .D .4 π π24【答案】B【解析】绘制圆柱的轴截面如图所示:21 1 3 由题意可得: AC 1, AB ,结合勾股定理,底面半径 r 1 2,2 2 223 3由圆柱的体积公式,可得圆柱的体积是V πr 2h π 1 π ,故选 B.2 4【名师点睛】(1)求解空间几何体体积的关键是确定几何体的元素以及线面的位置关系和数量关系, 利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、 补形法等方法进行求解.17. 【2020 年高考全国 I I 卷理数】设有下列四个命题: p :两两相交且不过同一点的三条直线必在同一平面内.1p :过空间中任意三点有且仅有一个平面.2p :若空间两条直线不相交,则这两条直线平行.3p :若直线 l 平面α,直线 m ⊥平面α,则 m ⊥l . 4则下述命题中所有真命题的序号是__________.p p p p p ppp③④122334① ② 1 4【答案】①③④【解析】【分析】p p2利用两交线直线确定一个平面可判断命题的真假;利用三点共线可判断命题的真假;利用异面直线可1p p4判断命题的真假,利用线面垂直的定义可判断命题的真假.再利用复合命题的真假可得出结论.3p1l1l2【详解】对于命题,可设与相交,这两条直线确定的平面为;l l若与相交,则交点A 在平面内,3 1l l同理,与的交点B 也在平面内,3 2所以,AB ,即l3,命题为真命题;p1p2对于命题,若三点共线,则过这三个点的平面有无数个,p命题为假命题;2p对于命题,空间中两条直线相交、平行或异面,3p命题为假命题;3p4,若直线m 平面,对于命题m 垂直于平面则内所有直线,直线l 平面,直线m 直线,lp命题为真命题.4综上可知,,为真命题,,为假命题,p p p p为假命题,1 2为真命题,1 4p p p p为真命题.3 4为真命题,2 3故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力, 属于中等题.18. 【2020 年高考全国Ⅲ理数】已知圆锥的底面半径为 1,母线长为 3,则该圆锥内半径最大的球的体积为_________. 2 【答案】 3【解析】 【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值. 【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,B C 2, AB AC 3 其中 ,且点 M 为 BC 边上的中点,设内切圆的圆心为O ,1由于A M 3 2 1 22 2 ,故 S △ABC2 2 2 2 2 , 2r设内切圆半径为 ,则:1 1 1 S △AB C S △A O B S △BO C S △A O C AB r BC r AC r2 2 21 3 3 2r2 2 ,22 4 2解得: r =,其体积:V r 3 . 2 3 32故答案为:. 3【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的 位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于 球的直径.19. 【2019 年高考全国Ⅲ卷理数】学生到工厂劳动实践,利用 3D 打印技术制作模型.如图,该模型为长方体AB C D A B C D 挖去四棱锥 O —EF G H 后所得的几何体,其中 O 为长方体的中心,E ,F ,G ,H 分11 1 1AB = BC = 6 cm, AA = 4 cm 别为所在棱的中点, ,3D 打印所用原料密度为 0.9 g/cm 3,不考虑打印 1损耗,制作该模型所需原料的质量为___________g .【答案】118.81【解析】由题意得, S 46 4 23 12cm 2 ,四边形EF G H2 1∵四棱锥 O −EF G H 的高为 3cm , ∴V O EF G H 123 12cm 3 .3AB C D A B C D V 466 144cm,3又长方体 的体积为 1 1 1 1 2 所以该模型体积为 VV V144 12 132cm 3 ,其质量为 0.9132 118.8g .OEF G H2 【名师点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式 求解.根据题意可知模型的体积为长方体体积与四棱锥体积之差进而求得模型的体积,再求出模型的质 量即可.20. 【2019 年高考全国Ⅱ卷理数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图 1).半正多面体是 由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图 2 是一个棱数为 48 的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为 1.则该半正多面体共 有________个面,其棱长为_________.(本题第一空 2 分,第二空 3 分.)【答案】26,21【解析】由图可知第一层(包括上底面)与第三层(包括下底面)各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826个面.x如图,设该半正多面体的棱长为,则AB BE x,延长CB与FE 的延长线交于点G,延长BC交正方体的棱于H ,由半正多面体对称性可知,△BG E 为等腰直角三角形,2 2BG GE C H x,G H 2x x(21)x1,2 21x21,21即该半正多面体的棱长为21.【名师点睛】本题立意新颖,空间想象能力要求高,物体位置还原是关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键.立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形.721.【2018年高考全国I I卷理数】已知圆锥的顶点为S,母线SA,SB 所成角的余弦值为,SA与圆锥8 底面所成角为45°,若△SAB 的面积为515,则该圆锥的侧面积为__________.【答案】402π7 15 8【解析】因为母线 SA , SB 所成角的余弦值为 ,所以母线 SA , SB 所成角的正弦值为,因为 81 15 8 △SAB 的面积为5 15 ,设母线长为l ,所以l 2 25 15 ,l80 , 2π 2因为 SA 与圆锥底面所成角为 45°,所以底面半径为 r l cosl , 4 22 因此圆锥的侧面积为 πr lπl 40 2π. 22【名师点睛】本题考查线面角、圆锥的侧面积、三角形面积等知识点,考查学生空间想象与运算能力. 先根据三角形面积公式求出母线长,再根据母线与底面所成角得底面半径,最后根据圆锥侧面积公式 求结果.22. 【2017 年高考全国 I 卷理数】如图,圆形纸片的圆心为 O ,半径为 5 c m ,该纸片上的等边三角形 ABC 的中心为 O.D ,E ,F 为圆 O 上的点,△DB C ,△ECA ,△FA B 分 别是以 BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以 BC ,CA ,AB 为折 痕折起△DB C ,△ECA ,△FAB ,使得 D ,E ,F 重合,得到三棱锥.当△ABC 的边长变 化时,所得三棱锥体积(单位:cm 3)的最大值为 【答案】 4 15.【解析】如下图,连接 DO 交 BC 于点 G ,设 D ,E ,F 重合于 S 点,正三角形的边长为 x(x>0),则 1 3 3O G x x. 3 2 63FG SG 5x , 6223 3x3x, SO h SG2GO2 5 x 556 631 1 3 3 15 3 三棱锥的体积V S △ABC h x2 5 5 x 4 x 5 . 5x3 34 3 1233 5 3 设 n x 5x 4x 5 ,x>0,则 n x 20x 3 x 4, 3 3x 4 n x 0 ,即 4x 30,得 ,易知 n x 在 令 处取得最大值. x 4 3x 4 3 3 15∴V max 48 5 4 4 15 .12【名师点睛】对于三棱锥最值问题,需要用到函数思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导的方式进行解决.。

高三立体几何专题复习

高三立体几何专题复习

高考立体几何专题复习一.考试要求:〔1〕掌握平面的根本性质,会用斜二测的画法画水平放置的平面图形的直观图,能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。

〔2〕了解空两条直线的位置关系,掌握两条直线平行与垂直的判定定理和性质定理,掌握两条直线所成的角和距离的概念〔对于异面直线的距离,只要求会计算已给出公垂线时的距离〕。

〔3〕了解空间直线和平面的位置关系,掌握直线和平面平行的判定定理和性质定理,理解直线和平面垂直的判定定理和性质定理,掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念,了解三垂线定理及其逆定理。

〔4〕了解平面与平面的位置关系,掌握两个平面平行的判定定理和性质定理。

掌握二面角、二面角的平面角、两个平面间的距离的概念,掌握两个平面垂直的判定定理和性质定理。

〔5〕会用反证法证明简单的问题。

〔6〕了解多面体的概念,了解凸多面体的概念。

〔7〕了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。

〔8〕了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。

〔9〕了解正多面体的概念,了解多面体的欧拉公式。

〔10〕了解球的概念,掌握球的性质,掌握球的外表积、体积公式。

二.复习目标:1.在掌握直线与平面的位置关系(包括直线与直线、直线与平面、平面与平面间的位置关系)的根底上,研究有关平行和垂直的的判定依据(定义、公理和定理)、判定方法及有关性质的应用;在有关问题的解决过程中,进一步了解和掌握相关公理、定理的容和功能,并探索立体几何中论证问题的规律;在有关问题的分析与解决的过程中提高逻辑思维能力、空间想象能力及化归和转化的数学思想的应用.2.在掌握空间角(两条异面直线所成的角,平面的斜线与平面所成的角及二面角)概念的根底上,掌握它们的求法(其根本方法是分别作出这些角,并将它们置于*个三角形通过计算求出它们的大小);在解决有关空间角的问题的过程中,进一步稳固关于直线和平面的平行垂直的性质与判定的应用,掌握作平行线(面)和垂直线(面)的技能;通过有关空间角的问题的解决,进一步提高学生的空间想象能力、逻辑推理能力及运算能力.3.通过复习,使学生更好地掌握多面体与旋转体的有关概念、性质,并能够灵活运用到解题过程中.通过教学使学生掌握根本的立体几何解题方法和常用解题技巧,开掘不同问题之间的在联系,提高解题能力.4.在学生解答问题的过程中,注意培养他们的语言表述能力和"说话要有根据〞的逻辑思维的习惯、提高思维品质.使学生掌握化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力和计算能力.5.使学生更好地理解多面体与旋转体的体积及其计算方法,能够熟练地使用分割与补形求体积,提高空间想象能力、推理能力和计算能力.三.教学过程:〔Ⅰ〕根底知识详析高考立体几何试题一般共有4道(选择、填空题1--2道, 解答题1道), 共计总分20分左右,考察的知识点在20个以. 选择填空题考核立几中的计算型问题, 而解答题着重考察立几中的逻辑推理型问题, 当然, 二者均应以正确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着"多一点思考,少一点计算〞的开展.从历年的考题变化看, 以多面体和旋转体为载体的线面位置关系的论证,角与距离的探常考常新的热门话题.1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的容,因此在主体几何的总复习中,首先应从解决"平行与垂直〞的有关问题着手,通过较为根本问题,熟悉公理、定理的容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力.2.判定两个平面平行的方法:〔1〕根据定义——证明两平面没有公共点;〔2〕判定定理——证明一个平面的两条相交直线都平行于另一个平面;〔3〕证明两平面同垂直于一条直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 5 13
cm,斜高为
cm.
5 13
学后反思 (1)把空间问题转化为平面问题去解是解决立体几何问 题的常用方法. (2)找出相关的直角梯形,构造直角三角形是解题的关键,正棱 台中许多元素都可以在直角梯形中求出.
举一反三
2. (2009·上海)若等腰直角三角形的直角边长为2,则以一直角边所 在的直线为轴旋转一周所成的几何体的体积是_____.
立体几何
第一节 空间几何体的结构及其三视图和直观图
基础梳理
1. 多面体
(1)有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形 的公共边都互相平行,由这些面所围成的多面体叫做棱柱.
(2)有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这 些面所围成的多面体叫做棱锥.
(3)用一个平行于棱锥底面的平面截棱锥,底面和截面之间的这部分 多面体叫做棱台.
分析 要判断几何体的类型,从各类几何体的结构特征入手,以柱、 锥、台的定义为依据,把复杂的几何体分割成几个简单的几何体.
解 (1)如图1所示,该几何体满足有两个面平行,其余六个面都是矩形, 可使每相邻两个面的公共边都互相平行,故该几何体是正六棱柱. (2)如图2所示,等腰梯形两底边中点的连线将梯形平分为两个直角梯 形,每个直角梯形旋转180°形成半个圆台,故该几何体为圆台. (3)如图3所示,由梯形ABCD的顶点A引AO⊥CD于O点,将直角梯形分 为一个直角三角形AOD和矩形AOCB,绕CD旋转一周形成一个组合体, 该组合体由一个圆锥和一个圆柱组成.
(2)三视图的排列顺序:先画正视图,俯视图放在正视图的下方,侧视图 放在正视图的右方. (3)三视图的三大原则:长对正、高平齐、宽相等.
(4)水平放置的平面图形的直观图的斜二测画法: ①在已知图形中,取互相垂直的x轴和y轴,两轴相交于点O,画直观图时,把 它们画成对应的x′轴和y′轴,两轴相交于O′,且使∠x′O′y′=45°(或135°),用 它们确定的平面表示水平面.
、O1O, 和
和B1CB1C的中点分别是 O都BB是1O直1 角O梯EE形1O.1
∵ =4 cm,AB=16 cm,
∴ A1=B12 cm,OE=8 cm, =2 cm,OB=8 cm,
∴ O1E1
O1B1 2
2
=1B91BcmO, 1O2 OB O1B1 2
∴E棱1E 台 的O1侧O2棱 长OE为 O119E1
△GHI三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧
视图为
()
解析 由正三棱柱的性质得,侧面AED⊥底面EFD,则侧视图必为直 角梯形,且线段BE在梯形内部.
答案 A
题型四几何体的直观图
【例4】(12分)用斜二测法画出水平放置的等腰梯形的直观图.
分析 画水平放置的直观图应遵循以下原则: (1)坐标系中∠x′O′y′=45°;
题型二 柱、锥、台中的计算问题
【例2】正四棱台的高是17 cm,两底面边长分别是4 cm和16 cm,求棱台 的侧棱长和斜高.
分析 求棱台的侧棱长和斜高的关键是找到相关的直角梯形,然后构造 直角三角形,解决问题.
解 如图所示,设棱台的两底面的中心分别是 和EE1,连接 、 O、1O E、1EOBO、1B1 、OE,O则1E四1 边形
图1
图2
图3
学后反思 对于不规则的平面图形绕轴旋转问题,要对原平面图形作适 当的分割,再根据圆柱、圆锥、圆台的结构特征进行判断.
举一反三
1. 观察如图几何体,分析它们是由哪些基本几何体组成的,并说出主要 结构特征.
解析 (1)是一个四棱柱和一个四棱锥组成的,它有9个面,9个顶 点,16条棱.(2)是由一个四棱台、一个四棱柱和一个球组成的,其 主要结构特征就是相应四棱台、四棱柱和球的结构特征.
(2)横线相等,即A′B′=AB,C′D′=CD;
(3)竖线是原来的 1,即O′E′= OE.1
2
2
画法 (1)如图1,取AB所在直线为x轴,AB中点O为原点,建立直角坐标 系,…………………………………………………………..3′ 画对应的坐标系x′O′y′,使∠x′O′y′=45°……….5′
②已知图形中平行于x轴或y轴的线段,在直观图中,分别画成平行于x′轴 或y′轴的线段. ③已知图形中平行于x轴的线段,在直观图中保持原长度不变;平行于y 轴的线段,在直观图中长度变为原来的一半.
典例分析
题型一 空间几何体的结构特征
【例1】根据下列对几何体结构特征的描述,说出几何体的名称. (1)由八个面围成,其中两个面是互相平行且全等的正六边形,其他各面都 是矩形; (2)一个等腰梯形绕着两底边中点的连线所在的直线旋转180°形成的封 闭曲面所围成的图形; (3)一个直角梯形绕较长的底边所在的直线旋转一周形成的曲面所围成的 几何体.
2. 旋转 (1)以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围 成的旋转体叫做圆柱.
(2)以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转 形成的面所围成的旋转体体叫做圆锥. (3)以半圆的直径所在的直线为旋转轴,将半圆旋转一周形成的旋转 体叫做球体,简称球.
3. 三视图和直观图 (1)三视图是从一个几何体的正前方、正左方、正上方三个不同的方 向看这个几何体,描绘出的图形,分别称为正视图、侧视图、俯视图.
解析 如图,等腰直角三角形旋转而成的旋转体为圆锥.
1
V=3
S·h=1
3
π R·2h=
π1 ×
3
×2=2
. 8
3
答案 8
3
题型三 三视图与直观图 【例3】螺栓是由棱柱和圆柱构成的组合体,如下图,画出它的三视图.
分析 螺栓是棱柱、圆柱组合而成的,按照画三视图的三大原则 “长对正,高平齐,宽相等”画出. 解 该物体是由一个正六棱柱和一个圆柱组合而成的,正视图反映正六 棱柱的三个侧面和圆柱侧面,侧视图反映正六棱柱的两个侧面和圆柱侧 面,俯视图反映该物体投影后是一个正六边形和一个圆(思 在绘制三视图时,若相邻两物体的表面相交,表面的交线是 它们的分界线,在三视图中,分界线和可见轮廓线都用实线画出.例如上 图中,表示上面圆柱与下面棱柱的分界线是正视图中的线段AB、侧视 图中的线段CD以及俯视图中的圆.
举一反三
3. (2008·广东)将正三棱柱截去三个角(如图1所示,A、B、C分别是
相关文档
最新文档