初一上册数学第二次月考试卷

合集下载

七年级数学上册月考试卷【含答案】

七年级数学上册月考试卷【含答案】

七年级数学上册月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 如果一个三角形的两边分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 23厘米C. 17厘米D. 7厘米2. 下列哪个数是质数?A. 21B. 37C. 39D. 273. 一个长方体的长、宽、高分别是10厘米、6厘米和4厘米,那么它的体积是多少立方厘米?A. 240立方厘米B. 120立方厘米C. 60立方厘米D. 48立方厘米4. 下列哪个角是锐角?A. 120°B. 45°C. 180°D. 90°5. 如果一个数的平方是64,那么这个数可能是多少?A. 8B. -8C. 7D. 9二、判断题(每题1分,共5分)1. 任何两个偶数相加的和都是偶数。

()2. 一个正方形的对角线长度等于它的边长的平方根。

()3. 在三角形中,最大的角对应最长的边。

()4. 任何两个奇数相乘的积都是奇数。

()5. 1是质数。

()三、填空题(每题1分,共5分)1. 如果一个四边形的对边平行且相等,那么这个四边形是______。

2. 一个数的立方根是指这个数乘以自己两次后得到的结果,记作______。

3. 如果一个数既是4的倍数又是6的倍数,那么这个数至少是______。

4. 在平面直角坐标系中,点(3, 4)的横坐标是______,纵坐标是______。

5. 一个圆的半径是5厘米,那么这个圆的直径是______厘米。

四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。

2. 什么是因数分解?请给出一个例子。

3. 请解释什么是算术平均数。

4. 请说明如何计算一个三角形的面积。

5. 请解释什么是比例尺。

五、应用题(每题2分,共10分)1. 一个长方形的长是15厘米,宽是8厘米,求这个长方形的面积。

2. 如果一个数加上50后等于它的3倍,求这个数。

3. 一个圆锥的底面半径是4厘米,高是6厘米,求这个圆锥的体积。

七年级数学上册第二次月考测试卷

七年级数学上册第二次月考测试卷

七年级数学上册第二次月考测试卷一、选择题。

(每题3分,共30分。

)1.在0,-1,-2,-3,53,8,-1 ,中负数的个数是( )A.4B.3C.2D.12. 下面用四舍五入得到的近似数中,含有三个有效数字的是( )A. 0.3120B. 500万C. 0.03120D. 1.00323. 如果|a|=a, 下列各式一定成立的是 ( )A. a0B. a0或a=0C. a0或a=0D. 无法确定4.下列等式成立的是 ( )A. B. C. D.5. 设n是一个正整数, 则是 ( )A. 10个n相乘所得的积B. 是一个n位数的整数C. 10的后面有n个0的.数D. 是一个(n+1)位的整数6. 若m, n互为相反数,则下列结论中不一定正确的是 ( )A. m + n = 0B.m2 = n2C.│m│=│n│D.7.下列各式中,不是同类项的是 ( )A. 25与1B. 与C. 与D. 与8.用科学记数法表示106 000,其中正确的是 ( )A.1.06105B.1.06106C.106103D.10.61049.式子中,其中二次项的系数是 ( )A.1B. 1C.0D.210.某粮店出售的三种品牌的面粉袋上分别标有质量为(250.1)kg,(250.2)kg, (250.3)kg的字样,从中任意拿出两袋,它们的质量最多相差 ( )A.0.8kgB.0.6kgC.0.5kgD.0.4kg二、填空题。

(每空3分,共30分。

)11.冰箱的冷冻室的温度为,冷藏室的温度为,则冷冻室的温度比冷藏室的高12. 若|-7|=x, 则x=__________13. 在数轴上距离原点3个单位长度的数是________________.14. 比大的最小负整数是 .15. 把(-4)+(-1)-(-7)写成省略括号的和的形式是。

16.去括号且合并:。

17. 已知,则的值等于_____。

18. 用科学记数法表示为 ,其原数为___________________。

七年级上册数学月考试卷【含答案】

七年级上册数学月考试卷【含答案】

七年级上册数学月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm和4dm,那么它的体积是多少?A. 24立方分米B. 20立方分米C. 18立方分米D. 22立方分米4. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/105. 如果一个等腰三角形的底边长是10厘米,腰长是13厘米,那么这个三角形的周长是多少?A. 32厘米B. 36厘米C. 26厘米D. 30厘米二、判断题(每题1分,共5分)1. 任何一个偶数都不是质数。

()2. 一个等边三角形的三个角都是60度。

()3. 一个长方体的六个面都是长方形。

()4. 0.3333是一个无限循环小数。

()5. 任何一个正方体的体积都可以用底面积乘以高来计算。

()三、填空题(每题1分,共5分)1. 2的平方根是______。

2. 一个等腰三角形的底角是45度,那么顶角的度数是______。

3. 如果一个正方形的边长是6厘米,那么它的面积是______平方厘米。

4. 3/8可以化成小数______。

5. 一个长方体的长、宽、高分别是2dm、3dm和4dm,那么它的体积是______立方分米。

四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。

2. 请解释等边三角形的性质。

3. 请描述正方体的特征。

4. 请解释最简分数的概念。

5. 请简述长方体体积的计算方法。

五、应用题(每题2分,共10分)1. 一个长方体的长、宽、高分别是10厘米、6厘米和4厘米,求它的体积。

2. 一个等腰三角形的底边长是12厘米,腰长是15厘米,求这个三角形的周长。

3. 一个正方形的边长是8厘米,求它的面积。

七年级(上)第二次月考数学检测试卷(含答案)

七年级(上)第二次月考数学检测试卷(含答案)

七年级(上)第二次月考数学检测试卷(每小题3分,共30分) .在 8080080008.0 ,8 ,31.0 ,41, ,2 ,14.33--π(每两个8之间依次多1个0)这些数中,无理数的个数为( )A 、1个B 、2个C 、3个D 、4个 ,下列运算正确的是( )A 、2222=-xx B 、 2222555d c dc =+C 、xy xy xy =-45D 、532532m m m =+、将一元一次方程13321=--x 去分母,下列正确的是( )A 、1-(x -3)=1B 、3-2(x -3)=6C 、2-3(x -3)=6D 、3-2(x -3)=1下列近似数中,含有3个有效数字的是 ( ) A.5430 B.5.430×106C.0.5430D.5.43万.下列各式中去括号正确的是( )A 、22(22)22x x y x x y --+=-++B 、()m n mn m n mn -+-=-+-C 、(53)(2)22x x y x y x y --+-=-+D 、(3)3ab ab --+= 下列式子中: 12,b ,y x + ,032=-y ,ts 整式的个数为( )A 、2个B 、3个C 、4个D 、5个.下列说法中正确的是 ( . ) A.有理数与数轴上的点一一对应。

B.无限小数是无理数。

C.23-读作3-的平方 D.5的平方根是5±、哥哥今年15岁,弟弟今年9岁,x 年前哥哥的年龄是弟弟年龄的2倍,则列方程为( ) A、)9(215x x -=- B、)15(29x x -=- C、)9(215x x +=+ D、)15(29x x +=+ 9、如图,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为1,则点A 表示的数为 A .7B .3C .3-D .2-10,在甲组图形的4个图中,每个图是由4种简单图形A 、B 、C 、D(•不同的线段或圆)中的某两个图形组成的,例如由A 、B 组成的图形记为A ·B 。

七年级数学上册第二次月考测试题(04)

七年级数学上册第二次月考测试题(04)

七年级数学上册第二次月考测试题(04)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各数中,2的相反数是()A.2B.﹣2C.D.﹣2.(3分)据猫眼专业版显示,今年国庆档的献礼片《我和我的祖国》已经跻身中国电影票房榜前五名,自上映以来票房累计突破29.9亿元,将29.9亿用科学记数法可以表示为()A.0.299×1010B.2.99×109C.29.9×108D.2.99×1010 3.(3分)实数a,b,c在数轴上的位置如图所示,化简|﹣a﹣b|﹣|c|的结果是()A.﹣a﹣b+c B.﹣a﹣b﹣c C.a+b﹣c D.a+b+c4.(3分)下列说法中,正确的是()A.单项式的系数是﹣2,次数是3B.单项式a的系数是0,次数是0C.﹣3x2y+4x﹣1是三次三项式,常数项是1D.单项式的次数是2,系数为5.(3分)下列叙述中正确的是()A.若ac=bc,则a=b B.若=,则a=bC.若a2=b2,则a=b D.若﹣,则x=﹣26.(3分)若|b﹣2|+(a+3)2=0,则(a+b)2019的值为()A.2019B.﹣1C.﹣2019D.17.(3分)已知无论x,y取什么值,多项式(2x2﹣my+12)﹣(nx2+3y﹣6)的值都等于定值18,则m+n等于()A.5B.﹣5C.1D.﹣18.(3分)笔记本比水性笔的单价多2元,小刚买了5本笔记本和3支水性笔正好用去18元.如果设水性笔的单价为x元,那么下面所列方程正确的是()A.5x+3(x﹣2)=18B.5(x﹣2)+3x=18C.5x+3(x+2)=18D.5(x+2)+3x=189.(3分)已知关于x的方程2(x﹣1)+3k=4x+6的解为x=﹣1,则k的值为()A.1B.2C.3D.410.(3分)如图,数轴上A,B,C,D,E五个点表示连续的五个整数a,b,c,d,e,且a+e=0,则下列说法:①点C表示的数字是0;②b+d=0;③e=﹣2;④a+b+c+d+e=0.正确的有()A.都正确B.只有①③正确C.只有①②③正确D.只有③不正确二.填空题(共5小题,满分15分,每小题3分)11.(3分)阅读理解:①根据幂的意义,a n表示n个a相乘;则a m+n=a m•a n;②a n=m,知道a和n可以求m,我们不妨思考;如果知道a,m,能否求n呢?对于a n=m,规定[a,m]=n,例如:62=36,所以[6,36]=2.记[5,x]=4m,[5,y﹣3]=4m+2;y与x之间的关系式为.12.(3分)方程3x2n﹣3+2=0是关于x的一元一次方程,则n=.13.(3分)若关于x的方程3x﹣7=2x+a的解与方程4x+3=﹣5的解互为倒数,则a的值为.14.(3分)2022年冬奥会将在北京召开,某场馆建设由甲乙两个工程队完成,甲单独做要30个月完成,乙单独做要60个月完成,则甲乙两队合作个月完成这项工程.15.(3分)在如图所示的运算流程中,若输入的数为8,则输出的数为.三.解答题(共8小题,满分75分)16.(16分)若规定这样一种新运算法则:a*b=a2﹣2ab.如3*(﹣2)=32﹣2×3×(﹣2)=21.(1)求2*(﹣3)的值;(2)若(﹣4)*x=﹣2﹣x,求x的值.17.(6分)代数式求值:x2y﹣xy﹣0.5x2y+0.5xy,其中x=3,y=﹣2.18.(6分)计算下列各题:(1)(﹣24)×();(2)﹣14+(﹣2)÷(﹣)﹣|﹣9|.19.(8分)定义:若整数k的值使关于x的方程+1=kx的解为整数,则称k为此方程的“友好系数”.(1)判断k1=0,k2=1是否为方程+1=kx的“友好系数”,写出判断过程;(2)方程+1=k“友好系数”的个数是有限个,还是无穷多?如果是有限个,求出此方程的所有“友好系数“;如果是无穷多,说明理由.20.(9分)《几何原本》是古希腊数学家欧几里得的一部不朽著作,是数学发展史的一个里程碑.在该书的第2卷“几何与代数”部分,记载了很多利用几何图形来论证的代数结论,利用几何给人以强烈印象将抽象的逻辑规律体现在具体的图形之中.(1)我们在学习许多代数公式时,可以用几何图形来推理,观察下列图形,找出可以推出的代数公式,(下面各图形均满足推导各公式的条件,只需填写对应公式的序号)公式①:(a+b+c)d=ad+bd+cd.公式②:(a+b)(c+d)=ac+ad+bc+bd.公式③:(a﹣b)2=a2﹣2ab+b2.公式④:(a+b)2=a2+2ab+b2.图1对应公式,图2对应公式,图3对应公式,图4对应公式.(2)《几何原本》中记载了一种利用几何图形验证平方差公式(a+b)(a﹣b)=a2﹣b2的方法,如图5,请写出验证过程;(已知图中各四边形均为长方形)21.(9分)如图是一个数表,现用一个长方形在数表中任意框出4个数.(1)a,c的关系是:;(2)当a+b+c+d=32时,a=.(3)a,b,c,d的关系是:.22.(10分)甲、乙两城相距800千米,一辆客车从甲城开往乙城,车速为a千米/小时,同时一辆出租车从乙城开往甲城,车速为90千米小时,设客车行驶时间为t小时.(1)当t=5时,客车与乙城的距离为千米(用含a的代数式表示);(2)已知a=70,求客车与出租车首次相距100千米时客车的行驶时间(列方程解答).23.(11分)已知:数轴上A、B两点表示的有理数为a、b,且(a﹣1)2+|b+2|=0.(1)A、B各表示哪一个有理数?(2)点C在数轴上表示的数是c,且与A、B两点的距离和为11,求多项式a(bc+3)﹣c2﹣3(a﹣c2)的值;(3)小蚂蚁甲以1个单位长度/秒的速度从点B出发向其左边6个单位长度处的一颗饭粒爬去,3秒后位于点A的小蚂蚁乙收到它的信号,以2个单位长度/秒的速度也迅速爬向饭粒,小蚂蚁甲到达后背着饭粒立即返回,与小蚂蚁乙在数轴上D点相遇,则点D表示的有理数是什么?从出发到此时,小蚂蚁甲共用去多少时间?。

临洮县北大坪学校上学期第二次月考七年级数学试卷及答案

临洮县北大坪学校上学期第二次月考七年级数学试卷及答案

临洮县北大坪学校2016-2017学年上学期第二次月考七年级数学试卷一、选择题(每小题3分,共30分)1.|-13|的相反数是() A .13B .-13C .3D .-3 2.多项式xy 2+xy +1是()A .二次二项式B .二次三项式C .三次二项式D .三次三项式3.在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为()A .1.94×1010B .0.194×1010C .19.4×109D .1.94×1094.若(1-m)2+|n +2|=0,则m +n 的值为()A .-1B .-3C .3D .不确定5.若关于x ,y 的多项式25x 2y -7mxy +34y 3+6xy 化简后不含二次项,则m =() A .17B .67C .-67D .0 6.若方程2x =8和方程ax +2x =4的解相同,则a 的值为()A .1B .-1C .±1D .07.两个角的大小之比是7∶3,它们的差是72°,则这两个角的关系是( )A .相等B .互余C .互补D .无法确定8.某商店举办促销活动,促销的方法是将原价x 元的衣服以(45x -10)元出售,则下列说法中,能正确表达该商店促销方法的是()A .原价减去10元后再打8折B .原价打8折后再减去10元C .原价减去10元后再打2折D .原价打2折后再减去10元9.如图,点O 为直线AB 上一点,∠AOC =∠DOE =90°,那么图中互余的角的对数为()A .2对B .3对C .4对D .5对10.下列图形都是由同样大小的长方形按一定的规律组成的,其中第①个图形的面积为2 cm 2,第②个图形的面积为8 cm 2,第③个图形的面积为18 cm 2,…,则第⑩个图形的面积为()A .196 cm 2B .200 cm 2C .216 cm 2D .256 cm 2二、填空题(每小题3分,共24分)11.近似数1.5×105精确到__ _位.12.x ,y ,z 在数轴上的位置如图所示,则化简|x -y|+|z -y|的结果是______.13.一台电视机原价是2500元,现按原价的8折出售,则购买a 台这样的电视机需要___元. 14.34.37°=___°___′____″.15.已知x +y =3,xy =1,则代数式(5x +2)-(3xy -5y)的值____.16.如图,从A 到B 有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是__第16题图 第17题图 第18题图17.如图,已知某长方体的展开图的面积为310 cm 2,根据图中数据可列出关于x 的一元一次方程为_____________________,x 的值为 ____________.18.用棱长是1 cm 的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是____________ cm 2.三、解答题:(共66分)19.(8分)计算:(1)(-24)×(18-13+14)+(-2)3; (2)-(23)2×9-2×(-13)÷23+4×(-0.5)2.20.(8分)解方程:(1)3x -7(x -1)=5-2(x +3); (2)x -x -12=2-x +185.21.(6分)先化简,再求值:-2x 2-12[3y 2-2(x 2-y 2)+6],其中x =-1,y =-2.22.(7分)邮递员骑车从邮局出发,先向西骑行2 km 到达A 村,继续向西骑行3 km 到达B 村,然后向东骑行8 km ,到达C 村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1 cm 表示1 km ,画出数轴,并在该数轴上表示出A ,B ,C 三个村庄的位置;(2)C 村距离A 村有多远?(3)邮递员共骑行了多少km?23.(7分)如图,C 是线段AB 的中点,D ,E 分别是线段AC ,CB 上的点,且AD =23AC ,DE =35AB ,若AB =24 cm ,求线段CE 的长.24.(8分)汽车上坡时每小时走28 km ,下坡时每小时走35 km ,去时下坡路的路程比上坡路的路程的2倍还少14 km ,原路返回比去时多用了12分钟.求去时上、下坡路路程各为多少千米?25.(10分)请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和20个水杯,请问选择哪家商场购买更合算?并说明理由.(必须在同一家购买)26.(12分)O为直线AD上一点,以O为顶点作∠COE=90°,射线OF平分∠AOE.(1)如图①,∠AOC与∠DOE的数量关系为______,∠COF和∠DOE的数量关系为_____;(2)若将∠COE绕点O旋转至图②的位置,OF依然平分∠AOE,请写出∠COF和∠DOE之间的数量关系,并说明理由;(3)若将∠COE绕点O旋转至图③的位置,射线OF依然平分∠AOE,请直接写出∠COF和∠DOE 之间的数量关系.参考答案1.B2.D3.A4.A5.B6.B7.C8.B9.C 10.B11.万位;12.y-x+z-y=z-x ;13.2000a 元;14.34,22,12;15.4;16.两点之间线段最短;17.10x+100+20x=310,x=7;18.30;19.(1)-9;(2)-1;20.(1)x=4;(2)x=-3;21.解:原式=-x 2-225y -3,将x=-1,y=-2代入得:-14; 22.解:(1)(2)6千米;(3)2+3+8=13千米;23.∵AB =24,C 是AB 的中点∴AC=BC=21AB=12 ∵AD=32AC ∴AD=32×12=8∴CD=AC-AD=12-8=4 ∵DE=53AB ∴DE=53×24=14.4∴CE=DE-CD=14.4-4=10.4(cm ) 24.解:设去时上坡路为x 千米,则下坡路为(2x ﹣14)千米,根据题意得: ,解得:x=42, 则2x ﹣14=2×42﹣14=70,答:去时上、下坡路程各为42千米、70千米。

2020秋扬州树人九龙湖初一上学期数学第二次月考试题

2020秋扬州树人九龙湖初一上学期数学第二次月考试题

2020年秋学期树⼈九⻰湖七年级第⼆次⽉考满分150分,考试时间120分钟⼀.选择题(共8题,每题3分,共24分)1.-3的相反数是()A.﹣3B.3C.D.2.下列各组数中,互为倒数的是()A.2与﹣2B.与C.﹣1与(﹣1)2016D.与3.单项式的系数是()A.B.C.πD.π4.爱德华•卡斯纳和詹姆斯•纽曼在《数学和想象》⼀书中,引⼊了⼀个名叫“Googol”的⼤数,即在1这个数字后⾯跟上⼀百个零.将“Googol”⽤科学记数法表示为()A.1×0100B.1×1000C.1×10100D.1×101015.下列运算中,正确的是()A.3a﹣a=2B.2a+3b=5abC.(﹣6)÷(﹣2)=﹣3D.6.下列变形中,不正确的是()A.若ax=ay,则ax+3=ay+3B.若ax=ay,则x=yC.若ax=ay,则﹣ax=﹣ay D.若,则ax=ay7.在⼀条可以折叠的数轴上,A,B表示的数分别是﹣9,4,如图,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=1,则C点表示的数是()A.-2B.-2.5C.0D.18.某⼩组计划做⼀批中国结,如果每⼈做6个,那么⽐计划多做了9个,如果每⼈做4个,那么⽐计划少7个.设计划做x个“中国结”,可列⽅程()A.B.C.D.⼆.填空题(共10题,每题3分,共30分)9.⽐较两数的⼤⼩:(填“<”,“>”,“=”)10.若单项式﹣2x m y3与x2y n+1是同类项,则m﹣2n=.11.当x=时,代数式2x与代数式x﹣3的值相等.12.若代数式2a﹣b的值是3,则多项式8﹣6a+3b的值是.13.如图是⼀个数值运算的程序,若输出y的值为3.则输⼊的值为.14.实数a、b在数轴上的位置如图所示,则化简代数式|a﹣b|+a的结果是.15.已知关于x的⽅程(m﹣2)x|m﹣1|=0是⼀元⼀次⽅程,则m的值是.16.如果规定符号“※”的意义是:a※b,则3※(﹣3)的值等于.17.⼀个两位数,⼗位数字是a,个位数字⽐⼗位数字的2倍少2,交换它的⼗位数字与个位数字,则新的两位数与原两位数的和为77,那么原两位数是.18.如图,圆桌周围有20个箱⼦,按顺时针⽅向编号1~20,⼩明先在1号箱⼦中丢⼊⼀颗红球,然后沿着圆桌按顺时针⽅向⾏⾛,每经过⼀个箱⼦丢⼀颗球,规则如下①若前⼀个箱⼦丢红球,则下⼀个箱⼦就丢绿球.②若前⼀个箱⼦丢绿球,则下⼀个箱⼦就丢⽩球.③若前⼀个箱⼦丢⽩球,则下⼀个箱⼦就丢红球.他沿着圆周⾛了2021圈,那么4号箱内有颗红球.三.解答题(共10⼩题,共96分)19.计算:(每⼩题4分,共8分)(1)(2)。

初一上册数学月考试卷及答案解析

初一上册数学月考试卷及答案解析

初一上册数学月考试卷及答案解析生命需要奋斗,奋斗与不奋斗,造就的结果截然不同。

下面本文库为您推荐初一上册数学月考试卷及答案解析。

【试卷一】一、选择题(每小题3分,共30分)1.如果规定收入为正,支出为负.收入500元记作500元,那么支出237元应记作()A.﹣500元B.﹣237元C.237元D.500元考点:正数和负数.分析:根据题意237元应记作﹣237元.解答:解:根据题意,支出237元应记作﹣237元.故选B.点评:此题考查用正负数表示两个具有相反意义的量,属基础题.2.3的相反数是()A.﹣3B.+3C.0.3D.|﹣3|考点:相反数.分析:根据相反数的定义求解即可.解答:解:3的相反数为﹣3.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上"﹣"号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.20xx年国庆长假无锡共接待游客约6420000万,数据"6420000"用科学记数法表示正确的是()A.642×103B.64.2×103C.6.42×106D.0.642×103考点:科学记数法-表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|1时,n是正数;当原数的绝对值|b|B.a>﹣bC.b0考点:有理数大小比较;数轴.分析:根据各点在数轴上的位置即可得出结论.解答:解:∵由图可知,|b|>a,b"、".考点:有理数大小比较.专题:计算题.分析:先计算得到|﹣|==,|﹣|==,然后根据负数的绝对值越大,这个数越小进行大小比较.解答:解:∵|﹣|==,|﹣|==,&there4;﹣>﹣.故答案为>.点评:本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.13.﹣|﹣|=﹣.考点:相反数;绝对值.分析:利用相反数及绝对值的定义求解即可.解答:解:﹣|﹣|=﹣.故答案为:﹣.点评:本题主要考查了相反数及绝对值,解题的关键是熟记定义.14.计算(﹣1)20xx﹣(﹣1)20xx的值是2.考点:有理数的乘方.分析:根据﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1解答.解答:解:(﹣1)20xx﹣(﹣1)20xx,=1﹣(﹣1),=1+1,=2.故答案为:2.点评:本题考查了有理数的乘方,熟记﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1是解题的关键.15.﹣3705.123用科学记数法表示是﹣3.705123×103.考点:科学记数法-表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|1时,n是正数;当原数的绝对值2时,&there4;(x+5)+(x﹣2)=7,x+5+x﹣2=7,2x=4,x=2,x=2(范围内不成立)&there4;综上所述,符合条件的整数x有:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(3)由(2)的探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|有最小值为3.点评:此题主要考查了去绝对值和数轴相联系的综合试题以及去绝对值的方法和去绝对值在数轴上的运用,难度较大,去绝对的关键是确定绝对值里面的数的正负性.【试卷二】一.选择题(共10小题,每题2分,共20分,请把正确答案写在答案卷上.)1.(2分)下列各数中,是负数的是()A.﹣(﹣3)B.20xxC.0D.﹣24【分析】利用负数定义判断即可.【解答】解:﹣24=﹣16,是负数,故选D【点评】此题考查了有理数的乘方,正数与负数,以及相反数,熟练掌握各自的性质是解本题的关键.2.(2分)﹣3+5的相反数是()A.2B.﹣2C.﹣8D.8【分析】先计算﹣3+5的值,再求它的相反数.【解答】解:﹣3+5=2,2的相反数是﹣2.故选B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上"﹣"号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.(2分)将6﹣(+3)﹣(﹣7)+(﹣2)写成省略加号的和的形式为()A.﹣6﹣3+7﹣2B.6﹣3﹣7﹣2C.6﹣3+7﹣2D.6+3﹣7﹣2【分析】利用去括号的法则求解即可.【解答】解:6﹣(+3)﹣(﹣7)+(﹣2)=6﹣3+7﹣2,故选:C.【点评】本题主要考查了有理数加减混合运算,解题的关键是注意符号.4.(2分)实数a、b在数轴上的位置如图所示,则a与﹣b的大小关系是()A.a>﹣bB.a=﹣bC.a0,且|a|>|b|,所以,﹣b1时,n是正数;当原数的绝对值y,则x﹣y的值为1或5.【分析】首先根据绝对值的定义确定出x、y的值,再找出x>y的情况,然后计算x﹣y即可.【解答】解:∵|x|=3,|y|=2,&there4;x=&plusmn;3,y=&plusmn;2,∵x>y,&there4;①x=3,y=2,x﹣y=1;②x=3,y=﹣2,x﹣y=3﹣(﹣2)=3+2=5;故答案为:1或5.【点评】此题主要考查了绝对值以及有理数的减法,关键是掌握绝对值概念,确定出x、y的值.15.(2分)满足条件大于﹣2而小于&pi;的整数共有5个.【分析】在数轴上标出﹣2与&pi;,根据数轴的特点直接解答即可.【解答】解:如图所示:大于﹣2而小于&pi;的整数有:﹣1,0,1,2,3,共5个.故答案为:5.【点评】本题考查的是数轴的特点,根据数轴的特点利用数形结合求解是解答此题的关键.16.(2分)(1)|﹣18|+|﹣6|=24(2)﹣&pi;0,﹣2,&there4;﹣20,nm>﹣m>n.考点:有理数大小比较.分析:先确定m、n、﹣m、﹣n的符号,再根据正数大于0,负数小于0即可比较m,n,﹣m,﹣n的大小关系.解答:解:根据正数大于一切负数,只需分别比较m和﹣n,n和﹣m.再根据绝对值的大小,得﹣n>m>﹣m>n,故答案为:﹣n>m>﹣m>n.点评:此题主要考查了实数的大小的比较,解决本题的关键熟记两个负数,绝对值大的反而小.13.写出一个比﹣1小的数是﹣2.考点:有理数大小比较.专题:开放型.分析:本题答案不.根据有理数大小比较方法可得.解答:解:根据两个负数,绝对值大的反而小可得﹣2<﹣1,所以可以填﹣2.答案不.点评:比较有理数的大小的方法:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.14.7×(﹣2)的相反数是14.考点:有理数的乘法;相反数.分析:先计算7×(﹣2)=﹣14,再求相反数,即可解答.解答:解:7×(﹣2)=﹣14,﹣14的相反数是14,故答案为:14.点评:本题考查了有理数的乘法和相反数,解决本题的关键是熟记有理数的乘法法则.15.如图,数轴上A,B两点分别对应实数a、b,则a、b的大小关系为a<b.考点:实数大小比较;实数与数轴.专题:计算题.分析:先根据数轴上各点的位置判断出a,b的符号及|a|与|b|的大小,再进行计算即可判定选择项.解答:解:∵A在原点的左侧,B在原点的右侧,&there4;A是负数,B是正数;&there4;a<b.故答案为:a<b.点评:此题主要考查了实数的大小的比较,要求学生能正确根据数在数轴上的位置判断数的符号以及绝对值的大小.16.若|x|=3,y=2,则|x+y|=5或1.考点:绝对值.专题:计算题.分析:利用绝对值的代数意义求出x的值,即可确定出原式的值.解答:解:∵|x|=3,&there4;x=&plusmn;3,当x=3,y=2时,原式=5;当x=﹣3,y=2时,原式=1,故答案为:5或1点评:此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键. 17.计算|﹣|﹣的结果是﹣.考点:有理数的减法;绝对值.分析:根据绝对值的性质和有理数的减法运算法则进行计算即可得解.解答:解:|﹣|﹣=﹣.故答案为:﹣.点评:本题考查了有理数的减法运算,绝对值的性质,是基础题,熟记运算法则和性质是解题的关键.18.武冈某天早晨气温是﹣5℃,到中午升高5℃,晚上又降低3℃,到午夜又降了4℃,午夜时温度为﹣7℃.考点:有理数的加减混合运算.专题:应用题.分析:把实际问题转化成有理数的加减法,可根据题意列式为:﹣5+5﹣3﹣4.解答:解:根据题意得:﹣5+5﹣3﹣4=﹣7(℃),故答案为:﹣7℃.点评:本题考查了有理数的混合运算,解决本题的关键是正确列出式子.19.已知a,b互为相反数,且都不为0,则(a+b﹣5)×(﹣3)=.考点:有理数的混合运算;相反数.专题:计算题.分析:利用互为相反数两数之和为0得到a+b=0,代入原式计算即可得到结果.解答:解:根据题意得:a+b=0,则原式=×3=,故答案为:点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.一组按规律排列的数:,,,,…请你推断第9个数是.考点:规律型:数字的变化类.分析:根据已知数据,找出规律,验证正确后,根据规律计算得到答案.解答:解:=,=,=,第9个数是=,故答案为:.点评:本题考查的是数字的变化规律问题,根据给出的一组数据,正确找出其排列规律是解题的关键.三、简答题21.(16分)计算(1)3+(﹣)﹣(﹣)+2(2)(﹣12)÷(﹣)÷(﹣9)(3)﹣2﹣12×(﹣+)(4)﹣﹣(﹣)﹣|﹣|考点:有理数的混合运算.专题:计算题.分析:(1)原式利用减法法则变形,结合后相加即可得到结果;(2)原式利用除法法则变形,约分即可得到结果;(3)原式第二项利用乘法分配律计算即可得到结果;(4)原式利用减法法则及绝对值的代数意义变形,计算即可得到结果.解答:解:(1)原式=(3﹣)+(+2)=3+3=6;(2)原式=﹣12××=﹣2;(3)原式=﹣2﹣4+3﹣6=﹣9;(4)原式=﹣+﹣=﹣.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.把下列各数写在相应的集合里﹣5,10,﹣4,0,+2,﹣2.15,0.01,+66,﹣,15%,,20xx,﹣16正整数集合:10,+66,20xx负整数集合:﹣5,﹣16正分数集合:+2,0.01,15%,负分数集合:﹣4,﹣2.15,﹣整数集合:﹣5,10,0,+66,20xx,﹣16负数集合:﹣5,﹣4,﹣2.15,﹣,﹣16正数集合:10,+2,0.01,+66,15%,,20xx.考点:有理数.分析:按照有理数的分类填写:有理数.解答:解:正整数集合:10,66,20xx;负整数集合:﹣5,﹣16;正分数集合:+2,0.01,15%,;负分数集合:﹣4,﹣2.15,﹣;整数集合:﹣5,10,0,+66,20xx,﹣16;负数集合:﹣5,﹣4,﹣2.15,﹣,﹣16;正数集合:10,+2,0.01,+66,15%,,20xx.点评:本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.23.画出数轴,并在数轴上画出表示:﹣(﹣4),+(﹣2.5),﹣|﹣3|,+2,﹣(﹣1.5)考点:数轴.专题:计算题.分析:各项计算得到结果,表示在数轴上即可.解答:解:﹣(﹣4)=4,+(﹣2.5)=﹣2.5,﹣|﹣3|=﹣3,+2=2,﹣(﹣1.5)=1.5,点评:此题考查了数轴,绝对值,以及有理数的乘方,熟练掌握运算法则是解本题的关键.24.某单位一星期内收入情况如下(盈余为正):+853.5元,+237.2元,﹣325元,+138.5元,﹣280元,﹣520元,+103元,那么,这一星期内该单位是盈余还是亏损盈余或亏损多少元考点:正数和负数.分析:把所有收入情况相加,再根据正、负数的意*答.解答:解:(+853.5)+(+237.2)+(﹣325))+(+138.5)+(﹣280)+(﹣520)+(+103),=853.5+237.2+138.5+103﹣325﹣280﹣520,=1332.2﹣1125,=207.2,答:盈余202.7元.点评:此题主要考查了正负数的意义,解题关键是理解"正"和"负"的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.25.为节约能源,电力部门按以下规定收取每月电费:用电不超过120度,按每月每度0.57元收费,如果超过120度,超过部分按每度0.69元收费,若某用户五月份共用电220度,该用户五月份应交电费多少元考点:有理数的混合运算.专题:应用题.分析:根据题意的用电规定列出算式,计算即可得到结果.解答:解:根据题意得:120×0.57+(220﹣120)×0.69=68.4+69=137.4(元),则该用户五月份应交电费137.4元.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.26.出租车司机小石某天下午营运全是在东西走向的人民大街上进行的,如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+15,﹣3,+14,﹣11,+10,﹣12,+4,﹣15,+16,﹣18(1)将最后一名乘客送到目的地时,小石距离下午出发地点的距离多少千米(2)若汽车耗油量为0.56升/千米,这天下午汽车共耗油多少升考点:正数和负数.分析:(1)把所有行车里程相加,再根据正数和负数的意*答;(2)求出所有行车里程的绝对值的和,再乘以0.56即可.解答:解:(1)15+(﹣3)+14+(﹣11)+10+(﹣12)+4+(﹣15)+16+(﹣18)=15﹣3+14﹣11+10﹣12+4﹣15+16﹣18=0(千米),答:将最后一名乘客送到目的地时,小石距离下午出发地点的距离0千米.(2)|15|+|﹣3|+|14|+|﹣11|+|10|+|﹣12|+|4|+|﹣15|+|16|+|﹣18|=15+3+14+11+10+12+4+15+16+18=118118×0.56=66.08(升),答:这天下午汽车共耗油66.08升.点评:此题主要考查了正负数的意义,解题关键是理解"正"和"负"的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.11。

七年级上册第二次月考试卷数学

七年级上册第二次月考试卷数学

七年级上册第二次月考试卷数学一、选择题(每题4分,共20分)1. 下列各数中,最小的是()A. -3B. 0C. 3D. 52. 下列各组数中,相等的是()A. (-3)² = 9B. (-3)³ = -27C. (-3)⁴ = 81D. (-3)⁵ = -2433. 下列各组数中,互为相反数的是()A. 2和-2B. 3和-3C. 4和-4D. 5和04. 下列各组数中,最大的是()A. -5, -3, -1B. -5, -3, 0C. -5, -3, 1D. -5, -3, -25. 下列各组数中,最小的是()A. -5, -3, -1B. -5, -3, 0C. -5, -3, 1D. -5, -3, -2二、填空题(每题4分,共20分)6. 一个数的绝对值是它到______的距离。

7. 一个数的相反数是它与______的和等于0。

8. 一个数的倒数是它与______的积等于1。

9. 一个数的平方是它与______的积。

10. 一个数的立方是它与______的积。

三、解答题(每题12分,共60分)11. 计算:(-3)²× (-3)³ + (-3)⁴× (-3)⁵12. 解方程:2x + 3 = 713. 解不等式:3x - 5 > 2x + 114. 已知一个数的绝对值是5,这个数可能是多少?请写出所有可能的值。

15. 已知一个数的相反数是-4,这个数是多少?请写出所有可能的值。

人教版七年级数学上册第二次月考试卷(含答案)

人教版七年级数学上册第二次月考试卷(含答案)

人教版七年级数学上册第二次月考试卷(含答案)第二次月考测试范围:第一~第三时间:120分钟满分:120分班级:姓名:得分:一、选择题(每小题3分,共30分)1.下列各式结果是负数的是( )A.-(-3)B.-|-3| .3 D.(-3)22.下列说法正确的是( )A.x2+1是二次单项式B.-a2的次数是2,系数是1.-23πab的系数是-23 D.数字0也是单项式3.下列方程:①3x-y=2;②x+1x-2=0;③12x=12;④x2+3x-2=0.其中属于一元一次方程的有( )A.1个B.2个 .3个 D.4个4.如果a=b,那么下列等式中不一定成立的是( )A.a+1=b+1B.a-3=b-3.-12a=-12b D.a=b5.下列计算正确的是( )A.3x2-x2=3B.-3a2-2a2=-a2.3(a-1)=3a-1 D.-2(x+1)=-2x-26.若x=-1是关于x的方程5x+2-7=0的解,则的值是( )A.-1B.1 .6 D.-67.如果2x3ny+4与-3x9y6是同类项,那么,n的值分别为( )A.=-2,n=3B.=2,n=3 .=-3,n=2 D.=3,n =28.甲、乙两地相距270千米,从甲地开出一辆快车,速度为120千米/时,从乙地开出一辆慢车,速度为75千米/时.如果两车相向而行,慢车先开出1小时后,快车开出,那么再经过多长时间两车相遇?若设再经过x小时两车相遇,则根据题意可列方程为( )A.75×1+(120-75)x=270B.75×1+(120+75)x=270.120(x-1)+75x=270 D.120×1+(120+75)x=2709.一家商店将某种服装按成本价提高20%后标价,又以9折优惠卖出,结果每件服装仍可获利8元,则这种服装每件的成本是( )A.100元B.105元.110元 D.115元10.定义运算a b=a(1-b),下列给出了关于这种运算的几个结论:①2 (-2)=6;②2 3=3 2;③若a=0,则ab=0;④若2 x+x -12=3,则x=-2.其中正确结论的序号是( )A.①②③B. ②③④ .①③④ D.①②③④二、填空题(每小题3分,共24分)11.比较大小:-67 -56.12.“社会主义核心价值观”要求我们牢记心间,小明在“百度”搜索“社会主义核心价值观”,找到相关结果约为4280000个,数据4280000用科学记数法表示为.13.若a+12=0,则a3=.14.若方程(a-2)x|a|-1+3=0是关于x的一元一次方程,则a=.15.若a,b互为相反数,,d互为倒数,的绝对值是2,则2-2017(a+b)-d的值是.16.若关于a,b的多项式3(a2-2ab-b2)-(a2+ab+2b2)中不含有ab项,则=.17.已知一列单项式-x2,3x3,-5x4,7x5,…,若按此规律排列,则第9个单项式是.18.爷爷快八十大寿,小明想在日历上把这一天圈起,但不知道是哪一天,于是便去问爸爸,爸爸笑着说:“在日历上,那一天的上下左右4个日期的和正好等于爷爷的年龄.”则小明爷爷的生日是号.三、解答题(共66分)19.(12分)计算及解方程:(1)81÷(-3)2-19×(-3)3; (2)-12-12-23÷13×[-2+(-3)2];(3)4x-3(20-x)=-4; (4)2x-13-5-x6=-1.20.(6分)先化简,再求值:4(xy2+xy)-13×(12xy-6xy2),其中x=1,y=-1.21.(8分)某种商品因换季准备打折出售,如果按照原价的七五折出售,每件将赔10元,而按原价的九折出售,每件将赚38元,求这种商品的原价.22.(8分)一个正两位数的个位数字是a,十位数字比个位数字大2.(1)用含a的代数式表示这个两位数;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被22整除.23.(10分)小明解方程2x-13=x+a4-1,去分母时方程右边的-1漏乘了12,因而求得方程的解为x=3,试求a 的值,并正确求出方程的解.24.(10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个长方形侧面和2个正三角形底面组成.硬纸板以如图所示两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)分别求裁剪出的侧面和底面的个数(用含x的代数式表示);(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?25.(12分)阅读下列材料,在数轴上A点表示的数为a,B点表示的数为b,则A,B两点的距离可以用右边的数减去左边的数表示,即AB=b-a.请用这个知识解答下面的问题:已知数轴上A,B两点对应的数分别为-2和4,P为数轴上一点,其对应的数为x.(1)如图①,若P到A,B两点的距离相等,则P点对应的数为;(2)如图②,数轴上是否存在点P,使P点到A,B两点的距离和为10?若存在,求出x的值;若不存在,请说明理由.参考答案与典题详析1.B2.D3.A4.D5.D6. 7.B 8.B 9.A 10.11.<12.4.28×106 13.-18 14.-215.3或-5 16.-6 17.-17x1018.20 解析:设那一天是x号,依题意得x-1+x+1+x-7+x+7=80,解得x=20.19.解:(1)原式=81÷9+3=9+3=12.(3分)(2)原式=-1+16÷13×(-2+9)=-1+12×7=52.(6分)(3)去括号,得4x-60+3x=-4,移项、合并同类项,得7x=56,系数化为1,得x=8.(9分)(4)去分母,得2(2x-1)-(5-x)=-6,去括号,得4x-2-5+x=-6,移项、合并同类项,得5x=1,系数化为1,得x=0.2.(12分)20.解:原式=4xy2+4xy-4xy+2xy2=6xy2.(4分)当x=1,y=-1时,原式=6.(6分)21.解:设这种商品的原价是x元,根据题意得75%x+10=90%x-38,解得x=320.(7分)答:这种商品的原价是320元.(8分)22.解:(1)这个两位数为10(a+2)+a=11a+20.(3分)(2)新的两位数为10a+a+2=11a+2.(5分)因为11a +2+11a+20=22a+22=22(a+1),a+1为整数,所以新数与原数的和能被22整除.(8分)23.解:由题意得x=3是方程12×2x-13=12×x+a4-1的解,所以4×(2×3-1)=3(3+a)-1,解得a=4.(4分)将a=4代入原方程,得2x-13=x+44-1,去分母得4(2x-1)=3(x+4)-12,去括号,得8x-4=3x+12-12,移项、合并同类项得5x=4,解得x=45.(10分)24.解:(1)因为裁剪时x张用A方法,所以裁剪时(19-x)张用B方法.所以裁剪出侧面的个数为6x+4(19-x)=(2x+76)个,裁剪出底面的个数为5(19-x)=(95-5x)个.(4分)(2)由题意得2(2x+76)=3(95-5x),解得x=7.(8分)则2×7+763=30(个).(9分)答:能做30个盒子.(10分)25.解:(1)1(3分)(2)存在.(4分)分以下三种情况:①当点P在点A左侧时,PA=-2-x,PB=4-x.由题意得-2-x+4-x=10,解得x=-4;(6分)②当点P在点A,B之间时,PA=x-(-2)=x+2,PB=4-x.因为PA+PB=x+2+4-x=6≠10,即此时不存在点P到A,B两点的距离和为10;(8分)③当点P 在点B右侧时,PA=x+2,PB=x-4.由题意得x+2+x-4=10,解得x=6.(10分)综上所述,当x=-4或x=6时,点P到A,B两点的距离和为10.(12分)。

六安市七年级上学期数学第二次月考试卷

六安市七年级上学期数学第二次月考试卷

六安市七年级上学期数学第二次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2017七上·港南期中) 下面说法正确的是()A . 的系数是B . 的系数是C . ﹣5x2的系数是5D . 3x2的系数是32. (2分)(2020·毕节) 已知,下列运算中正确的是()A .B .C .D .3. (2分) (2019八上·天台月考) 下列各式中,从左到右的变形属于因式分解的是()A . 2a2-2a+1=2a(a-1)+1B . (x+y)(x-y)=x2-y2C . x2-1=(x+1)(x-1)D . x2+y2=(x-y)2+2xy4. (2分) (2018八上·定西期末) 在,,﹣3xy+y2 ,,,分式的个数为()A . 2B . 3C . 4D . 55. (2分)若把下列各分式中的a和b都扩大为原来的10倍,则下列分式中值不变的是……()A .B .C .D .6. (2分)(2019·南沙模拟) 港珠澳大桥是我国桥梁建筑史上的又一伟大奇迹,东接香港,西接珠海、澳门,全程 55千米.通车前需走水陆两路共约 170 千米,通车后,约减少时间3小时,平均速度是原来的倍,如果设原来通车前的平均时速为千米/小时,则可列方程为()A .B .C .D .二、填空题 (共13题;共14分)7. (1分)如图所示是由火柴棒按一定规律拼出的一系列图形:依照此规律,第n个图形中火柴棒的根数是________8. (1分) (2019八下·南安期末) 某种细菌病毒的直径为0.00005米,0.00005米用科学记数法表示为________米.9. (1分)若关于a,b的多项式不含ab项,则m=________ .10. (1分) (2020八下·襄阳开学考) =________;()()=________.11. (1分) (2017八下·顺义期末) 因式分解: =________12. (1分) (2019八上·鄂州期末) 计算: =________。

河南省数学七年级上册第二次月考试卷B卷

河南省数学七年级上册第二次月考试卷B卷

河南省数学七年级上册第二次月考试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共36分)1. (3分) (2021七上·八步期末) 下列说法中,正确的是().A . 的相反数是正数B . 两点之间线的长度叫两点之间的距离C . 两条射线组成的图形叫做角D . 两点确定一条直线2. (3分) (2021七上·商河期末) 如图,点O在直线AB上,射线OC平分∠AOD,若∠AOC=35°,则∠BOD 等于()A . 145°B . 110°C . 70°D . 35°3. (3分) (2020七上·天心期末) 如图,点C在线段AB上,点E是AC中点,点D是BC中点.若ED=6,则线段AB的长为()A . 6B . 9C . 12D . 184. (3分) (2020七上·哈尔滨月考) 若关于的一元一次方程的解为,则的值是()A .B .C .D .5. (3分) (2021七下·綦江期中) 如图,∠1=20°,∠AOC=90°,点B,O,D在同一条直线上,则∠2的度数为()A . 95°B . 100°C . 110°D . 120°6. (3分) (2019七上·滨海月考) 已知关于的方程的解是,则的值是()A . -6B . 2C . -2D . 67. (3分)若∠1=50°5′,∠2=50.5°,则∠1与∠2的大小关系是()A . ∠1=∠2B . ∠1>∠2C . ∠1<∠2D . 无法确定8. (3分)一件夹克衫线按成本提高50%标价,再以8折出售,获利15元,若设这件夹克衫的成本是x,根据题意,可列出的方程是()A . (1+50%)x×80%=x﹣15B . (1+50%)x×80%=x+15C . (1+50%x)×80%=x﹣15D . (1+50%x)×80%=x+159. (3分)下列说法正确的是()A . 若AP= AB,则P是AB的中点B . 若AB=2PB,则P是AB的中点C . 若AP=PB,则P是AB的中点D . 若AP=PB= AB,则P是AB的中点10. (3分) (2018七上·海淀月考) 若x=4是方程2x﹣a=0的解,则a的值为()A . ﹣8B . ﹣4C . 4D . 811. (3分) (2021八下·黄岛期末) 如图,AB∥CE ,∠A=40°,CE=DE ,则∠C的度数是()A . 40°B . 30°C . 20°D . 15°12. (3分) (2020七上·萧山期末) 有一个不完整圆柱形玻璃密封容器如图①,测得其底面半径为a,高为h,其内装蓝色液体若干。

2020学年秋季七年级数学(上册)月考数学试卷 (2)

2020学年秋季七年级数学(上册)月考数学试卷 (2)

2020学年秋季七年级数学(上册)月考数学试卷一、选择题(本大题共10小题,共30.0分)1.中国人最早使用负数,可追溯到两千多年前的秦汉时期,−0.5的相反数是()A. 0.5B. ±0.5C. −0.5D. 5【答案】A【解析】解:−0.5的相反数是0.5,故选:A.2.在实数−3,2,0,−4中,最大的数是()A. −3B. 2C. 0D. −4【答案】B【解答】解:∵−4<−3<0<2,∴四个实数中,最大的实数是2.故选B.3.我市2015年某一天的最高气温为8℃,最低气温为−2℃,那么这天的最高气温比最低气温高()A. −10℃B. −6℃C. 6℃D. 10℃【答案】D【解答】解:8−(−2)=8+2=10℃.故选D.4.计算4+(−6)的结果等于()A. −2B. 2C. 10D. −10【答案】A【解析】解:4+(−6)=−(6−4)=−2.故选:A.5.计算(−6)+(−2)的结果等于()A. 8B. −8C. 12D. −12【答案】B【解答】解:原式=−(6+2)=−8,故选B.6.四位同学画数轴如图所示,你认为正确的是()A. B.C. D.【答案】C【解析】解:A中,无原点;B中,无正方向;D中,数的顺序错了.故选:C.7.−2的相反数是()A. 2B. −2C. 12D. −12【答案】A【解析】解:根据相反数的定义,−2的相反数是2.故选:A.8.若x与3互为相反数,则等于()A. 0B. 1C. 2D. 3【答案】A【解答】解:∵x与3互为相反数,∴x=−3,∴|x+3|=|−3+3|=0.故选A.9.下表是我市四个景区今年2月份某天6时的气温,其中气温最低的景区是()景区潜山公园陆水湖隐水洞三湖连江气温−1℃0℃−2℃2℃A. 潜山公园B. 陆水湖C. 隐水洞D. 三湖连江【答案】C【解答】解:∵−2<−1<0<2,∴隐水洞的气温最低,故选:C.10.实数a,b在数轴上的对应点的位置如图所示,把−a,−b,0按照从小到大的顺序排列,正确的是()A. −a<0<−bB. 0<−a<−bC. −b<0<−aD. 0<−b<−a 【答案】C【解答】解:∵从数轴可知:a<0<b,∴−b<0,−a>0,∴−b<0<−a,故选:C.二、填空题(本大题共7小题,共21.0分)11.比较大小:−12______ −|−13|(填“>”、“=”或“<”).【答案】<【解析】解:∵−|−13|=−13,|−12|>|−13|,∴−12<−13,∴:−12<−|−13|.故答案是:<.12.在3.5,−312,0,−8这四个数中,最小的数是______ ,最大的数是______ ,绝对值最大的数是______ ,互为相反数的两个数是______ 和______ .【答案】−8;3.5;−8;3.5;−312【解析】解:在3.5,−312,0,−8这四个数中,最小的数是−8,最大的数是3.5,绝对值最大的数是−8,互为相反数的两个数是3.5和−312,故答案为:−8,3.5,−8,3.5,−312.13.在−23,3.14,0.161616…,π2中,分数有______个.【答案】3【解析】解:−23,3.14,0.161616…是分数,故答案为:3.14.学习了有理数的加法后,小明同学画出了如图:请问图中①为______,②为______.【答案】取相同符号用较大绝对值减去较小绝对值15. 冰冰家新安装了一台太阳能热水器,一天她测量发现18:00时,太阳能热水器水箱内水的温度是80℃,以后每小时下降4℃,第二天,冰冰早晨起来后测得水箱内水的温度为32℃,请你猜一猜她起床的时间是______ . 【答案】6:00【解析】解:由题意可得,冰冰起床的时间是:18+(80−32)÷4−24=18+48÷4−24=18+12−24=6, 即冰冰起床的时间是6:00, 故答案为:6:00.16. 计算:(1)(+21)+(−31)=______; (2)(−3.125)+(+318)=______;(3)(−13)+(+12)=______; (4)(−313)+(−13)=______; (5)(−2)+|−2|=______; (6)|−113|+|−56|=______.【答案】−10 0 16 −323 0 216 【解析】解:(1)(+21)+(−31)=−10; (2)(−3.125)+(+318)=0;(3)(−13)+(+12)=16;(4)(−313)+(−13)=−323; (5)(−2)+|−2|=0; (6)|−113|+|−56|=216.故答案为:−10;0;16;−323;0;216.17. 计算:①(+215)+(−45)=______;②(−2)+713+(−43)+12=______.【答案】125 16【解析】解:①(+215)+(−45)=125; ②(−2)+713+(−43)+12=[(−2)+12]+[713+(−43)]=10+6 =16.三、计算题(本大题共3小题,共18.0分)18. 先将下列各式写成省略加号的和的形式,再按括号内要求交换加数的位置.(1)(+16)+(−28)−(−6)−(−13)−(+7)=______(写成省略加号的和) =______(使符号相同的加数在一起) =______(运算结果);(2)(−3.1)−(−4.5)+(4.4)−(+1.3)+(−2.5)=______(写成省略加号的和) =______(使和为整数的加数在一起) =______(运算结果).【答案】16−28+6+13−7 16+6+13+(−28−7) 0 −3.1+4.5+4.4−1.3−2.5 (4.4−3.1−1.3)+(4.5−2.5) 2 【解析】解:(1)原式=16−28+6+13−7 =16+6+13+(−28−7) =0;(2)原式=−3.1+4.5+4.4−1.3−2.5 =(4.4−3.1−1.3)+(4.5−2.5) =2.故答案为:(1)16−28+6+13−7;16+6+13+(−28−7);0. (2)−3.1+4.5+4.4−1.3−2.5;(4.4−3.1−1.3)+(4.5−2.5);2.19. (1)在数1.2.3.4.5.6.7.8前添加“+”,“−”并依次运算,所得结果可能的最小非负数是多少?(列式计算,列出一个算式即可)(2)在数1.2.3…2015前添加“+”,“−”并依次运算,所得结果可能的最小非负数是多少?(列式计算,列出一个算式即可)(3)在数1.2.3…n 前添加“+”,“−”并依次运算,所得结果可能的最小非负数是多少?(只写出答案即可)【答案】解:(1)根据题意得:(1−2−3+4)+(5−6−7+8)=0;(2)根据题意得:(1+2−3)+(4−5−6+7)+⋯+(2012−2013−2014+2015)=0;(3)当n 是4的倍数时,结果可能的最小非负数为0; 当n 除以4余1时,结果可能的最小非负数为1; 当n 除以4余2时,结果可能的最小非负数为1; 当n 除以4余3时,结果可能的最小非负数为0.20. 阅读下面材料并解决有关问题:我们知道:|x|={x(x >0)0(x =0)−x(x <0).现在我们可以用这一结论来化简含有绝对值的代数式,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x +1|+|x −2|时,可令x +1=0和x −2=0,分别求得x =−1,x =2(称−1,2分别为|x +1|与|x −2|的零点值).在实数范围内,零点值x =−1和,x =2可将全体实数分成不重复且不遗漏的如下3种情况:①x <−1;②−1≤x <2;③x ≥2.从而化简代数式|x +1|+|x −2|可分以下3种情况: ①当x <−1时,原式=−(x +1)−(x −2)=−2x +1; ②当−1≤x <2时,原式=x +1−(x −2)=3;③当x ≥2时,原式=x +1+x −2=2x −1.综上讨论,原式={−2x +1(x <−1)3(−1≤x <2)2x −1(x ≥2). 通过以上阅读,请你解决以下问题: (1)化简代数式|x +2|+|x −4|. (2)求|x −1|−4|x +1|的最大值.【答案】解:(1)当x <−2时,|x +2|+|x −4|=−x −2+4−x =−2x +2; 当−2≤x <4时,|x +2|+|x −4|=x +2+4−x =6; 当x ≥4时,|x +2|+|x −4|=x +2+x −4=2x −2; (2)当x <−1时,原式=3x +5<2,当−1≤x ≤1时,原式=−5x −3,−8≤−5x −3≤2,当x >1时,原式=−3x −5<−8, 则|x −1|−4|x +1|的最大值为2.四、解答题(本大题共8小题,共64.0分) 21. 把下列各数填在相应的集合内.−3,2,−1,−14,−0.58,0,−3.1415926,0.618,139 整数集合:{______ } 负数集合:{______ } 分数集合:{______ } 非负数集合:{______ } 正有理数集合:{______ }. 【答案】−3,2,−1,0;−3,−1,−14,−0.58,−3.1415926; −14,−0.58,−3.1415926,0.618,139; 2,0,0.618,139; 2,0.618,139【解析】解:整数集合:{−3,2,−1,0 }负数集合:{−3,−1,−14,−0.58,−3.1415926 } 分数集合:{−14,−0.58,−3.1415926,0.618,139 } 非负数集合:{ 2,0,0.618,139 } 正有理数集合:{2,0.618,139 },故答案为:−3,2,−1,0;−3,−1,−14,−0.58,−3.1415926;−14,−0.58,−3.1415926,0.618,139;2,0,0.618; 2,0.618,139.22. 计算:(1)(+9)−(+10)+(−2)−(−8)+3; (2)−5.13+4.62+(−8.47)−(−2.3);(3)(+425)−(+110)−815; (4)34−72+(−16)−(−23)−1.【答案】解:(1)(+9)−(+10)+(−2)−(−8)+3 =−1−2+8+3 =8.(2)−5.13+4.62+(−8.47)−(−2.3) =[−5.13+(−8.47)]+[4.62−(−2.3)] =−13.6+6.92 =−6.68.(3)(+42)−(+1)−81=4310−815=−3910.(4)34−72+(−16)−(−23)−1 =−114+12−1 =−134.23. 简便运算:(1)112−114+334−0.25−3.75−4.5;(2)1214−(+1.75)−(−512)+(−7.25)−(−234)−2.5.【答案】解:(1)原式=32−54+154−14−154−92=32−54−14−92 =−3−32 =−92;(2)原式=1214−134+512−714+234−52 =(494−74−294)+(112−52)=134+3=254.24. 计算:−32+(−47)−(−25)+|−24|−10. 【答案】解:原式=−32−47+25+24−10 =−79+25+24−10 =−30−10 =−40.25. 在数轴上表示下列各数:0,−4.2,312,−2,+7,113,并用“<”号连接.【答案】解:这些数分别为0,−4.2,312,−2,7,113,在数轴上表示出来如图所示,根据这些点在数轴上的排列顺序,从左至右分别用“<”连接为: −4.2<−2<0<113<312<+7.26. 操作题:公元初,中美洲玛雅人使用的一种数字系统与其他计数方式都不相同,它采用二十进位制但只有3个符号,用点“⋅”划“”、卵形“”来表示我们所使用的自然数,如自然数1~19的表示见下表,另外在任何数的下方加一个卵形,就表示把这个数扩大到它的20倍,如表中20和100的表示.(1)玛雅符号 表示的自然数是______;(2)请你在右边的方框中画出表示自然数280的玛雅符号:. 【答案】(1)18; (2)【解析】解:(1)玛雅符号表示的自然数是18;(2)表示自然数的玛雅符合为:. 故答案为:(1)18.(2).27. 设[a]表示不超过a 的最大整数,例如:[2.3]=2,[−413]=−5,[5]=5.(1)求[215]+[−3.6]−[−7]的值;(2)令{a}=a −[a],求{234}−[−2.4]+{−614}.【答案】解:(1)[215]+[−3.6]−[−7],=2+(−4)−(−7),=2−4+7,=5;(2){234}−[−2.4]+{−614},=234−[234]−[−2.4]+(−614)−[−614],=114−2+3−254+7,=8−144,=8−3.5,=4.5.28.(1)阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB.当A、B两点中有一点在原点时,不妨设点A在原点,如图甲,AB=OB=|b|=|a−b|;当A、B两点都不在原点时,1如图乙,点A、B都在原点的右边,AB=OB−OA=|b|−|a|=b−a=|a−b|;②如图丙,点A、B都在原点的左边,AB=OB−OA=|b|−|a|=−b−(−a)=|a−b|;③如图丁,点A、B在原点的两边AB=OA+OB=|a|+|b|=a+(−b)=|a−b|.综上,数轴上A、B两点之间的距离AB=|a−b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是______,数轴上表示−2和−5的两点之间的距离是______,数轴上表示1和−3的两点之间的距离是______;②数轴上表示x和−1的两点分别是点A和B,则A、B之间的距离是______,如果|AB|=2,那么x=______;③当代数式|x+2|+|x−5|取最小值时,相应的x的取值范围是______.④当代数式|x−1|+|x+2|+|x−5|取最小值时,相应的x的值是______.⑤当代数式|x−5|−|x+2|取最大值时,相应的x的取值范围是______.【答案】3 3 4 |x+1| 1或3 −2≤x≤5x=1x≤−2【解析】解:①.5−2=3,−2−(−5)=3,1−(−3)=4;②、|x+1|,|x+1|=2则x=1或−3;③|x+2|+|x−5|表示数轴上一点到−2与5两点的距离的和,当这点在−2和5之间时和最小,最小距离是:5−(−2)=7;④代数式|x−1|+|x+2|+|x−5|表示数轴上一点到1、−2与5三点的距离的和,根据两点之间线段最短,则当x=1时和最小,最小值是5到−2的距离,是5−(−2)=7;⑤代数式|x−5|−|x+2|表示数轴上一点到5与−2两点的距离的差,当点小于等于−2时差最大,最大值是5与−2之间的距离,是7.故答案是:①3,3,4;②|x+1|,1或3;③−2≤x≤5;④x=1;⑤x≤−2.①根据(1)中的知识可以得到两点之间的距离就是较大的数与较小的数的差,据此即可求解;②根据(1),即可直接写出结果;③|x+2|+|x−5|表示数轴上一点到−2与5两点的距离的和,当这点是−2或5,以及它们之间时和最小,最小距离是−2与5之间的距离;④代数式|x−1|+|x+2|+|x−5|表示数轴上一点到1、−2与5三点的距离的和,根据两点之间线段最短,则当x=1时和最小,最小值是5到−2的距离;⑤代数式|x−5|−|x+2|表示数轴上一点到5与−2两点的距离的差,当点小于等于−2时差最大,最大值是5与−2之间的距离.。

七年级上学期第二次月考数学 试卷及答案

七年级上学期第二次月考数学 试卷及答案

七年级上学期第二次月考数学试卷一、精心选一选,相信自己的判断!(每小题3分,共计36分)1.(3分)3的相反数的倒数是()A.﹣3 B.+3 C.﹣D.2.(3分)用四舍五入法对0.03957(保留到千分位)取近似值为()A.0.039 B.0.040 C.0.0395 D.0.039473.(3分)在﹣(﹣3),﹣|﹣3|,(﹣3)2,﹣32这4个数中,属于负数的个数是()A.1B.2C.3D.44.(3分)0.1252008×(﹣8)2007的结果是()A.0.125 B.﹣0.125 C.1D.﹣15.(3分)方程x﹣=4的解题步骤如下:第一步:3x﹣x﹣4=12;第二步:3x﹣x=12+4;第三步:2x=16;第四步:x=8.错误开始于()A.第一步B.第二步C.第三步D.第四步6.(3分)西瓜每千克1元,买50千克以上按8折优惠,甲、乙两人所买西瓜的重量不同可付的钱相同,若甲买48千克,则乙买的西瓜重量是()A.48千克B.84千克C.64千克D.60千克7.(3分)正方体的棱长为a,当棱长增加x时,体积增加了()A.a3﹣x3B.x3C.(a+x)3﹣a3D.(a+x)3﹣x38.(3分)如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.59.(3分)如图,在数轴上有a,b两个实数,则下列结论中,正确的是()A.a>﹣b B.|a|<|b| C.﹣ab>0 D.a+b>010.(3分)有12米长的木料,要做成一个窗框(如图).如果假设窗框横档的长度为x米,那么窗框的面积是()A.x(6﹣x)米2B.x(12﹣x)米2C.x(6﹣3x)米2D.x(6﹣x)米211.(3分)若xy>0,则+的值为()A.﹣2 B.2或﹣2 C.2D.0或212.(3分)当n为正整数时,(﹣1)2n+1+(﹣1)2n的值是()A.﹣2 B.0C.2D.不能确定二、细心填一填,试试自己的身手!(每小题3分,共计18分)13.(3分)若|x﹣2|+(y﹣3)2=0,则x y+(y﹣2x)2007的值是.14.(3分)如图,该图形是立体图形的展开图.15.(3分)某商品原来价格为m元,先降价20%再提价a元后的价格为元.16.(3分)从甲站到乙站原需16小时.采用“和谐”号动车组提速后,列车行驶速度提高了176千米/时,从甲站到乙站的时间缩短了11小时,列车提速后的速度为.17.(3分)我们小时候听过龟兔赛跑的故事,都知道乌龟最后战胜了小白兔.如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要分钟就能追上乌龟.18.(3分)下面是按一定规律排列的一列数:,,,,…那么第n个数是.三、用心做一做,显显自己的能力!(本大题共7小题,共计46分)19.(6分)计算:(1)﹣32÷3+(﹣)÷×(﹣4)+|﹣2|;(2)(+﹣)×(﹣60).20.(5分)解方程:=﹣1.21.(5分)若x=是方程=的解,求代数式(﹣4m2+2m﹣8)﹣(m﹣1)的值.22.(6分)如图所示的几何体是由5个相同的正方体搭成的,请画出它的主视图、左视图和俯视图.23.(6分)在暑期社会实践活动中,小明所在小组的同学与﹣家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A、B、C三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示:若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A型玩具有套,B型玩具有套,C型玩具有套.(2)若每人组装A型玩具16套与组装C型玩具12套所画的时间相同,那么a的值为,每人每小时能组装C型玩具套.24.(8分)某市电话拨号上网有两种收费方式,用户可以任选其一:A、计时制:0.05元/分钟;B、月租制:50元/月(限一部个人住宅电话上网).此外,每种上网方式都得加收通信费0.02元/分钟.(1)小玲说:两种计费方式的收费对她来说是一样的.小玲每月上网多少小时?(2)某用户估计一个月内上网的时间为65小时,你认为采用哪种方式较为合算?为什么?25.(10分)某开发公司要生产若干件新产品,需要精加工后才能投入市场,现有红星和巨星两个工厂都想加工这批产品.已知红星厂单独加工这批产品比巨星厂单独加工这批产品多用20天,红星厂每天加工16件产品,巨星厂每天可以加工24件产品,公司需付红星厂每天加工费80元,付巨星厂每天加工费120元.(1)这个开发公司要生产多少件新产品?(2)公司制定产品加工方案如下,可以由每个厂家单独完成,也可以由两个厂家同时合作完成,在加工过程中,公司需派一名工程师每天到厂家进行技术指导,并由公司为其提供每天5元的午餐补助,请你帮公司选择一种既省线又省时的加工方案.参考答案与试题解析一、精心选一选,相信自己的判断!(每小题3分,共计36分)1.(3分)3的相反数的倒数是()A.﹣3 B.+3 C.﹣D.考点:倒数;相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积为1的两个数互为倒数,可得一个数的倒数.解答:解:3的相反数是﹣3,3的相反数的倒数是﹣,故选:C.点评:本题考查了倒数,先求相反数再求倒数.2.(3分)用四舍五入法对0.03957(保留到千分位)取近似值为()A.0.039 B.0.040 C.0.0395 D.0.03947考点:近似数和有效数字.分析:根据近似数的精确度求解.解答:解:0.03957≈0.040(保留到千分位).故选B.点评:本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.3.(3分)在﹣(﹣3),﹣|﹣3|,(﹣3)2,﹣32这4个数中,属于负数的个数是()A.1B.2C.3D.4考点:正数和负数.分析:先把各式化简,然后根据负数的定义判断即可.解答:解:﹣(﹣3)=3,﹣|﹣3|﹣3,(﹣3)2=9,﹣32=﹣9;所以属于负数的有﹣|﹣3|,﹣32;故选B.点评:判断一个数是正数还是负数,要把它化简成最后形式再判断.概念:用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.4.(3分)0.1252008×(﹣8)2007的结果是()A.0.125 B.﹣0.125 C.1D.﹣1考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的法则求解.解答:解:0.1252008×(﹣8)2007=0.125×[0.125×(﹣8)]2007=﹣0.125.故选B.点评:本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.5.(3分)方程x﹣=4的解题步骤如下:第一步:3x﹣x﹣4=12;第二步:3x﹣x=12+4;第三步:2x=16;第四步:x=8.错误开始于()A.第一步B.第二步C.第三步D.第四步考点:解一元一次方程.专题:计算题.分析:方程两边乘以3去分母,去括号,移项合并,把x系数化为1,求出解,错误不为始于第一步.解答:解:错误始于第一步,原因为:去括号错误,正确步骤为:3﹣(x﹣4)=12,即3﹣x+4=12,故选A点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.6.(3分)西瓜每千克1元,买50千克以上按8折优惠,甲、乙两人所买西瓜的重量不同可付的钱相同,若甲买48千克,则乙买的西瓜重量是()A.48千克B.84千克C.64千克D.60千克考点:一元一次方程的应用.分析:设乙买了x千克西瓜,先求出甲买西瓜的花费,然后根据题意列出买50kg以上西瓜所需花费的代数式,根据所付钱数相等,列方程求解.解答:解:设乙买了x千克西瓜,由题意得,48×1=1×0.8x,解得:x=60,即乙买了60千克西瓜.故选D.点评:本题考查了一元一次方程的应用,解答本题的关键是读懂题意,找出等量关系,列方程求解.7.(3分)正方体的棱长为a,当棱长增加x时,体积增加了()A.a3﹣x3B.x3C.(a+x)3﹣a3D.(a+x)3﹣x3考点:列代数式.分析:根据正方体的体积公式,用变化后的正方体体积减去原来的正方体体积即得答案.解答:解:根据题意,正方体的体积增加了(a+x)3﹣a3.故选C.点评:本题考查正方体的体积公式,是一道简单的基础题.8.(3分)如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.5考点:等式的性质.专题:应用题.分析:根据等式的性质:等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立,可得答案.解答:解:一个球等于2.5个长方体,三个球等于个长方体;一个长方体等于正方体,个长方体等于5个正方体,即三个球体的重量等于5个正方体的重量,故选:D.点评:本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.9.(3分)如图,在数轴上有a,b两个实数,则下列结论中,正确的是()A.a>﹣b B.|a|<|b| C.﹣ab>0 D.a+b>0考点:实数大小比较;数轴.分析:由数轴上的数右边的数总是大于左边的数可以知道:a<0,0<b,|a|>|b|,利用a 到原点距离大于b到原点距离,再根据有理数的运算法则即可判断.解答:解:由图示知,a<0,0<b,|a|>b.A、根据a到原点距离大于b到原点距离得到:a<﹣b,故该选项错误;B、根据a到原点距离大于b到原点距离得到:|a|>|b|,故该选项错误;C、根据a<0,0<b得到:﹣ab>0,故该选项正确;D、根据a<0,0<b,得到:a﹣b<0,故该选项错误;故选:C.点评:此题主要考查的是利用在数轴上数比较大小,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.10.(3分)有12米长的木料,要做成一个窗框(如图).如果假设窗框横档的长度为x米,那么窗框的面积是()A.x(6﹣x)米2B.x(12﹣x)米2C.x(6﹣3x)米2D.x(6﹣x)米2考点:列代数式.分析:横档的长度为x米,则竖档的长度=(12﹣3x)÷2=6﹣1.5x,根据窗框的面积=长×宽求出答案.解答:解:竖档的长度=(12﹣3x)÷2=6﹣1.5x,∴窗框的面积=长×宽=x(6﹣1.5x)=x(6﹣x)米2.故选D.点评:解决问题的关键是读懂题意,找到所求的量的等量关系.需注意,用字母表示数时,数字通常写在字母的前面,带分数的要写成假分数的形式.11.(3分)若xy>0,则+的值为()A.﹣2 B.2或﹣2 C.2D.0或2考点:绝对值.分析:由于xy>0,分x<0,y<0;x>0,y>0;两种情况讨论计算即可求解.解答:解:∵xy>0,∴x<0,y<0时,+=﹣1﹣1=﹣2;x>0,y>0时,+=1+1=2.∴+的值为2或﹣2.故选:B.点评:考查了绝对值,本题需要分情况讨论,难度中等.12.(3分)当n为正整数时,(﹣1)2n+1+(﹣1)2n的值是()A.﹣2 B.0C.2D.不能确定考点:有理数的乘方.分析:﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.解答:解:(﹣1)2n+1+(﹣1)2n=﹣1+1=0.故选B.点评:本题考查了有理数的乘方,涉及知识点是:﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.二、细心填一填,试试自己的身手!(每小题3分,共计18分)13.(3分)若|x﹣2|+(y﹣3)2=0,则x y+(y﹣2x)2007的值是7.考点:代数式求值;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:利用非负数的性质求出x与y的值,代入原式计算即可得到结果.解答:解:∵|x﹣2|+(y﹣3)2=0,∴x﹣2=0,y﹣3=0,解得:x=2,y=3,则原式=8﹣1=7.故答案为:7点评:此题考查了代数式求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.14.(3分)如图,该图形是立体图形三棱柱的展开图.考点:几何体的展开图.分析:利用立体图形的展开图特征求解即可.解答:解:该图形是立体图形三棱柱的展开图.故答案为:三棱柱.点评:本题主要考查了几何体的展开图,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.15.(3分)某商品原来价格为m元,先降价20%再提价a元后的价格为(0.8m+a)元.考点:列代数式.分析:降价后的价格是原价×(1﹣20%),即0.8m,再加上提价的a元即可求解.解答:解:(1﹣20%)m+a=0.8m+a(元).答:先降价20%再提价a元后的价格为(0.8m+a)元.故答案为:(0.8m+a).点评:考查了列代数式,列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系.注意降价的基数是多少.16.(3分)从甲站到乙站原需16小时.采用“和谐”号动车组提速后,列车行驶速度提高了176千米/时,从甲站到乙站的时间缩短了11小时,列车提速后的速度为256千米/小时.考点:一元一次方程的应用.分析:设列车提速前的速度是x千米/时,则提速后为(x+176)千米/时,根据提速前的时间与提速后的时间之间的等量关系建立方程求出其解就可以求出提速后的速度.解答:解:设列车提速前的速度是x千米/时,则提速后为(x+176)千米/时,由题意,得16x=(16﹣11)(x+176),x=80,提速后的速度为:x+176=256.答:列车提速后的速度为256千米/小时.故答案为:256千米/小时.点评:本题考查了路程=速度×时间的运用,列一元一次方程解实际问题的运用,设间接未知数的运用,在解答时根据时间之间的数量关系建立方程是解答本题的关键.17.(3分)我们小时候听过龟兔赛跑的故事,都知道乌龟最后战胜了小白兔.如果在第二次赛跑中,小白兔知耻而后勇,在落后乌龟1千米时,以101米/分的速度奋起直追,而乌龟仍然以1米/分的速度爬行,那么小白兔大概需要10分钟就能追上乌龟.考点:一元一次方程的应用.专题:行程问题.分析:在追及路程问题中,注意等量关系:小白兔追上乌龟所走的路程=乌龟所走的路程+落后的路程.解答:解:设小白兔大概需要x分钟就能追上乌龟,根据题意可得101x=x+1000解得x=10那么小白兔大概需要10分钟就能追上乌龟.点评:在此题中注意单位要统一.18.(3分)下面是按一定规律排列的一列数:,,,,…那么第n个数是.考点:规律型:数字的变化类.专题:压轴题.分析:根据题意,首先从各个数开始分析,n=1时,分子:2=(﹣1)2•21,分母:3=2×1+1;n=2时,分子:﹣4=(﹣1)3•22,分母:5=2×2+1;…,即可推出第n个数为解答:解:∵n=1时,分子:2=(﹣1)2•21,分母:3=2×1+1;n=2时,分子:﹣4=(﹣1)3•22,分母:5=2×2+1;n=3时,分子:8=(﹣1)4•23,分母:7=2×3+1;n=4时,分子:﹣16=(﹣1)5•24,分母:9=2×4+1;…,∴第n个数为:故答案为:点评:本题主要考查通过分析数的变化总结归纳规律,解题的关键在于求出分子、分母与n的关系.三、用心做一做,显显自己的能力!(本大题共7小题,共计46分)19.(6分)计算:(1)﹣32÷3+(﹣)÷×(﹣4)+|﹣2|;(2)(+﹣)×(﹣60).考点:有理数的混合运算.专题:计算题.分析:(1)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式利用乘法分配律计算即可得到结果.解答:解:(1)原式=﹣9×+×4×4+2=﹣3+8+2=7;(2)原式=﹣45﹣35+70=﹣10.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(5分)解方程:=﹣1.考点:解一元一次方程.专题:计算题.分析:方程去分母,去括号,移项合并,把y系数化为1,即可求出解.解答:解:去分母得:8(y﹣1)=3(y+2)﹣12,去括号得:8y﹣8=3y+6﹣12,移项合并得:5y=2,解得:y=0.4.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.21.(5分)若x=是方程=的解,求代数式(﹣4m2+2m﹣8)﹣(m﹣1)的值.考点:解一元一次方程;代数式求值.专题:计算题.分析:由方程解的定义将x=代入方程求出m的值,原式去括号合并得到最简结果,将m的值代入计算即可求出值.解答:解:根据题意将x=代入方程得:=,去分母得:3﹣3m=2﹣4m,解得:m=﹣1,原式=﹣m2+m﹣2﹣m+1=﹣m2﹣1,当m=﹣1时,原式=﹣1﹣1=﹣2.点评:此题考查了解一元一次方程,以及代数式求值,求出m的值是解本题的关键.22.(6分)如图所示的几何体是由5个相同的正方体搭成的,请画出它的主视图、左视图和俯视图.考点:作图-三视图.分析:主视图有3列,每列小正方形数目分别为2,1,1;左视图有2列,每列小正方形数目分别为1,2;俯视图有3列,每行小正方形数目分别为2,1,1.解答:解:如图所示:.点评:本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.23.(6分)在暑期社会实践活动中,小明所在小组的同学与﹣家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A、B、C三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示:若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A型玩具有套,B型玩具有套,C型玩具有套.(2)若每人组装A型玩具16套与组装C型玩具12套所画的时间相同,那么a的值为,每人每小时能组装C型玩具套.考点:扇形统计图;条形统计图.专题:压轴题;图表型.分析:(1)扇形统计图中,各部分的数量=总体×所占百分比,据此求得各中型号的数量;(2)由题意得,,求解即可.解答:解:(1)240×55%=132,240×(1﹣55%﹣25%)=48,240×25%=60.(2)由题意得,,16(2a﹣2)=12×8解之,得a=4,经检验a=4是原分式方程的解.2a﹣2=2×4﹣2=6.点评:命题立意:考查扇形统计图及综合应用能力.24.(8分)某市电话拨号上网有两种收费方式,用户可以任选其一:A、计时制:0.05元/分钟;B、月租制:50元/月(限一部个人住宅电话上网).此外,每种上网方式都得加收通信费0.02元/分钟.(1)小玲说:两种计费方式的收费对她来说是一样的.小玲每月上网多少小时?(2)某用户估计一个月内上网的时间为65小时,你认为采用哪种方式较为合算?为什么?考点:一元一次方程的应用.分析:(1)设小玲每月上网x小时,利用A:费用=每分钟的费用×时间;B:费用=包月费+通信费,根据两种计费方式的收费相同列出方程,解方程即可;(2)如果一个月内上网的时间为65小时,根据两种收费方式分别计算费用,比较后即可回答问题.解答:解:(1)设小玲每月上网x小时,根据题意得(0.05+0.02)×60x=50+0.02×60x,解得x=.答:小玲每月上网小时;(2)如果一个月内上网的时间为65小时,选择A、计时制费用:(0.05+0.02)×60×65=273(元),选择B、月租制费用:50+0.02×60×65=128(元).所以一个月内上网的时间为65小时,采用月租制较为合算.点评:本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.25.(10分)某开发公司要生产若干件新产品,需要精加工后才能投入市场,现有红星和巨星两个工厂都想加工这批产品.已知红星厂单独加工这批产品比巨星厂单独加工这批产品多用20天,红星厂每天加工16件产品,巨星厂每天可以加工24件产品,公司需付红星厂每天加工费80元,付巨星厂每天加工费120元.(1)这个开发公司要生产多少件新产品?(2)公司制定产品加工方案如下,可以由每个厂家单独完成,也可以由两个厂家同时合作完成,在加工过程中,公司需派一名工程师每天到厂家进行技术指导,并由公司为其提供每天5元的午餐补助,请你帮公司选择一种既省线又省时的加工方案.考点:一元一次方程的应用.分析:(1)设这个公司要加工x件新产品,则红星厂单独加工这批产品需天,巨星厂单独加工这批产品需要天,根据题意找出等量关系:红星厂单独加工这批产品需要的天数﹣巨星厂单独加工这批产品需要的天数=20,根据此等量关系列出方程求解即可.(2)应分为三种情况讨论:①由红星厂单独加工;②由巨星厂单独加工;③由两场厂共同加工,分别比较三种情况下,所耗时间和花费金额,求出即省钱,又省时间的加工方案.解答:解:(1)设这个公司要加工x件新产品,由题意得:﹣=20,解得:x=960.答:这个公司要加工960件新产品.(2)①由红星厂单独加工:需要耗时为=60天,需要费用为:60×(5+80)=5100元;②由巨星厂单独加工:需要耗时为=40天,需要费用为:40×(120+5)=5000元;③由两场厂共同加工:需要耗时为=24天,需要费用为:24×(80+120+5)=4920元.所以,由两厂合作同时完成时,即省钱,又省时间.点评:本题主要考查一元一次方程的应用,关键在于理解清楚题意,找出等量关系列出方程.对于要求最符合要求类型的题目,应将所有方案,列出来求出符合题意的那一个即可.。

七年级上册数学月考试卷及答案

七年级上册数学月考试卷及答案

七年级上册数学月考试卷及答案七年级上册数学月考试卷及答案七年级上册数学月考试卷一、选择题(每小题3分,共30分)1.如果零上5℃记作+5℃,那么零下7℃可记作( )A。

-7℃ B。

+7℃ C。

+12℃ D。

-12℃2.某同学春节期间将自己的压岁钱800元,存入银行。

XXX放假取出350元买了礼物去看爷爷,母亲节时他又取出100元给妈妈买了礼物,则存上存入、支出情况显示为( ) A。

+800,+350,-100 B。

+800,-350,-100C。

-800,+350,+100 D。

+800,-350,+1003.-6的相反数为( )A。

6 B。

-6 C。

0 D。

-14.下列式子中,-(-3),-|-3|,3-5,-1-5是负数的有( )A。

1个 B。

2个 C。

3个 D。

4个5.下列计算不正确的是( )A。

-(-3)=-3 B。

+[-(-3)]=3 C。

-3+|-3|=0 D。

-5=-56.下列四个数中,最小的数是( )A。

2 B。

-2 C。

0 D。

-18.某种面粉袋上的质量标识为250.25kg,则下列面粉中合格的是( )A。

24.70kg B。

25.30kg C。

25.51kg D。

24.80kg9.(-1)-(-3)+2(-3)的值等于( )A。

1 B。

-4 C。

5 D。

-110.若ab≠0,则a/b的值不可能是( )A。

2 B。

0 C。

-2 D。

1二、填空题(每小题3分,共30分)11.①3的相反数是-3,②-2的倒数是-1/2,③|-2012|=2012.12.如果m≥0,n≥0,m≥|n|,那么m≥n≥-m≥-n.13.写出一个比-1小的数是-2.14.7(-2)的相反数是-14.16.若|x|=3,y=2,则|x+y|=5.17.计算|-|-3|=3.18.武冈某天早晨气温是-5℃,到中午升高5℃,晚上又降低3℃,到午夜又降了4℃,午夜时温度为-7℃.19.已知a,b互为相反数,且都不为0,则(a+b-5)(-3)=12.20.一组按规律排列的数:-4,-1,2,5,8,请你推断第9个数是14.三、XXX21.(16分) 计算1) 3+(-2)-(-3)+2 = 62) |-5+7|+(-4)-6 = 03) -2×(-3)-(-4)×(-5) = 24) (-2)×[(3-7)×(-4)] = 3222.(14分) 一张纸的厚度是0.01cm,折叠后厚度变成原来的2倍,再折叠后厚度变成原来的3倍,求折叠3次后纸的厚度.答:第一次折叠后厚度为0.02cm,第二次折叠后厚度为0.06cm,第三次折叠后厚度为0.18cm.23.(10分) 如果-3x+2y=5,3x-y=7,求x和y的值.答:将第二个式子两边乘以3得-9x+6y=15,与第一个式子相加得7y=20,即y=20/7.将y的值代入第二个式子得3x-(20/7)=7,解得x=61/21.因此,x=61/21,y=20/7.24.(10分) 一辆汽车从A地出发,以每小时60公里的速度向B地行驶,途中遇到了一次故障,耽误了1小时,然后以每小时40公里的速度向B地行驶,结果比原计划晚到2小时,求AB两地的距离.答:设AB两地的距离为x公里,则原计划行驶时间为x/60小时,故障后行驶时间为(x/60+1)小时,最后行驶时间为(x/60+1)+(x/40)小时。

部编数学七年级上册【第二次月考】综合能力提升卷(考试范围:第一~三章)(解析版)含答案

部编数学七年级上册【第二次月考】综合能力提升卷(考试范围:第一~三章)(解析版)含答案

绝密★启用前|【冲刺高分】2021—2022学年人教版七年级数学上册培优拔高必刷卷【第二次月考】综合能力提升卷(考试范围:第一~三章 考试时间:120分钟 试卷满分:100分)学校:___________姓名:___________班级:___________考号:___________考卷说明:本卷试题共25题,单选10题,填空8题,解答7题,限时120分钟,满分100分,本卷题型精选核心常考易错典题,具备举一反三之效,覆盖面积广,可充分彰显学生双基综合能力的具体情况!一、选择题:本题共10个小题,每小题2分,共20分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2021·达州市第一中学校七年级月考)万源市元月份某一天早晨的气温是3C °-,中午上升了2C °,则中午的气温是( ).A .5C-o B .5C o C .1C -o D .1Co 【答案】C【分析】根据题意,将早上的气温加上2即可求得中午的气温【详解】解:早晨的气温是3C °-,中午上升了2C °,则中午的气温是321C -+=-°故选C【点睛】本题考查了有理数加法的实际应用,理解题意是解题的关键.2.(2021·辽宁瓦房店·七年级月考)在﹣43,1,0,﹣34这四个数中,最小数是( )A .﹣43B .1C .0D .﹣34【答案】A【分析】根据有理数的大小比较法则进行判断即可,正数大于0,负数小于0,两个负数比较,绝对值大的反而小.【详解】解:由有理数的大小比较法则可得:430134-<-<<最小的数为43-故选A【点睛】此题考查了有理数的大小比较,熟练掌握有理数的大小比较法则是解题的关键.3.(2021·渝中·重庆巴蜀中学七年级月考)在()2--,()32-,()2+-,()22-中,正数的个数为( )A .1个B .2个C .3个D .4个【答案】C【分析】根据题意,将些数进行乘方运算,求一个数的绝对值以及求相反数,进而即可求得答案.【详解】解:Q ()22--=,()328-=-,()22+-=,()22=4-.\正数的个数为3个.故选C .【点睛】本题考查了乘方运算,求一个数的绝对值以及求相反数,掌握以上运算方法是解题的关键.4.(2020·南安市南光中学七年级月考)若202x y ++=-,则20x y --的值为( )A .-42B .42C .-2D .22【答案】B【分析】先算出x+y=-22,再整体代入即可求解.【详解】解:∵202x y ++=-,∴x+y=-22,∴20x y --=20-(x+y )=20-(-22)=42,故选B .【点睛】本题主要考查代数式求值,掌握整体代入思想方法,是解题的关键.5.(2021·咸阳市秦都区双照中学七年级月考)规定3a b a b =-+-△,则28△的值为( )A .3-B .7-C .3D .7【答案】C【分析】题中定义了一种新运算,依照新运算法则,将2a =,8b =代入即可求出答案.【详解】解:已知:3a b a b D =-+-,将2a =,8b =代入即为:282833D =-+-=,故选:C .【点睛】题目主要考查对新定义运算的理解,转化为学过的求代数式的值是解题关键.6.(2021·山东枣庄东方国际学校七年级月考)若|x+1|+|3﹣y|=0,则x ﹣y 的值是( )A .2B .3C .﹣2D .﹣4【答案】D【分析】根据绝对值的非负性,确定,x y 的值,进而代入代数式求解即可.【详解】解:Q |x+1|+|3﹣y|=0,|10,3|0x y +³-³,则10,30x y +=-=,解得1,3x y =-=,134x y \-=--=-,故选D【点睛】本题考查了绝对值的非负性,代数式求值,根据绝对值的非负性求得,x y 的值是解题的关键.7.(2021·哈尔滨德强学校七年级月考)把x的系数化为1,正确的是()A.135x=得35x=B.31x=得3x=C.0.23x=得32x=D.443x=得3x=【答案】D【分析】根据每个选项的未知数的项除以系数即可得到结论.【详解】解:A,方程两边同除以15可得15x=,故选项A错误,不符合题意;B. 方程两边同除以3可得13x=,故选项B错误,不符合题意;C. 方程两边同除以0.2可得15x=,故选项C错误,不符合题意;D. 方程两边同除以43可得3x=,故选项D正确,符合题意;故选:D【点睛】解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1;此题是形式简单的一元一次方程.同时考查了等式的性质2:等式两边同时乘(或除)相等的非零的数或式子,两边依然相等.8.(2021·福建厦门双十中学思明分校七年级月考)已知某校学生总人数为a人,其中女生b人,若女生的2倍比男生多80人,则可以列方为( )A.2b=a+80B.2b=a﹣80C.2b=a﹣b+80D.2b=a﹣b﹣80【答案】C【分析】由该校总人数及女生人数,可得出男生人数为(a-b)人,由女生的2倍比男生多80人,即可得出结论.【详解】解:∵某校学生总人数为a人,其中女生b人,∴男生人数为(a-b)人.∵女生的2倍比男生多80人,∴2b=a-b+80.【点睛】本题考查了由实际问题抽象出二元一次方程,找准等量关系,正确列出二元一次方程是解题的关键.9.(2020·江苏姑苏·苏州草桥中学七年级月考)关于x 的方程22x m x -=-得解为3x =,则m 的值为( )A .5-B .5C .7-D .7【答案】B【分析】把x 的值代入方程计算即可求出m 的值.【详解】解:把x=3代入方程得:6-m=3-2,解得:m=5,故选:B .【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.10.(2021·四川省德阳市第二中学校七年级月考)如图,数轴上的两个点A 、B 所表示的数分别是a 、b ,那么a ,b ,-a ,-b 的大小关系是( )A .b<-a<-b<aB .b<-b<-a<aC .b<-a<a<-bD .-a<-b<b<a【答案】C 【分析】根据相反数的意义,把﹣a 、﹣b 先表示在数轴上,然后再比较它们的大小关系即可.【详解】解:根据相反数的意义,把﹣a 、﹣b 表示在数轴上,如下图:所以b <﹣a <a <﹣b .【点睛】本题考查了数轴和有理数的大小比较,把﹣a 、﹣b 表示在数轴上,利用数形结合是解决本题比较简单的方法.二、填空题:本题共8个小题,每题2分,共16分。

数学七年级上册月考试卷

数学七年级上册月考试卷

数学七年级上册月考试卷一、选择题(每题3分,共30分)1. -2的相反数是()A. 2B. -2C. (1)/(2)D. -(1)/(2)2. 下列式子中,结果为正数的是()A. -(-3)B. -3C. -3²D. (-3)³.3. 计算:1 - 2 + 3 - 4 + 5 - 6+…+ 99 - 100的值为()A. -50B. 50C. -100D. 100.4. 在有理数-(1)/(2),0,(1)/(3),-1中,最小的数是()A. -(1)/(2)B. 0C. (1)/(3)D. -1.5. 若x = 3,则x的值是()A. 3B. -3C. ±3D. (1)/(3)6. 一个数的倒数等于它本身的数是()A. 1B. -1C. ±1D. 0.7. 把3290000用科学记数法表示为()A. 3.29×10⁶B. 3.29×10⁵C. 32.9×10⁵D. 0.329×10⁷.8. 单项式-(2)/(3)xy²的系数和次数分别是()A. -(2)/(3),3B. (2)/(3),3C. -(2)/(3),2D. (2)/(3),2.9. 下列各式中,是同类项的是()A. 3x²y与-3xy²B. 3xy与-2yxC. 2x与2x²D. 5xy与5yz。

10. 化简:2a - 3(a - b)的结果是()A. -a + 3bB. a - 3bC. a + 3bD. -a - 3b.二、填空题(每题3分,共15分)11. 比较大小:-(3)/(4)___-(4)/(5)(填“>”或“<”)。

12. 绝对值不大于3的整数有___个。

13. 若3xⁿy³与 - 2x²yᵐ是同类项,则m + n =___。

14. 若a、b互为相反数,c、d互为倒数,则(a + b) - cd =___。

2022-2023学年人教版七年级数学上册第二次月考测试题(附答案)

2022-2023学年人教版七年级数学上册第二次月考测试题(附答案)

人教版2022-2023学年七年级数学上册第二次月考测试题(附答案)一、选择题(每小题3分,30分)1.实数1,﹣1,0,﹣四个数中,最大的数是()A.0B.1C.﹣1D.2.某市某日的气温是﹣2℃~6℃,则该日的温差是()A.8℃B.6℃C.4℃D.﹣2℃3.下列各式中,是一元一次方程的是()A.2x+5y=6B.3x﹣2C.x2=1D.3x+5=84.下列各式中运算错误的是()A.5x﹣2x=3x B.5ab﹣5ba=0C.4x2y﹣5xy2=﹣x2y D.3x2+2x2=5x25.下列说法正确的是()A.单项式的系数是﹣5B.单项式a的系数为1,次数是0C.次数是6D.xy+x﹣1是二次三项式6.方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8B.0C.2D.87.下面说法中错误的是()A.368万精确到万位B.0.0450精确到千分位C.2.58精确到百分位D.10000保留到百位为1.00×1048.如果a=b,则下列式子不成立的是()A.a+c=b+c B.a2=b2C.ac=bc D.a﹣c=c﹣b 9.在某次活动中,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是()A.30x﹣8=31x+26B.30x+8=31x+26C.30x﹣8=31x﹣26D.30x+8=31x﹣2610.观察图和所给表格回答.当图形的周长为80时,梯形的个数为()梯形个数12345….图形周长58111417….A.25B.26C.27D.28二、填空题(每小题3分,30分)11.﹣23=.12.已知多项式2mx m+2+4x﹣7是关于x的三次多项式,则m=.13.产量由m千克增长15%后,达到千克.14.若有理数a、b满足|a+6|+(b﹣4)2=0,则a﹣b的值为.15.与原点的距离为2个单位的点所表示的有理数是.16.白玉兰商店把某种服装成本价提高50%后标价,又以7折卖出,结果每一件仍然获利20元,这种服装每件的成本是元.17.如果a﹣b=3,ab=﹣1,则代数式3ab﹣a+b﹣2的值是.18.列等式表示:“x的2倍与8的和等于10”上述等式可列为:.19.若代数式2a+3与8﹣3a的值相等,则a2021=.20.一份试卷,一共20道选择题,每一题答对得5分,答错或不答扣3分,小红共得68分,那么小红答对了道题.三、解答题(60分)21.(1)计算﹣12021+18÷(﹣3)×|﹣|(2)化简3a2﹣[8a﹣(4a﹣7)﹣2a2](3)化简求值﹣(﹣a2+2ab+b2)+(﹣a2﹣ab+b2),其中a=﹣,b=1022.解方程:(1)5(x+2)=2(5x﹣1);(2);(3)23.若方程3x+2a=12和方程3x﹣4=2的解相同,求a的值.24.甲乙两车从相距240km的两站同时开出,相对而行,甲车每小时行50km,乙车每小时行30km,问出发几小时后两车相距80km?25.抗洪抢修施工队甲处有31人,乙处有21人,由于任务的需要,现另调23人去支援,使在甲处施工的人数是在乙处施工人数的2倍,问应调往甲、乙两处各多少人?26.汛期到来之前某水利部门利用挖掘机挖掘土方,甲机单独做12天挖完,乙机单独做15天可以挖完,现在两机合作若干天后,再由乙机单独挖6天完成任务,问甲机挖了几天?27.某公园为了吸引更多游客,推出了“个人年票”的售票方式(从购买日起,可供持票者使用一年),年票分A、B二类:A类年票每张49元,持票者每次进入公园时,再购买3元的门票;B类年票每张64元,持票者每次进入公园时,再购买2元的门票.(1)一游客计划在一年中用100元游该公园(只含年票和每次进入公园的门票),请你通过计算比较购买A、B两种年票方式中,进入该公园次数较多的购票方式;(2)求一年内游客进入该公园多少次,购买A类、B类年票花钱一样多?参考答案一、选择题(每小题3分,30分)1.解:﹣1<﹣<0<1,故选:B.2.解:该日的温差=6﹣(﹣2)=6+2=8(℃).故选:A.3.解:A、含有2个未知数,故选项错误;B、不是等式,故选项错误;C、是2次方程,故选项错误;D、正确.故选:D.4.解:A、5x﹣2x=(5﹣2)x=3x,正确;B、5ab﹣5ba=(5﹣5)ab=0,正确;C、4x2y与5xy2不是同类项,不能合并,故本选项错误;D、3x2+2x2=(3+2)x2=5x2,正确.故选:C.5.解:A、单项式的系数是﹣,错误;B、单项式a的系数为1,次数是1,错误;C、次数是4,错误;D、正确.故选:D.6.解:把x=﹣2代入方程2x+a﹣4=0,得到:﹣4+a﹣4=0解得a=8.故选:D.7.解:A、368万精确到万位,此选项不符合题意;B、0.0450精确到万分位,此选项符合题意;C、2.58精确到百分位,此选项不符合题意;D、10000保留到百位为1.00×104,此选项不符合题意.故选:B.8.解:A.根据等式性质1,在等式的两边同时加上c,结果成立,故正确;B.根据等式性质2,在等式的两边同时乘以一个相同的数或式子,结果成立,故正确;C.根据等式性质2,在等式的两边同时乘以c,结果成立,故正确;D.不符合等式的性质,故不成立.故选:D.9.解:由题意得:30x+8=31x﹣26,故选:D.10.解:周长分别是5,8,11,14…可以看出:首项a1=5,等差d=3,由公式a n=a1+(n﹣1)d,即a n=5+(n﹣1)×3=3n+2.∴3n+2=80,解得n=26.故选:B.二、填空题(每小题3分,30分)11.解:﹣23=﹣8.故答案为:﹣8.12.解:∵多项式2mx m+2+4x﹣7是关于x的三次多项式,∴m+2=3,解得:m=1,故答案为:1.13.解:根据题意得:m(1+15%)=1.15m(千克);故答案为:1.15m.14.解:∵|a+6|+(b﹣4)2=0,∴a+6=0,b﹣4=0,∴a=﹣6,b=4,∴a﹣b=﹣6﹣4=﹣10.故答案为:﹣10.15.解:设数轴上,到原点的距离等于2个单位长度的点所表示的有理数是x,则|x|=2,解得:x=±2.故答案为:±2.16.解:设这种服装每件的成本为x元,依题意,得:0.7×(1+50%)x﹣x=20,解得:x=400.故答案为:400.17.解:∵a﹣b=3,ab=﹣1,∴3ab﹣a+b﹣2,=3×(﹣1)﹣3﹣2,=﹣3﹣3﹣2,=﹣8.故答案为:﹣8.18.解:依题意得:2x+8=10.故答案是:2x+8=10.19.解:根据题意得:2a+3=8﹣3a,移项合并得:5a=5,解得:a=1,则原式=1,故答案为:120.解:设小红答对了x道题,则答错或不答(20﹣x)道题,依题意,得:5x﹣3(20﹣x)=68,解得:x=16.故答案为:16.三、解答题(60分)21.解:(1)原式=﹣1﹣6×=﹣1﹣3=﹣4;(2)原式=3a2﹣8a+4a﹣7+2a2=5a2﹣4a﹣7;(3)原式=a2﹣2ab﹣b2﹣a2﹣ab+b2=﹣3ab,当a=﹣,b=10时,原式=2.22.解:(1)去括号得:5x+10=10x﹣2,移项合并得:﹣5x=﹣12,解得:x=2.4;(2)去分母得:6(x﹣2)=2x﹣1,去括号得:6x﹣12=2x﹣1,移项合并得:4x=11,解得:x=;(3)方程整理得:x﹣=2﹣,去分母得:10x﹣5x+5=20﹣2x﹣4,移项合并得:7x=11,解得:x=.23.解:3x﹣4=2x=2,∵方程3x+2a=12和方程3x﹣4=2的解相同,把x=2代入3x+2a=12得6+2a=12,a=3.24.解:设出发x小时后两车相距80km,(50+30)x=240﹣80或(50+30)x=240+80解得,x=2或x=4答:出发2小时或4小时后两车相距80km.25.解:设应调往甲处x人,调往乙处(23﹣x)人.依题意,有31+x=2(21+23﹣x),解方程,得x=19,23﹣x=23﹣19=4.答:应调往甲处19人,调往乙处4人.26.解:设甲挖掘机挖了x天,则乙挖掘机挖了(x+6)天,依题意,得:+=1,解得:x=4.答:甲挖掘机挖了4天.27.解:(1)设用100元购买A类年票可进入该公园的次数为x次,购买B类年票可进入该公园的次数为y次,据题意,得49+3x=100.解得,x=17.64+2y=100.解得,y=18.因为y>x,所以,进入该公园次数较多的是B类年票.答:进入该公园次数较多的是B类年票;(2)设进入该公园z次,购买A类、B类年票花钱一样多.则根据题意得49+3z=64+2z.解得z=15.答:进入该公园15次,购买A类、B类年票花钱一样多.。

人教版七年级上册数学第二次月考测试卷 (4)

人教版七年级上册数学第二次月考测试卷 (4)

山东省滨州市惠民县2017-2018学年七年级上第二次月考试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.下列式子简化不正确的是()A.+(﹣5)=﹣5 B.﹣(﹣0.5)=0.5 C.﹣(+1)=1D.﹣|+3|=﹣3 2.如图,下列四个几何体,从上面、正面、左侧三个不同方向看到的形状中只有两个相同的是()A.正方体B.球C.直三棱柱D.圆柱3.在三个数﹣0.5,,,﹣(﹣2)中,最大的数是()A.﹣0.5 B.C. D.﹣(﹣2)4.若a,b表示有理数,且a=﹣b,那么在数轴上表示a与数b的点到原点的距离()A.表示数a的点到原点的距离较远B.表示数b的点到原点的距离较远C.相等D.无法比较5.科学记数法a×10n中a的取值范围为()A.0<|a|<10 B.1<|a|<10 C.1≤|a|<9 D.1≤|a|<106.某食品厂打折出售食品,第一天卖出mkg,第二天比第一天多卖出2kg,第三天是第一天卖出的3倍,则这个食品厂这三天共卖出食品()A.(3m+2)kg B.(5m+2)kg C.(3m﹣2)kg D.(5m﹣2)kg7.将圆柱沿斜方向切去一截,剩下的一段如图所示,将它的侧面沿一条母线剪开,则得到的侧面展开图的形状不可能是()A.B.C.D.8.下列几何体不可以展开成一个平面图形的是()A.三棱柱B.圆柱C.球D.正方体二、填空题(本题满分24分,共有6道小题,每小题3分)9.单项式﹣的次数是,系数是.10.已知式子101﹣102=1,移动其中一位数字使等式成立,移动后的式子为.11.若与﹣9x b﹣3y2的和应是单项式,则的值是.12.如果3a=﹣3a,那么表示a的点在数轴上的位置.13.正方体每一面不同的颜色对应着不同的数字,将四个这样的正方体如图拼成一个水平放置的长方体,那么长方体的下底面数字和为.颜色红黄蓝白紫绿对应数字12345614.(1+)×(1+)×(1+)×(1+)×…×(1+)×(1+)=.15.若3x﹣2y=4,则5﹣y=.16.按相同的规律把下面最后一个方格画出.三、作图题(满分4分)17.(4分)根据立体图从上面看到的形状图(如图所示),画出它从正面和左面看到的形状图(图中数字代表该位置的小正方体的个数).四、解答题(满分68分,共7题)18.(5分)在数轴上把下列各数表示出来,并用“<”连接各数.﹣(+2),﹣|﹣1|,1,0,﹣(﹣3.5)19.(29分)计算:(1);(2)化简并求值:5xy﹣[(x2+6xy﹣y2)﹣(x2+3xy﹣2y2)],其中x=,y=﹣6.20.(6分)某区中学学生足球比赛共赛10轮(即每队均需参赛10场),胜一场得3分,平一场得0分,负一场得﹣1分.在比赛中,某队胜了5场,负了3场,踢平了2场,问该队最后共得多少分?21.(8分)某糖果厂想要为儿童设计一种新型的装糖果的不倒翁,请你根据包装厂设计好的三视图(如图)的尺寸计算其容积.(球的体积公式:V=πr3)22.(6分)若﹣1<x<4,化简|x+1|+|4﹣x|.23.(8分)火车从北京站出发时车上有乘客(5a﹣2b)人,途中经过武汉站是下了一半人,但是又上车若干人,这时车上的人数为(10a﹣3b)人.(1)求在武汉站上车的人数;(2)当a=250,b=100时,在武汉站上车的有多少人?24.(6分)计算:﹣(﹣)﹣(﹣)﹣…﹣(﹣).山东省滨州市惠民县2017-2018学年七年级上第二次月考试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)1.(3分)下列式子简化不正确的是()A.+(﹣5)=﹣5 B.﹣(﹣0.5)=0.5 C.﹣(+1)=1D.﹣|+3|=﹣3【分析】根据多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正进行化简可得答案.【解答】解:A、+(﹣5)=﹣5,计算正确,故此选项不合题意;B、﹣(﹣0.5)=0.5,计算正确,故此选项不合题意;C、﹣(+1)=﹣1,原计算错误,故此选项符合题意;D、﹣|+3|=﹣3,计算正确,故此选项不合题意;故选:C.【点评】此题主要考查了相反数,关键是掌握多重符号的化简方法.2.(3分)如图,下列四个几何体,从上面、正面、左侧三个不同方向看到的形状中只有两个相同的是()A.正方体B.球C.直三棱柱D.圆柱【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【解答】解:A、正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项错误;B、球从上面、正面、左侧三个不同方向看到的形状圆,故此选项错误;C、直三棱柱从上面看是矩形中间有一条竖杠,从左边看是三角形,从正面看是矩形,故此选项错误;D、圆柱从上面和正面看都是矩形,从左边看是圆,故此选项正确;故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.(3分)在三个数﹣0.5,,,﹣(﹣2)中,最大的数是()A.﹣0.5 B.C. D.﹣(﹣2)【分析】本题主要考查绝对值以及去正负号的方法,还要知道π的大小.【解答】解:正数比负数大,所以最大的数是其中的正数,<2,||=,﹣(﹣2)=2;故选D.【点评】解决此类问题首先将绝对值去掉,然后将数化简,最后再比较大小.4.(3分)若a,b表示有理数,且a=﹣b,那么在数轴上表示a与数b的点到原点的距离()A.表示数a的点到原点的距离较远B.表示数b的点到原点的距离较远C.相等D.无法比较【分析】利用相反数的定义判断即可.【解答】解:若a、b表示有理数,且a=﹣b,那么在数轴上表示数a与数b的点到原点的距离一样远,故选:C.【点评】此题考查了数轴,以及相反数,熟练掌握相反数的定义是解本题的关键.5.(3分)科学记数法a×10n中a的取值范围为()A.0<|a|<10 B.1<|a|<10 C.1≤|a|<9 D.1≤|a|<10【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.【解答】解:科学记数法a×10n中a的取值范围为1≤|a|<10.故选D.【点评】本题考查科学记数法的定义,是需要熟记的内容.6.(3分)某食品厂打折出售食品,第一天卖出mkg,第二天比第一天多卖出2kg,第三天是第一天卖出的3倍,则这个食品厂这三天共卖出食品()A.(3m+2)kg B.(5m+2)kg C.(3m﹣2)kg D.(5m﹣2)kg【分析】根据题意表示出第二天与第三天卖出的数量,相加即可得到结果.【解答】解:第一天是mkg,第二天是(m+2)kg,第三天是3mkg,则它们的和为m+2+3m+m=(5m+2)kg.故选B.【点评】此题考查了合并同类项,属于应用题,弄清题意是解本题的关键.7.(3分)将圆柱沿斜方向切去一截,剩下的一段如图所示,将它的侧面沿一条母线剪开,则得到的侧面展开图的形状不可能是()A.B.C.D.【分析】结合题目中的图形,可知得到的侧面展开图的形状不可能是角的形状.【解答】解:结合题目中的图形,可知得到的侧面展开图的形状不可能是角的形状,故选C.【点评】解决此类问题一定要注意结合实际考虑正确的结果.8.(3分)下列几何体不可以展开成一个平面图形的是()A.三棱柱B.圆柱C.球D.正方体【分析】首先想象三棱柱、圆柱、正方体的平面展开图,然后作出判断.【解答】解:A、三棱柱可以展开成3个矩形和2个三角形,故此选项错误;B、圆柱可以展开成两个圆和一个矩形,故此选项错误;C、球不能展开成平面图形,故此选项符合题意;D、正方体可以展开成一个矩形和两个小正方形,故此选项错误;故选:B.【点评】本题主要考查了图形展开的知识点,注意几何体的形状特点进而分析才行.二、填空题(本题满分24分,共有6道小题,每小题3分)9.(3分)单项式﹣的次数是4,系数是﹣.【分析】利用单项式的次数与系数的定义求解即可.【解答】解:单项式﹣的次数是4,系数是﹣.故答案为:4,﹣.【点评】本题主要考查了单项式,解题的关键是熟记单项式的次数与系数的定义.10.(3分)已知式子101﹣102=1,移动其中一位数字使等式成立,移动后的式子为102﹣101=1.【分析】根据有理数的减法运算法则解答即可.【解答】解:移动个位上的1和2,102﹣101=1.故答案为:102﹣101=1.【点评】本题考查了有理数的减法,是基础题,读懂题目信息并理解题意是解题的关键.11.(3分)若与﹣9x b﹣3y2的和应是单项式,则的值是﹣17.【分析】两个单项式的和为单项式,说明两个单项式是同类项,根据同类项的定义,列方程组求a、b即可.【解答】解:根据题意可知,两个单项式为同类项,∴b﹣3=6,a﹣3=2,解得a=5,b=9,∴=2×5﹣×92=﹣17.【点评】本题是对同类项定义的考查,同类项的定义是所含有的字母相同,并且相同字母的指数也相同的项叫同类项,所以只要判断所含有的字母是否相同,相同字母的指数是否相同即可.12.(3分)如果3a=﹣3a,那么表示a的点在数轴上的原点位置.【分析】根据a=﹣a,知2a=0,从而可作出判断.【解答】解:∵3a=﹣3a,∴a=﹣a,∴2a=0,∴表示a的点在数轴上的原点位置.故答案为:原点.【点评】本题考查了相反数与数轴的知识,属于基础题,注意如果一个数的相反数与其本身相等,则这个数为0.13.(3分)正方体每一面不同的颜色对应着不同的数字,将四个这样的正方体如图拼成一个水平放置的长方体,那么长方体的下底面数字和为17.颜色红黄蓝白紫绿对应数字123456【分析】由图中显示的规律,可分别求出,右边正方体的下边为白色,左边为绿色,后面为紫色,按此规律,可依次得出右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,即可求出下底面的花朵数.【解答】解:由图可知和红相邻的有黄,蓝,白,紫,那么和红相对的就是绿,则绿红相对,同理可知黄紫相对,白蓝相对,∴长方体的下底面数字和为5+2+6+4=17.故答案为:17.【点评】本题考查生活中的立体图形与平面图形,同时考查了学生的空间思维能力.注意正方体的空间图形,从相对面入手,分析及解答问题.14.(3分)(1+)×(1+)×(1+)×(1+)×…×(1+)×(1+)=.【分析】根据题意得到1+=,原式利用此规律变形,约分即可得到结果.【解答】解:由题意得:1+==,则原式=×++…+×=2×=,故答案为:【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.(3分)若3x﹣2y=4,则5﹣y=.【分析】把3x﹣2y=4,看作一个整体,进一步整理代数式整体代入求得答案即可.【解答】解:∵3x﹣2y=4,∴5﹣y=5﹣(3x﹣2y)=5﹣=.故答案为:.【点评】此题考查代数式求值,掌握整体代入的思想是解决问题的关键.16.(3分)按相同的规律把下面最后一个方格画出.【分析】根据题意在第一个图中,阴影部分为轴对称图形,第二个图中,两个一组,依次循环;可得答案.【解答】解:故答案为.【点评】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.三、作图题(满分4分)17.(4分)根据立体图从上面看到的形状图(如图所示),画出它从正面和左面看到的形状图(图中数字代表该位置的小正方体的个数).【分析】由已知条件可知,从正面看有2列,每列小正方数形数目分别为3,4;从左面看有2列,每列小正方形数目分别为2,4.据此可画出图形.【点评】此题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.四、解答题(满分68分,共7题)18.(5分)在数轴上把下列各数表示出来,并用“<”连接各数.﹣(+2),﹣|﹣1|,1,0,﹣(﹣3.5)【分析】直接将各数在数轴上表示,再用不等号连接即可.【解答】解:如图所示:,﹣(+2)<﹣|﹣1|<0<1<﹣(﹣3.5).【点评】此题主要考查了有理数比较大小,正确在数轴上表示各数是解题关键.19.(29分)计算:(1);(2)化简并求值:5xy﹣[(x2+6xy﹣y2)﹣(x2+3xy﹣2y2)],其中x=,y=﹣6.【分析】(1)原式第一项表示1四次幂的相反数,第二项先计算括号中及绝对值里边式子的运算,计算即可得到结果;(2)原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:(1)原式=﹣1+××7=﹣1+=;(2)原式=5xy﹣x2﹣6xy+y2﹣x2﹣3xy+2y2=﹣2x2﹣4xy+3y2,当x=,y=﹣6时,原式=﹣+12+108=119.【点评】此题考查整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.20.(6分)某区中学学生足球比赛共赛10轮(即每队均需参赛10场),胜一场得3分,平一场得0分,负一场得﹣1分.在比赛中,某队胜了5场,负了3场,踢平了2场,问该队最后共得多少分?【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,“正”和“负”相对.【解答】解:因为5×3+(﹣1)×3=15﹣3=12(分),所以该队最后共得12分.【点评】注意正负数的运算法则是解题的关键.21.(8分)某糖果厂想要为儿童设计一种新型的装糖果的不倒翁,请你根据包装厂设计好的三视图(如图)的尺寸计算其容积.(球的体积公式:V=πr3)【分析】首先求出几何体上面部分的体积,进而求出下面部分的体积,进而得出答案.【解答】解:如图所示:此几何体是圆锥和半球的组合体,∵AC=AB=13cm,BC=10cm,∴DC=5cm,∴AD=12cm,∴上面圆锥的体积为:×π×52×12=100π(cm3),下面半球体积为:×π×53=π(cm3),∴该几何体的容积为:100π+π=π(cm3).【点评】此题主要考查了由三视图判断几何体,正确得出几何体的组成是解题关键.22.(6分)若﹣1<x<4,化简|x+1|+|4﹣x|.【分析】先去掉绝对值符号,再合并即可.【解答】解:∵﹣1<x<4,∴|x+1|+|4﹣x|=1+x+4﹣x=5.【点评】本题考查了整式的混合运算的应用,能正确去掉绝对值符号是解此题的关键.23.(8分)火车从北京站出发时车上有乘客(5a﹣2b)人,途中经过武汉站是下了一半人,但是又上车若干人,这时车上的人数为(10a﹣3b)人.(1)求在武汉站上车的人数;(2)当a=250,b=100时,在武汉站上车的有多少人?【分析】(1)根据“车上的人数+上车的人数﹣下车的人数=车上剩余的人数”解答;(2)代入(1)中所列的代数式求值即可.【解答】解:(1)依题意得:(10a﹣3b)+(5a﹣2b)﹣(5a﹣2b)=a﹣2b;(2)把a=250,b=100代入(a﹣2b),得×250﹣2×100=1675(人).答:在武汉站上车的有1675人.【点评】本题考查了列代数式和代数式求值.解决问题的关键是读懂题意,找到所求的量的等量关系.24.(6分)计算:﹣(﹣)﹣(﹣)﹣…﹣(﹣).【分析】解本题可以先去括号,就可以变成与的和.【解答】解:原式=﹣(﹣)﹣(﹣)﹣…﹣(﹣)=﹣+﹣…+=.【点评】正确观察去括号以后各数的关系,变成两数的和,是解决本题的关键.学会舍弃——时间有限,你不可能在同一时间内做好所有事生活中,我们常常听到身边的人说:“做人,别指望所有人都会喜欢你。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学第二次月考试卷
班级: 姓名:
一、 选择题(3×10=30分)
1、下列式子结果为负数的是( )
A 、-(-324)
B 、(-3)2
C 、-(-2)3
D 、-∣-3.14∣
2、下列各式运算正确的是 ( )
A 、651a a -=
B 、224a a a +=
C 、235325a a a +=
D 、22234a b ba a b -=- 3、沿图1中的虚线旋转一周,围成的几何体是( )
A B C D 4、已知单项式35n x y -与133m x y +是同类项,则m n -的值为 ( )
A 、5
B 、-1
C 、1
D 、-5
5、方程9x-18=0的解的相反数是 ( )
A 、2
B 、-2
C 、0.5
D 、-0.5
6、我国陆地面积居世界第三位,约为9600000平方千米,用科学记
数法表示为( )
A 、96×105平方千米
B 、9.6×106
平方千米
C 、0.96×107平方千米
D 、以上均不对
7、用一副三角板不可能做出的角是 ( )
A 、35°
B 、75°
C 、105°
D 、135°
8、下列方程中,属于一元一次方程的是
A. x 2
=1 B.3x+y=-2 C. 7+3x=x-1 D.6x-1
9、数a ,b 在数轴上的位置如图2所示,则b a +是( )
A 、正数
B 、零
C 、负数
D 、都有可能 10、小刚一家三口在假期参加了4日游,这4天各天的日期之和是
86,则他们一家开始旅游的日期是 ( )
A 、20号
B 、21号
C 、22号
D 、23号
二、填空题 (3×8=24分)
1、单项式313x π-的系数是___,次数是___
2、小颖要在墙上固定一根木条,至少需要个 钉子,其理由是
3、已知(a +1)2+|b -2|=0,则1+ab 的值等于
4、观察下列算式
1+3=4=22, 1+3+5=9=32, 1+3+5+7=16=42
请你写出第n 个等式
5、x 平方的3倍与-5的差等于1,可表示为
6、用两根长均为62.8cm 的铁丝分别围成一个正方形和一个圆,
其中面积较大的是
7、如右图,点A 、O 、B 在一条直线上,
且∠AOC =50°,OD 平分∠AOC , 则图中∠BOD= 度。

A O
B C
D 图2
8、一件商品的成本是200元,提高30%后标价,然后打九折销售,
则这件商品的利润为 元
三、细心算一算(第一题10分,第二题7分,第三题10分,共27分)
1、计算 (1)24)2(4
17)52(2-⨯-
-÷--+- (2) 1-2+3-4+…+99-100
2、先化简,再求值2x -y+(2x 2-y 2)-2(x 2+y 2)其中x=-1,y=-2
3、解方程
(1)52221+-=-y y (2)-2(x -2)=12
四、认真做一做 (第1题6分,第二题5分,共11分)
1、已知:线段AB =6厘米,点C 是AB 的中点,点D 在AC 的
中点,求线段BD 的长。

2、A 、B 是河流l 两旁的两个村庄,现要在河边修一个抽水站向两
村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中
表示出抽水站点P 的位置,并说明理由:
五、学以致用(8分)
元旦晚会上,准备给班上40位同学一人一个礼物,分别是玩具
和文具,班委会花了175元到超市买了玩具与文具共40件,若玩
具每2个15元,文具每3个10元,问班委会买的玩具和文具各是
多少个? A B
C D l
A B。

相关文档
最新文档