八年级数学期末试卷达标训练题(Word版 含答案)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学期末试卷达标训练题(Word 版 含答案)

一、八年级数学全等三角形解答题压轴题(难)

1.如图,在ABC 中,45ABC ∠=,AD ,BE 分别为BC ,AC 边上的高,连接DE ,过点D 作DF DE ⊥与点F ,G 为BE 中点,连接AF ,DG .

(1)如图1,若点F 与点G 重合,求证:AF DF ⊥;

(2)如图2,请写出AF 与DG 之间的关系并证明.

【答案】(1)详见解析;(2)AF=2DG,且AF ⊥DG,证明详见解析.

【解析】

【分析】

(1) 利用条件先△DAE ≌△DBF,从而得出△FDE 是等腰直角三角形,再证明△AEF 是等腰直角三角形,即可.

(2) 延长DG 至点M,使GM=DG,交AF 于点H,连接BM, 先证明△BGM ≌△EGD,再证明△BDM ≌△DAF 即可推出.

【详解】

解:(1)证明:设BE 与AD 交于点H..如图,

∵AD,BE 分别为BC,AC 边上的高,

∴∠BEA=∠ADB=90°.

∵∠ABC=45°,

∴△ABD 是等腰直角三角形.

∴AD=BD.

∵∠AHE=∠BHD,

∴∠DAC=∠DBH.

∵∠ADB=∠FDE=90°,

∴∠ADE=∠BDF.

∴△DAE ≌△DBF.

∴BF=AE,DF=DE.

∴△FDE 是等腰直角三角形.

∴∠DFE=45°.

∵G 为BE 中点,

∴BF=EF.

∴AE=EF.

∴△AEF 是等腰直角三角形.

∴∠AFE=45°.

∴∠AFD=90°,即AF ⊥DF.

(2)AF=2DG,且AF ⊥DG.理由:延长DG 至点M,使GM=DG,交AF 于点H,连接BM,

∵点G 为BE 的中点,BG=GE.

∵∠BGM ∠EGD,

∴△BGM ≌△EGD.

∴∠MBE=∠FED=45°,BM=DE.

∴∠MBE=∠EFD,BM=DF.

∵∠DAC=∠DBE,

∴∠MBD=∠MBE+∠DBE=45°+∠DBE.

∵∠EFD=45°=∠DBE+∠BDF,

∴∠BDF=45°-∠DBE.

∵∠ADE=∠BDF,

∴∠ADF=90°-∠BDF=45°+∠DBE=∠MBD.

∵BD=AD,

∴△BDM ≌△DAF.

∴DM=AF=2DG,∠FAD=∠BDM.

∵∠BDM+∠MDA=90°,

∴∠MDA+∠FAD=90°.

∴∠AHD=90°.

∴AF ⊥DG.

∴AF=2DG,且AF ⊥DG

【点睛】

本题考查三角形全等的判定和性质,关键在于灵活运用性质.

2.取一副三角板按图()1拼接,固定三角板60,()30ADC D ACD ∠=∠=,将三角板

45()ABC BAC BCA ∠=∠=绕点A 依顺时针方向旋转一个大小为a 的角00)45(a ≤≤得到ABM ,图()2所示.试问:

()1当a 为多少时,能使得图()2中//AB CD ?说出理由,

()2连接BD ,假设AM 与CD 交于,E BM 与CD 交于F ,当00)45(a ≤≤时,探索DBM CAM BDC ∠+∠+∠值的大小变化情况,并给出你的证明.

【答案】(1)15°;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105,证明见解析.

【解析】

【分析】

(1)由//AB CD 得到30BAC C ∠=∠=,即可求出a ;

(2)DBM CAM BDC ∠+∠+∠的大小不变,是105︒,由FEM CAM C ∠=∠+∠,30C ∠=︒, EFM BDC DBM ∠=∠+∠, 45M ∠=︒,即可利用三角形内角和求出答案.

【详解】

()1当a 为15时,//AB CD ,

理由:由图()2,若//AB CD ,则30

BAC C ∠=∠=, 453015a CAM BAM BAC ∴=∠=∠-∠=-︒=︒,

所以,当a 为15时,//AB CD .

注意:学生可能会出现两种解法:

第一种:把//AB CD 当做条件求出a 为15,

第二种:把a 为15当做条件证出//AB CD ,

这两种解法都是正确的.

()2DBM CAM BDC ∠+∠+∠的大小不变,是105︒

证明: ,30FEM CAM C C ∠=∠+∠∠=︒,

30FEM CAM ∴∠=∠+︒,

EFM BDC DBM ∠=∠+∠,

DBM CAM BDC EFM CAM ∴∠+∠+∠=∠+∠,

180,45EFM FEM M M ∠+∠+∠=∠=︒,

3045180BDC DBM CAM ∴∠+∠+∠+︒+︒=︒,

1803045105DBM CAM BDC ∴∠+∠+∠=︒--=︒,

所以,DBM CAM BDC ∠+∠+∠的大小不变,是105.

【点睛】

此题考查旋转的性质,平行线的性质,三角形的外角定理,三角形的内角和,(2)中将角度和表示为三角形的外角是解题的关键.

3.如图1所示,已知点D 在AC 上,ADE ∆和ABC ∆都是等腰直角三角形,点M 为EC 的中点.

(1)求证:BMD ∆为等腰直角三角形;

(2)将ADE ∆绕点A 逆时针旋转45︒,如图2所示,(1)中的“BMD ∆为等腰直角三角形”是否仍然成立?请说明理由;

(3)将ADE ∆绕点A 逆时针旋转一定的角度,如图3所示,(1)中的“BMD ∆为等腰直角三角形”成立吗?请说明理由.

【答案】(1)详见解析;(2)是,证明详见解析;(3)成立,证明详见解析.

【解析】

【分析】

()1根据等腰直角三角形的性质得出45ACB BAC ∠∠==,

相关文档
最新文档