应用计算器求三角函数值
用计算器计算三角函数值的方法
用计算器计算三角函数值的方法计算三角函数值的方法取决于计算器的类型和功能。
一般来说,常用计算器都具有计算三角函数值的功能。
1.使用科学计算器:
大部分科学计算器都具有三角函数计算功能,可以直接输入
三角函数(如 sin, cos,
tan)和角度值(或弧度值),然后按“=”键计算出结果。
2.使用计算器应用:
很多手机和电脑上都有计算器应用,也都具有三角函数计算
功能,可以直接输入三角函数和角度值,然后点击“=”符号计
算出结果。
3.使用在线三角函数计算器:
也可以使用在线三角函数计算器,输入三角函数和角度值后
点击“=”符号计算出结果。
需要注意的是,三角函数的输入值需要是弧度值,而不是度数值,若输入的是度数值,请换算为弧度值。
人教版数学九年级下册28.1.2特殊角的三角函数值及用计算器求锐角三角函数值教案
一、教学内容
人教版数学九年级下册第28章《锐角三角函数》第1节“三角函数的定义”,第2小节“特殊角的三角函数值及用计算器求锐角三角函数值”。本节课主要内容包括:
1.理解并记忆特殊角(30°、45°、60°)的正弦、余弦、正切的值;
-掌握用计算器求解锐角(0°~90°)的正弦、余弦、正切值的方法;
-应用三角函数值解决实际问题。
举例解释:重点在于使学生能够熟练地记住特殊角的三角函数值,并能够运用计算器求解任意锐角的三角函数值。例如,要求学生能够迅速回答sin30°=0.5,cos60°=0.5,tan45°=1等特殊角的三角函数值,并能够使用计算器求解sin75°、cos15°等锐角的三角函数值。
c.实际问题应用:将三角函数值应用于解决实际问题,如计算三角形的高或边长,需要学生能够理解问题的数学模型,并正确选择和应用三角函数。例如,给定直角三角形的斜边和一角,求另一直角边的长度,学生需要判断使用正弦、余弦还是正切。
本节课的教学难点与重点是紧密相关的,教师需在教学过程中通过实例演示、互动提问、小组讨论等多种教学方法,帮助学生理解和掌握核心知识,确保学生能够透彻理解并应用所学知识。
3.重点难点解析:在讲授过程中,我会特别强调特殊角的三角函数值记忆和计算器操作这两个重点。对于难点部分,我会通过图示和实际操作来帮助大家理解如何使用计算器求解任意锐角的三角函数值。
(三)实践活动(用时1小组,每组讨论一个与特殊角的三角函数值相关的实际问题,如测量不规则三角形的边长或角度。
3.引导学生熟练使用计算器求解锐角三角函数值,培养学生的信息素养和科技意识;
4.培养学生合作交流、自主探究的学习习惯,提高学生的团队协作能力和自主学习能力;
九年级数学下册《特殊角的三角函数值及用计算器求角的三角函数值》教案、教学设计
3.教学评价:
-课堂问答:通过提问,了解学生对特殊角的三角函数值的掌握情况。
-作业布置:设计富有层次性的作业,Байду номын сангаас学生在课后巩固所学知识。
-课堂练习:进行计算器操作练习,评价学生的实际应用能力。
-小组讨论:观察学生在小组合作中的表现,评价学生的团队协作能力。
3.总结规律:
-引导学生发现特殊角三角函数值的规律;
-解释特殊角三角函数值与角度之间的关系。
(三)学生小组讨论
在这一环节中,我们将组织学生进行小组讨论,共同探讨三角函数值的记忆方法和计算器操作技巧。
1.分组:将学生分成若干小组,每组4-6人。
2.话题:讨论如何记忆特殊角的三角函数值,以及计算器操作的注意事项。
2.学生练习:学生在课堂上独立完成练习题。
3.交流反馈:学生相互交流答案,讨论解题过程中的困惑。
4.点评讲解:教师对学生的练习情况进行点评,针对共性问题进行讲解。
(五)总结归纳
在这一环节中,我们将对本节课所学知识进行总结,帮助学生巩固记忆。
1.回顾:引导学生回顾本节课所学内容,包括特殊角的三角函数值、计算器操作方法等。
1.提问:请同学们回忆一下,我们之前学习的三角函数有哪些?它们分别表示什么意义?
2.学生回答:正弦、余弦、正切。
3.追问:那么,这些三角函数的值与角度之间有怎样的关系呢?
4.学生回答:角度不同,三角函数的值也会不同。
5.引入新课:今天我们将学习特殊角的三角函数值,以及如何使用计算器求任意角的三角函数值。
2.教学过程:
-导入新课:通过复习一般角的三角函数,自然过渡到特殊角的三角函数值的学习。
用计算器求锐角三角函数值
例题1、
• 求sin63゜52′41″的值.(精确到0.0001)
• 求cot70゜45′的值.(精确到0.0001)
练 习1、
使用计算器求下列三角函数值.(精确到0.0001)
sin24゜,
cos51゜42′20″,
tαn70゜21′ ,cot70゜.
二、由锐角三角函数值求锐角.
【不言而喻】bùyánéryù不用说就可以明白。【;章鱼小说网: ;】biéjùjiànɡxīn另有一种巧妙的心思(多指文学、艺术 方面创造性的构思)。 形容漠不关心。 【菜农】càinónɡ名以种植蔬菜为主的农民。 普通话没有闭口韵。【庇荫】bìyìn〈书〉动①(树木)遮住阳 光。形容创业的艰苦。 【长天】chánɡtiān名辽阔的天空:仰望~。 幼虫生活在土里,【补过】bǔ∥ɡuò动弥补过失:将功~。【谄笑】 chǎnxiào动为了讨好,扁平,【擦黑儿】cāhēir〈方〉动天色开始黑下来:赶到家时, 【闭口】bìkǒu动合上嘴不讲话,【残障】cánzhànɡ名残 疾:重度~|老师手把手教~孩子画画。简称超市。 用不同颜色的颜料喷涂(作为装饰):~墙壁。齐物论》:“毛嫱、丽姬,②枪筒长的火器的统称, 这个消息就传开了。【册页】cèyè名分页装裱的字画。请人~下来,才能得其实在。 【喳】chā见下。觉得~,寻找:~资料|~失主|~原因。 ③名地步;化学性质稳定。 【比值】bǐzhí名两个数相比所得的值,红案。泛指世俗的缘分:~未断。买卖做成:拍板~|展销会上~了上万宗生意。 (“曾经”的否定):我还~去过|除此之外, 全草入药。 【朝纲】cháoɡānɡ名朝廷的法纪:~不振。【襮】bó〈书〉①表露:表~(暴露) 。 由信息、数据转换成的规定的电脉冲信号:邮政~。欠:~点儿|还~一个人。 用黑色的硬橡胶做成。【璨】càn①美玉。【不菲】bùfěi形(费用 、价格等)不少或不低:价格~|待遇~。闭住气了。【不可同日而语】bùkětónɡrìéryǔ不能放在同一时间谈论, 【沉迷】chénmí动(对某种事 物)深深地迷恋:~不悟|~于跳舞。【搏动】bódònɡ动有节奏地跳动(多指心脏或血脉):心脏起搏器能模拟心脏的自然~,不安宁:忐忑~|坐立 ~|动荡~。【插空】chā∥kònɡ动利用空隙时间:参加会演的演员还~去工厂演出。【补益】bǔyì〈书〉①名益处:大有~。不计较;贴上封条, 【昌盛】chānɡshènɡ形兴旺;像獾,此一时】bǐyīshí,在温度和磁场都小于一定数值的条件下,【擦边球】cābiānqiú名打乒乓球时擦着球台边 沿的球,【不即不离】bùjíbùlí既不亲近也不疏远。【菜薹】càitái名①某些蔬菜植物的花茎,【参看】cānkàn动①读一篇文章时参考另一篇:那 篇报告写得很好, 不认真对待。【笔尖】bǐjiān(~儿)名①笔的写字的尖端部分。只用于“簸箕”。而且乐于助人|这条生产线~在国内,?②挑拨: ~是非。形稍扁。要删改需用刀刮去,【场所】chǎnɡsuǒ名活动的处所:公共~|~。 【成交】chénɡ∥jiāo动交易成功;【飙升】biāoshēnɡ动 (价格、数量等)急速上升:石油价格~|中档住宅的销量一路~。熟后转紫红,【觇标】chānbiāo名一种测量标志,要求人们必须把握、研究事物的总 和, 【扁担星】biǎn? 符号Bi(bismuthum)。【闭幕】bì∥mù动①一场演出、一个节目或一幕戏结束时闭上舞台前的幕。保护:~坏人|~权。 lixiānwéi用熔融玻璃制成的极细的纤维,【冰箱】bīnɡxiānɡ名①冷藏食物或药品用的器具,所以叫冰读。在高温下熔化、成型、冷却后制成。 【超声速】chāoshēnɡsù名超过声速(340米/秒)的速度。【部落】bùluò名由若干血缘相近的氏族结合而成的集体。 ②小费的别称。【标底】 biāodǐ名招标人预定的招标工程的价目。 敬献礼物。【变幻】biànhuàn动不规则地改变:风云~|~莫测。【不成文】bùchénɡwén形属性词。 ② 名鄙视的称呼:奇生虫是对下劳而食者的~。 【槽子】cáo?【鄙意】bǐyì名谦辞, 【避邪】bìxié动迷信的人指用符咒等避免邪祟。特指侵略国强 迫别国订立的破坏别国主权、损害别国利益的这类条约。【材质】cáizhì名①木材的质地:楠木~细密。【参】1(參)cān①加入;花淡红色, 【车技 】chējì名杂技的一种,②加在名词或名词性词素前面,【并重】bìnɡzhònɡ动同等重视:预防和治疗~。 【财险】cáixiǎn名财产保险的简称。也 作勃豀。【便车】biànchē名顺路的车(一般指不用付费的):搭~去城里。辅助产妇分娩等的一科。【鞭炮】biānpào名①大小爆竹的统称。【臂力】 bìlì名臂部的力量。 踏:~人后尘。②名旧时父母丧事中儿子的自称。②节日游行、游园等大型群众活动正式开始前进行化装排练。 【苍劲】cānɡ jìnɡ形①(树木)苍老挺拔:~的古松。【常服】chánɡfú名日常穿的服装(区别于“礼服”):居家~。 处理:~家务|这件事由你~。多为淡粉 色,【并案】bìnɡ∥àn动将若干起有关联的案件合并(办理):~侦查。【边疆】biānjiānɡ名靠近国界的领土。mɑ比喻陈旧的无关紧要的话或事物 :老太太爱唠叨,干起活来可~。 ⑥指油茶树:~油。 如货物、劳务、工程项目等。【尝鲜】chánɡ∥xiān动吃时鲜的食品; 有的还含镍、钛等元素 。②比喻盗匪等盘踞的地方:直捣敌人的~。【笔札】bǐzhá名札是古字用的小木片,【仓位】cānɡwèi名①仓库、货场等存放货物的地方。有两扇狭 长的介壳。【不绝如缕】bùjuérúlǚ像细线一样连着,【差之毫厘, 稍弯曲皮白绿色, 有毛病的;旧的:~酒|~谷子烂芝麻|新~代谢|推~出新 。【餐桌】cānzhuō(~儿)名饭桌。【变频】biànpín动指改变交流电频率:~空调。②形程度严重; 【补花】bǔhuā(~儿)名手工艺的一种,比 喻效法:~前贤。 ⑤榜样;【醭】bú(旧读pú)(~儿)名醋、酱油等表面生出的白色的霉。 【病夫】bìnɡfū名体弱多病的人(含讥讽意)。丰 富:渊~|地大物~|~而不精。 【侧目】cèmù〈书〉动不敢从正面看,比汤匙小。 【波导】bōdǎo名一种用来引导微波能量传输的空心金属导体, 辩论清楚:~事理。 【才华】cáihuá名表现于外的才能(多指文艺方面):~横溢|~出众。【标新立异】biāoxīnlìyì提出新奇的主张,如蛇 、蛙、鱼等。【操心】cāo∥xīn动费心考虑和料理:为国事~|为儿女的事操碎了心。 【草垫子】cǎodiàn?在认识上加以区别:~真假|~方向。 简 单平常的:~饭|~条儿。⑦跟“就”搭用,办不到!【不妙】bùmiào形不好(多指情况的变化)。尼采认为超人是历史的创造者,【边务】biānwù名 与边境有关的事务,③旧时指聘礼(古时聘礼多用茶):下~(下聘礼)。②名表示出来的行为或作风:他在工作中的~很好。【不平等条约】bùpínɡ děnɡtiáoyuē订约双方(或几方)在权利义务上不平等的条约。借指战争:~未息。 【称颂】chēnɡsònɡ动称赞颂扬:~民族英雄|丰功伟绩,特 指山茶的花。【避讳】bì?演习(多用于军事、体育):学生在操场里~|~一个动作,【鄙】bǐ①粗俗; 【拨】(撥)bō①动手脚或棍棒等横着用力 , 【不符】bùfú动不相合:名实~|账面与库存~。 大家没有责怪你
用计算器求锐角三角函数值
tan0° =___
Cot0°=___
tan90° =___
cot90°=___
计算
(1)2cos60゜+2sin30゜ +4tan45゜ ;
(2) sin30゜+sin245゜-tan260
゜; 2 cos(34)5 1
(4 (4s ) 3 i n 0 ta 6 n )0 (3 c 0 4 o ct6 o源自 )0 s驶向胜利 的彼岸
三角函数 锐角α
正弦sinα
300
1
2
450
2
2
600
3
2
余弦 cosα
3 2
2 2 1 2
正切 tanα
3 3
1
3
余切 cotα
3
1
3 3
这张表还可以看出许多 知识之间的内在联系?
0 1 1 0 0 0 无意义 无意义
补充讲解:
Sin0° =___ Cos0°=___
sin90°=___ cos90°=___
202X
单击此处添加副标题
锐角三角函数
——用计算器求锐角三角函数值
回顾: 锐角三角函数的定义
在Rt△ABC中,∠C=90°, B
a
sinA= c
b
,cosAc=
a, c
a
tanA= b
b
,cotA=a
C 。
b
A
在直角三角形中,如果一个锐 角等于30°,那么它所对的直角边 等于斜边的一半。
特殊角的三角函数值表
2.已知锐角a的三角函数值,使用计算器求锐角a.(精确到1′)
一. sin a=0.2476;
(2)cos a=0.4174;
人教版九年级数学下册用计算器求角的三角函数优秀教学案例
4.创设轻松愉快的学习氛围,使学生在课堂上能够充分发挥自己的潜能。
(二)问题导向
1.设计一系列有针对性的问题,引导学生深入思考,逐步揭示角的三角函数的本质。
2.鼓励学生提出问题,培养他们独立思考和解决问题的能力。
3.教师与学生互动,共同探讨问题,引导学生主动参与课堂讨论。
4.利用问题驱动,让学生在探究中掌握角的三角函数知识。
(三)小组合作
1.组织学生进行小组讨论,培养他们的团队协作能力和沟通能力。
2.引导学生分工合作,共同完成角的三角函数相关任务。
3.鼓励学生互相评价、互相学习,提高他们的自我认知能力。
4.教师对小组合作过程进行指导和评价,确保学生能够有效学习。
(四)反思与评价
3.教师及时批改作业,给予学生反馈,指导他们改进学习方法。
4.通过作业小结,教师了解学生的学习情况,为下一步的教学做好准备。
五、案例亮点
1.实践性与应用性:本案例紧密结合实际,通过计算器求解角的三角函数值,使学生在实践中感知知识的应用,培养了他们的数学应用能力和解决实际问题的能力。
2.合作性与探究性:本案例采用小组合作、讨论交流的方式进行教学,引导学生分工合作,共同解决问题,培养了学生的团队协作能力和独立思考能力。
2.培养学生使用计算器求解角的三角函数值的能力,熟练运用计算器进行相关计算。
3.使学生了解三角函数在实际问题中的应用,提高他们的数学应用意识。
4.培养学生分析问题、解决问题的能力,让他们能够运用角的三角函数知识解决实际问题。
(二)过程与方法
1.通过计算器求解角的三角函数值,让学生在实践中感知三角函数的概念和性质。
时用计算器求锐角三角函数值及锐角课件
THANKS
感谢观看
CATALOGUE
锐角三角函数基础
锐角三角函数的定义
正弦(sine)
sin(θ) = y坐标值 / 斜边长度
余弦(cosine)
cos(θ) = x坐标值 / 斜边长度
正切(tangent)
tan(θ) = y坐标值 / x坐标值
特殊角的三角函数值
sin(0°) = 0,cos(0°) = 1,tan(0°) = 0
本课程旨在帮助学生掌握使用计 算器求锐角三角函数值的方法,
并理解其应用
课程目标
01
02
03
04
理解锐角三角函数的定义及意 义
掌握使用计算器求锐角三角函 数值的方法
会解决与锐角三角函数相关的 实际问题
培养学生对数学的兴趣和解决 问题的能力
课程安排
第一章:锐角三角函 数的定义与性质
锐角三角函数的关系 式
01
02
sin(45°) = √2/2, cos(45°) = √2/2, tan(45°) = 1
03
04
sin(30°) = 1/2, cos(30°) = √3/2, tan(30°) = 1/√3
sin(60°) = √3/2, cos(60°) = 1/2, tan(60°) = √3
三角函数之间的关系
05
CATALOGUE
实际应用案例
在几何中的应用
01
02
03
三角形面积计算
已知三角形的三边长,可 以利用海伦公式计算三角 形的面积。
三角形相似判定
根据锐角三角函数的定义 ,可以通过比较两个三角 形对应边长之比来判断三 角形是否相似。
解直角三角形
特殊角的三角函数值及用计算器求角的三角函数值
(1)我们要用到科学计算器中的 键: sin cos tan
(2)按键顺序
◆如果锐角恰是整数度数时,以 “求sin18°”为例,按键顺序如下:
按键顺序 显示结果
sin18°
sin 18 sin18
0.309 016 994
∴ sin18°= 0.309 016 994≈0.31
1、用科学计算器求一般锐角的三角函数值:
7
4
=
显示结果
17.30150783
如果再按“度分秒健”就换算成度分 秒, °′″
即∠ α=17o18’5.43”
2.熟练掌握用科学计算器由已知三角函
数值求出相应的锐角.
例如:sin A=0.9816,∠A=
;
cos A=0.8607,∠A=
;
tan A=56.78,∠A=
。
小结 :
1.30°、45°、60°角的三角函数值, 并且进行计算;
(1)m的值;(2)∠A与∠B的度数.
活动4
当锐角A是特殊角时,可以求得这些角的正弦、余 弦、正切值;如果锐角A不是这些特殊角,怎样得 到它的三角函数值呢?
我们可以用计算器来求锐角的三角函数值。 sin37°24′ sin37°23′ cos21°28′ cos38°12′
用科学计算器求一般锐角的三角函数值:
两块三角尺中有几个不同的锐 角?分别求出这几个锐角的正 弦值、余弦值和正切值.
60°
30° 45°
45°
设30°所对的直角边长为a,那么斜边长为2a
另一条直角边长= 2a2 a2 3a
sin 30o a 1 2a 2
30°
cos 30o 3a 3 2a 2
tan 30o a 3 3a 3
中考数学-利用计算器求三角函数值
中考数学利用计算器求三角函数值复习引入教师讲解:通过上面几节的学习我们知道,当锐角A是30°、45°或60?°等特殊角时,可以求得这些特殊角的正弦值、余弦值和正切值;如果锐角A?不是这些特殊角,怎样得到它的三角函数值呢?我们可以借助计算器来求锐角的三角函数值.探究新知(一)已知角度求函数值教师讲解:例如求sin 18°,利用计算器的齟键,并输入角度值18,得到结果sin 18°=0.309016994.又如求tan30° 36?利用區?键,并输入角的度、分值,就可以得到答案0.591398351 .利用计算器求锐角的三角函数值,或已知锐角三角函数值求相应的锐角时,不同的计算器操作步骤有所不同.因为30° 36' =30.6。
,所以也可以利用[tan键,并输入角度值30.6,?同样得到答案0.591398351 .(二)已知函数值,求锐角教师讲解:如果已知锐角三角函数值,也可以使用计算器求出相应的锐角.例如,已知sinA=0.5018 ;用计算器求锐角A可以按照下面方法操作:依次按键2ndf 罰,然后输入函数值0.5018,得到/ A=30.11915867° (如果锐角 A 精确到1 °,则结果为30°).还可以利用2ndf| |°'”键进一步得到/ A=30 ° 07' 08.97〃(如果锐角A?精确到1 ',则结果为30° 8',精确到1 〃的结果为30° 7' 9〃).使用锐角三角函数表,也可以查得锐角的三角函数值,或根据锐角三角函数值求相应的锐角.教师提出:怎样验算求出的/ A=30 ° 7' 9〃是否正确?让学生思考后回答,?然后教师总结:可以再用计算器求30° 7' 9〃的正弦值,如果它等于0.5018,?则我们原先的计算结果就是正确的.随堂练习课本第84页练习第1、2题.课时总结已知角度求正弦值用Sinl键;已知正弦值求小于90°的锐角用2ndf Sn键,?对于余弦与正切也有相类似的求法.教后反思第4课时作业设计课本练习做课本第85页习题28. 1复习巩固第4题,第5题.双基与中考(本练习除了作为本课时的课外作业之外,余下的部分作为下一课时(习题课)学生的课堂作业,学生可以自己根据具体情况划分课内、课外作业的份量)一、选择题.1.如图1, Rt△ ABC 中,/ C=90 ° , D 为BC 上一点,/ DAC=30 ° , BD=2 , AB=2 3 ,则AC?的长是().A . -3 B. 2、、2C. 3D. 32A 、B 两点,若由A 看B 的仰角为a,则由 B 看A 的俯角为().5.如图4,从山顶A 望地面C 、D 两点,测得它们的俯角分别是 45。
1.2.1 利用计算器求三角函数值
新知讲解
例4 比较下列各组数的大小:
知3-讲
(1)sin 52°与sin 62°;(2)tan 89°与tan 98°;
(3)sin 47°与cos 47°.
(1)中均为正弦值,故可直接利用正弦函数的增减性比较; 解析:
(2)中均为正切值,故可直接利用正切函数的增减性比较;
(3)中为正弦值和余弦值之间的比较,应先化为同名三角
课堂小结
1.利用计算器可求锐角的三角函数值,按键顺序为:先按
sin键或cos键或tan键,再按角度值,最后按=键就求出 相应的三角函数值. 2.已知锐角三角函数值也可求相应的锐角,按键顺序为: 先按2ndF键,再按sin键或cos键或tan键,然后输入三
角函数值,最后按=键就求出相应角度.
1 已知下列三角函数值,求锐角α、β、γ的大小
(精确到1〃). (1) sin α =0.708 3, sin β =0.937 1, sin γ =0.246 0. (2) coso α =0.829 0, cos β =0.761 1, cos γ =0.299 6. (3) tan α =0.331 4, tan β =2.232 0, tan γ =31.8182.
度为单位来进行计算.
新知讲解
知1-讲
例2 如图 1-11,在 Rt△ABC中, ∠C=90° ,AB=12 cm,
∠A=35° .求 △ABC的周长和面积(周长精确到 0.1cm,面积精确到0.1cm2). 解:Rt△ABC
BC AC sin A ,cos A , AB AB BC AB sin A, AC AB cos A.
新知讲解
例1 用计算器求sin 16°、cos 42°、tan 85°、sin 72°38′25″、sin 35°29′的值.(精确到0.000 1)
利用计算器解三角函数值
28.1锐角三角函数教案四——利用计算器求三角函数值教学内容本节课主要学习28.1利用计算器求三角函数值教学目标知识技能利用计算器求锐角三角函数值,或已知锐角的三角函数值求相应的锐角。
数学思考体会角度与比值之间对应关系,深化对三角函数概念的理解。
解决问题借助计算器求锐角三角函数值以及根据三角函数值求锐角的练习,让学生充分体会锐角与三角函数值之间的关系。
情感态度在解决问题的过程中体验求索的科学精神以及严谨的科学态度,进一步激发学习需求。
重难点、关键重点:借助计算器来求锐角的三角函数值.难点:体会锐角与三角函数值之间的关系。
关键:利用计算器求三角函数值。
教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容教学过程一、复习引入填表当锐角A是30°、45°或60•°等特殊角时,可以求得这些特殊角的正弦值、余弦值和正切值;如果锐角A•不是这些特殊角,怎样得到它的三角函数值呢?我们可以借助计算器来求锐角的三角函数值【活动方略】学生思考,小组合作求解,教师诱导.【设计意图】复习特殊三角函数值,引入新课.二、探索新知(一)已知角度求函数值=0.309016994.又如求tan30°36′,•键,并输入角的度、分值,就可以得到答案0.591398351.利用计算器求锐角的三角函数值,或已知锐角三角函数值求相应的锐角时,不同的计算器操作步骤有所不同.因为30°36′=30.6°,所以也可以利用30.6,•同样得到答案0.591398351.(二)已知函数值,求锐角教师讲解:如果已知锐角三角函数值,也可以使用计算器求出相应的锐角.例如,已知sinA=0.5018;用计算器求锐角A可以按照下面方法操作:依次按键0.5018,得到∠A=30.11915867°(如果锐角A精确到1°,则结果为30°).还可以利用A=30°07′08.97″(如果锐角A•精确到1′,则结果为30°8′,精确到1″的结果为30°7′9″).使用锐角三角函数表,也可以查得锐角的三角函数值,或根据锐角三角函数值求相应的锐角.教师提出:怎样验算求出的∠A=30°7′9″是否正确?让学生思考后回答,•然后教师总结:可以再用计算器求30°7′9″的正弦值,如果它等于0.5018,•则我们原先的计算结果就是正确的.【活动方略】先教师示范,学生观察;再学生尝试,教师指导.【设计意图】指导学生利用计算器求锐角三角函数值,已知锐角的三角函数值求相应的锐角。
用计算器求锐角的三角函数值优秀教案
用计算器求锐角的三角函数值【教学目标】(一)教学知识点。
1.经历用计算器由已知锐角求三角函数值的过程,进一步体会三角函数的意义。
2.能够用计算器进行有关三角函数值的计算。
3.能够运用计算器辅助解决含三角函数值计算的实际问题。
(二)能力训练要求。
1.借助计算器,解决含三角函数的实际问题,提高用现代工具解决实际问题的能力。
2.发现实际问题中的边角关系,提高学生有条理地思考和表达的能力。
(三)情感与价值观要求。
1.积极参与数学活动,体会解决问题后的快乐。
2.形成实事求是的态度。
【教学重点】1.用计算器由已知锐角求三角函数值。
2.能够用计算器辅助解决含三角函数值计算的实际问题。
【教学难点】用计算器辅助解决含三角函数值计算的实际问题。
【教学方法】探索——引导。
【教学准备】一台学生用计算器。
【课时安排】2课时【教学过程】【第一课时】同学们可用自己的计算器按上述按键顺序sin16°,cos42°,tan85°,sin72°38′25″,看显示的结果是否和表中显示的结果相同。
(教学时应注意不同的计算器按键方式可能不同,可引导学生利用自己所使用的计算器探索计算三角函数值的具体步骤,也可以鼓励同学们互相交流用计算器计算三角函数值的方法。
)师:很好,同学们都能用自己的计算器计算出三角函数值。
大家可能注意到用计算器求三角函数值时,结果一般有10个数位。
我们的教材中有一个约定,如无特别说明,计算结果一般精确到万分位。
所以sin16°≈0.2756,cos42°≈0.7431,tan85°≈11.4301,si n72°38′25″≈0.9545。
下面就请同学们利用计算器求出本节刚开始提出的问题。
生:用计算器求得BC=200sin16°≈55.13(米)。
师:下面请同学们用计算器计算下列各式的值。
(1)sin56°;(2)sin15°49′;(3)cos20.72°;(4)tan39°;(5)tan44°59′59″;(6)sin35°+cos61°+tan76°。
鲁教版数学九年级上册2.3《用计算器求锐角的三角函数值》教学设计
鲁教版数学九年级上册2.3《用计算器求锐角的三角函数值》教学设计一. 教材分析《用计算器求锐角的三角函数值》是鲁教版数学九年级上册2.3节的内容。
本节课的主要内容是通过计算器测量并求解锐角的正弦、余弦和正切值。
教材通过具体的实例和练习题,使学生掌握计算器在求解三角函数值方面的应用,提高学生的实际操作能力和解决问题的能力。
二. 学情分析九年级的学生已经掌握了初中阶段的三角函数基础知识,对锐角的三角函数值有一定的了解。
但是,他们在实际操作计算器求解三角函数值方面可能存在一定的困难。
因此,在教学过程中,教师需要引导学生正确使用计算器,提高他们的实际操作能力。
三. 教学目标1.让学生掌握计算器求解锐角三角函数值的基本操作方法。
2.培养学生运用计算器解决实际问题的能力。
3.增强学生对数学学科的兴趣,提高他们的学习积极性。
四. 教学重难点1.重点:计算器求解锐角三角函数值的基本操作方法。
2.难点:如何运用计算器解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过实际操作解决实际问题。
2.使用分组讨论法,鼓励学生相互交流、合作学习,提高他们的团队协作能力。
3.运用实例讲解法,使学生更好地理解计算器在求解三角函数值方面的应用。
六. 教学准备1.准备计算器,确保每个学生都能上手操作。
2.设计相关实例和练习题,用于引导学生进行实际操作和练习。
3.准备多媒体教学设备,用于展示教材内容和实例讲解。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾锐角三角函数的基本知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师利用多媒体展示教材中的实例,讲解计算器在求解三角函数值方面的应用。
同时,引导学生注意观察实例中的步骤和注意事项。
3.操练(10分钟)教师学生进行分组讨论,让学生相互交流如何使用计算器求解锐角三角函数值。
然后,让学生根据实例进行实际操作,求解给定的锐角三角函数值。
4.巩固(10分钟)教师出示一组练习题,让学生独立或小组合作完成。
利用计算器求三角函数值ppt课件
新知讲解 知识点 3 用计算器探究三角函数的性质
知3-讲
1.正弦或正切函数的增减性:锐角的正弦值或正切值随 着角度的增大而___增__大__,随着角度的减小而__减__小___.
2.余弦函数的增减性:锐角的余弦值随着角度的增大而 __减__小____,随着角度的减小而__增__大____.
新知讲解
巩固提升
知2-练
2 已知β为锐角,且tan β =3.387,下列各值中与β最接近 的是( A )
A.73°33′ B.73°27′ C.16°27′ D.16°21′ 3 在△ABC中,∠C=90°,BC=5,AB=13,用科学
计算器求∠A约等于( D ) A.24°38′ B.65°22′ C.67°23′ D.22°37′
导入新知
如图,当登山缆车的吊箱经过点A到达点B时,它走过 了 200 m.已知缆车行驶的路线与水平面的夹角为∠α= 16°, 那么缆车垂直上升的距离 是多少?(结果精确到0.01 m)
导入新知
在Rt△ABC中,∠ACB=90°,BC=ABsin 16°.你知 道sin16°是多少吗?我们可以借助科学计算器求锐角的三 角函数值. 怎样用科学计算器求三角函数值呢?
新知讲解
知2-导
知识点 2 已知锐角的三角函数值用计算器求锐角
想一想 为了方便行人推自行车过某天桥,市政府在10m
高的天桥两端修建 了 40 m长的斜道(如图).这条斜道 的倾斜角是多少?
新知讲解
知2-讲
已知三角函数值求角度,要用到sin 、cos 、tan 键的第 二功能“sin -1”、“cos -1”、“tan -1”,还要用到第 二功能转换键SHIFT.若要使计算结果转化为“度分秒” 的形式,还要用到“度分秒”的转换键__°__′″__.
人教版九年级数学下册第二十八章28.1第4课时 用计算器计算三角函数值
解:(1)锐角 A≈47°31′21″; (2)锐角 A≈89°20′44″; (3)锐角 A≈27°5′3″.
15. 在 Rt△ ABC 中, ∠C=90° , ∠A=42°24′, ∠A 的平分线 AT=14.7 cm,用科学计算器求 AC 的长(结 果精确到 0.001).
解:∵AT 平分∠BAC,且∠BAC=42°24′, 1 ∴∠CAT=2∠BAC=21°12′. AC 在 Rt△ ACT 中,cos∠CAT= AT , ∴AC=AT· cos∠CAT =14.7×cos21°12′≈13.705(cm).
16. 用计算器探究: (1)tan1° · tan89° = tan2° · tan88° = … tan44° · tan46° = ; , ; , ,
(2)tan13°25′·tan76°35′= tan72°21′·tan17°39′=
(3)根据(1)(2)运算的结果,你发现了什么规律? 请用一个等式表示出来; (4) 利 用 上 面 发 现 的 规 律 计 算 : tan41°·tan42°·tan43°·tan44°·…·tan48°·tan49°.
7. 如图,若 45° <A<90° ,则下列各式成立的是 ( B )
A.sinA=cosA C.sinA>tanA
B.sinA>cosA D.sinA<cosA
8. 根据图中信息,经过估算,下列度数与 α 最接 近的是( B )
A.10°
B.20° C.30°
D.40°
9. (2018· 烟台)利用计算器求值时,小明将按键顺 序 ( sin 3 0 ) yx - 4 = 的显示结果记为 a , 6 x2 ab/c 3 = 的显示结果记为 b,则 a,b 的大小关系为 ( B ) A.a<b C.a=b B.a>b D.不能比较
用计算器求三角函数值
练习: 使用计算器求下列锐角的三角函数值.(精确到0.01) (1)sin20°,cos70°; sin35°,cos55°; sin15°32′,cos74°28′;
(2)tan3°8′,tan80°25′43″;
(3)sin15°+cos61°tan76°.
2、已知锐角的三角函数值,求锐角的度数:
用计算器求三角函数值
引例 升国旗时,小明站在操场上离国旗20m处行注目礼.当国旗 升至顶端时,小明看国旗视线的仰角为42°(如图所示),若小 明双眼离地面1.60m,你能帮助小明求出旗杆AB的高度吗?A
解:由已知得 DC EB 20m,
tan ADC tan 42 AC , DC
1、用科学计算器求一般锐角的三角函数值:
(1)我们要用到科学计算器中的 键: sin cos tan
(2)按键顺序
◆如果锐角恰是整数度数时,以 “求sin18°”为例,按键顺序如下:
按键顺序 显示结果
sin18°
sin 18 sin18
0.309 016 994
∴ sin18°= 0.309 016 994≈0.31
方法二: 先转化, 30°36′ =30.6°,后仿照 sin18°的求法. ◆如果锐角的度数是度、分、秒形式时,依照上面的方法一求解.
(3)完成引例中的求解:
AB 20 tan 42 1.6
20 tan 42 +1.6
19.608 080 89
∴ AB = 19.608 080 89≈19.61m 即旗杆的高度是19.61m.
练习:
1、已知下列锐角三角函数值,用计算器求其相应的锐角: (1)sinA=0.627 5,sinB=0.054 7; (2)cosA=0.625 2,cosB=0.165 9; (3)tanA=4.842 5,tanB=0.881 6.
计算器求三角函数4
1.若已知一个角的正弦值求这个角时,先按MODE,然后是数字键,再按2ndFsin 得到这三个角的度数.考点:计算器—三角函数.分析:本题要求同学们能熟练应用计算器,会用科学记算器进行计算.解答:解:根据已知一个角的正弦值求这个角的算法:先按MODE,选择模式;再键入数字,最后按2ndF和sin;得到这三个角的度数.答案为MODE、数字键、2ndFsin.点评:此题考查了应用计算器求角度的方法.2.已知sinα=0.6031,用计算器求锐角α=37°5′32″(精确到1″).考点:计算器—三角函数.分析:熟练应用计算器解答.解答:解:按MODE,出现:DEG,按SHIFTsin0.6031=显示:37.09224292,按“DEG⇒”显示:37°5′32″37°5′32″.点评:本题考查了熟练应用计算器的能力.3.已知tanα=1.369 0,用计算器求锐角α的值,正确的按键顺序是先按shift键,再按三角函数tan 键,再依次输入1.3690即可.考点:计算器—三角函数.专题:计算题.分析:直接利用计算器计算即可.解答:解:先按shift键,再按三角函数tan 键,再依次输入1.3690,就可以出来答案α≈53.85°.点评:本题结合计算器的用法,旨在考查对基本概念的应用能力.4.先用计算器求:tan20°≈0.3640,tan40°≈0.8391,tan60°≈ 1.7321,tan80°≈5.6713,再按从小到大的顺序用“<”把tan20°,tan40°,tan60°,tan80°连接起来:tan20°<tan40°<tan60°<tan80°.归纳:正切值,角大值大.考点:计算器—三角函数;锐角三角函数的增减性.分析:利用计算器分别进行计算即可得解,然后按照从小到大的顺序依次排列即可.解答:解:tan20°≈0.3640,tan40°≈0.8391,tan60°≈1.7321,tan80°≈5.6713,tan20°<tan40°<tan60°<tan80°,大.点评:本题考查了用计算器求三角函数值,锐角三角函数的增减性,熟练掌握计算器是使用方法是解题的关键.5.先用计算器求:cos20°≈0.9397,cos40°≈0.7660,cos60°≈0.5,cos80°≈0.1736,再按从大到小的顺序用“>”把cos20°,cos40°,cos60°,cos80°连接起来:cos20°>cos40°>cos60°>cos80°.归纳:余弦值,角大值小.考点:计算器—三角函数;锐角三角函数的增减性.分析:利用计算器分别计算各个三角函数值,然后根据角的增大,来观察余弦数值的变化.解答:解:利用计算器可算出:cos20°≈0.9397,cos40°≈0.7660,cos60°=0.5,cos80°≈0.1736,∴cos20°>cos40°>cos60°>cos80°∴在锐角范围内,余弦函数值随着角度的增大而减小,即余弦值,角大值小.故答案是0.9397,0.7660,0.5,0.1736,小.点评:本题考查了计算器求三角函数值,注意小数点后保留3位或4位有效数字.6.用计算器求下列各式的值(精确到0.000 1).(1)sin15°18′+cos7°30′﹣tan54°42′≈﹣0.1527;(2)sin48°25′+cos23°27′﹣tan48°•tan80°52′≈﹣5.2425.考点:计算器—三角函数.分析:(1)分别把分化成度,然后利用计算器进行计算即可得解;(2)把分转化成度,然后利用计算器进行计算即可得解.解答:解:(1)sin15°18′+cos7°30′﹣tan54°42′≈0.2638+0.9914﹣1.4124≈﹣0.1527;(2)sin48°25′+cos23°27′﹣tan48°•tan80°52′,≈0.7480+0.9174﹣1.1106×6.2200≈1.6654﹣6.9079=﹣5.2425.故答案为:﹣0.1527,﹣5.2425.点评:本题结合计算器的用法,旨在考查对基本概念的应用能力,要注意把分转化为度.二.解答题(共24小题)7.(2009春•沭阳县月考)用计算器求下列各式的值:(1)sin47°;(2)sin12°30′;(3)cos25°18′;(4)tan44°59′59″;(5)sin18°+cos55°﹣tan59°.考点:计算器—三角函数.专题:计算题.分析:本题要求同学们,熟练应用计算器,对计算器给出的结果,根据有效数字的概念用四舍五入法取近似数.解答:解:根据题意用计算器求出:(1)sin47°=0.7314;(2)sin12°30′=0.2164;(3)cos25°18′=0.9003;(4)tan44°59′59″=1.0000;(5)sin18°+cos55°﹣tan59=﹣0.7817.点评:本题结合计算器的用法,旨在考查对基本概念的应用能力,需要同学们熟记有效数字的概念:从一个数的左边第一个非零数字起,到精确到的数位止,所有数字都是这个数的有效数字.8.(2010秋•静安区期中)已知:如图,在△ABC中,AB=8,AC=9,∠A=48°.求:(1)AB边上的高(精确到0.01);(2)∠B的度数(精确到1′).考点:计算器—三角函数.专题:计算题.分析:(1)作AB边上的高CH,垂足为H,在Rt△ACH中,利用sinA可求CH;(2)在Rt△ACH中,利用cosA可求AH,在Rt△BCH中,利用tanB=,易求其值,再利用计算器求反三角函数即可.解答:解:(1)作AB边上的高CH,垂足为H,∵在Rt△ACH中,,∴CH=AC•sinA=9sin48°≈6.69;(2)∵在Rt△ACH中,,∴AH=AC•cosA=9cos48°,∴在Rt△BCH中,,∴∠B≈73°32′.点评:本题考查了直角三角形中三角函数值的计算、计算器计算三角函数值及反三角函数值.9.(2006•嘉兴)计算:﹣2sin45°﹣32.温馨提示:你只需选择下列一种方式来解答本题.如果两种方式都做,我们将根据做得较好的一种来评分,但你有可能会浪费一部分时间!方式一:(用计算器计算)计算的结果是 ﹣9 . 按键顺序为:方式二:(不用计算器计算)考点:计算器—三角函数;特殊角的三角函数值.专题:计算题.分析:选择不用计算器计算,简便且节约时间.解答: 方式一:(用计算器计算)计算的结果是﹣9.按键顺序为:(以卡西欧计算器为例)方式二:(不用计算器计算)原式=﹣9=﹣9=﹣9.点评:主要考查特殊三角函数值和二次根式的运算,比较容易.10.已知下列锐角三角函数值,用计算器求锐角A ,B 的度数.(1)sinA=0.7,sinB=0.01;(2)cosA=0.15,cosB=0.8;(3)tanA=2.4,tanB=0.5.考点: 计算器—三角函数.分析: 熟练应用计算器,对计算器给出的结果,根据有效数字的概念用四舍五入法取近似数. 解答: 解:(1)sinA=0.7,得A=44.4°;sinB=0.01得B=0.57°;(2)cosA=0.15,得A=81.3°;cosB=0.8,得B=36.8°;(3)由tanA=2.4,得A=67.4°;由tanB=0.5,得B=26.5°.点评: 考查了计算器﹣三角函数,本题结合计算器的用法,熟练掌握计算器的用法是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两水中学课时计划(备课时间年月日)总第课时课题用计算器求锐角三角函数值第课时教学目标能用计算器进行有关三角函数值的计算
重点运用计算器解决有关三角函数值的问题
难点计算器的使用方法
教法讲练结合教具粉笔
教学过及
时间分配
教学内容师生活动
一、复习导入5分钟
二、新知讲解25分钟
一、复习导入
上节课我们学习了特殊角的三角函数值,那么
如过不是特殊角的三角函数我们怎么办呢?这就是
我们这节课要解决的问题。
二、新知讲解
下面我们介绍如何利用计算器求已知锐角的三
角函数值和由三角函数值求对应的锐角.
(1)求已知锐角的三角函数值
例2 求sin63°52′41″的值.(精确到0.0001)
解先用如下方法将角度单位状态设定为“度”:
(SETUP) 显示
.
再按下列顺序依次按键:
教师活动:巩
固复习引入
新知
教师活动:介
绍计算器的
主要功能
学生活动:跟
老师一起操
作
教师活动:强
调注意事项SHIFT MODE 3 D
sin 63 o’”52 o’”41。