一元二次方程的根与系数的关系教学设计
一元二次方程的根与系数的关系 优秀教学设计(教案)
一元二次方程的根与系数的关系教学时间课题课型新授教学媒体多媒体教学目标知识技能1.熟练掌握一元二次方程的根与系数关系。
2.灵活运用一元二次方程的根与系数关系解决实际问题。
3.提高学生综合运用基础知识分析解决较复杂问题的能力。
过程方法学生经历探索,尝试发现韦达定理,感受不完全归纳验证以及演绎证明。
情感态度培养学生观察,分析和综合,判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神。
教学重点一元二次方程的根与系数关系。
教学难点对根与系数关系的理解和推导。
【教学过程】教学程序及教学内容师生行为设计意图一、复习引入导语:一元二次方程的根与系数有着密切的关系,早在16世纪法国的杰出数学家韦达发现了这一关系,你能发现吗?二、探究新知1.课本思考。
分析:将(x- x1)(x-x²)=0化为一般形式x²-( x1+x²)x+ x1x²=0与x²+px+ q=0对比,易知p=-( x1+x²),q= x1 x²。
即二次项系数是1的一元二次方程如果有实教师出示问题,引出课题学生初步了解本课所要研究的问题学生通过去括号、合并得到一般形式的创设问题情境,激发学生好奇心,求知欲通过思考问题,让学生知道二次项系数根,则一次项系数等于两根和的相反数,常数项等于两根之积。
2.跟踪练习。
求下列方程的两根x1、x²。
的和与积。
x²+3x+2=0; x²+2x-3=0; x²-6x+5=0; x²-6x-15=03.方程2x²-3x+1=0的两根的和、积与系数之间有类似的关系吗?分析:这个方程的二次项系数等于2,与上面情形有所不同,求出方程两根,再通过计算两根的和、积,检验上面的结论是否成立,若不成立,新的结论是什么?4.一般的一元二次方程a x²+bx+c=0(a≠0)中的a不一定是1,它的两根的和、积与系数之间有第3题中的关系吗?分析:利用求根公式,求出方程两根,再通过计算两根的和、积,得到方程的两个根x1、x²和系数a,b,c的关系,即韦达定理,也就是任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根之积等于常数项与二次项系数的比。
《一元二次方程的根与系数的关系》 教学设计
《一元二次方程的根与系数关系》教学设计教材分析:本课是在学生已经学习了一元二次方程求根公式的基础上,对一元二次方程的根与系数之间的关系进行再探究,通过本课的学习,使学生进一步了解一元二次方程两根之和、两根之积与一元二次方程中系数之间的关系.教学目标:【知识与能力目标】1.掌握一元二次方程根与系数的关系;2.能运用根与系数的关系解决具体问题.【过程与方法】经历探索一元二次方程根与系数的关系的过程,体验观察→发现→猜想→验证的思维转化过程,培养学生分析问题和解决问题的能力.【情感态度与价值观】通过观察、归纳获得数学猜想,体验数学活动充满着探索性和创造性,理解事物间相互联系、相互制约的辩证唯物主义观点,掌握由“特殊——一般——特殊”的数学思想方法,培养学生勇于探索的精神.教学重难点:【教学重点】一元二次方程根与系数的关系及其应用.【教学难点】探索一元二次方程根与系数的关系.课前准备:多媒体教学过程:问题1:(1)一元二次方程的一般形式是什么?(2)一元二次方程有实数根的条件是什么?(3)当Δ>0,Δ=0,Δ<0时,一元二次方程根的情况如何?(4)一元二次方程的求根公式是什么?[师生活动]教师指导学生回忆知识,学生进行口答,教师指出重点.[答](1)一元二次方程一般形式为ax2+bx+c=0(a≠0);(2)当△≥0时,一元二次方程有两个实数根;(3)当△>0时,一元二次方程有两个不等实根;当△=0时,一元二次方程有两个相等实根;当△<0时,一元二次方程没有实根;(4)方程ax2+bx+c=0(a≠0)的求根公式为a acbbx24 2-±-=(△≥0).【设计意图】通过对一元二次方程相关知识的复习巩固旧知识,并为新知识的学习做铺垫。
问题2:请完成下面的表格观察、思考表格中方程两根之和与两根之积与系数有何关系,你能从中发现什么规律?你有什么发现?【设计意图】学生通过计算、观察、分析,发现一元二次方程中根与系数的关系,发展学生的感性认识,体会由特殊到一般的认识过程。
《一元二次方程根与系数的关系》教案
一元二次方程根与系数的关系教学目标:1、掌握一元二次方程根与系数的关系。
2、会利用定理求解一元二次方程两根之和与两根之积。
3、通过学生自己探索,发现根与系数关系,增强学生信心,激发学生对于数学的学习兴趣和探究欲望。
教学重点1、根与系数关系及运用 教学难点1、如何通过求根公式发现韦达定理。
2、如何运用韦达定理解决一些一元二次方程的求解问题。
过程一、复习提问(1)写出一元二次方程的一般式和求根公式。
ax 2+bx+c=0 (a ≠0) x= (b 2-4ac ≥0)(2)求一个一元二次方程,使它两根分别为①2和3;②-4和7;③3和-8;④-5和-2 二、新课讲解如果方程x 2+px+q=0有两个根是x 1,x 2 那么有x 1+ x 2=-p, x 1 •x 2=q猜想:2x 2-5x+3=0,这个方程的两根之和,两根之积是与各项系数之间有什么关系?问题2;对于一元二次方程的一般式是否也具备这个特征?设x 1 、x 2是一元二次方程ax 2+bx+c=0 (a ≠0)的两个根,则两根之和与两根之积与各项系数之间有什么样的关系? x 1+x 2= x 1·x 2=三、巩固练习a acb b 242-±-a b-ac口答下列方程的两根之和和与两根之积。
1)x 2-3x+1=0 2) x 2-2x=2 3) 2x 2-3x=0 4) 3x 2=1 判断对错,如果错了,说明理由。
1) 2x 2-11x+4=0两根之和11,两根之积4。
2) x 2+2=0两根之和0,两根之积2。
3) x 2+x+1=0两根之和-1,两根之积1。
四、能力提高例题1 已知方程x 2+kx+k+2=0的两个实数根是x 1,x 2且x 12+x 22=4求k 的值 解:(略)引申:(1、若ax 2+bx +c =0 (a ≠0 且 ∆≥0) (1)若两根互为相反数,则b =0; (2)若两根互为倒数,则a =c;(3)若一根为0,则c =0 ; (4)若一根为1,则a +b +c =0 ;(5)若一根为-1,则a -b +c =0; (6)若a 、c 异号,方程一定有两个实数根例题2 方程mx 2-2mx+m-1=0(m ≠0 ) 有一个正根,一个负根,求m 的取值范围。
一元二次方程的根与系数的关系》教案
一元二次方程的根与系数的关系》教案一元二次方程的根与系数的关系知识与技能】掌握一元二次方程根与系数的关系,能够使用关系定理求已知一元二次方程的两根之和及两根之积,并解决一些简单的问题。
过程与方法】通过探究一元二次方程根与系数的关系,培养学生的观察思考、归纳概括能力和解决问题的能力,渗透整体的数学思想和求简思想。
情感态度】通过学生自主探究,发现根与系数的关系,增强研究的信心,培养科学探究精神。
教学重点】根与系数的关系及运用。
教学难点】定理的发现及运用。
一、情境导入,初步认识我们知道生活中许多事物存在着一定的规律,有人发现并验证后就得到伟大的定理,而我们的数学学科中更蕴藏着大量的规律。
那么一元二次方程中是否也存在什么规律呢?今天我们一起去探究,感受一次当科学家的滋味。
二、思考探究,获取新知解下列方程,将得到的解填入下面的表格中,观察表中x1+x2,x1·x2的值,它们与对应的一元二次方程的各项系数之间有什么关系?从中你能发现什么规律?教学说明】通过让学生计算一些特殊的一元二次方程的两根之和与两根之积,引导学生从中发现存在的一般规律,渗透特殊到一般的思考方法。
归纳总结】一般地,对于关于x的一元二次方程ax2+bx+c=0(a≠0),用求根公式求出它的两个根x1、x2,由一元二次方程ax2+bx+c=0的求根公式可知:x1=(-b+√(b^2-4ac))/2a,x2=(-b-√(b^2-4ac))/2a则有以下结果:x1+x2=-b/a,x1·x2=c/a教学说明】让学生自己发现规律,找到成功感,再从理论上加以验证,让学生经历从特殊到一般的科学探究过程。
三、运用新知,深化理解1.求下列方程的两根之和与两根之积。
1)x2-6x-15=0;2)5x-1=4x2;3)x2=4;4)2x2=3x。
2.已知关于x的方程x2-2(k-1)x+k2=0有两个实数根x1,x2.1)求k的取值范围;2)若|x1+x2|=x1x2-1,求k的值。
九年级数学上册《一元二次方程的根与系数的关系》教案、教学设计
1.通过引导学生在自主探究、合作交流的过程中发现一元二次方程的根与系数的关系,培养学生发现问题、分析问题和解决问题的能力。
2.利用具体的实例,让学生在实际操作中掌握一元二次方程的根与系数的关系,提高学生的实际操作能力和应用能力。
3.通过对一元二次方程根与系数关系的探究,培养学生数形结合的思想,让学生学会从多角度分析问题,形成严密的逻辑思维。
5.拓展延伸,提高思维:
-通过拓展延伸性问题的设置,引导学生运用一元二次方程根与系数关系解决更复杂的问题,提高学生的思维能力和创新能力。
6.总结反馈,反思提升:
-在课堂结束前,引导学生总结所学内容,进行自我反馈,发现不足,及时改进。
-教师对课堂教学进行反思,了解学生的学习情况,调整教学策略,提高教学质量。
-根据实际问题,列出一元二次方程,并运用根与系数关系求解。
3.拓展题:
-探究一元二次方程ax^2 + bx + c = 0(a≠0)的根与系数之间的关系,并给出证明。
-通过阅读教材或其他资料,了解一元二次方程根与系数关系在其他数学分支中的应用。
4.实践题:
-调查生活中的一元二次方程问题,例如:物品的定价与折扣、投资收益等,并运用所学知识解决实际问题。
(三)学生小组讨论
1.教学活动设计:
-将学生分成若干小组,针对本节课所学的一元二次方程根与系数关系,讨论以下问题:
a.一元二次方程根与系数关系在实际问题中的应用;
b.如何运用根与系数关系解决具体问题;
c.根的判别式和韦达定理在解题过程中的作用。
2.教学方法:
-采用小组合作学习法,促进学生之间的交流与讨论。
四、教学内容与过程
(一)导入新课
八年级数学下册《一元二次方程的根与系数的关系》教案、教学设计
(一)教学重难点
1.重点:一元二次方程的根与系数的关系,求根公式的推导与应用,以及在实际问题中的运用。
2.难点:
-理解判别式的概念及其在一元二次方程根的性质判断中的应用。
-对求根公式的记忆和熟练运用,尤其是公式中各个符号的含义和它们之间的关系。
-将实际问题抽象成一元二次方程模型,运用数学知识解决实际问题。
-借助几何图形或动画,形象地展示求根公式的推导过程。
-通过实际例题,指导学生如何运用求根公式解题。
(三)学生小组讨论
1.将学生分成若干小组,针对以下问题进行讨论:
-一元二次方程的根与系数之间存在哪些关系?
-如何利用判别式判断方程的根的情况?
-求根公式在解题过程中的作用是什么?
2.各小组汇报讨论成果,老师进行点评和补充。
4.教学策略与方法:
-采用差异化教学,针对不同学生的学习风格和能力水平,提供个性化的指导和帮助。
-利用信息技术,如数学软件、在线平台等,为学生提供丰富的学习资源和工具,提高学习效率。
-定期进行学习反馈,通过作业、小测验等形式,及时了解学生的学习情况,调整教学进度和方法。
5.情感态度与价值观的培养:
-在教学过程中,注重鼓励学生,增强他们的自信心,培养面对困难的勇气和解决问题的毅力。
二、学情分析
八年级学生已经具备了一定的数学基础,掌握了一元一次方程的解法及其应用,对于一元二次方程也有初步的认识。在此基础上,学生对于本章节《一元二次方程的根与系数的关系》的学习,既有知识储备上的优势,也存在一定难度。大部分学生能够理解根与系数的关系,但可能在运用求根公式解题时,对公式的记忆和运用上存在困难。此外,学生在解决实际问题时,可能难以将问题抽象成一元二次方程模型。因此,在教学过程中,教师应关注以下几点:
一元二次方程的根与系数的关系教案
一元二次方程的根与系数的关系教案一元二次方程的根与系数的关系教案一、教学目标(一)知识与技能通过观察、归纳、类比、讨论等活动,探索并掌握一元二次方程的根与系数的关系.(二)过程与方法通过对方程的求解过程进行回顾,渗透从特殊到一般的数学思想,并培养学生的观察、探究能力.(三)情感态度与价值观通过一元二次方程根与系数的关系的探究,培养学生初步形成对数学整体性的认识以及前后一致的逻辑推理能力.二、教学重难点教学重点:掌握一元二次方程的根与系数的关系.教学难点:将根的判别式由数值计算推广到字母运算,正确理解判别式的意义.三、教学过程(一)导入新课,明确目标师:同学们,上一节课我们学习了如何解一元二次方程,并且通过几道例题对解法进行了具体的阐述。
今天我们将在此基础上,探究一元二次方程的根与系数的关系。
那么什么是一元二次方程的根与系数呢?如何用数学语言描述呢?带着这些问题,我们一起学习今天的课题“一元二次方程的根与系数的关系”。
(二)自主探究,掌握新知定义一元二次方程的根与系数。
师:首先请同学们思考一下,一元二次方程的根是什么?系数又是什么?他们之间存在什么样的关系呢?现在我们一起来探讨一下。
假设ax²+bx+c=0(a≠0)是关于x的一元二次方程,那么x1,x2是它的两个实数根。
其中a、b、c分别是方程的系数。
那么,根与系数之间存在什么样的关系呢?我们可以通过以下步骤进行探究:(1)分别计算出x1+x2和x1x2的值;(2)根据计算结果,总结根与系数的关系。
通过实例探究根与系数的关系。
师:现在我们通过一个具体的实例来探究一元二次方程的根与系数的关系。
例如,方程2x²-4x-6=0的两个根分别为x1=x2=1,则x1+x2=2,x1x2=-3。
那么我们可以发现,对于任何一个一元二次方程ax²+bx+c=0(a≠0),它的根与系数之间都满足以下关系:x1+x2=-b/a,x1x2=c/a。
一元二次方程的根与系数的关系数学教案
一元二次方程的根与系数的关系数学教案标题:一元二次方程的根与系数的关系I. 引言A. 课程目标B. 学习者背景C. 主题介绍II. 一元二次方程回顾A. 一元二次方程的定义B. 一元二次方程的标准形式C. 一元二次方程的解法(因式分解法、完全平方公式法、求根公式法)III. 根与系数的关系A. 定义:如果一元二次方程ax²+bx+c=0(a≠0)有两根x₁, x₂,则有如下关系:i. x₁+x₂=-b/aii. x₁x₂=c/aB. 推导过程C. 应用实例IV. 实践活动A. 分组讨论:通过实际问题引出一元二次方程,然后利用根与系数的关系解决问题B. 小组展示:每组分享自己的解决思路和方法C. 教师点评:对各小组的表现进行评价,并进一步强调根与系数的关系的重要性V. 总结与反馈A. 本节课的主要内容回顾B. 学生自我评估学习效果C. 教师给出下一节课程的学习建议以下是一个关于根与系数的关系应用实例的部分内容示例:实例:已知一元二次方程2x²-3x-5=0有两个实数根x₁, x₂,试求下列各式的值:a) (x₁²+x₂²)b) (x₁³+x₂³)解答:根据根与系数的关系,我们有:x₁+x₂=-(-3/2)=3/2x₁x₂=-5/2对于a),我们有:x₁²+x₂²=(x₁+x₂)²-2x₁x₂=(3/2)²-2(-5/2)=9/4+5=29/4对于b),我们有:x₁³+x₂³=(x₁+x₂)(x₁²-x₁x₂+x₂²)=(3/2)[(3/2)²-2(-5/2)+x₁²+x₂²]=(3/2)[9/4+5+29/4]=67/2。
一元二次方程的根与系数的关系教案
一元二次方程的根与系数的关系教案一、教学目标1、知识与技能目标:掌握一元二次方程根与系数的关系,利用根与系数关系求出两根之和、两根之积2、过程与方法经历一元二次方程根与系数关系的探究过程,培养学生的观察思考、归纳概括能力,解决问题的能力,渗透整体的数学思想、求简思想.3、情感态度价值观通过探索一元二次方程的根与系数的关系,激发发现规律的积极性,鼓励勇于探索的精神。
二、教学重难点1、教学重点:根与系数的关系及运用.三、教学难点:探究一元二次方程根与系数的关系的过程,运用一元一次方程的根与系数的关系解决问题四、教学过程1、导入新课(1)直接导入教师活动:回顾方程的求根公式,不仅表示可以由方程的系数a,b,c决定根的值,而且反应了根与系数的关系。
提问:那么一元二次方程根与系数之间的联系还有其他表现方式吗?顺势引出课题:一元二次方程根与系数的关系(2)情景导入教师复习一元二次方程,当时,;当时,方程有两个相等的实数根,为时,方程没有实数根小明同学在做课外习题时遇到这样一个问题∶已知方程2x²-4x-1=0,不解方程,求出方程的两根之和与两根之积。
解方程一向熟练的小明纳闷了,不解方程怎么求两根之和与两根之积呢?同学们,你们愿意帮助他吗?当你学完今天的内容就可以帮助他了。
今天我们来探讨一元二次方程的根与系数的关系。
2、讲授新课环节一:二次项系数为1的一元二次方程教师活动:教师通过多媒体展示思考问题提问:从因式分解法可知,方程(x-x1)(x-x2)=0(x1,x2为已知数)的两根为x1和x2,将方程化为x²+px+q=0的形式,你能看出x1,x2与p,q之间的关系么?组织学生根据目标问题四人一组进行讨论或同桌之间交流,教师进行巡视指导,交流结束后,找学生回答,教师进行评价学生活动:根据问题探究出结论,将(x-x1)(x-x2)=0展开成x²-(x1+x2)x+x1x2=0得出x1+x2=-p,x1x2=q教师总结:关于x的方程x²+px+q=0(p,q为常数,p2-4q≥0)的两个根x1,x2与系数p,q的关系是环节二、二次项系数为a(a≠0)的一元二次方程教师活动:借助多媒体呈现课本思考题提问:如果一元二次方程二次项的系数不为1,根与系数之间又有怎样的关系呢?形如ax²+bx+c=0(a≠0)的方程,如果b2-4ac≥0,两根为x1,x2,引导学生利用上面的结论猜想x1,x2与各项系数a、b、c之间有何关系。
一元二次方程的根与系数的关系教案
21.2.4一元二次方程的根与系数的关系一、内容和内容解析 1.内容一元二次方程根与系数的关系2.内容解析一元二次方程根与系数的关系是一元二次方程中一种重要的关系,利用这一关系可以解决很多问题,同时在高中数学的学习中有着更加广泛的应用。
实际上,一元n次方程的根与系数之间也存在着确定的数量关系。
一元二次方程02=++c bx ax 的求根公式x =,反映了方程的根是由系数c b a ,, 所决定的,从一方面反映了根与系数之间的联系;而本节课中的ab x x -=+21, ac x x =21是从另一方面更简洁的反映了一元二次方程的根与系数之间的关系,即通常所说的一元二次方程的根与系数之间的关系.本节课从思考一元二次方程的根与方程中的系数之间的关系开始,由特殊到一般,先让学生思考二次项系数为1的情形,然后再思考并证明一般形式时根与系数 的关系。
本节课为选学内容,所以在利用根系关系解决问题时需酌情控制难度。
基于以上分析,确定本节课的教学重点是:一元二次方程的根与系数的关系的探索及简单应用。
二、目标和目标解析1.目标(1)知识与技能:了解一元二次方程的根与系数之间的关系,能进行简单应用。
(2)过程与方法: 在一元二次方程的根与系数的关系的探究过程中,感受由特殊到一般地认知规律。
(3)情感态度与价值观:感受数学的严谨性和数学结论的确定性,提高运算能力,获得成功的体验,建立自信心。
2.目标解析达成目标(1)的标志是:学生知道一元二次方程的根与系数的关系,并利用根与系数关系求出两根之和,两根之积。
达成目标(2)的标志是:学生能够借助问题的引导,发现、归纳并证明一元二次方程的根与系数的关系。
达成目标(3)的标志是:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。
在观察、归纳、类比、计算与交流活动中,感受数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。
三.教学问题诊断分析一元二次方程的根与系数的关系是在学生已经学习了一元二次方程解法基础上,对一元二次方程的根与系数之间的关系进行再探究。
一元二次方程的根与系数的关系教学设计
【教学目标】
1.掌握一元二次方程根与系数的关系。
2.能运用根与系数的关系求:已知方程的一个根,求方程的另一个根及待定系数;根据方程求代数式的值。
【教学重点】
掌握一元二次方程根与系数的关系。
【教学难点】
能运用根与系数的关系求:已知方程的一个根,求方程的另一个根及待定系数;根据方程求代数式的值。
【教学过程】
一、导入新课。
如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),
二、讲授新课。
已知ax2+bx+c=0(a≠0)且b2-4ac≥0,试推导它的两个根为x1+x2和x1x2的值。
分析:因为前面具体数字已做得很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去。
解:移项,得:ax2+bx=-c,
二次项系数化为1,得 ,
配方,得: ,
即 ,
∵b2-4ac0且4a2>0,
∴ ,
直接开平方,得: ,
即 ,
∴ , ,
∴x1+x2=- ,x1x2= 。
归纳总结:如果方程x2+px+q=0的两根是x1,x2,那么x1+x2=-p, 。
三、重难点精讲。
1.不解方程,求方程两根的和与两根的积。
(1) 。
(2) 。
解:(1) , 。
(2)原方程可化为: 。
, ,
2.已知方程 的一个根是2,求它的另一个根及k的值。
解:原方程可化为: ,
设方程的另一根是x1,那么2x1= ,∴x1= ,
又∵( )+2= ,∴k=-5[( )+2]=-7,
初中数学初二数学下册《一元二次方程的根与系数的关系》教案、教学设计
一、教学目标
(一)知识与技能
1.理解一元二次方程的根的概念,了解一元二次方程的根与系数之间的关系。
2.学会使用根的判别式来判断一元二次方程的根的情况,并能根据判别式的值来确定方程的根的性质。
3.掌握一元二次方程的求解公式,能够运用公式法求解一元二次方程,并解决实际问题。
-激发学生的学习兴趣,通过表扬和鼓励,增强学生的学习信心。
-关注学习困难的学生,给予个别辅导,帮助他们克服学习中的困难。
四、教学内容与过程
(一)导入新课
1.创设情境:通过一个关于抛物线的实际例子,如“一个篮球在抛出后,其运动轨迹形成一个抛物线,假设我们知道篮球的初始速度和抛出角度,如何确定篮球落地的时间?”来引入一元二次方程的根与系数的关系。
-讲解:在学生探究的基础上,教师进行总结讲解,强调重难点,并配合典型例题进行解释。
-练习:设计梯度明显的练习题,让学生在课堂上即时巩固所学知识,并及时给予反馈。
-应用:结合实际生活情境,设计综合应用题,让学生运用所学知识解决问题,提高学生的数学应用能力。
3.教学评价:
-过程评价:关注学生在课堂上的参与度、合作探究能力和解决问题的策略。
-利用多媒体辅助教学,通过动态演示和图形展示,帮助学生形象地理解抽象的数学概念。
-实施分层次教学,针对不同水平的学生设计不同难度的练习题,使每个学生都能在课堂上得到有效的训练。
2.教学过程:
-导入:通过一个实际问题引入本节课的内容,激发学生的好奇心和学习兴趣。
-探索:引导学生通过小组合作、讨论的方式,探究一元二次方程根与系数的关系,总结根的判别式的使用方法。
4.能够运用一元二次方程的根与系数的关系解决一些简单的应用问题,提高数学应用能力。
21.2.4一元二次方程的根和系数的关系(教案)
-理解韦达定理的推导过程,特别是为何两根之和等于-b/a,两根之积等于c/a。
-学会灵活运用韦达定理解决复杂的一元二次方程问题。
-在实际问题中,如何将问题抽象成一元二次方程,并进行求解。
举例解释:
-难点在于让学生理解韦达定理背后的数学原理。可以通过图形或代数方法解释,如:一元二次方程的图像是一个开口向上或向下的抛物线,其两根对应的点在x轴上,而韦达定理正是这两个点的坐标关系的体现。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元二次方程的根与系数关系的基本概念。一元二次方程的根与系数关系是通过韦达定理进行描述的,它是解决一元二次方程相关问题的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过韦达定理快速求解一元二次方程的系数和根。
3.重点难点解析:在讲授过程中,我会特别强调韦达定理的两个重点:根之和与根之积的表达式。对于难点部分,如推导过程和理解其背后的数学原理,我会通过举例和比较来帮助大家理解。
2.学会运用韦达定理解决实题,让学生感受数学在现实生活中的应用,提高解决问题的能力。
二、核心素养目标
1.培养学生运用数学知识分析和解决问题的能力,通过一元二次方程的根与系数关系的探究,提高学生的逻辑推理和数学抽象素养。
2.强化学生的数学建模素养,使学生能够将现实问题转化为数学问题,运用所学知识求解,并解释结果的实际意义。
-通过实际例题,让学生感受数学在现实生活中的应用。
举例解释:
-对于一元二次方程ax^2+bx+c=0(a≠0),重点强调其两根x1、x2与系数a、b、c的关系:x1+x2=-b/a,x1x2=c/a。
-在解决实际问题时,如已知一个根x1,可以运用韦达定理求解另一个根x2或方程的系数,如:若x1=2,则x2=(-b-a*x1)/a,或b=-a*(x1+x2)。
一元二次方程根与系数的关系教案(完美版)
一元二次方程根与系数的关系一、教学目标(一)知识与技能掌握一元二次方程的根与系数的关系并会初步应用.(二)过程与方法培养学生分析、观察、归纳的能力和推理论证的能力.(三)情感、态度与价值观1.渗透由特殊到一般,再由一般到特殊的认识事物的规律;2.培养学生去发现规律的积极性及勇于探索的精神.二、教学重点、难点、疑点及解决方法1.教学重点:根与系数的关系及其推导.2.教学难点:正确理解根与系数的关系.3.教学疑点:一元二次方程根与系数的关系是指一元二次方程两根的和,两根的积与系数的关系.三、教学过程(一)明确目标一元二次方程x2-5x+6=0的两个根是x1=2,x2=3,可以发现x1+x2=5恰是方程一次项系数-5的相反数,x1x2=6恰是方程的常数项.其它的一元二次方程的两根也有这样的规律吗?这就是本节课所研究的问题,利用一元二次方程的一般式和求根公式去推导两根和及两根积与方程系数的关系——一元二次方程根与系数的关系.(二)整体感知一元二次方程的求根公式是由系数表达的,研究一元二次方程根与系数的关系是指一元二次方程的两根的和,两根的积与系数的关系.它是以一元二次方程的求根公式为基础.学了这部分内容,在处理有关一元二次方程的问题时,就会多一些思想和方法,同时,也为今后进一步学习方程理论打下基础.本节先由发现数字系数的一元二次方程的两根和与两根积与方程系数的关系,到引导学生去推导论证一元二次方程两根和与两根积与系数的关系及其应用.向学生渗透认识事物的规律是由特殊到一般,再由一般到特殊,培养学生勇于探索、积极思维的精神.(三)重点、难点的学习及目标完成过程1.复习提问(1)写出一元二次方程的一般式和求根公式.(2)解方程①x2-5x+6=0,②2x2+x-3=0.观察、思考两根和、两根积与系数的关系.在教师的引导和点拨下,由学生得出结论,教师提问:所有的一元二次方程的两个根都有这样的规律吗?2.推导一元二次方程两根和与两根积和系数的关系.在线分享文档设x 1、x 2是方程ax 2+bx+c=0(a ≠0)的两个根.以上一名学生在板书,其它学生在练习本上推导.由此得出,一元二次方程的根与系数的关系.(一元二次方程两根和与两根积与系数的关系)结论1.如果ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么x 1我们就可把它写成x 2+px+q=0.结论2.如果方程x 2+px+q =0的两个根是x 1,x 2,那么x 1+x 2=-p ,x 1·x 2=q . 结论1具有一般形式,结论2有时给研究问题带来方便. 练习1.(口答)下列方程中,两根的和与两根的积各是多少? (1)x 2-2x +1=0;(2)x 2-9x +10=0; (3)2x 2-9x +5=0;(4)4x 2-7x +1=0;(5)2x 2-5x =0;(6)x 2-1=0此组练习的目的是更加熟练掌握根与系数的关系. 3.一元二次方程根与系数关系的应用.(1)验根.(口答)判定下列各方程后面的两个数是不是它的两个根.在线分享文档验根是一元二次方程根与系数关系的简单应用,应用时要注意三个问题:(1)要先把一元二次方程化成标准型,(2)不要漏除二次项系数,(3)还要注意-b/a的负号。
初中数学《一元二次方程的根与系数的关系》教案
教学设计二、合作探究 探究点:一元二次方程根与系数的关系【类型一】利用一元二次方程根与系数的关系求关于方程根的代数式的值已知m 、n 是方程2x 2-x -2=0的两实数根,则1m +1n的值为( ) A .-1 B.12 C .-12D .1 解析:根据根与系数的关系,可以求出m +n 和mn 的值,再将原代数式变形后,整体代入计算即可.因为m 、n 是方程2x 2-x -2=0的两实数根,所以m +n =12,mn =-1,1m +1n =n +m mn =12-1=-12.故选C. 方法总结:解题时先把代数式变形成与两根和、积有关的形式,注意前提:方程有两个实数根时,判别式大于或等于0.【类型二】根据方程的根确定一元二次方程已知一元二次方程的两根分别是4和-5,则这个一元二次方程是( ) A .x 2-6x +8=0 B .x 2+9x -1=0C .x 2-x -6=0D .x 2+x -20=0解析:∵方程的两根分别是4和-5,设两根为x 1,x 2,则x 1+x 2=-1,x 1·x 2=-20.如果令方程ax 2+bx +c =0中,a =1,则-b =-1,c =-20.∴方程为x 2+x-20=0.故选D.方法总结:先把所构造的方程的二次项系数定为1,利用一元二次方程根与系数的关系确定一元二次方程一次项系数和常数项.【类型三】根据根与系数的关系确定方程的解(2014·云南曲靖)已知x =4是一元二次方程x 2-3x +c =0的一个根,则另一个根为________.解析:设另一根为x 1,则由根与系数的关系得x 1+4=3,∴x 1=-1.故答案为x =-1.方法总结:解决这类问题时,利用一元二次方程的根与系数的关系列出方程即可解决.【类型四】利用一元二次方程根与系数的关系确定字母系数(2014·山东烟台)关于x 的方程x 2-ax +2a =0的两根的平方和是5,则a 的值是( )A .-1或5B .1C .5D .-1【类型五】一元二次方程根与系数的关系和根的情况的综合应用 已知x 1、x 2是一元二次方程(a -6)x 2+2ax +a =0的两个实数根.(1)是否存在实数a ,使-x 1+x 1x 2=4+x 2成立?若存在,求出a 的值;若不存在,请你说明理由;(2)求使(x 1+1)(x 2+1)为负整数的实数a 的整数值.解:(1)根据题意,得Δ=(2a )2-4×a (a -6)=24a ≥0.解得a ≥0.又∵a -6≠0,∴a ≠6.由根与系数关系得:x 1+x 2=-2a a -6,x 1x 2=a a -6.由-x 1+x 1x 2=4+x 2得x 1+x 2+4=x 1x 2,∴-2a a -6+4=a a -6,解得a =24.经检验a =24是方程-2a a -6+4=aa -6的解.即存在a =24,使-x 1+x 1x 2=4+x 2成立.(2)原式=x 1+x 2+x 1x 2+1=-2a a -6+a a -6+1=66-a 为负整数,则6-a 为-1或-2,-3,-6.解得a =7或8,9,12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程的根与系数的关系一、目标认知学习目标1.掌握一元二次方程的根与系数的关系;2.能够利用一元二次方程的根与系数的关系求简单的关于根的对称式的值;3.能够利用一元二次方程的根与系数的关系判断两个数是否是方程的根;4.能够利用一元二次方程的根与系数的关系求出以两个已知数为根的一元二次方程.重点对一元二次方程的根与系数的关系的掌握,以及在各类问题中的运用.难点一元二次方程的根与系数的关系的运用.二、知识要点梳理一元二次方程根与系数的关系如果一元二次方程ax2+bx+c=0的两个实根是x1,x2,那么.注意它的使用条件为a≠0,Δ≥0.三、规律方法指导一元二次方程根与系数的关系的用法:①不解方程,检验两个数是否为一元二次方程的根;②已知方程的一个根,求另一个根及未知系数;③不解方程,求已知一元二次方程的根的对称式的值;④已知方程的两根,求这个一元二次方程;⑤已知两个数的和与积,求这两数;⑥已知方程的两根满足某种关系,确定方程中字母系数的值;⑦讨论方程根的性质四、经典例题透析1.已知一元二次方程的一个根,求出另一个根以及字母系数的值.1.已知方程x2-6x+m2-2m+5=0一个根为2,求另一个根及m的值.思路点拨:本题通常有两种做法,一是根据方程根的定义,把x=2代入原方程,先求出m的值,再通过解方程求另一个根;二是利用一元二次方程的根与系数的关系求出另一个根及m的值.解:法一:把x=2代入原方程,得22-6×2+m2-2m+5=0即m2-2m-3=0解得m1=3,m2=-1当m1=3,m2=-1时,原方程都化为x2-6x+8=0∴x1=2,x2=4∴方程的另一个根为4,m的值为3或-1.法二:设方程的另一个根为x.则2.判别一元二次方程两根的符号.2.不解方程,判别2x2+3x-7=0两根的符号情况.思路点拨:因为二次项系数,一次项系数,常数项皆为已知,可求根的判别式△,但△只能用于判定根存在与否,若判定根的正负,则需要考察x1·x2或x1+x2的正负情况.解:∵△=32-4×2×(-7)=65>0∴方程有两个不相等的实数根,设方程的两个根为x1,x2,∵∴原方程有两个异号的实数根.总结升华:判别根的符号,需要“根的判别式”,“根与系数的关系”结合起来进行确定.另外本题中x1·x2<0,可判定根为一正一负,若x1·x2>0,仍需考虑x1+x2的正负,从而判别是两个正根还是两个负根.举一反三:【变式1】当m为什么实数时,关于x的二次方程mx2-2(m+1)x+m-1=0的两个根都是正数.思路点拨:正、负根的问题应这样想:如正数根,应确保两根之和大于零,两根之积大于零,根的判别式大于等于零.解:设方程的二根为x1,x2,且x1>0,x2>0,则有由△=[-2(m+1)]2-4m(m-1)≥0,解得:∵m≠0,∴m>0或m<0,∴上面不等式组化为:由⑴得m>1;⑵不等式组无解.∴m>1∴当m>1时,方程的两个根都是正数.总结升华:当二次项系数含有字母时,不要忘记a≠0的条件.【变式2】k为何值时,方程2(k+1)x2+4kx+3k-2=0(1)两根互为相反数;(2)两根互为倒数;(3)有一根为零,另一根不为零.思路点拨:两根“互为相反数”、“互为倒数”,“有一根为零,另一根不为零”等是对两根的性质要求,在满足这个要求的条件下,求待定字母的取值.方程的根互为相反数,则x1=-x2,即x1+x2=0;互为倒数,则x1=,即x1·x2=1,但要注意考察判别式△≥0.解:设方程的两根为x1,x2,则x1+x2=x1x2=(1)要使方程两根互为相反数,必须两根的和是零,即x1+x2=,∴k=0,当k=0时,△=(4k)2-4×2(k+1)(3k-2)=16>0∴当k=0时,方程两根互为相反数.(2)要使方程两根互为倒数,必须两根的积是1,即x1x2==1,解得k=4当k=4时,△=(4k)2-4×2(k+1)(3k-2)=-144<0∴k为任何实数,方程都没有互为倒数的两个实数根.(3)要使方程只有一个根为零,必须二根的积为零,且二根的和不是零,即x1x2==0,解得k=又当k=时,x1+x2=,当k=时,△=(4k)2-4×2(k+1)(3k-2)=>0,∴k=时,原方程有一根是零,另一根不是零.总结升华:研究两个实数根问题时,应注意二次项系数不得为零,△=b2-4ac不得小于零.3.根的关系,确定方程系中字母的取值范围或取值.3.关于x的一元二次方程x2-3x+k+1=0的两根的平方和小于5,求k的取值范围.解:设方程两根分别为x1,x2,x1+x2=3,x1·x2=k+1∵x12+x22=(x1+x2)2-2x1x2=32-2(k+1)<5∴k>1①又∵△=(-3)2-4(k+1)≥0∴k≤②由①②得:1<k≤.总结升华:应用根的判别式,已知条件,构造不等式,用不等式组的思想,确定字母的取值范围.举一反三:【变式1】已知:方程x2+2(m-2)x+m2+4=0有两个实数根,且这两个根的平方和比两根的积大21,求m的值.思路点拨:本题是利用转化的思想将等量关系“两个根的平方和比两根的积大21”转化为关于m的方程,就可求得m的值.解:∵方程有两个实数根,∴△=[2(m-2)]2-4×1×(m2+4)≥0解这个不等式,得m≤0设方程两根为x1,x2,∴x1+x2=-2(m-2)x1·x2=m2+4∵x12+x22-x1x2=21∴(x1+x2)2-3x1x2=21∴[-2(m-2)]2-3(m2+4)=21整理得:m2-16m-17=0解得:m1=17,m2=-1又∵m≤0,∴m=-1.总结升华:1.求出m1=17,m2=-1后,还要注意隐含条件m≤0,舍去不合题意的m=17.【变式2】设与是方程x2-7mx+4m2=0的两个实数根,且(-1)(-1)=3,求m的值.思路点拨:利用一元二次方程的根与系数的关系把等式(-1)(-1)=3转化为关于m的方程.解:由于与是方程x2-7mx+4m2=0的两个根,根据根与系数的关系,有所以,有(-1)(-1)=-()+1=4m2-7m+1=3.所以,得方程4m2-7m-2=0.解这个方程,或m=2.经检验,或m=2都能使判别式Δ=(7m)2-4×(4m2)=33m2>0,所以,m=2都符合题意.总结升华:如果所求m的值使方程没有实数根,就是错误的结果,所以检验的步骤是十分必要的.讨论方程的实数根的问题,只有在判别式的值是非负数时才有意义,在解决问题时应注意这个重要的条件.4.求简单的关于根的对称式的值.在关于一元二次方程的根x1与x2的式子中,如果交换这两个字母的位置后式子不变(我们常把这种式子叫做对称式),就可以通过恒等变形,转化为用x1+x2与x1x2表达的式子,从而可以利用根与系数的关系解决.如+,,(1+x1)(1+x2)都是对称式,它们可以变形为用x1+x2与x1x2表达的式子,如(1+x1)(1+x2)=1+(x1+x2)+x1x2,+=(x1+x2)2-2x1x2,……等等.4.如果与是方程2x2+4x+1=0的两个实数根,求的值.思路点拨:注意到交换与的位置时,代数式不变,所以代数式是关于与的对称式.解:∵Δ=b2-4ac=8>0,∴方程有实根.∵∴举一反三:【变式1】已知与是方程3x2-x-2=0的两个实数根,求代数式的值.思路点拨:中的与的位置互换时,式子的形式不变,所以它们都是对称式,可以转化为含有与的式子,利用根与系数的关系简化计算.解:由于>0,<0,所以Δ>0,方程一定有实根.于是==.把=与=-代入,得====总结升华:这是一个无理数系数的一元二次方程,如果分别求出根与的值,计算过程将冗长而烦琐,利用根与系数的关系就可以有效地达到简化计算过程的目的,读者如果用求根后代入的方法演算一遍,将会有深刻的体会.5.利用一元二次方程的根与系数的关系判断两个已知数是否方程的根,能够求出以两个已知数为根的一元二次方程.事实上,我们有这样的定理:如果两个实数x1与x2使得x1+x2=-p,且x1x2=q,那么x1与x2是方程x2+px+q=0的两个根.证明如下:由于x1+x2=-p,x1x2=q,那么方程x2+px+q=0可以化为x2-(x1+x2)x+x1x2=0,x2-x1x-x2x+x1x2=0,x(x-x1)-x2(x-x1)=0,(x-x1)(x-x2)=0,∴x=x1或x=x2.这就是说,x1和x2是方程x2+px+q=0的两个根.5.判断下列方程后面括号内的两个数是不是方程的根:(1)x2-8x-20=0,(10,-2);(2)6y2+19y+10=0,;(3)a2-2a+3=0,(+,-+).解:(1) ∵10+(-2)=+8=-(-8),10×(-2)=-20,∴10与-2是方程x2-8x-20=0的两个根;(2) ∵,,∴-与-是方程6y2+19y+10=0的两个根;(3) 虽然有(+)(-+)=+3,但是(+)+(-+)=+2≠-(-2);所以+与-+不是方程a2+2a-3=0的根.6.(1)作一个以-与为根的一元二次方程;(2)作一个方程,使它的两个根分别是方程2x2+5x-8=0的两个根的倒数.思路点拨:作一元二次方程,只需利用根与系数的关系求出方程各项的系数.解:(1) 由于-+=-2+=-,-·=-=-4,所以所求方程是x2+x-4=0.(2) 设x1与x2是方程2x2+5x-8=0的两个根,所以,有x1+x2=,x1x2=-4.所以,.于是所求方程是x2-x-=0.也就是8x2-5x-2=0.数学史话历史上的一元二次方程含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程,一般形式为ax2+bx+c=0(a≠0).一元二次方程及其解法最早出现在公元前两千年左右的古巴比伦人的《泥板文书》中:求出一个数,使它与它的倒数之和等于一个已知数,即求出这样的x1与x2,使x1x2=1,x1+x2=b,从这两个条件得出关于x的一元二次方程x2-bx+1=0.他们先求出,再求出,然后得出解答+及-.由此说明巴比伦人已知道一元二次方程的求根公式,只是当时他们没有接受负数,所以负根是略而不提的.埃及的《纸草文书》中也涉及到最简单的二次方程如ax2=b.希腊的丢翻图(246-330)只承认二次方程的一个正根,即使两根都是正的他也只取一个.印度的婆罗摩及多公元628年写成的《婆罗摩修正体系》中,得到二次方程x2+px-q =0的一个求根式x=,阿尔·花拉子模的《代数学》中(讨论方程的根法,解出了一次、二次方程,但保留了六种不同的形式,如ax2=bx,ax2=c,ax2+c=bx,ax2+bx=c,ax2=bx+c等,且让a、b、c总是正数.在把二次方程分成不同形式这一点上是照丢番图那样做的),给出了一元二次方程的几种特殊解法,并第一次给出了一元二次方程的一般解法.他承认方程有两个根,还允许有无理根存在,只是还未认识虚根.复数根的运用是十六世纪意大利的数学家们从解一元二次方程中开始的.法国数学家韦达(1540-1603)已经知道一元二次方程在复数范围内一定有解,并且发现了根与系数的关系.我国对一元二次方程的研究历史悠久,我国在公元前4、5世纪时也掌握了一元二次方程的求根公式.《九章算术》中“勾股”第二十题就是通过相当于求方程x2+34x-71000=0的正根而解决的.《张邱建算经》中,包含了一个用文字写出的相当于x2+cx=c2-36的方程.数学家韦达法国数学家韦达(FrancisVieta1540-1603)在数学研究方面有杰出的贡献和深远的影响,他常常在工作之余致力于数学研究.当韦达被奇异的数学吸引住时,就会一连数日闭门不出,进行思考与研究.当时,他和好几位数学家都研究并发现了方程的根与系数的关系.因为韦达的论文发表得较早,影响也大,因此后人习惯上把一元n次(n为正整数)方程的根与系数的关系定理称为韦达定理,教科书中,一元二次方程的根与系数的关系是韦达定理的特例.韦达在数学研究中另一重大的贡献是第一个有意识地使用字母来表示已知数、未知数及乘方,改进了数学的符号.数学能够成为如今这样有力的工具,与它使用了像“+”、“-”及“x2”等符号语言是分不开的.这些符号,使数学具有简洁的表达,也使方程和代数恒等式有了简洁、清楚的形式.如方程x2-3x=0,就比书写“一个数的平方与这个数的3倍的差等于0”要简便得多.不难想象,如果不使用数学符号,数学发展将会多么缓慢.这些数学符号的使用使人便于思考.通过符号的演算和推导,我们能够十分容易地证明某些数学关系式、某些规律是成立的.例如,一元二次方程的实根的判别式定理、一元二次方程的根与系数的关系定理,都是通过数学表示式进行推导的.因此,人们称韦达是数学符号的改革家.学习成果测评基础达标一、选择题1. 如果一元二次方程的两个根为,那么与的值分别为( )A. 3,2B.C.D.2. 如果方程的两个实数根分别为,那么的值是( )A. 3B.C.D.3. 如果是方程的两个根,那么的值等于( )A. B. 3 C. D.4.以2,-3为根的一元二次方程是( )A.x2+x+6=0B.x2+x-6=0C.x2-x+6=0D.x2-x-6=0二、填空题1. 如果是方程的两个根,那么____________.2. 已知一元二次方程的两根分别为,那么的值是_________.3.已知一元二次方程的两根为2+和2-,则这个方程为_______.三、解答题1.设x1与x2是方程x2+4x-6=0的两个根,不解这个方程,求下列各式的值:(1);(2)+x1x2+;(3)(x1-2)(x2-2).2.(1)已知方程x2+mx+21=0的两个根的平方和是58,求m的值;(2)已知方程x2+2x+m=0的两个根的差的平方是16,求m的值;(3)已知方程x2+3x+m=0的两个根的差是5,求m的值;(4)已知方程x2+3x+m=0的一个根是另一个根的2倍,求m的值.3.判断下列方程后面括号中的两个数是不是这个方程的根:(1)x2+x-12=0,(+4,-3);(2)2y2+9y+4=0,;(3)z2-(2+)z+6=0,(,).4.分别求作以下列各对数为根的一个一元二次方程:(1)-5,+7;(2),+;(3),-;(4)+,-.能力提升一、选择题1.以3,-1为根,且二次项系数为3的一元二次方程是( )A.3x2-2x+3=0B.3x2+2x-3=0C.3x2-6x-9=0D.3x2+6x-9=02.下列方程中,两实数根之和等于2的方程是( )A. B.C. D.3.已知关于x的方程有两个相等的正实数根,则k的值是( )A. B. C. 2或 D.二、填空题1. 已知3x2-2x-1=0的二根为x1,x2,则x1+x2=______,x1x2=______,•+=•_______,•x12+x22=_______,x1-x2=________.2. 已知一元二次方程3x2-kx-1=•0•的一根为3,则该方程的另一根为_____,•k=_______.3. 若方程的两根的倒数和是,则____________.三、解答题1.已知关于x的方程的两个实数根的平方和等于4,求实数k 的值.2.已知一元二次方程.(1)当m取何值时,方程有两个不相等的实数根?(2)设是方程的两个实数根,且满足,求m的值.3.已知关于x的一元二次方程.(1)求证:对于任意非零实数a,该方程恒有两个异号的实数根;(2)设是方程的两个实数根,若,求a的值答案与解析基础达标一、选择题1.B2.D3.B4.B二、填空题1. 72. 193. x2-4x+1=0∵2++2-=4,(2+)(2-)=1∴这个方程为:x2-4x+1=0.三、解答题1.(1);(2)22;(3)6.解:(1)(2)(3)(x1-2)(x2-2)2.(1)m=10或m=-10;(2)m=-3;(3)m=-4;提示:;(4)m=2.3.(1)不是;(2)是;(3)是.4.(1)x2-2x-35=0;(2)6x2+x-15=0;(3)x2-=0;(4)x2-2x-1=0.能力提升一、选择题1.C2.D3.A二、填空题1. ,-,-2,,±x1+x2=,x1x2=-,+==-2x12+x22=(x1+x2)2-2x1x2=+=∵(x1-x2)2=(x1+x2)2-4x1x2=+=∴x1-x2=±.2. -,∴x2=-,k=.3. .三、解答题1. .(注意k=5时,,舍)2. 略解:(1)解得:(2)由③得符合题意.3.(1)而∴对于任意非零实数a,该方程恒有两个异号的实数根. (2)设。