DC_DC 变换的PCB layout 注意事项

合集下载

pcb layout流程和注意事项

pcb layout流程和注意事项

pcb layout流程和注意事项下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!PCB Layout流程详解及设计注意事项PCB(Printed Circuit Board)布局是电子设计中至关重要的一步,它直接影响到电路的性能、可靠性和生产成本。

自己总结的电源板Layout的一些注意点

自己总结的电源板Layout的一些注意点

电源板Layout注意点做了几年的电源板的layout,自己总结了一些主要注意的地方,我认为主要是从下面这几个地方考虑:一、 功率回路部分功率板中比较重要首当其冲的就是功率回路部分,在layout的时候应该首先要知道所布的功率部分的电路性质,在电源中功率电路主要分di/dt电路和dv/dt电路,这两种电路在布局走线的时候走法是不一样的。

di/dt电路因为它的单位时间内电流的变化比较大,所以这部分电路在走线的时候重点这样电路的环路面积最小,本身产生的干扰可以自身就耦合掉dv/dt电路它的侧重点就完全不一样,因为这种电路在单位时间内电压变化会比较大,所以它容易对外界产生干扰,所以这种电路在走线的时候铜皮不能太宽,在满足承载电流的情况下铜皮宽度尽可能的小,不同层的重叠区域尽可能小,敏感信号尽可能远离这些走线二、 驱动部分驱动部分的线首先要考虑整个驱动回路的面积,要尽可能的小,要远离干扰源,离被驱动的部分尽可能的近。

像MOS管之类工功率元件的驱动,在走线的时候要特别注意G极和D极的走线不要平行走,因为在大多数情况下MOS管的D极部分的电路是dv/dt的电路,G极是驱动电路,如果平行走的话,驱动信号很容易被干扰,从而导致MOS的误动作三、 采样信号在功率板中像一些电压采样和电流采样之类的采样信号也是至关重要的,因为这些信号准确与否直接关系到控制端,所有这些采样信号也要尽量避开其他信号,如果有条件的话这些采样信号可以用差分采样,并且在相对应的走线地方能够给他们一个完整的地平面四、 地的处理地的重要性就更不用说了,无论在哪种板子上,对于地的处理都是非常重要的。

在功率板中地相对来说会比较复杂,因为很多时候功率部分走大电流的地、控制部分一些小电流的地都是共地的,所以这时候这些地的处理显的非常重要,在我的经验中处理好这些地,关键是选择一个正确的单点连节点,因为每个电源的设计不一样,所以这个单点连接点的选择也是不一样的,我在小功率光伏逆变器中一般都是选择BUS电容的一个地管脚,变频器中我一般是将大电流中的一个电容的地管脚引一根比较粗的走线到开关电源输入端的那个电容的地管脚上,然后再从这个地管脚引到开关电源后面出来的那些小电流的地平面上,当然还有一些别的地,如晶振的地、采样的地等,每个公司的设计规则不一样,走法也不一样,网上对于地的处理的资料也比较多五、 安规安规在电源产品的设计中是不可或缺的,对于不同国家不同地区相应的安规法规要求也是有区别的,还有应用环境的污染等级和海拔高度都会对安规要抓的距离有比较大的影响,所有我们在设计之初一定要搞清楚上面这些因素,如果有安规工程师的话可以请他们给出比较专业的爬电和电气间隙的距离,我们实际PCB Layout的时候要特别注意那些金属元件在PCB上所在区域,比如保险丝,它两头是金属的中间是非金属,如果没有座子的话,保险丝的两头金属的会和PCB接触,所有保险丝周围的表层走线要注意避开这些金属区域六、 散热对于那些功率比较大的系统来说,散热也是至关重要的,这个一般情况下要和结构配合好,在设计之前要了解整体结构的散热方式,是自然冷却、风冷还是水冷,其中风冷又分吸风和吹风,这些都会对布局产生比较大的影响七、 E MC主要是一些功率部分的走线宽度尽量不要发生突变,如果需要拐弯,拐弯的地方也尽量做的平和一点,不要突变,还有就是有时候会有大电流、小电流、采样信号中有些虽然有些是共用一个网络,但是自在走线的时候不要 共用一个回路,要分开走,各走各的回路比较好。

PCBLAYOUT安规设计注意事项

PCBLAYOUT安规设计注意事项

PCBLAYOUT安规设计注意事项PCB(Printed Circuit Board)Layout的设计是电子工程师在电路设计中不可或缺的一部分。

PCB Layout的设计必须遵循一定的安规设计准则和注意事项,以确保最终产品的质量符合相关法规和标准,同时还要保证电路板能够正常工作。

下面将介绍一些PCB Layout的安规设计注意事项。

1. 防静电破坏静电对于电子元器件的损坏是十分严重的。

在PCB Layout 中,我们必须考虑如何减少静电破坏的风险,并确保PCB板及其上元器件不遭受静电损坏。

对于一些静电敏感的元器件,如场效应晶体管等,我们需要注意以下几点:(1)在装配元器件之前,要确保工作区域的接地系统得到有效的连接;(2)元器件需要使用袋式包装或者静电包装,确保元器件表面的防静电材料不受损坏;(3)在PCB Layout上,为防止静电累积,要合理安排元器件的布局,对那些静电敏感的部分,需要进行特殊处理。

2. 灵敏度和抗干扰能力在PCB Layout设计中,元器件的灵敏度和通信接口的干扰容忍度十分重要。

在光、磁、电场和射频辐射等电磁干扰的环境下,必要时需要采取一些措施来保证电路板的抗干扰能力。

例如,为了减少介质损失,一种方法是使用高频线路的微带线(microstrip lines)。

3. 温度和湿度电子元器件的温度和湿度对它们的性能和寿命都有很大的影响。

在PCB Layout设计中,我们需要考虑环境条件,并采取必要的措施来确保元器件长期稳定工作。

例如在元器件周围设置散热装置或者风扇,以保持元器件周围的温度。

这样可以有效降低元器件电阻和电容的漂移,同时还可以提高元器件的稳定性。

4. 接地和电源接地和电源设计是PCB Layout安规设计中很重要的一部分。

在接地设计中,应该遵循单点接地和保持最小全流接地的原则。

这种方法可以减少环路电流和降低噪声。

在电源设计中,需要考虑到电源稳定性和供电电流等因素。

5. 安全性和可靠性在PCB Layout安规设计中,需要考虑到电路板的安全性和可靠性。

DC-DC的PCB Layout之降压非同步型续流二极管

DC-DC的PCB Layout之降压非同步型续流二极管

DC-DC 的PCB Layout 之降压非同步续流二极管本文主要介绍降压型开关DC-DC 中非同步续流二极管的PCB Layout 问题 首先了解概念:开关型DC-DC 有同步型(Synchronous )和非同步型(Non-synchronous )两种,下图以Buck 型电路为例图1.1 非同步型Buck 图1.2 同步型Buck非同步型:1,效率偏低 同步型:1,更高效 2,成本较低,IC 外部使用续流二极管 2,成本更高,内部集成MOS 管 3,比较适宜较高的输出电压 3,MOS 管具有更低的导通压降 对于Non-Synchronous 型的降压DC-DC ,我们的续流二极管Layout 时怎么布局? 1,负端靠近SW 脚放置 √ 2,正端靠近输出电容放置 ? 续流二极管是在开关管关断后,对电感形成回路,为什么对续流二极管靠近输出电容放置存在疑问?那么正确的放置是怎样? 后面做详细分析,首先给出答案:续流二极管正端接靠近输入电容的地 理由:从交流路径分析,续流二极管正端接靠近输入电容的地,为最小辐射路径面积,有助于EMI 指标和性能。

分析如下:图2a图2b图2c图2a粗线标出了开关管打开时的高频电流路径,当开关管关闭后,形成图2b的交流回路,如此循环的在这两个回路切换。

那么就有了图2c,它是开关动作中电流会出现有到无,无到有的突变段。

电流突变会在线路的寄生电感上形成电压尖峰,大小也与寄生电感的值相关(Vl=L*di/dt)。

突变段受到电流基波的丰富谐波的上升或下降边影响,通常可以描述为突变段有“交流电流”流过,基本的开关PWM频率构成“交流”突变段中电流波形总谐波的一部分。

一般1盎司铜箔,2英寸长50mil宽走线的寄生电感值约50nH,如果走线有打过孔跨层,寄生电感值会再明显增加;开关管的开通关闭时间在十几到几十ns,比如EUP3490的开关管开通时间典型值为25ns,这样条件瞬态电流为2A来计算,产生的感应电压V=L*di/dt=50*2/25=4V。

LAYOUT应注意事项

LAYOUT应注意事项

LAYOUT應注意事項:1.如果兩個銲點之間,只走一條線,應儘量走在中間,以減少短路的機會。

2.繞線時,除非不得已的情況下,不要走90度角,容易造成斷裂。

3.繞完線後,儘可能使用淚滴,以增加線與銲點的接觸面,接觸面積愈大則線愈不容易斷裂。

4.繞線距離板邊,最少不要低於0.5MM,以免成型時將線截斷。

5.文字面避免放在銲點上面,將參考位置放在實體物面積之外。

6.注意FPC要折彎或擺動之處,必須儘量設計不要太硬,不要舖太多的銅,使其具有良好的耐折性。

7.導線的寬度:銅導線的寬度關係到耐電流和溫昇,所以盡量使用寬一點的導體較佳)。

通常信號用0.8mm寬,電源用1.5mm以上。

必要時可以加大或減小。

太細的線製作容易導致失敗。

8.焊點不要太小以免脫落,孔徑可以設成0.5mm以利鑽孔時的定位。

如果你技術好,可以直接設成要鑽孔的孔徑,這樣子銅箔比較不容易突起,但是相對鑽孔定位會差一點,要是鑽歪了,焊點內會有留白。

9:零件排列时各部份电路盡可能排列在一起,走线盡可能短。

10:IC地去耦电容应尽可能的靠近IC脚以增加效果。

11:如果两条线路之间的电压差较大时需注意安全间距。

12:要考量每条回路的电流大小,即发热状况来决定铜箔粗细。

13:线路拐角时尽量部要有锐角,直角最好用钝角和圆弧。

14:对高频电路而言,两条线路最好不要平行走太长,以减少分布电容的影响,一般采取顶层底层众项的方式。

15:高频电路须考量地线的高频阻抗,一般采用大面積接地的方式,各点就近接地,减小地线的电感份量,讓各接地点的电位相近。

16:高频电路的走线要粗而短,减小因走线太长而产生的电感及高频阻抗对电路的影响。

17:零件排列时,一般要把同类零件排在一起,盡量整齐,对有极性的元件盡可能的方向一致,降低淺在的生产成本。

18:对RF机种而言,电源部份的零件盡量遠离接收板,以减少干擾。

19:对TF机种而言,发射器应盡可能离PIR远一些,以减少发射时对PIR造成的干扰。

Layout(集成电路版图)注意事项及技巧总结材料

Layout(集成电路版图)注意事项及技巧总结材料

Layout(集成电路版图)注意事项及技巧总结材料Layout主要工作注意事项●画之前的准备工作●与电路设计者的沟通●Layout 的金属线尤其是电源线、地线●保护环●衬底噪声●管子的匹配精度一、l ayout 之前的准备工作1、先估算芯片面积先分别计算各个电路模块的面积,然后再加上模块之间走线以及端口引出等的面积,即得到芯片总的面积。

2、Top-Down 设计流程先根据电路规模对版图进行整体布局,整体布局包括:主要单元的大小形状以及位置安排;电源和地线的布局;输入输出引脚的放置等;统计整个芯片的引脚个数,包括测试点也要确定好,严格确定每个模块的引脚属性,位置。

3、模块的方向应该与信号的流向一致每个模块一定按照确定好的引脚位置引出之间的连线4、保证主信号通道简单流畅,连线尽量短,少拐弯等。

5、不同模块的电源,地线分开,以防干扰,电源线的寄生电阻尽可能较小,避免各模块的电源电压不一致。

6、尽可能把电容电阻和大管子放在侧旁,利于提高电路的抗干扰能力。

二、与电路设计者的沟通搞清楚电路的结构和工作原理明确电路设计中对版图有特殊要求的地方包含内容:(1)确保金属线的宽度和引线孔的数目能够满足要求(各通路在典型情况和最坏情况的大小)尤其是电源线盒地线。

(2)差分对管,有源负载,电流镜,电容阵列等要求匹配良好的子模块。

(3)电路中MOS管,电阻电容对精度的要求。

(4)易受干扰的电压传输线,高频信号传输线。

三、layout 的金属线尤其是电源线,地线1、根据电路在最坏情况下的电流值来确定金属线的宽度以及接触孔的排列方式和数目,以避免电迁移。

电迁移效应:是指当传输电流过大时,电子碰撞金属原子,导致原子移位而使金属断线。

在接触孔周围,电流比较集中,电迁移更容易产生。

2、避免天线效应长金属(面积较大的金属)在刻蚀的时候,会吸引大量的电荷,这时如果该金属与管子栅相连,可能会在栅极形成高压,影响栅养化层质量,降低电路的可靠性和寿命。

电源、DCDC电路原理设计及PCB布线注意事项大全.doc

电源、DCDC电路原理设计及PCB布线注意事项大全.doc

电源、DC-DC-电路原理设计及PCB布线注意事项大全注:本文内容摘抄整理自网络、论坛,仅供大家参考学习,谢谢!!!电源、DC-DC 电路原理设计及PCB布线注意事项大全一般的降压型的DC-DC变换的典型原理电路,如下图:一.DC-DC电路设计至少要考虑以下条件:1.外部输入电源电压的范围,输出电流的大小。

2.DC-DC输出的电压,电流,系统的功率最大值。

二.基于以上两点选择PWM IC要考虑:1.PWM IC的最大输入电压。

2.PWM开关的频率,这一点的选择关系到系统的效率。

对储能电感,电容的大小的选择也有一定影响。

3.MOS管的所能够承受的最大额定电流及其额定功率,如果DC-DC IC内部自带MOS,只需要考虑IC输出的额定电流。

4.MOS的开关电压Vgs大小及最大承受电压。

三.电感(L1),二极管(CR1),电容(C2)的选择1. 电感量:大小选择主要由开关频率决定,大小会影响电源纹波;额定电流,电感的内阻选择由系统功耗决定。

2. 二极管:通常都用肖特基二极管。

选择时要考滤反向电压,前向电流,一般情况反向电压为输入电源电压的二倍,前向电流为输出电流的两倍。

3. 电容:电容的选择基于开关的频率,系统纹波的要求及输出电压的要求。

容量和电容内部的等效电阻决定纹波大小(当然和电感也有关)。

如何得到一个电源纹波相对较小、对系统其他电路干扰相对较小,而且相对稳定可靠的DC-DC电路,需要对以上电路的原理做如下修改:1.输入部分:电源输入端需要加电感电容滤波。

目的:由于MOS管的开关及电感在瞬间的变化会造成输入电源的波动,尤其是在系统耗电波动较大时,影响更为明显。

2.输出部分:(1)假定C2的选择的100uF是正确的,我们想得到更小的纹波,可以将100u F的电容改成两颗47uF的电容(基于相同类型的电容);如果100uF电容采用的是铝电解,可以在原来的基础上加一颗10uF的磁片电容或钽电容。

(2)在输出端再加一颗电容和一颗电容对原来的电源做一个LC滤波,会得到一个纹波更小的电源。

pcb设计注意事项及设计原则

pcb设计注意事项及设计原则

pcb设计注意事项及设计原则
1. 注意电路的布局:将关键的电路元件和元件之间的连接线尽量短,并且按照电路信号流的路径进行布局,以降低电路的干扰和噪声。

2. 确保供电和地线的良好连接:供电和地线必须足够宽,以确保电流的充分通畅,同时尽量减少导线的长度和阻抗。

3. 保持信号的完整性:重要的高频信号和低噪声信号应该有独立的接线层进行隔离,并且保持信号线之间的最小交叉和最小输入/输出延迟。

4. 尽量减少板层数量:增加板层会增加制造成本和装配难度,因此应该尽量减少板层数量,并合理布局各种信号。

5. 为高功率模块提供散热解决方案:对于功率较大的模块,应该考虑合适的散热解决方案,如散热片、散热孔等。

6. 注意阻抗匹配:对于高速信号线,应该根据需求确定合适的阻抗,并尽量避免阻抗不匹配。

7. 考虑EMC问题:应该尽量减少电磁干扰并提高抗干扰能力,如采用合适的屏蔽、阻尼材料和接地。

8. 保证良好的可维护性:电路的布局应该考虑到维修和更换元件的方便性,如保留合适的测试点和备用元件位置。

9. 注意元器件的热分布:对于容易发热的元件,应该注意合适的散热和降温措施。

10. 使用规范的命名和标记:为了方便阅读和维护,应该使用规范的元件命名和标记方法,并为电路板添加清晰的标签和说明。

PCB布线的技巧及注意事项

PCB布线的技巧及注意事项

PCB布线的技巧及注意事项1.合理规划电路板上的元件布局:在进行布线之前,需要根据电路的功能和结构合理规划元件的布局。

合理布局可以减少跨线和交叉线,简化布线过程,并提高电路的可靠性和抗干扰能力。

例如,将相互关联的元件集中在一起,以减少连线长度和信号传输的损耗。

2.使用地平面和电源平面:地平面和电源平面是PCB布线中非常重要的一部分。

通过在PCB中设置地平面和电源平面,可以有效减少地线和电源线的长度,减小同轴电缆的干扰和耦合,提高信号完整性和抗干扰能力。

3.利用电网连接:电网连接是PCB布线中常用的一种布线方式。

电网连接可以减小线宽和线间距,减小电路板上的导线一阶传输延迟,提高信号完整性和抗干扰能力。

在布局时,应尽量合理规划电网的结构和布线的路径。

4.分析和优化信号传输路径:信号传输路径是PCB布线中需要特别关注的一部分。

通过分析信号传输路径,可以了解信号在电路板上的传输特性,并进行优化。

例如,可以采用直线传输路径,减小信号传输的损耗和干扰;可以避免信号线与电源线、地线和其他高频信号线的交叉,减小互相干扰。

5.处理高频和高速信号:在布线中,对于高频和高速信号需要特别注意。

高频信号容易受到串扰和反射的影响,因此对于高频信号,应避免长线和小弯曲。

对于高速信号,需要注意控制传输线的阻抗匹配,减小信号的反射和射频干扰。

6.使用适当的布线规则和约束:在进行布线之前,需要根据电路设计的要求和约束设置适当的布线规则。

布线规则可以包括连线宽度、线间距、最小孔径等要素。

合理设置布线规则可以减小静电干扰和交叉干扰,提高电路的性能和可靠性。

7.进行电磁兼容性(EMC)设计:在进行布线时,需要考虑电磁兼容性设计。

电磁辐射和电磁敏感性是电路板设计中常见的问题,可以通过合理的布线和使用滤波器来减小电磁干扰。

8.进行仿真和测试:在完成布线之后,需要进行仿真和测试来验证电路的性能和可靠性。

通过仿真和测试,可以检测电路中可能存在的问题,并做出相应的调整。

PCB电源板layout的设计注意事项说明

PCB电源板layout的设计注意事项说明

PCB电源板layout的设计注意事项说明做了几年的电源板layout,总结了一些主要注意的地方,主要是从以下这几个地方考虑:一、功率回路部分功率板中比较重要首当其冲的就是功率回路部分,在layout的时候应该首先要知道所布的功率部分的电路性质,在电源中功率电路主要分di/dt电路和dv/dt电路,这两种电路在布局走线的时候走法是不一样的。

di/dt电路因为它的单位时间内电流的变化比较大,所以这部分电路在走线的时候重点要关注整个电路的环路面积应尽可能的小,最好是一个环路的走线在不同的层重叠走,这样电路的环路面积最小,本身产生的干扰可以自身就耦合掉。

dv/dt电路它的侧重点就完全不一样,因为这种电路在单位时间内电压变化会比较大,所以它容易对外界产生干扰,所以这种电路在走线的时候铜皮不能太宽,在满足承载电流的情况下铜皮宽度尽可能的小,不同层的重叠区域尽可能小,敏感信号尽可能远离这些走线。

二、驱动部分驱动部分的线首先要考虑整个驱动回路的面积,要尽可能的小,要远离干扰源,离被驱动的部分尽可能的近。

像MOS管之类工功率元件的驱动,在走线的时候要特别注意G极和D极的走线不要平行走,因为在大多数情况下MOS管的D极部分的电路是dv/dt的电路,G极是驱动电路,如果平行走的话,驱动信号很容易被干扰,从而导致MOS的误动作。

三、采样信号在功率板中像一些电压采样和电流采样之类的采样信号也是至关重要的,因为这些信号准确与否直接关系到控制端,所有这些采样信号也要尽量避开其他信号,如果有条件的话这些采样信号可以用差分采样,并且在相对应的走线地方能够给他们一个完整的地平面。

四、地的处理地的重要性就更不用说了,无论在哪种板子上,对于地的处理都是非常重要的。

在功率板中地相对来说会比较复杂,因为很多时候功率部分走大电流的地、控制部分一些小电流的。

开关电源PCB Layout流程和注意事项

开关电源PCB Layout流程和注意事项

•从原理图到PCB的设计流程•软件参数设置•板上元器件布局•布线注意事项•走线自动检查在开关电源设计中PCB板的物理设计都是最后一个环节,如果设计方法不当,PCB可能会辐射过多的电磁干扰,造成电源工作不稳定,以下针对各个步骤中所需注意的事项进行分析:一、从原理图到PCB的设计流程建立元件参数->输入原理网表->设计参数设置->手工布局->手工布线->验证设计->复查->CAM输出。

二、参数设置相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些。

最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil。

焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。

当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而是走线与焊盘不易断开。

三、元器件布局实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。

例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,因此,在设计印制电路板的时候,应注意采用正确的方法。

每一个开关电源都有四个电流回路:(1).电源开关交流回路(2).输出整流交流回路(3).输入信号源电流回路(4).输出负载电流回路输入回路通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量。

所以,输入和输出滤波电容的接线端十分重要,输入及输出电流回路应分别只从滤波电容的接线端连接到电源;如果在输入/输出回路和电源开关/整流回路之间的连接无法与电容的接线端直接相连,交流能量将由输入或输出滤波电容并辐射到环境中去。

DC-DC原理及相关PCB走线经验

DC-DC原理及相关PCB走线经验

DC-DC原理及相关PCB走线经验DC-DC就是直流-直流变换,一般有升压(BOOST)、降压(BUCK型)两种。

降压式DC/DC变换器的输出电流较大,多为数百毫安至几安,因此适用于输出电流较大的场合。

降压式DC/DC变换器基本工作原理电路如图所示。

VT1为开关管,当VT1导通时,输入电压Vi通过电感L1向负载RL 供电,与此同时也向电容C2充电。

在这个过程中,电容C2及电感L1中储存能量。

当VT1截止时,由储存在电感L1中的能量继续向RL供电,当输出电压要下降时,电容C2中的能量也向RL放电,维持输出电压不变。

二极管VD1为续流二极管,以便构成电路回路。

输出的电压Vo经R1和R2组成的分压器分压,把输出电压的信号反馈至控制电路,由控制电路来控制开关管的导通及截止时间,使输出电压保持不变。

一般的降压型的DC-DC变换的典型原理电路,如下图:一.DC-DC电路设计至少要考虑以下条件:1.外部输入电源电压的范围,输出电流的大小。

2.DC-DC输出的电压,电流,系统的功率最大值。

二.基于以上两点选择PWM IC要考虑:1.PWM IC的最大输入电压。

2.PWM开关的频率,这一点的选择关系到系统的效率。

对储能电感,电容的大小的选择也有一定影响。

3.MOS管的所能够承受的最大额定电流及其额定功率,如果DC-DC IC内部自带MOS,只需要考虑IC输出的额定电流。

4.MOS的开关电压Vgs大小及最大承受电压。

三.电感(L1),二极管(CR1),电容(C2)的选择1. 电感量:大小选择主要由开关频率决定,大小会影响电源纹波;额定电流,电感的内阻选择由系统功耗决定。

2. 二极管:通常都用肖特基二极管。

选择时要考滤反向电压,前向电流,一般情况反向电压为输入电源电压的二倍,前向电流为输出电流的两倍。

3. 电容:电容的选择基于开关的频率,系统纹波的要求及输出电压的要求。

容量和电容内部的等效电阻决定纹波大小(当然和电感也有关)。

LAYOUT过程中应注意的问题

LAYOUT过程中应注意的问题

LAYOUT过程中应注意的问题:1.Placement时应先将有固定位置的零件放置,其次是大零件的摆放(NB,SB,PCI,CHIPIC,IDE,FDD,CD-ROM等),最后是一些小的零件。

2.在摆放元件时,首先要计算走线的空间,大致规划好内层的分割以及走线的层次,哪些线走哪层都首先要规划好。

3.CLK GEN的电路尽量不要摆在靠近板边,零件的摆放要紧缩而少面积,且要摆置在各时钟信号适中的位置。

4.类比电路与逻辑电路的零件的摆放要完全分离。

且他们的GROUND也要独立分开。

5.POWER部分零件的PLACEMENT要集中在一起,且顺序明确,他们的TRACE要尽量的短宽而直接。

6.LAYOUT时,在PLACEMENT完成后,应先拉CLK线和电源线以及地线,然后再从连接线密集的地方开始layout。

它奉行的原则是:从鼠线密集的地方下手,短线先连接。

7.CLK TRACE 要减少转弯的次数,少用VIA(即少换层),不能超过两个,且越短越好。

8.PCB LAYOUT完成后,多余的空间要尽量铺成地,并打VIA与内层地多点连接,这样可以减少电路形成的环面积。

9.将CLK信布线于相邻于GROUND PLANE且不相邻于POWER PLANE,可得最佳EMI 效果。

且各种高速信号(如CPU,DIMM,AGP等的信号)最好都能运用此方法,做不到时,也尽量不要跨POWER层。

10.层与层间的走线最好垂直布线,因为正交可以减少辐射耦合。

11.避免走线的不连续性。

传输线突变的点是阻抗不连续点,如直角、过孔等,他将产生信号的反射,应尽量避免。

12.外层信号避免通过内层,内层的信号也避免跑到外层。

因为内层的信号线属于带状线,而外层信号线属于微波线,两种不同类型的信号线的阻抗是不同的,如果信号从内层到外层,或从外层到内层,就会产生反射。

13.串扰是信号间不希望有的耦合,它有容性和感性串扰。

容性串扰就是信号线间的容性耦合,当信号线在一定长度上靠得比较近就会产生,因此走线时尽量将信号线分开的远一些,以减小这种容性串扰。

pcb设计中需要注意的问题

pcb设计中需要注意的问题

pcb设计中需要注意的问题一、布局合理PCB布局是电路板设计的基础,对电路板的性能和可靠性都有重要影响。

合理的布局能够提高电路板的性能,减少信号干扰,降低热损耗,提高机械强度,便于维修和更换元件等。

在布局时需要考虑以下因素:1、按照电路功能模块进行布局,将同一功能模块的元器件尽量集中放置,方便调试和维修。

2、考虑信号的传输路径,将信号线尽量短、直,避免信号反射和干扰。

3、电源和地线的设计要合理,电源和地线要尽量宽,以减小电阻和电感,提高电路的稳定性和可靠性。

4、元器件的摆放要合理,要考虑机械强度和散热效果,避免因机械应力和温度变化引起的故障。

5、考虑可维护性,便于日后维护和更换元件。

在布局时需要留出维修通道和维修空间,便于对电路板进行维修和更换元件。

二、信号完整性信号完整性是指在电路中传输的信号在时间和幅度上都是正确的,是保证数字电路稳定运行的关键。

如果信号完整性得不到保证,可能会出现信号延迟、信号畸变、误码率上升等问题,严重影响电路的性能和可靠性。

因此,在PCB设计中需要注意以下几点:1、选择合适的传输线,根据信号的频率和电流大小选择合适的传输线类型,如微带线、带状线等。

2、避免信号反射和干扰。

在信号传输过程中,要注意防止信号反射和干扰,避免信号线的长度过长、弯曲过多等问题。

3、考虑信号的均衡。

在高速数字电路中,需要考虑信号的均衡问题,防止信号畸变和延迟。

可以通过在传输线周围添加去耦电容、匹配电阻等方式来实现信号的均衡。

4、考虑信号的驱动能力。

在高速数字电路中,需要考虑信号的驱动能力问题,保证信号能够稳定地传输到目的地。

可以通过选择合适的驱动器、调整信号线的阻抗等方式来实现信号的驱动能力的优化。

三、电源和地线设计电源和地线是电路中最重要的两个组成部分之一,对电路的性能和可靠性都有重要影响。

在PCB设计中需要注意以下几点:1、设计合理的电源分布图,根据电路的功耗和电流大小设计合理的电源分布图,保证电源的稳定性和可靠性。

DCDC开关电源Layout讲的明明白白,收藏这篇就够了

DCDC开关电源Layout讲的明明白白,收藏这篇就够了

DCDC开关电源Layout讲的明明白白,收藏这篇就够了关于Buck和Boost的,我已经写了几篇,不过很少提到PCB Layout,这篇就说说PCB Layout。

很多DCDC芯片的手册都有对应的PCB Layout设计要求,有些还会提供一些Layout示意图,都是大同小异的。

比如我随便列几点buck的设计要点:1、输入电容器和二极管在与IC相同的面,尽可能在IC最近处。

2、电感靠近芯片的SW,输出电容靠近电感放置。

3、反馈回路远离电感,SW和二极管等噪声源。

那你知道这些要点都是怎么来的吗?如果拿到一个具体的芯片,因为芯片管脚分布的问题,可能这些条件不能同时满足,那什么办?到底孰轻孰重?举个Buck的例子比如下面这个buck,它的管脚分布就不好。

SW在IN和GND之间,如果按照要点,直接将输入滤波电容放到IN和GND旁边,那么SW的信号就出不来,而电感也要求放在芯片旁边,这就矛盾了。

那我们看看这个芯片手册推荐的Layout芯片手册推荐的layout倒是都就近放置了,但是它的方法是SW 在输入滤波电容底下走线,这是逗我吗?这在现实中能做到?我们不能采用芯片手册推荐的这种方式,但事实是这种管脚分布的芯片多得是,那我们的Layout如何布局布线呢?这个问题先不回答,我给大家说一个最根本的方法:DCDC的Layout终极奥义——心中有环心中有环“环”,指的是有大电流流过的闭合回路。

我们只要控制好这个环,Layout基本就成功一大半了。

下面来看为什么以BUCK为例,BUCK电路存在两个状态,上管导通和下管(或者是二极管)导通,因此存在两个大的电流环路。

知道这两个环路有什么用呢?我们要让这两个环路的面积越小越好,因为每一个电流环都可以看成是一个环路天线,会产生辐射,会引起EMI问题,也会干扰板上其它的电路,而辐射的大小与环路面积呈正比。

电流环所生成的高频磁场会在离开环路大约0.16λ 以后逐渐转换为电磁场,由此形成的场强大约为:可以看到,辐射的大小与环路的面积,频率的平方,电流的大小呈正比。

layout检查注意总结

layout检查注意总结

Layout 检查注意总结点个人一些layout PCB 总结,如有忽略或者不当可以自行思考。

1、晶体、晶振布局和走线要求器件表层内层都需要净空区,时钟走线立体包地好,下方绝不允许电源走线、敏感走线等2、EMI 器件的位置使用ESD 器件要靠近输入端摆放,而不是靠近保护器件摆放,以快速吸收静电波峰,使之释放瞬间静电到地。

注意ESD 器件接地端必须尽快下到主地,减少静电回路。

注意ESD 器件参数中的开启电压、击穿电压、钳位电压适用电压电路,注意高速信号上的ESD 器件的结电容要求。

注意有些TVS 管是兼容抗浪涌的,多查datasheet 的参数。

一些线路上串1K 电阻也会对静电有一定防护效果,希望看到的朋友注意这点。

3、高速信号走线要求和注意点高速信号必须做等长和等效阻抗处理,等长的要求根据平台要求而定,比如高通平台要求MIPI 高速差分走线组内不超0.7mm,组间不超 1.4mm,阻抗要求100欧。

避免隔层有大电源和敏感走线(比如DCDC、audio、clk),要求立体包地。

4、DCDC 电源走线宽度和要求电源走线要求满足电流宽度要求,比如VBAT 起来瞬间电流最大达到2A 多,要保持余量就会要求走线满足3A(3mm 宽)。

DCDC 电源走线靠近敏感线或者高速线时,如果中间只隔了一根底线,建议隔开宽点,中间底线多打孔到主地。

每条电压一定要注意最大电流大小,需要线宽达到要求。

5、敏感线音频走线、时钟走线要求立体包地,避免和大电源隔层交叉,音频器件远离天线、RF、数字信号。

喇叭走线保证15mil 以上线宽。

MIC 和耳机信号的一些滤波电容靠近输入端摆放,减少噪声输入。

注意IQ 差分走线包地处理,避免和CLK,射频输出线平行。

特别注意平台要求的一些信号线的电容靠近芯片摆放,接地端下主地要求,必须严格执行。

6、射频走线要求、天线走线要求首先要注意RF 输出要原理RF 输入。

发射端匹配电路靠近主芯片一端,接收端匹配电路靠近LAN 端或FEM 一端。

PCB板layout的12个细节

PCB板layout的12个细节

PCB板layout的12个细节1、贴片之间的间距贴片元器件之间的间距是工程师在layout时必须注意的一个问题,如果间距太小焊膏印刷和避免焊接连锡难度非常大。

距离建议如下贴片之间器件距离要求:同种器件:≥0.3mm异种器件:≥0.13*h+0.3mm(h为周围近邻元件最大高度差)只能手工贴片的元件之间距离要求:≥1.5mm.上述建议仅供参考,可按照各自公司的PCB工艺设计规范2、直插器件与贴片的距离如上图,直插式电阻器件与贴片之间应保持足够的距离,建议在1-3mm之间,由于加工比较麻烦现在用直插件的情况已经很少了。

3、对于IC的去耦电容的摆放每个IC的电源端口附近都需要摆放去耦电容,且位置尽可能靠近IC的电源口,当一个芯片有多个电源口的时候,每个口都要布置去耦电容。

4、在PCB板边沿的元器件摆放方向与距离需要注意由于一般都是用拼板来做PCB,因此在边沿附近的器件需要符合两个条件。

第一就是与切割方向平行(使器件的机械应力均匀,比如如果按照上图左边的方式来摆放,在拼板要拆分时贴片两个焊盘受力方向不同可能导致元元件与焊盘脱落)第二就是在一定距离之内不能布置器件(防止板子切割的时候损坏元器件)5、相邻焊盘需要相连的情况需要注意如果相邻的焊盘需要相连,首先确认在外面进行连接,防止连成一团造成桥接,同时注意此时的铜线的宽度。

6、如果焊盘落在普通区域需要考虑散热如果焊盘落在铺通区域应该采取右边的方式来连接焊盘与铺通,另根据电流大小来确定是连接1根线还是4跟线。

如果采取左边的方式的话,在焊接或者维修拆卸元器件时比较困难,因为温度通过铺的铜把温度全面分散导致焊不上鱼差不下。

7、引线比插件焊盘小的话需要加泪滴如果导线比直插器件的焊盘小的话需要加泪滴上图右边的方式。

加泪滴有如下接个好处:(1) 避免信号线宽突然变小而造成反射,可使走线与元件焊盘之间的连接趋于平稳过渡化。

(2) 解决了焊盘与走线之间的连接受到冲击力容易断裂的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Layout Considerations for Non-Isolated DC-DC ConvertersDC-DC converters are an excellent source of electric fields and magnetic fields. Their EMI spectrum begins at the switching frequency and often extends over 100MHz. To minimize capacitive couplings and magnetic couplings care must be exercised in printed circuit board (PCB) layout. Parasitic capacitance and parasitic inductance of the circuit must be evaluated so that the proper trade-off can be made early in the design phase.For many years, repeated introductions of integrated DC-DCpower-supply controllers have given us ever-higher levels of performance. These ICs unburden the systems engineer by removing the task of power-supply design, but this simplification has led to a loss of knowledge. Switching converters should therefore serve as a reminder to be careful. The following discussion presents rules for avoiding surprises when designing board layouts for non-isolated DC-DC converters.The first rule in optimizing such a layout is to isolate the converter. DC-DC converters are an excellent source of electric and magnetic fields. Their EMI spectrum begins at the switching frequency and often extends over 100MHz. To minimize capacitive couplings and "magnetic-field-to-loop" couplings, you should locate the converter away from other circuitry, especially from low-level analog circuitry. Isolating the converter is not always easy. Some boards accept input voltage on one side of the converter and distribute output voltages on the other side. VME cards or telecom cards, for example, include very complex routings with currents as high as 20A. A single connector brings in the input voltage and distributes several output voltages to the backplane. Therefore, there's a strong temptation to place the converter near this connector to reduce resistive drop. The area, however, is dense with interface drivers, backplane buses, and so forth, with the associated risk of noise coupling. A power connector can be added in some cases, but that solution entails extra board area and cost.Resistance in the copper traces is the most constraining factor. For a trace of a given length and thickness, this resistance iswhere l is the trace length in meters, S is the trace area in square meters, and (the resistivity of copper) is 1.7x10-8/m at 20°C, or 2.1x10-8/m at 70°C. As an example, the resistance of a 20°C trace 0.5cm wide and 35µm thick is 1m/cm. That value may appear negligible, but it commands attention if you are distributing 2.5V at 10A through two connectors and a backplane board.On some boards, the trace thickness includes a tin-lead layer. This layer can nearly double the equivalent resistance:lead resistivity = 2.07x10-7/m at 20°Ctin resistivity = 1.14x10-7/m at 20°CA trade-off between accuracy and trace loss lets you move the converter away from the connector. You can limit the effect of a resistive drop by performing a remote V OUT measurement near the connector, but beware of capactive couplings! To confine large currents to a defined area, route all the supply lines through pins at one end of the connector.MOSFET DriversAs switching frequencies increase, the switching time becomes shorter and shorter: typically 10ns for a 500kHz converter. At that frequency, even the shortest trace has a significant impedance. It's also important to note that a peak gate current can rise to several amperes in an extremely short time. Therefore, the proper routing of MOSFET-drive signals begins with an analysis of the converter's block diagram.For example, consider a synchronous step-down controller for notebook computers (Figure 1). The MOSFETs are driven by the transference of energy from the tank capacitors (C6 and C7) to the gates through the few ohms of the driver outputs. Note that the gate drive for the high-side n-channel MOSFET (Q1) is floating. Then-channel driver works like a charge pump!For larger image, click on figures.Figure 1. Operation of the MAX1710 synchronous step-down controller is depicted by an application circuit (a) and an internal block diagram (b). Figure 2 highlights the current paths during turn-on. Any series inductance can lead to disaster. In the best case, the spikes are higher, but simply increase the switching losses. In the worst case, the two MOSFETs can blow up due to cross conduction (simultaneous turn-on). Consequently, an optimal routing implies very short and wide traces between:C6 and V ddC6 and Q2(S)C7 and BST, and C7 and LXQ1(G) and DHQ2(G) and DLQ1(S) and LXQ2(S) and PGNDKeep in mind that the parasitic inductance for a 1cm trace is about 10nH.Looking closely at C6, you can see that it supplies Q1 and Q2, but not in the same way. It acts as a filter capacitor for Q1 and as a tank capacitor for Q2. Because we cannot place C6 near the high-side and low-side drivers at the same time, we place it as close as possible to V dd and PGND (where the peak currents flow), and also near C7 (almost average current). Notice that the PGND, DL, and V dd pins are side by side, and not by chance! Q2 and C6 are placed to minimize theground-trace lengths between PGND, C6(-), and Q2(S). Connect this ground trace to the ground plane at a single point, near the PGND pin. To avoid common-impedance coupling, LX should be connected to Q1, and PGND/C6(-) to the source of Q2. Figure 3 highlights the current paths during turn-off.Figure 2. The dotted lines indicate heavy current flow in the gate-drive circuits for Q1 (a) and Q2 (b).Figure 3. The dotted lines indicate heavy current flow in the gate-discharge (turn-off) paths for Q1 (a) and Q2 (b).The number of "via" should be limited as much as possible. Indeed,the few tens of nanohenries added by a via is embarrassing whendi/dt is high. For that reason, you should place all power components on the component layer, even the SMD ones. If you have no other choice, put several via in parallel.We must remember that controllers are often oversized for the application at hand. Common practice, for instance, employs a 10A controller to produce a 3A output. Because we generally choose minimum-sized MOSFETs for cost reasons, the on-chip drivers remain oversized and therefore capable of more gate drive than is necessary. Because the earlier discussion sought to avoid slowing the MOS gate drive, it seems paradoxical to place a small (10 to 100) resistor in series with the gate drive. Oversized and/or fast drive waveforms, however, produce more switching noise and RF interference. At the other extreme, slow waveforms produce more switching loss in the MOSFET(s) and diode (if any). A good compromise is to reduce EMI by slowing the waveform slopes as much as possible, while maintaining an acceptable level of efficiency. (Components in the gate drive of Figure 4b let you trim the rise and fall times separately.) Fortunately, large drivers allow a final bit of optimization.Routing the Power StageFigure 4 illustrates the two high-current loops common to many power converters. In responding to the perturbations caused by switching, these loops support high di/dt, and (at some nodes) high dv/dt as well. Identifying these loops helps to reduce their effects. Note that di/dt is great within the converter (at the switching node) but small outside the converter. Indeed, currents before the input capacitor and after the output capacitor reach a high value, but they are nearly continuous. Their AC components are low when the converter is well designed.Figure 4. These simple schematics illustrate the basic operation of the step-up (a) and step-down (b) switching converters.First, minimize parasitic inductance. We will consider a step-up converter, but the reasoning can be transposed for a step-down type. Figure 5 illustrates the kinds of parasitic inductance that cause the most problems.Figure 5. When the main switching transistor (T) turns off, the diode capacitance discharges as shown.Without describing the 10 phases of a switching cycle, we can consider the MOSFET turn-off, when inductor current has been short-circuited by the MOSFET. The diode's inverse capacitor chargesextremely fast via loop two, and the node-voltage Va at the diode's anode (normally at Vout - Vd) goes to near 0V. The serial inductors (LfT + LfD + LfC) increase this discharge time, thereby increasing switching loss in the MOSFET. These types of inductance also generate noise.Peak current is limited by the transistor, which operates as a current source (Vds still equals a few volts). For a 2A MOSFET, this current source could be 10A! The current level is large for a very short time (a few 10ns). Remember that varying the current through an inductor produces a voltage proportional to the current variation:This transition phase is a good spike generator! Once more, we minimize parasitic inductance by minimizing trace lengths and using short, wide traces around the MOSFET, diode, and Cout. You can now see how noise can be reduced by the control of slopes in thegate-drive waveforms.To limit resistive voltage drops and the number of via, power-stage SMD components should be placed on the component side of the board and power traces routed on its component layer. If possible, the power ground should also be routed on the same layer. This arrangement has another benefit: less perturbation of the ground plane. To cancel radiated fields, take care to minimize the area of the power-current loop.When it becomes necessary to route a power trace on a layer other than the component layer, choose a trace from the inductor or filter capacitors (i.e., Cout for a step-down converter, or Cin for a step-up converter). Because current through such traces is nearly continuous, it produces no noise, just a resistive drop. Parasitic inductance will be smaller if you route this trace on the layer just under the component layer. To avoid coupling by common impedance, you should separate PGND, the power-circuit ground, and the general ground plane (Figure 6).Figure 6. These details illustrate the routing of PGND versus gate-control traces in the controller circuit.Capacitors and Other ComponentsIt's important to pay close attention to the routing of traces from capacitor terminals in a DC-DC converter circuit. Large-valuedlow-ESR capacitors are expensive, and bad routings can cancel their performance. A good routing, on the other hand, can lower the output noise from 150mV to 50mV!Ripple is directly related to the inductor value, the capacitor ESR, the switching frequency, and so forth, but HF noise (spikes) depend on parasitic elements and the switching action. We can anticipate spiking frequencies from 1MHz to 10MHz, depending on the switching frequency.In a bad routing (Figure 7a), parasitic inductance associated with trace lengths causes trouble: L1 brings about an increase in noise, and L2 limits the attenuation of HF capacitor CoHF. The fix (Figure 7b) is to bring the input trace in on one side of the capacitor pad, and theoutput trace out on the other side of the pad.Figure 7. Improper routing of capacitor traces introduces unwanted parasitic inductance.Now, having placed and routed the bulkiest parts, we turn our attention to the inductor. A deliberate but unwanted coupling (Figure 8a) allows current in the power loop to pollute the controller supply (Vcc). High di/dt produced by switching through Lp1 causes Vcc overshoots that easily reach several hundred millivolts. Usingwith L = 10nH, I = 1A, and t = 50ns, V = 0.2V!As mentioned earlier, the first precaution is to separate the powertraces and be careful with PGND. The second precaution is to avoid connecting traces to the power loop (see Figure 8b). Traces that distribute the input voltage should be connected before the input capacitor and the controller's Vcc connection. Output voltage is distributed after the connections to the HF output capacitor.Figure 8. Unwanted common-impedance coupling (a) is prevented by the connections shown in (b).Finally, some miscellaneous advice: Bad routing of the PGND trace can cause common-impedance coupling (one reason for the PGND terminal is to avoid polluting the controller's internal ground node). Move high-impedance traces (especially the output resistor divider that adjusts the output voltage) away from nodes that support high dV/dt. Currents induced by such coupling can make the controller oscillate.z。

相关文档
最新文档