图形的运动(旋转和平移)
图形的旋转、平移与翻折
图形的旋转、平移与翻折在几何学中,图形的旋转、平移与翻折是常见的操作,可以通过这些操作改变图形的位置、形状和方向。
这些操作在数学、物理学和计算机图形学等领域都有广泛的应用。
本文将介绍图形的旋转、平移与翻折的基本概念和相关应用。
一、图形的旋转图形的旋转是指将图形绕一个旋转中心按一定角度旋转。
旋转可以使图形发生变化,同时保持图形的大小和形状不变。
旋转操作常用的单位是度数,顺时针为正方向,逆时针为负方向。
图形的旋转可以通过旋转矩阵来描述。
设图形的坐标为(x, y),旋转的角度为θ,旋转中心为(x0, y0),则旋转后的坐标可以表示为:x' = (x - x0) * cosθ - (y - y0) * sinθ + x0y' = (x - x0) * sinθ + (y - y0) * cosθ + y0通过这个公式,我们可以将任意点围绕旋转中心进行旋转变换。
图形的旋转可以应用于很多领域,例如地理学中的地图旋转变换、物理学中的刚体旋转运动等。
在计算机图形学中,旋转操作经常用于图像处理、动画制作等方面。
二、图形的平移图形的平移是指将图形沿着特定的方向和距离进行移动。
平移操作只改变图形的位置而不改变图形的形状和方向。
图形的平移可以通过平移向量来表示。
设图形的坐标为(x, y),平移向量为(dx, dy),则平移后的坐标可以表示为:x' = x + dxy' = y + dy通过这个公式,我们可以将图形沿水平方向和垂直方向进行平移变换。
图形的平移操作在几何学中经常用于研究几何关系、证明定理等方面。
在计算机图形学中,平移操作经常用于图像编辑、游戏开发等方面。
三、图形的翻折图形的翻折是指将图形在一个轴线上进行对称变换。
翻折操作将图形上的每个点关于轴线镜像对称,使得图形在镜像轴两侧成为对称的。
图形的翻折可以通过翻折矩阵来表示。
设图形的坐标为(x, y),轴线为x轴或y轴,对称变换为x轴翻折或y轴翻折,对应的翻折矩阵为:对于x轴翻折:x' = xy' = -y对于y轴翻折:x' = -xy' = y通过这个公式,我们可以将图形关于x轴或y轴进行翻折变换。
图形的平移和旋转(经典)
DCFE CBA第四讲 图形的平移与旋转【基础知识精讲】一、平移:1.平移的定义——在平面内,把一个图形沿某一个方向移动一定的距离,这样的图形运动叫图形的平移。
说明:(1)平移是图形的一种运动(变换)(2)平移的要素:①平移方向;②平移距离。
2.平移的性质:①平移前后图形的大小、形状都不改变。
即:平移前后的图形全等形。
②平移前后对应点的连线段平行(或在同一直线上)且相等;对应线段平行(或在同一直线上)且相等;对应角相等。
二、旋转1.旋转的定义——在平面内,把一个图形绕一个定点沿着某一个方向转动一个角度,这样的图形运动叫图形的旋转。
说明:(1)旋转是图形的一种运动(变换)(2)旋转的要素: ①旋转中心 ②旋转方向 ③旋转角2.旋转的性质①旋转前后图形的大小、形状都不改变。
即:旋转前后的图形全等形。
②图形上任意点都绕中心沿相同方向转动相同的角度(旋转角); ③对应点到旋转中心的距离相等。
【重难点高效突破】例1.如图,经过平移△ABC 的边AB 移到了EF ,作出平移后的三角形.例2.如图,△ABC 绕C 点旋转后,B 转到了D 处,作出旋转后的三角形。
例3.如图,在长32m 宽20m 的土地上要修筑同样宽的两条“之”字路,路宽2m ,则剩余耕地的面积为 . 例4、如图,E 为正方形ABCD 的边AB 上一点,AE=3,BE=1,P 为AC 上的动点,则PB+PE 的最小值是_________.例5、如图,△ABC 是等腰直角三角形,AB=AC ,D 是斜边BC 的中点,E 、F 分别是AB 、AC 边上的点,且DE ⊥DF ,若BC=12,CF=5,则△DEF 的面积为______________。
例6、如图,在△ABC 中,AB 2=32,∠BAC=45°, ∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,求BM+MN 的最小值。
例7、如图,设P 为等边△ABC 内的一点,且PA=3,PB=4,PC=5,能否确定∠APB 的大小?请说明理由。
图形运动知识点六年级下册
图形运动知识点六年级下册一、图形的平移运动平移是指将一个图形整体上下左右移动,但形状和大小不变。
平移运动是图形的基本运动之一,常用的表示方式是向量。
以矩形ABCD为例,做出平移向量OA。
我们可以将矩形ABCD沿OA平移,得到平移后的新图形A'B'C'D'。
二、图形的旋转运动旋转是指围绕某一点旋转图形,使图形的每个点都绕着这一点旋转相同的角度。
旋转运动也是图形常见的运动方式之一。
以三角形ABC为例,将其围绕点O逆时针旋转θ角度。
则三角形A'B'C'为旋转后的图形。
三、图形的对称运动对称是指图形相对于某一直线、某一点或某一平面的映射关系。
对称运动是图形的一种变化方式。
1. 直线对称以直线l为对称轴,对称轴把图形分成两个对称的部分。
对称轴上的点不变,对称轴两侧的点以对称轴为中心对应。
以正方形ABCD为例,以直线l为对称轴进行对称。
则点A和C、点B和D相对应。
2. 点对称以点O为中心进行对称,对称轴可以任意选取。
对称后,以对称轴为中心的点和其对应的点相互重合。
以圆O为例,以点O为中心进行对称。
则点A和A'、点B和B'相对应。
四、图形的拓展运动拓展是指图形按照一定比例进行放大或缩小的运动方式。
以矩形ABCD为例,将其按照比例k进行拓展。
则拓展后的矩形为A'B'C'D',且A'B' = k * AB, A'C' = k * AC。
五、图形的应用图形运动在日常生活和各种实际问题中广泛应用。
1. 地图导航地图导航中的地图可以看作是平面上的图形,根据起点和终点的坐标可以确定路线。
我们可以通过平移、旋转、对称等图形运动的知识,帮助我们更方便地规划出最短路径。
2. 机器人运动机器人在工业生产、医疗护理等领域中的应用越来越广泛。
机器人的移动可以通过图形运动的知识来实现。
例如,我们可以通过编程控制机器人按照特定的路径平移、旋转,完成指定的任务。
三年级上册平移和旋转的知识点
三年级上册平移和旋转的知识点一、平移。
1. 平移的定义。
- 物体或图形在同一平面内沿直线运动,而本身没有发生方向上的改变,这种运动现象就是平移。
例如,在水平的传送带上,物体随着传送带直线移动;或者在电梯里,人随着电梯上下直线运动等都是平移现象。
2. 平移的特点。
- 平移后的图形与原图形的形状和大小完全相同。
例如,将一个正方形沿着水平方向平移一段距离后,得到的新正方形和原来的正方形边长一样,四个角也都是直角。
- 平移后的图形与原图形对应点之间的连线平行(或在同一条直线上)且相等。
比如一个三角形平移后,它原来的顶点和对应平移后的顶点连线是平行且相等的。
3. 平移的方向和距离。
- 方向:平移的方向可以是水平方向(向左或向右)、垂直方向(向上或向下)或者是斜着的方向。
例如,汽车在笔直的公路上向左行驶是水平方向的平移;火箭垂直升空是垂直方向的平移;而一个物体沿着与水平方向成45度角的方向移动就是斜方向的平移。
- 距离:平移的距离是指图形上每个点平移的长度。
可以通过数方格的方法来确定平移的距离,在方格纸上,一个方格的边长可以作为一个单位长度。
例如,一个图形从方格纸的左上角平移到右上角,经过了5个方格,那么平移的距离就是5个单位长度。
二、旋转。
1. 旋转的定义。
- 物体绕着一个点或一个轴做圆周运动的现象就是旋转。
像风车绕着中心轴转动、时钟的指针绕着中心点转动等都是旋转现象。
2. 旋转的特点。
- 旋转后的图形与原图形的形状和大小不变。
例如,一个圆形的表盘不管指针怎么旋转,表盘的形状和大小都不会改变。
- 图形的旋转是由旋转中心、旋转方向和旋转角度决定的。
3. 旋转中心、旋转方向和旋转角度。
- 旋转中心:是物体旋转时所绕着的那个点或轴。
例如,风车的旋转中心就是风车叶片中间固定的那个点;地球的自转是以地轴为旋转中心的。
- 旋转方向:分为顺时针方向和逆时针方向。
顺时针方向是指和时钟指针转动方向相同的方向,逆时针方向则是与时钟指针转动方向相反的方向。
数学七上第11章-图形的运动-知识点
数学七上第11章-图形的运动-知识点1.将图形上所有点都按照某个方向作相同距离的位置移动就叫平移。
平移由两个因素决定:①平移的方向;②平移的距离。
2.平移的性质:①图形的形状和大小没有发生变化;②平移前后,对应线段平行且相等,对应角相等;③平移前后,对应点之间的连线段平行且相等。
3.将图形绕定点(旋转中心,在旋转过程中保持不动)沿某个方向(顺时针或者逆时针)转动一定角度(旋转角,一般小于360°)的运动称为旋转。
旋转由两个因素决定:①旋转中心,②旋转角度。
4.旋转的性质:①图形的形状和大小没有发生变化;②旋转前后,对应线段相等、对应角相等,③图形上每一点都旋转了相等的角度;④对应点到旋转中心的距离相等。
5.绕着某个定点(旋转对称中心)旋转一定角度(旋转角,0°<a<360°)后能与初始图形重合的图形叫做旋转对称图形,旋转角可以是180°,120°,90°,72°,60°等)。
其中,旋转角是180°的旋转对称图形叫做中心对称图形,此时,旋转中心又叫对称中心。
常见中心对称图形有:①平行四边形(包括矩形、菱形、正方形),②圆,③偶数条边的正多边形,④线段。
6.一个图形绕着一个定点旋转180°后,和另一个图形重合,则这两个图形关于这点成中心对称,这个点叫做对称中心。
7.中心对称图形是指具有特珠形状的一个图形;中心对称是指两个图形的位置关系。
8.翻折的性质:①翻折前后,对应线段相等,对应角相等;②对应点之间的连线段被对称轴垂直平分。
9.沿某一条直线(对称轴)翻折过来,直线两旁的部分能够互相重合的图形叫做轴对称图形;把一个图形沿着某一条直线(对称轴)翻折,如果它能够和另一个图形重合,那么称这两个图形关于这条直线成轴对称。
10.轴对称图形是关于某条直线对称的一个图形;轴对称是两个图形关于某条直线对称。
小初高个性化辅导,助你提升学习力! 1。
图像的平移与旋转知识点
第三章图像的平移与旋转第一节图形的平移1.在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动叫做平移。
2.一个图形经过平移后得到一个新的图形,这个图形能与原图形相互重合,只是位置发生了变化。
我们把能够相互重合的点称为对应点,能够相互重合的角称为对应角,能够相互重合的线段称为对应线段。
3.平移的条件:确定一个图形平移后的位置,除需要原来的位置外,还需要一一对应的点的位置或平移的方向和距离,平移的方向为原图上的点指向它的对应点的方向,这一对对应点连接的线段的长是平移的距离。
注:(1)图形的平移有两个基本的条件:方向(任意方向);距离(2)平移改变了图形的位置,但不改变图形的形状和大小。
4.平移的性质:(1)平移后的图形与原图形对应点所连线段平行或在一条直线上且相等;(2)平移后的图形与原图形对应线段平行(或在一条直线上)且相等;(3)平移后的图形与原图形对应角相等。
5.平移作图常见形式及作法:第二节图形的旋转1.旋转:在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转。
这个定点被称为旋转中心,转动的角称为旋转角。
旋转不改变图形的形状和大小。
注:旋转是在平面内,而不是在空间内;旋转后的图形与原图形的形状、大小都相同,但形状、大小都相同的两个图形不一定可以通过旋转得到;旋转的角度一般小于360度。
2.旋转的三要素:图形的旋转由旋转中心、旋转的角度和旋转的方向所决定。
3.旋转的性质:一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等。
4.简单的旋转作图:旋转、平移、轴对称的异同:(1)三者的相同点:都是在平面内的图形变换不涉及立体图形的变换;三中变换都是只改变图形的位置,不改变形状和大小,其对应边相等,对应角相等。
(2)不同点:旋转、平移及轴对称的运动方式不同,旋转的运动方式是将一个图形旋转一定角度;而平移的运动方式则是将一个图形沿一条直线对折;旋转、平移及轴对称的对应线段、对应角之间的关系不同。
空间几何体的旋转与平移
空间几何体的旋转与平移空间几何体的旋转与平移是几何学中常见的操作,用于描述物体在空间中的位置和形态变化。
旋转和平移是空间几何体在三维空间中移动的基本形式,它们在各个领域中都有广泛的应用。
一、旋转旋转是指将空间几何体绕某个轴进行转动,造成空间几何体的位置和形状的变化。
旋转操作可以分为三维旋转和二维旋转两种形式。
1. 三维旋转三维旋转是指围绕空间中的一个轴进行旋转变换。
例如,考虑一个立方体,在二维平面上的旋转会导致立方体的所有面都绕着旋转轴旋转。
三维旋转的角度通常使用欧拉角或四元数来描述。
2. 二维旋转二维旋转是指在平面上将几何体绕一个点进行旋转变换。
例如,考虑一个正方形,绕其中心点旋转90度,正方形的每个顶点都会围绕中心点旋转。
二维旋转的角度通常使用弧度制表示。
二、平移平移是指空间几何体在三维空间中沿某个方向进行移动,保持形状和大小不变。
平移操作可以沿着任意的平行方向进行,可以是水平、垂直或者任意角度的方向。
平移操作对于描述物体的位置变换和物体间的相对位置关系非常重要。
平移的方式可以使用向量表示,即通过指定平移的距离和方向来描述。
三、旋转与平移的综合应用旋转和平移常常是一起应用的,将二者综合起来可以描述物体在空间中的任意位置和形态变化。
例如,在计算机图形学中,通过旋转和平移操作可以实现物体在屏幕上的平移和旋转效果,用于构建三维模型和动画效果。
此外,在工程领域中,旋转和平移的操作也广泛应用于机械设计和建筑设计中。
例如,在机械装置的运动设计中,旋转和平移操作可以用于描述零件的运动轨迹和变形情况。
而在建筑设计中,旋转和平移操作可以用于确定建筑物在空间中的位置和方位。
总结空间几何体的旋转与平移是几何学中重要的概念和操作。
旋转和平移可以描述物体在空间中的位置和形态的变化,广泛应用于计算机图形学、工程和建筑设计等领域。
了解旋转和平移的原理和应用,有助于我们深入理解物体在空间中的运动和变化,提高问题解决的能力。
平移、旋转、轴对称
---------------------------------------------------------------最新资料推荐------------------------------------------------------平移、旋转、轴对称什么是平移、旋转、轴对称?如何判断一个图形进行了平移、旋转或者是否为轴对称图形?如何确定平移的的方向什么是平移、旋转、轴对称?如何判断一个图形进行了平移、旋转或者是否为轴对称图形?如何确定平移的的方向和距离?如何确定旋转角度和旋转中心?(1)什么是平移、旋转、轴对称?平移:一个图形在平面内沿某个方向移动一定距离,这样的图形运动叫平移。
旋转:一个图形在平面内绕着一个固定点转动一定角度,这样的图形运动叫旋转,这个固定点称为旋转中心,转动的角度称为旋转角度。
轴对称:如果一个平面图形,沿着某一条直线对折,直线两边的部分能够完全重合,这个图形就叫做轴对称图形。
这条直线叫对称轴。
互相重合的点叫对称点。
(2)如何判断一个图形进行了平移、旋转或者是否为轴对称图形?在学习中,学生可能会问到摩天轮的运动、窗帘的拉动、门的转动、荡秋千、钟摆等生活现象算不算旋转。
回答这些具体的问题,教师首先需要理解轴对称、平移和旋转的概念在图形的变换中有一个非常重要的变换,就是全等变换,1 / 5也叫做合同变换。
如果图形经过变换后与原来的图形是重合的,也就是图形的形状、大小不发生变化,那么这个图形的变换就叫做全等变换,即原来的图形中,任意两点的距离假设是 l 的话,经过变换后的两点之间的距离仍是 l,所以全等变换是一个保距变换,而且由于距离保持不变,图形整体的形状、大小,都可以证明仍然是保持不变的。
全等变换有几种方式。
我们可以想象一下两个完全一样的图形,要由一个图形的运动得到另一个图形,可以作怎样的运动呢?可以是平移。
除此以外呢?比如两个三角形有一顶点重合,那么有两种情况:一种是这两个三角形的三个顶点顺序是一致的,这时其中一个经过旋转就能与另一个重合;还有一种是顶点的顺序相反,这时将其中一个反射(翻折)就能得到另一个。
图形的平移和旋转(经典教案和习题)
图形的平移和旋转(经典教案和习题)§3.1生活中的平移一、新知要点(1)平移的概念(2)平移的特点(3)平移的基本性质火车沿笔直的轨道行驶、缆车沿笔直的索道滑行、火箭升空等物体都是沿着一条直线运动的,那么在运动的过程中这些物体的形状、大小、位置等因素中,哪些没有发生改变哪些发生了变化这种运动就叫做什么?1.图形的平移例1:下图中的图形A向右平移了6格得到图形A′A′A(1)平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小。
(2)平移的特点:①平移是指整个图形平行移动,包括图形的每一条线段,每一个点。
经过平移,图形上的每一个点都沿同一个方向移动相同的距离。
②平移不改变图形的形状、大小,方向,只改变图形的位置。
例2、观察下图△ABE沿射线某Y的方向平移一定距离后成为△CDF。
找出图中存在的平行且相等的三条线段和一组全等三角形。
(3)平移的基本性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。
二、新知巩固(练习)1.平移改变的是图形的()A位置B大小C形状D位置、大小和形状2.经过平移,对应点所连的线段()A平行B相等C平行且相等D既不平行,又不相等3.经过平移,图形上每个点都沿同一个方向移动了一段距离,下面说法正确的是()A不同的点移动的距离不同B既可能相同也可能不同C不同的点移动的距离相同D无法确定4.如图,四边形ABCD平移后得到四边形EFGH,填空(1)CD=______,(2)∠F=______(3)HE=,(4)∠D=_____,(5)DH=_________。
5.如图,若线段CD是由线段AB平移而得到的,则线段CD、AB关系是__________.6.试着做一做:(1)把图形向右平移7格后得到(2)把图形向左平移5格后到的图形涂上颜色。
的图形涂上颜色。
(3)画出小船向右平移6格后的图形(4)画出向右平移6格后的图形三、归纳小结●通过本节课的学习,我们明白了什么叫平移。
《图形的运动(一) 平移和旋转》说课稿(三篇)
《图形的运动(一)平移和旋转》说课稿尊敬的各位评委老师,大家好!我今天说课的题目是《平移和旋转》。
我主要从教材分析、学情分析、说教学方法与学法、说教学过程、说板书设计等几个步骤向大家详细地讲解我对这节课的安排。
一、教材分析:《平移和旋转》是新课标人教版小学数学二年级下册第三单元的内容,关于培养学生的空间观念,《数学课程标准》中指出:“能描述实物或几何图形的运动和变化。
”目的是让学生认识现实生活中图形运动变化的规律,从而发展学生的空间观念。
由于本课是学生第一次接触平移与旋转的概念,因此,教学的认知要求是初步认识,对于旋转的知识只要能分辨旋转现象即可;对于平移的知识,除了知道生活中平移的现象之外,要能在方格纸上确定平移的方向和距离。
二、学情分析:二年级的学生,对平移和旋转现象已经有一定的生活体验,只是没有很清晰的认识。
为了发展学生的空间观念,教学中,要让学生参与活动,多动手,通过学生的亲身体验,让学生去感知“平移和旋转”,最大程度的保证学生的自主探究落到实处,为后续学习空间知识打下良好的基础。
三、说教学目标:结合教材特点,学生的实际水平、心理特点以及认知规律,我确定了如下的教学目标:1.知识目标:结合学生的生活经验和实例,感知平移与旋转的现象,并会直观地区别这两种常见的现象。
2.能力目标:通过观察推断、操作验证等,正确判断平移的方向和距离,初步感悟平移的本质,培养学生空间观念。
3.情感目标:体验平移和旋转的价值,感受数学在生活中的广泛应用,体会数学与日常生活的紧密联系。
四、说教法、学法低年级学生的思维以具体形象思维为主,在学习抽象的图形知识时,需要直观形象的支撑。
而观察与动手操作都是非常重要的手段,应多次加以利用。
因此,我采用了以下几种方法为:动手操作法、观察发现法、自主探究法、合作交流法。
让他们在剪一剪,折一折,说一说,辩一辩等一系列活动为学生提供丰富的机会,在观察与动手操作中进行思考和发现,感知并掌握平移和旋转的特征。
《旋转和平移》教材分析:
《旋转和平移》教材分析:《旋转和平移》教材分析:一、教材分析:(一)教材说明本单元介绍了旋转现象和平移现象两部分内容。
《平移和旋转》是《数学课程标准》“空间与图形”领域中“图形与变换”的重要内容。
从运动变化的角度去探索和认识空间与图形。
教材注重挖掘和利用身边丰富有趣的实例,充分感知平移、旋转两种运动的不同特征及其普遍存在性,并通过“移一移、说一说”“填一填”“画一画”3个数学活动,来感受平移的几何特征,进一步发展学生的空间观念。
(二)内容分析这部分内容包括3个例题、1个课堂活动和练习十一。
这3个例题分别是生活中的旋转现象、生活中的平移现象和辨认简单图形平移后的图形。
例1是生活中的旋转现象。
教科书是通过一幅有联系的情景图出现的,在这幅图上,小汽车的方向盘在旋转、小朋友手中的风车在旋转、水龙头的开关也在旋转。
但是要注意的是,这些物体中都有一个中心点固定不变,并且整个物体是按顺时针方向或逆时针方向转动。
学生应该从图中既要观到转动现象,又要观察到其中的一个中心点是固定不变的。
学生感知了旋转现象后教科书还要求学生说一说生活中的旋转现象,使所学知识直接作用于生活实际,用说生活中的旋转现象的方式加深学生对旋转现象的理解。
例2是用情景图呈现的生活中的平移现象,画面通过玩滑梯、推积木、小猴表演等画面,说明生活中有大量的沿着一个方向等距离移动的平移现象。
其中推积木是沿水平方向平移的实例,小猴表演是沿竖直方向平移的实例。
同时也要求学生说一说生活中的平移现象,让学生更好地掌握平移概念。
例3是学生在感知了平移现象的基础上,要求能辨认简单图形平移后的图形,这实际上是在学生感知了平移现象的基础上进行的操作活动,教科书给出了沿不同方向平移后可以重合的图形,以及平移后不能重合的图形,要求学生自己去判断。
教科书没有规定平移的方向,其意图是尊重学生的个性,学生愿意怎样平移就怎样平移。
课堂活动是以活动的方式要求学生做一做。
首先要求学生用一根线的一端拴住一颗纽扣,用手拿着另一端作旋转,作旋转时,拿线的手最好不要动,只让线绕手旋转。
《图形的旋转》平移旋转和轴对称
这种组合在实际生活中并不常见,因为在实际应用中,旋转和轴对 称两种操作通常会分开进行。
应用
在几何学中,旋转轴对称组合常用于研究图形的旋转对称性质,如 圆形、椭圆形的性质等。
05
实际应用案例
平移旋转在机械制造中的应用
平移旋转在机械制造中有着广泛的应用。通过平移和旋转,可以方便地对机械零件 进行精确加工和调整。
《图形的旋转》平移旋转和 轴对称
2023-11-08
目 录
• 平移 • 旋转 • 轴对称 • 平移旋转和轴对称的组合应用 • 实际应用案例
01
平移
定义
平移是指在平面内,将一个图形沿某个方向移动一定的距离 。
平移不改变图形的形状、大小和方向,只改变图形的位置。
性质
平移前后,图形的对应线段平行且相等,对应角相等,对应点所连接的线段平行 且相等。
描述
这种组合在实际生活中很常见,比 如汽车在公路上行驶,除了位置的 移动,车身也会围绕自己的轴线旋 转,保持方向不变。
应用
在几何学中,平移旋转组合常用于 研究图形的性质和变化,如平行四 边形的性质、三角形的稳定性等。
平移轴对称组合应用
定义
平移轴对称组合是指将平移和轴 对称两种操作结合起来,使图形 在平面上进行移动的同时,绕某
应用
在几何学中,旋转被广泛应用于图形 的位置和形状的变换。
在物理学中,旋转运动被广泛应用于 物体的运动和平衡状态的研究。
在机械工程中,旋转运动被广泛应用 于机器人的关节和传动装置。
在艺术领域,旋转被广泛应用于舞蹈 、音乐和绘画的表现形式。
03
轴对称
定义
轴对称是指一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线是 它的对称轴。
空间几何体的旋转与平移
空间几何体的旋转与平移空间几何体的旋转与平移是几何学中重要的概念与技巧。
旋转是指在三维空间中,绕着一条轴线进行转动的运动;平移则是指物体在三维空间中沿着一条直线进行移动的运动。
在实际应用中,旋转与平移是广泛应用于图形变换、工程设计、计算机图形学以及机器人学等领域的基础操作。
一、旋转在空间几何中,旋转是物体绕着一条轴线进行转动的运动。
其基本概念可用以下方式来描述。
1. 旋转轴:旋转轴是固定不动的直线,物体绕该直线进行旋转。
旋转轴可以在三维空间中的任意位置,例如可以是水平的、垂直的、斜向的等等。
2. 旋转角度:旋转角度是描述旋转的程度,常用角度制或弧度制表示。
3. 旋转方向:旋转方向可以是顺时针或逆时针方向,它决定了物体在旋转过程中是向某个方向还是反向旋转。
旋转操作可以通过旋转矩阵或四元数来描述和表示。
对于二维平面的旋转,旋转矩阵通常用于表示旋转变换。
而在三维空间中,四元数常被用来表示旋转,因为它具有一些优秀的性质,如不易受到奇异性等问题的影响。
二、平移平移是指物体在三维空间中沿着一条直线进行移动的运动。
其基本概念可用以下方式来描述。
1. 平移方向:平移方向是描述物体平移的方向,可以是水平方向、垂直方向或者其他方向。
2. 平移距离:平移距离是描述物体平移的程度,可以用长度单位(如米、厘米、英尺等)来表示。
平移操作可以通过平移矩阵来描述和表示。
平移矩阵通常用于描述物体在三维空间中沿着某个方向进行移动的变换。
三、旋转与平移的应用旋转与平移作为几何学的重要概念,在实际应用中有着广泛的应用。
以下是一些常见领域中的应用示例。
1. 图形变换:在计算机图形学中,旋转与平移被广泛用于图像的变换。
通过对图像进行旋转和平移操作,可以实现图像的缩放、旋转、平移等效果,从而达到对图像进行处理和变换的目的。
2. 工程设计:在工程设计中,旋转与平移被用于描述和控制物体在三维空间中的位置和构造。
通过对物体进行旋转和平移操作,可以实现部件的组装与调整,从而满足不同的设计要求。
初中数学:平移和旋转
平移与旋转一、新知讲解(一)1、平移的定义:在平面内,将一个图形沿某个方向移动一定距离,这样的图形运动称为平移.它是一种变换.2、平移的两个要素:(1)平移的方向(2)平移的距离.3、平移的性质:(1)平移不改变图形的形状和大小;(2)对应线段平行且相等;(3)对应角相等;(4)对应点所连的线段平行且相等(或在一条直线上).4、平移的实质:是图形上每一个点都沿同一个方向移动了相同的距离。
(二)1、旋转的定义:在平面内,把一个图形绕一个定点,沿某个方向转动一定的角度,这样的图形运动叫做旋转.2、图形旋转的三个要素:(1)旋转中心;(2)旋转方向;(3)旋转角度.3、旋转的性质:(1)图形上的每一点都绕旋转中心沿相同方向转动了相同的角度。
(2)对应线段相等,对应角相等;(3)对应点到旋转中心的距离相等;(4)图形中的每一点都绕着旋转中心旋转同样大小的角度.(5)对应点与旋转中心连线的夹角都是旋转角.4、平移与旋转的异同:区别:从定义分析;联系:都是全等变换。
即两种变换下对应线段相等,对应角相等二、典例分析例1、如图将ABC ∆沿直线AB 向右平移后到达BDE ∆的位置,若 100,50=∠=∠ABC CAB ,则CBE ∠的度数为____________.【变式练习】1、如图,在Rt △ABC 中,∠C =90°,BC =3cm ,AC =4cm ,将△ABC 沿BC 方向平移1cm ,得到△A 'B 'C '.求四边形ABC 'A '的面积.2.如上图,已知△ABC 中,∠ABC =90°,边BC =12cm ,把△ABC 向下平移至△DEF 后,AD =5cm ,GC =4cm ,请求出图中阴影部分的面积.3、在边长为1的小正方形网格中,AOB ∆的顶点均在格点上(1)、B 点关于y 轴的对称点坐标为____________;(2)、将AOB ∆向左平移3个单位长度得到111B O A ∆,请画出111B O A ∆;(3)、在(2)的条件下,1A 的坐标为____________.4、如图,B A ,的坐标为)1,0(),0,2(,若将线段AB 平移至11B A ,则b a +的值为( )A 、2B 、3C 、4D 、5例二、如图,在三角形ABC 中,90BAC ∠=︒,4cm AB =,5cm =BC ,3cm AC =,将三角形ABC 沿BC 方向平移cm(5)a a <得到三角形DEF ,且AC 与DE 相交于点G ,连接AD .(1)阴影部分的周长为______cm ;(2)若三角形ADG 的面积比三角形EGC 的面积大24.8cm ,则a 的值为______.变式:1、如图,△ABC 中,13AC BC ==,把△ABC 放在平面直角坐标系xOy 中,且点A ,B 的坐标分别为(2,0),(12,0),将△ABC 沿x 轴向左平移,当点C 落在直线8y x =−+上时,线段AC 扫过的面积为_______ .2、如图,在ABC 中,已知 7BC =,点 E F ,分别在边AB BC ,上,将BEF △沿直线 EF 折叠,使点B 落在点D 处,DF 向右平移若干单位长度后恰好能与边AC 重合, 连结AD ,若311AC AD −=,则 3AC AD +的值为________ .例三、如图,∠MAN=45°,点C在射线AM上,AC=10,过C点作CB⊥AN交AN 于点B,P为线段AC上一个动点,Q点为线段AB上的动点,且始终保持PQ =PB.(1)如图1,若∠BPQ=45°,求证:△ABP是等腰三角形;(2)如图2,DQ⊥AP于点D,试问:此时PD的长度是否变化?若变化,请说明理由;若不变,请计算其长度;(3)当点P运动到AC的中点时,将△PBQ以每秒1个单位的速度向右匀速平移,设运动时间为t秒,B点平移后的对应点为E,求△ABC和△PQE的重叠部分的面积.例四、(武侯)如图,每个小方格都是边长为1个单位长度的小正方形,ABC ∆的三个顶点都在格点上.(1)、将ABC ∆向右平移3个单位长度,画出平移后对应的111C B A ∆.(2)、将ABC ∆绕点O 旋转 180,画出旋转后对应的222C B A ∆.(第一题图) (第二题图)变式:(锦江)如图,ABC ∆三个顶点的坐标分别为()11,−A ,()24,−B ,()43,−C .(1)、请画出ABC ∆向右平移5个单位长度后得到111C B A ∆;(2)、请画出ABC ∆关于原点对称的222C B A ∆;(3)、在x 轴上求作一点P ,使PAB ∆的周长最小,并直接写出点P 的坐标.例五、如图,在ABC ∆中, 90=∠C , 70=∠BAC ,将ABC ∆绕点A 顺时针旋转 70,B ,C 旋转后对应点分别是'B 和'C ,连接'BB ,则'ABB ∠的度数是( )A 、 35B 、 40C 、 45D 、 55 变式:如图,P 是等边ABC ∆内的一点,且3=PA ,4=PB ,5=PC ,将ABP ∆绕点B 顺时针旋转 60到QBC ∆位置.连接PQ ,则以下结论错误的是( )A 、 60=∠QPB B 、 90=∠PQC C 、 150=∠APBD 、 135=∠APC (例3图) (例3变式)例六、如图,在△ABC 和△DCE 中,AC =BC ,DC =EC ,∠ACB =∠DCE =90°,将△DCE 绕点C 旋转(0°<∠ACD <180°),连接BD 和AE :(1)求证:△BCD ≌△ACE ;(2)试确定线段BD 和AE 的数量关系和位置关系;(3)连接AD 和BE ,在旋转过程中,△ACD 的面积记为S 1,△BCE 的面积记为S 2,试判断S 1和S 2的大小,并给予证明.变式:如图,在正方形ABCD 中,F E ,分别是CD BC ,边上的点满足AF AE DF BE EF 、,+=分别与对角线BD 交于.,N M(1)、求证:︒=∠45EAF (2)、求证:222DN BM MN +=例七:(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为;(2)拓展探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE =90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由;(3)解决问题:如图3,在△ABC中,∠ACB=90°,AC=BC=5,平面上一动点P到点B的距离为3,将线段CP绕点C顺时针旋转90°,得到线段CD,连DA,DB,PB,则BD是否有最大值和最小值,若有直接写出,若没有说明理由?。
图形的平移与旋转知识点
图形的平移与旋转知识点第三章图形的平移与旋转复要点专点一:图形的平移1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
平移是由移动的方向和距离决定的。
2.平移的性质:(1)平移不改变图形的形状和大小:即平移前后的线段相等,平移前后的三角形或多边形全等。
(2)平移后的图形与原来图形的对应线段平行且相等,对应角相等。
(3)平移后两图形的对应点所连的线段平行且相等。
专点二:图形的旋转1.旋转的定义:在平面内,将一个图形绕着一个定点沿着某个方向(顺时针或逆时针)旋转一定的角度,这样的图形运动成为旋转,这个定点称为旋转中心,旋转的角度称为旋转角。
2.旋转的性质:(1)旋转不改变图形的形状和大小:即旋转前后的图形是一组全等形。
(2)旋转后的图形与原来的图形的对应线段相等,对应角相等。
(3)经过旋转,图形上的每点都绕着旋转中央沿相同的方向转动了相同的角度。
(4)任意一对对应点与旋转中央的间隔相称。
考点三、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
(2)关于中央对称的两个图形,对称点连线都经过对称中央,而且被对称中央中分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定如果两个图形的对应点连线都经过某一点,而且被这一点中分,那末这两个图形关于这一点对称。
4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
考点四、坐标系中对称点的特征1、关于原点对称的点的特征:两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2、关于x轴对称的点的特征:两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x 轴的对称点为P’(x,-y)3、关于y轴对称的点的特征:两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)专点五:利用轴对称、旋转和平移作图1.平移作图的一般步骤:(1)确定平移的方向和距离;(2)确定构成图形的枢纽点(线段两个端点,三角形三个极点,n边形n个顶点);(3)按照平移的方向和距离平移各个关键点;(4)顺次连接各个枢纽点的对应点,所得的图形就是平移后的图形。
(完整版)五年级第二讲图形的平移和旋转
图形的平移和旋转知识点讲解:平移的概念:平移,是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
平移的条件:确定一个平移运动的条件是平移的方向和距离。
平移特征:1、平移前后图形的形状、大小不变,只是位置发生改变。
2、新图形与原图形的对应点所连的线段平行且相等(或在同一直线上)。
3、新图形与原图形的对应线段平行且相等,对应角相等。
旋转的概念:在平面内,把一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。
在画旋转图形时,点O叫做旋转中心,旋转的角叫做旋转角,如果图形上的点P经过旋转变为点Pˊ,那么这两个点叫做这个旋转的对应点。
旋转的特征:1、对应点到旋转中心的距离相等。
2、对应点与旋转中心所连线段的夹角等于旋转角。
3、旋转前、后的图形全等。
旋转三要素:①旋转中心②旋转方向③旋转角度课堂练一练一.涂色1、把图形向右平移7格后得到的图形涂上颜色。
2、把图形向左平移5格后得到的图形涂上颜色。
二、利用平移知识画图或填空1.画出小船向右平移6格后的图形2.、画出向右平移6格后的图形3、(1)小汽车向()平移了()格。
(2)小船向()平移了()格。
(3)小飞机向()平移了()格。
4、(1)绕O点顺时针旋转 90度。
(2)向右平移5格一、连一连。
升旗时国旗的运动时针的运动在算盘上拨珠平移电梯的运动风扇叶片的运动火车的运动光盘在电脑里的运动旋转把握汽车的方向盘二、操作。
1、向( )平移了( )格。
2、把上面的小船图向上平移5格3、把上图中的三角形绕垂足顺时针旋转180°一、看图填一填。
1、长方形向()平移了()格。
2、六边形向()平移了()格。
3、五角星向()平移了()格。
二、从镜子中看到的左边图形的样子是什么?画“√”镜子三、按要求操作。
1、把图中长方形向上平移2格;2、把图中三角形向右平移3格;3、把图中平行四边形向左平移5格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8、用 设计一个美丽图案(运用图形的平移与旋转).
(Hale Waihona Puke )射箭运动员把箭射在靶子上.(8)大风车在转动.
4、√
5、(9)小明推教室的门,门被打开了.(10)窗帘被拉开了。
6、钟表分针的运动可看做一种旋转现象,一只标准时钟的分针匀速旋转,经过15分钟旋转了90度.
7、 (1)把三角形绕O点按顺时针方向旋转90°.
(2)把梯形绕B点按逆时针方向旋转90°.
一、图形的运动(旋转和平移)
O
1、如图画出三角形以O点为中心逆时针旋转90°的图形。
2、如图画出四边形向下平移3格再向右平移8格的图形。
3、想一想下面的运动,是平移的画“√”,是旋转的画“○”.
(1)小红向前面走了3米.(2)树上的水果掉在了地上.
(3)汽车的轮子在不停地转动.(4)火箭发射升空.
(5)风扇的叶子在转动.(6)拧开水龙头.