八年级数学期末试卷达标训练题(Word版 含答案)
八年级数学期末试卷带答案
一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. -2B. 0.5C. √4D. √-1答案:D2. 下列各数中,绝对值最小的是()A. -3B. 3C. -2.5D. 2.5答案:C3. 下列方程中,解为整数的是()A. 2x - 3 = 7B. 3x + 2 = 5C. 4x - 1 = 1D. 5x + 3 = 9答案:A4. 已知 a + b = 10,a - b = 2,则a² - b² 的值为()A. 78B. 76C. 82D. 80答案:B5. 下列函数中,自变量的取值范围是全体实数的是()A. y = 2x + 3B. y = x²C. y = √xD. y = 1/x答案:A6. 下列各式中,正确的是()A. 3a = 3 aB. a² = a aC. (a + b)² = a² + b²D. (a - b)² = a² - b²答案:B7. 下列各式中,正确的是()A. √16 = 4B. √9 = -3C. √25 = 5D. √36 = -6答案:C8. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = x²C. y = 1/xD. y = x³答案:C9. 在直角坐标系中,点 P(2, -3) 关于 x 轴的对称点是()A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)答案:A10. 下列各式中,正确的是()A. (a + b)² = a² + 2ab + b²B. (a - b)² = a² - 2ab + b²C. (a + b)³ = a³ + 3a²b + 3ab² + b³D. (a - b)³ = a³ - 3a²b + 3ab² - b³答案:B二、填空题(每题5分,共25分)11. 如果 a > b > 0,那么a² > b²。
初二数学期末试卷含答案
一、选择题(每题2分,共20分)1. 若a > b,则下列哪个不等式一定成立?A. a^2 > b^2B. a^2 < b^2C. |a| > |b|D. |a| < |b|2. 下列哪个函数的定义域为实数集R?A. y = 1/xB. y = √(x+1)C. y = x^2D. y = |x|3. 下列哪个数是分数?A. √2B. 3/5C. √3D. 2.54. 已知a > 0,b > 0,下列哪个不等式一定成立?A. a^2 > b^2B. ab > a + bC. a^2 + b^2 > 2abD. a^2 - b^2 > 05. 下列哪个图形是平行四边形?A. 矩形B. 正方形C. 菱形D. 以上都是6. 已知等腰三角形ABC中,AB = AC,下列哪个结论一定成立?A. ∠B = ∠CB. ∠A = ∠BC. ∠A = ∠CD. ∠B + ∠C = 180°7. 下列哪个方程的解为x = 2?A. x - 2 = 0B. x + 2 = 0C. 2x - 2 = 0D. 2x + 2 = 08. 下列哪个函数的图像是一条直线?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = √x9. 下列哪个数是整数?A. √2B. 3/5C. √3D. 2.510. 已知a、b、c是等差数列,且a + b + c = 15,下列哪个结论一定成立?A. a = 5B. b = 5C. c = 5D. a + b = c二、填空题(每题2分,共20分)11. 已知x + y = 5,xy = 4,求x^2 + y^2的值。
12. 已知等腰三角形ABC中,AB = AC = 5,BC = 6,求∠BAC的度数。
13. 已知一元二次方程x^2 - 4x + 3 = 0,求方程的解。
14. 已知函数y = 2x + 3,求当x = 2时,y的值。
山东省潍坊市诸城市2023-2024学年数学八上期末达标测试试题含答案
山东省潍坊市诸城市2023-2024学年数学八上期末达标测试试题学校_______ 年级_______ 姓名_______注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)1.计算1a ab b ab ÷等于( )A .21ab abB .1ab abC .1ab b D .b ab2.如图,在Rt ABC ∆中,90C ∠=︒,AD 是BAC ∠的平分线,若6AC =,8BC =,则:ABD ACD S S ∆∆为()A .5:3B .5:4C .4:3D .3:53.点()23P -,关于y 轴的对称点的坐标是( )A .(2,-3)B .(-2,-3)C .(-2,3)D .(-3,2)4.下列计算正确的是( )A .a 2+a 3=a 5B .a 2•a 3=a 6C .(a 2)3=a 6D .(ab )2=ab 25.下列图标中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .6.下面运算结果为6a 的是( )A .33a a +B .82a a ÷C .23•a aD .()32a - 7.关于函数y=﹣2x+1,下列结论正确的是( )A .图象必经过(﹣2,1)B .y 随x 的增大而增大C .图象经过第一、二、三象限D .当x >12时,y <0 8.如图,足球图片正中的黑色正五边形的外角和是( )A .180B .360C .540D .7209.若分式242x x -+的值为0,则( ) A .2x = B .2x =- C .2x =或2x =- D .2x ≠或2x ≠-10.如图,从一个大正方形中截去面积为230cm 和248cm 的两个正方形,则剩余部分的面积为( )A .278cmB .()24330cm + C .21210cm D .22410cm 11.如图,AB =AC ,∠A =36°,AB 的垂直平分线MN 交AB 于点M ,交AC 于点D ,下列结论:①△BCD 是等腰三角形;②BD 是∠ABC 的平分线;③DC +BC =AB ;④△AMD ≌△BCD ,正确的是 ( )A .①②B .②③C .①②③D .①②④12.甲、乙、丙、丁四人进行100m 短跑训练,统计近期10次测试的平均成绩都是13.2s ,10次测试成绩的方差如下表则这四人中发挥最稳定的是( ) 选手 甲 乙 丙 丁 方差(s 2)0.020 0.019 0.021 0.022A .甲B .乙C .丙D .丁 二、填空题(每题4分,共24分)13.若点M (a ﹣3,a+4)在x 轴上,则点M 的坐标是______.14.正方形ABCD 的边长为4,E 为BC 边上一点,BE=3,M 为线段AE 上一点,射线BM 交正方形的一边于点F ,且BF=AE,则BM 的长为____.15.函数23y x =-的定义域是__________.16.正十边形的外角和为__________.17.如图,两个较大正方形的面积分别为225、289,则字母A 所代表的正方形的边长为_____1852的倒数是__________.三、解答题(共78分)19.(8分)(1)解方程:242111x x x ++=--- (2)计算:)2316226-20.(8分)我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式.例如由图1可以得到()()22322a ab b a b a b ++=++.请回答下列问题:(1)写出图2中所表示的数学等式是 ;(2)如图3,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x ,y 的式子表示) ; (3)通过上述的等量关系,我们可知: 当两个正数的和一定时,它们的差的绝对值越小,则积越 (填“ 大”“或“小”);当两个正数的积一定时,它们的差的绝对值越小,则和越 (填“ 大”或“小”).21.(8分)已知:如图,△ABC 和△ECD 都是等腰直角三角形,∠ACB=∠DCE=90°,D 为AB 边上的一点. 求证:△ACE ≌△BCD .22.(10分)解不等式(组)(1)123x x ->; (2) 2731205x x x +>-⎧⎪-⎨≥⎪⎩23.(10分)如图,在ABC ∆中,已知AB AC =,AB 的垂直平分线交AB 于点N ,交AC 于点M ,连接MB(1)若65ABC ∠=,则NMA ∠的度数是 度(2)若10AB cm =,MBC ∆的周长是18cm①求BC 的长度;②若点P 为直线MN 上一点,请你直接写出PBC ∆周长的最小值24.(10分)解答下列各题(138182(332)--(2)解方程组244523m n m n -=-⎧⎨-=-⎩25.(12分)求下列各式的值:(1)已知 22350x x +-=,求代数式 ()()()3212121x x x x +-+-的值;(2)已知a=34,23b =,求代数式[(ab+1) (ab- 2) - 2a 2b 2 +2]÷ (-ab)的值.26.(12分)(1)化简:()()2 2y x y x y -++(2)化简: ()()()2322264a b ab a b -÷-⋅- (3)因式分解:32 21218a a a -+-(4)因式分解:()()2294a x y b y x -+-参考答案一、选择题(每题4分,共48分)1、A2、A3、B4、C5、D6、B7、D8、B9、A10、D11、C12、B二、填空题(每题4分,共24分)13、 ( -7,0 )14、52或125 15、23x ≤16、360°17、8182三、解答题(共78分)19、(1)13x =;(2)﹣ 20、(1)22(2)(2)225a b a b a b ab ++=++;(2)22()()4x y x y xy +=-+;(3)大 小21、详见解析.22、(1)6x >;(2)28x ≤<23、(1)40°;(2)①8;②18cm24、(1)6;(2)125m n ⎧=⎪⎨⎪=⎩25、 (1)2 23?1x x ++,6;(2)1ab +,3 26、(1)24xy x +(2)3243a b -(3)()2 23a a --(4)()()() 3232x y a b a b -+-。
八年级数学下册期末考试卷(附带有答案)
八年级数学下册期末考试卷(附带有答案)(满分: 120 分 考试时间: 120 分钟)一、选择题1、 以下问题,不适合用普查的是( )A. 了解全班同学每周体育锻炼的时间B. 旅客上飞机前的安检C. 学校招聘教师,对应聘人员面试D. 了解全市中小学生每天的零花钱 2、 下列图案中,不是中心对称图形的是( )3A. 全体实数B.x≠1C.x=1D. x >14、 把 118化为最简二次根式得( )1 1 1 1A. 18 18B. 18C. 2D.18 6 3 25、 若反比例函数y = (2m 1)x m 2-2 的图象在第二,四象限,则 m 的值是( )A. −1 或 1B. 小于 12 的任意实数C. −1D. 不能确定k6、 如图,在同一直角坐标系中,正比例函数 y=kx+3 与反比例函数 y = 的图象位置可能是( )x第 1 页 共 12 页3、 如果分式 有意义,则 x 的取值范围是( ) x 1第 2 页 共 12 页A. 1B. 2C. 一、填空题9、 当 x 时,分式 3 D. 4x 1的值为 0. x10、 若 x = 5 3 ,则 x 2 + 6x + 5 的值为 .12、 袋子里有 5 只红球,3 只白球,每只球除颜色以外都相同,从中任意摸出 1 只球,是红球的可能性 (选 填“大于”“小于”或“等于”)是白球的可能性。
13、 矩形 ABCD 的对角线 AC 、BD 交于点 O , ∠AOD =120 ,AC =4,则△ABO 的周长为 .14、 若关于 x 的分式方程 有增根,则.15、 某校高一年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分 100 分,学生成绩取整数),则成绩在 90.5 95.5 这一分数段的频率是a + 3b c11、 若 a:b:c=1:2:3,则 =a 3b + c第 3 页 共 12 页2 和 y =x△PAB 的面积是 3,则 k = .17、 图 1 所示矩形 ABCD 中, BC =x ,CD =y ,y 与 x 满足的反比例函数关系如图 2 所示,等腰直角三角形 AEF 的斜边 EF 过 C 点, M 为 EF 的中点,则下列结论正确的序号是 . ①当 x =3 时, EC <EM③当 x 增大时, EC ⋅CF 的值增大18、 如图 1,边长为 a 的正方形发生形变后成为边长为 a 的菱形,如果这个菱形的一组对边之间的距离为h , a我们把 的值叫做这个菱形的“形变度”。
初二数学期末考试卷带答案
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √16C. √-4D. √0答案:A2. 已知x² - 5x + 6 = 0,则x的值为()A. 2B. 3C. 2或3D. 无法确定答案:C3. 若a > b,则下列不等式中正确的是()A. a² > b²B. a - b > 0C. a + b < 0D. a² + b² > 0答案:B4. 已知三角形ABC的边长分别为3cm、4cm、5cm,则三角形ABC是()A. 等腰三角形B. 直角三角形C. 等边三角形D. 梯形答案:B5. 若函数f(x) = 2x + 3,则f(-1)的值为()A. 1B. 2C. 3D. 4答案:B6. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标为()A. (2, -3)B. (-2, 3)C. (2, -3)D. (-2, -3)答案:A7. 若|a| = 5,则a的值为()A. ±5B. 5C. -5D. 无法确定答案:A8. 下列各数中,绝对值最小的是()A. -2B. -1C. 0D. 1答案:C9. 若a > b > 0,则下列各式中正确的是()A. a² > b²B. a - b > 0C. a + b < 0D. a² + b² > 0答案:D10. 在等腰三角形ABC中,若AB = AC,则下列结论正确的是()A. ∠B = ∠CB. ∠B = ∠AC. ∠C = ∠AD. ∠B = ∠C = ∠A答案:A二、填空题(每题5分,共25分)11. 3的平方根是______,-5的立方根是______。
答案:±√3,-∛512. 若x² - 4x + 3 = 0,则x的值为______。
【精选】人教版八年级下册数学期末测试卷(含答案)
【精选】人教版八年级下册数学期末测试卷(含答案)一、选择题(每题1分,共5分)1.若一个正方形的对角线长为10厘米,则其边长为多少厘米?A.5√2厘米B.10√2厘米C.5厘米D.10厘米2.下列函数中,哪一个不是二次函数?A.y=2x^2+3x+1B.y=x^24x+4C.y=3/xD.y=x^2+2x33.已知等腰三角形的底边长为8厘米,腰长为10厘米,则该三角形的周长为多少厘米?A.16厘米B.26厘米C.28厘米D.36厘米4.下列哪个数是无理数?A.√9B.√16C.√3D.√15.若一个圆的半径为r,则其面积是多少?A.2πrB.πr^2C.2r^2D.r^2/2二、判断题(每题1分,共5分)1.任何两个全等三角形都是相似的。
()2.一次函数的图像是一条直线。
()3.对角线相等的四边形一定是矩形。
()4.菱形的对角线互相垂直平分。
()5.一元二次方程的解一定是实数。
()三、填空题(每题1分,共5分)1.若一个正方形的边长为a,则其对角线长为______。
2.一次函数y=kx+b的图像是一条______。
3.若一个圆的周长为C,则其半径为______。
4.若一个等腰三角形的底边长为b,腰长为l,则其周长为______。
5.若一个一元二次方程的判别式为0,则该方程有两个相等的实数根,这两个根的和为______。
四、简答题(每题2分,共10分)1.请简要说明矩形的性质。
2.请简要说明菱形的性质。
3.请简要说明一元二次方程的求解方法。
4.请简要说明相似三角形的性质。
5.请简要说明一次函数的性质。
五、应用题(每题2分,共10分)1.已知一个正方形的边长为10厘米,求其对角线长。
2.已知一次函数y=2x+3,求当x=4时,y的值。
3.已知一个圆的半径为5厘米,求其面积。
4.已知等腰三角形的底边长为8厘米,腰长为10厘米,求其周长。
5.已知一元二次方程x^25x+6=0,求其解。
六、分析题(每题5分,共10分)1.请分析并说明如何求解一个一元二次方程。
人教版八年级上学期期末考试数学试卷(附带答案)精选全文
精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。
八年级上册数学期末考试卷附答案
八年级上册数学期末考试卷附答案一、选择题1. 下列哪个数是素数?A. 11B. 15C. 18D. 20答案:A2. 下列哪个数是合数?A. 7B. 13C. 17D. 21答案:D3. 下列哪个数是偶数?A. 5B. 9C. 12D. 15答案:C4. 下列哪个数是奇数?A. 8B. 10C. 14D. 16答案:A5. 下列哪个数是整数?A. 3.5B. 4.8C. 5.6D. 6.7答案:D二、填空题6. 3的平方是_________。
答案:97. 4的立方是_________。
答案:648. 5的平方根是_________。
答案:±√59. 6的立方根是_________。
答案:∛610. 7的平方根是_________。
答案:±√7三、解答题11. 解方程:2x + 3 = 9。
答案:x = 312. 解方程:3x 2 = 8。
答案:x = 313. 解方程:4x + 5 = 17。
答案:x = 314. 解方程:5x 6 = 19。
答案:x = 515. 解方程:6x + 7 = 23。
答案:x = 216. 解方程:7x 8 = 21。
答案:x = 517. 解方程:8x + 9 = 35。
答案:x = 418. 解方程:9x 10 = 29。
答案:x = 519. 解方程:10x + 11 = 41。
答案:x = 320. 解方程:11x 12 = 39。
答案:x = 5八年级上册数学期末考试卷附答案四、应用题21. 小华买了5个苹果,每个苹果重200克,请问小华买的苹果总重量是多少克?答案:1000克22. 小红家有一个长方形花园,长为10米,宽为5米,请问花园的面积是多少平方米?答案:50平方米23. 小刚骑自行车去学校,速度为每小时15公里,请问他从家到学校需要多长时间?答案:30分钟24. 小丽去超市购物,买了3个苹果、2个香蕉和1个橙子,苹果的价格为每个5元,香蕉的价格为每个3元,橙子的价格为每个2元,请问小丽一共花费了多少元?答案:24元五、简答题25. 请简述勾股定理的内容。
数学初二期末试卷含答案
一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √3B. πC. -√4D. 2/32. 已知a=2,b=-3,那么a-b的值是()A. -5B. 5C. 1D. -13. 如果a+b=0,那么a和b互为()A. 相等B. 相反数C. 同号D. 异号4. 在下列各式中,正确的是()A. (a+b)²=a²+2ab+b²B. (a-b)²=a²-2ab+b²C. (a+b)²=a²-2ab+b²D. (a-b)²=a²+2ab-b²5. 下列各式中,绝对值最小的是()A. |2|B. |-2|C. |0|D. |2/3|6. 已知函数f(x)=2x+1,那么f(-1)的值是()A. 1B. -1C. 3D. -37. 下列各式中,根号内的代数式有意义的是()A. √(x-1)B. √(x²+1)C. √(-x)D. √(x+2)8. 已知a、b、c是三角形的三边,那么下列不等式中成立的是()A. a+b+c<0B. a+b>cC. a+c>bD. b+c<a9. 在下列各函数中,一次函数是()A. y=2x²+1B. y=x+3C. y=3/xD. y=√x10. 已知函数f(x)=x²-4x+4,那么f(2)的值是()A. 0B. 2C. 4D. 6二、填空题(每题5分,共25分)11. 如果a=5,那么a²的值是__________。
12. 如果x-3=0,那么x的值是__________。
13. 已知a=2,b=-3,那么a²+b²的值是__________。
14. 在下列各数中,无理数是__________。
15. 已知函数f(x)=3x-2,那么f(1)的值是__________。
八年级数学下册期末试卷(附含答案)精选全文完整版
可编辑修改精选全文完整版八年级数学下册期末试卷(附含答案)(满分:120分;考试时间:120分)一、选择题(共10小题,每小题3分,满分30分) 1、使1x -有意义的x 的取值范围是( )A x >1B x >-1C x ≥1D x ≥-1 2、在根式xy 、12、2ab 、x y -、2x y 中,最简二次根式有( )A 1个B 2个C 3个D 4个 3、下列计算正确的是( )A 20210=B 5630⨯=C 2236⨯=D 2(3)3-=- 4、一元二次方程x (x-2)=2-x 的根式( )A -1B 2C 1和2D -1和2 5、下列命题中,真命题的个数有( )①对角线互相平分的四边形是平行四边形; ②两组对角分别相等的四边形是平行四边形; ③一组对边平行,另一组对边相等的四边形是平行四边形;A 3个B 2个C 1个D 0个 6、在△ABC 中,三边长分别为a 、b 、c ,且a+c=2b ,c-a=12b ,则△ABC 是( )A 直角三角形B 等边三角形C 等腰三角形D 等腰直角三角形 7、某公司为了解职工参加体育锻炼情况,对职工某一周平均每天锻炼 (跑步或快走)的里程进行统计(保留整数),并将他们平均每天锻炼 的里程数据绘制成扇形统计图,关于他们平均每天锻炼里程数据 下列说法不正确的是( )A 平均每天锻炼里程数据的中位数是2B 平均每天锻炼里程数据的众数是2C 平均每天锻炼里程数据的平均数是2.34D 平均每天锻炼里程数不少于4km 的人数占调查职工的20% 8、疫情期间居民为了减少外出时间,更愿意使用APP 在线上购物,某购物APP 今年二月份用户比一月份增加了44%,三月份用户比二月份增加了21%,则二、三两个月用户的平均每月增长率是( )A 28%B 30%C 32%D 32.5% 9、有两个一元二次方程:M :ax 2+bx+c=0,N :cx 2+bx+a=0,以下四个结论中,错误的是( ) A 如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根 B 如果方程M 有两根符号相同,那么方程N 也有两根符号相同 C 如果5是方程M 的一个根,那么15是方程N 的一个根D 如果方程M和方程N有一个相同的实数根,那么这个跟必是x=110、△ABC中,∠C=30°,AC=6,BD是△ABC的中线,∠ADB=45°,则AB=()二、填空题(共6小题,每小题3分,满分18分)11的结果是12、已知关于x的一元二次方程x2-bx+8=0,一个根为2,则另一个根是13、有一棵9米高的大树,如果大树距离地面4米处这段(没有断开),则小孩至少离开大树米之处才是安全的。
人教版八年级数学上册期末达标检测卷附答案
人教版八年级数学上册期末达标检测卷一、选择题(每题3分,共30分)1.下列“数字”图形中,有且仅有一条对称轴的是()2.使分式x2x-1有意义的x的取值范围是()A.x≥12B.x≤12C.x>12D.x≠123.已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠OAD=() A.95°B.85°C.75°D.65°4.设M=(x-3)(x-7),N=(x-2)(x-8),则M与N的关系为() A.M<N B.M>N C.M=N D.不能确定5.下列说法:①满足a+b>c的三条线段a,b,c一定能组成三角形;②三角形的三条高一定交于三角形内一点;③三角形的外角大于它的任何一个内角.其中错误的有()A.0个B.1个C.2个D.3个6.已知2m+3n=5,则4m·8n=()A.16 B.25 C.32 D.647.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB,BC于点D,E,则∠BAE=()A.80°B.60°C.50°D.40°8.甲地到乙地之间的铁路长210 km,动车运行后的平均速度是原来火车的1.8倍,这样由甲地到乙地的行驶时间缩短了1.5 h.设原来火车的平均速度为x km/h,则下列方程正确的是()A.210x-1.8=2101.5x B.210x+1.8=2101.5x C.210x+1.5=2101.8x D.210x-1.5=2101.8x9.如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′恰好落在BC边上,且AB′=CB′,则∠C′的度数为()A.18°B.20°C.24°D.28°10.如图,过边长为1的等边三角形ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,当AP=CQ时,PQ交AC于点D,则DE的长为()A.13 B.12 C.23D.不能确定二、填空题(每题3分,共30分)11.一张纸的厚度约为0.000 008 57米,用科学记数法表示其结果是__________米.12.分解因式:ax2-2ax+a=____________.13.化简a2+2ab+b2a2-b2+ba-b的结果是__________.14.若x2+bx+c=(x+5)(x-3),其中b,c为常数,则点P(b,c)关于y轴对称的点的坐标是__________.15.如图,若正五边形和正六边形有一边重合,则∠BAC=________.16.如图,AB =AC ,AD =AE ,∠BAC =∠DAE ,点D 在线段BE 上.若∠1=25°,∠2=30°,则∠3=________.17.将长方形ABCD 沿AE 折叠,得到如图所示的图形.已知∠CEB ′=50°,则∠B ′AD 的度数为________. 18.若关于x 的方程ax +3x -1-1=0无解,则a 的值为__________. 19.如图,已知正六边形ABCDEF 的边长是5,点P 是AD 上的一动点,则PE+PF 的最小值是________.20.如图,在平面直角坐标系中,点A ,B 分别在y 轴和x 轴上,∠ABO =60°,在坐标轴上找一点P ,使得△P AB 是等腰三角形,则符合条件的P 点共有________个.三、解答题(23题6分,24题10分,27题12分,其余每题8分,共60分)21.计算:(1)x (x -2y )-(x +y )2; (2)⎝ ⎛⎭⎪⎫3a +2+a -2÷a 2-2a +1a +2.22.(1)先化简,再求值:(2+a )(2-a )+a (a -2b )+3a 5b ÷(-a 2b )4,其中ab =-12.(2)因式分解:a (n -1)2-2a (n -1)+a .23.解方程:(1)xx-1=3x+1+1;(2)x+14x2-1=32x+1-44x-2.24.如图,已知网格上最小的正方形的边长为1.(1)分别写出A,B,C三点的坐标.(2)作△ABC关于y轴对称的△A′B′C′(不写作法),想一想:关于y轴对称的两个点之间有什么关系?(3)求△ABC的面积.25.如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.26.甲、乙两个工程队计划修建一条长15 km的乡村公路,已知甲工程队比乙工程队每天多修路0.5 km,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米;(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?27.如图①,在四边形ABCD中,已知∠ABC+∠ADC=180°,AB=AD,DA⊥AB,点E在CD的延长线上,∠BAC=∠DAE.(1)求证△ABC≌△ADE;(2)求证:CA平分∠BCD;(3)如图②,若AF是△ABC的边BC上的高,求证CE=2AF.答案一、1.A 2.D 3.B 4.B 5.D 6.C 7.D 8.D 9.C 【点拨】∵AB ′=CB ′, ∴∠C =∠CAB ′.∴∠AB ′B =∠C +∠CAB ′=2∠C .∵将△ABC 绕点A 按逆时针方向旋转得到△AB ′C ′, ∴∠C =∠C ′,AB =AB ′. ∴∠B =∠AB ′B =2∠C . 又∵∠B +∠C +∠BAC =180°, ∠BAC =108°, ∴3∠C +108°=180°. ∴∠C =24°. ∴∠C ′=24°.10.B 【点拨】过点P 作PF ∥BC 交AC 于点F .由△ABC 为等边三角形,易得△APF 也是等边三角形,∴AP =PF .∵AP =CQ ,∴PF =CQ . 又∵PF ∥CQ ,∴∠DPF =∠DQC ,∠DFP =∠DCQ . ∴△PFD ≌△QCD (ASA ). ∴DF =DC .∵PE ⊥AF ,且PF =P A , ∴AE =EF .∴DE =DF +EF =12CF +12AF =12AC =12×1=12. 二、11.8.57×10-6 12.a (x -1)2 13.a +2b a -b 14.(-2,-15) 15.132° 16.55° 17.40°18.1或-3 【点拨】将方程ax +3x -1-1=0去分母,得ax +3-(x -1)=0,整理,得(a -1)x =-4.当a -1=0,即a =1时,该分式方程无解;当a -1≠0,x =1时,该分式方程无解,此时a -1=-4,解得a =-3.因此a 的值为1或-3. 19.10 【点拨】利用正多边形的性质可得点F 关于直线AD 的对称点为点B ,连接BE 交AD 于点P ′,连接FP ′,则P ′B =P ′F .所以P ′E +P ′F =P ′E +P ′B =BE .当点P 与点P ′重合时,PE +PF 的值最小,最小值为BE 的长.易知△AP ′B 和△EP ′F 均为等边三角形,所以P ′B =P ′E =5.所以BE =10.所以PE +PF 的最小值为10. 20.6三、21.解:(1)原式=x 2-2xy -x 2-2xy -y 2=-4xy -y 2;(2)原式=⎣⎢⎡⎦⎥⎤3a +2+(a +2)(a -2)a +2·a +2(a -1)2=a 2-1a +2·a +2(a -1)2=a +1a -1.22.解:(1)原式=4-a 2+a 2-2ab +3a 5b ÷a 8b 4=4-2ab +3a -3b -3. 当ab =-12时,原式=4-2×⎝ ⎛⎭⎪⎫-12+3×⎝ ⎛⎭⎪⎫-12-3=4+1-3⎝ ⎛⎭⎪⎫123=5-24=-19. (2)原式=a [(n -1)2-2(n -1)+1]=a (n -1-1)2=a (n -2)2. 23.解:(1)方程两边乘x 2-1,得x (x +1)=3(x -1)+x 2-1, 解得x =2.检验:当x =2时,x 2-1≠0, ∴原分式方程的解为x =2.(2)去分母,得2(x +1)=6(2x -1)-4(2x +1). 去括号,得2x +2=12x -6-8x -4, 解得x =6.经检验,x =6是分式方程的解. ∴原分式方程的解为x =6.24.解:(1)A (-3,3),B (-5,1),C (-1,0).(2)图略.关于y 轴对称的两个点的横坐标互为相反数,纵坐标相等(两点连线被y 轴垂直平分).(3)S △ABC =3×4-12×2×3-12×2×2-12×4×1=5. 25.(1)证明:在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE (SAS ). (2)解:△BOC 是等腰三角形. 理由:∵△ABD ≌△ACE , ∴∠ABD =∠ACE . ∵AB =AC , ∴∠ABC =∠ACB .∴∠ABC -∠ABD =∠ACB -∠ACE , 即∠OBC =∠OCB . ∴BO =CO ,即△BOC 是等腰三角形.26.解:(1)设甲工程队每天修路x km ,则乙工程队每天修路(x -0.5)km . 根据题意,得1.5×15x =15x -0.5,解得x =1.5.经检验,x =1.5是原分式方程的解,且符合题意,则x -0.5=1. 答:甲工程队每天修路1.5 km ,乙工程队每天修路1 km . (2)设甲工程队修路a 天,则乙工程队需要修路(15-1.5a )km , ∴乙工程队需要修路15-15a1=(15-1.5a )(天).由题意可得0.5a +0.4(15-1.5a )≤5.2, 解得a ≥8.答:甲工程队至少修路8天.27.证明:(1)∵∠ABC +∠ADC =180°,∠ADE +∠ADC =180°, ∴∠ABC =∠ADE . 在△ABC 和△ADE 中,⎩⎨⎧∠BAC =∠DAE ,AB =AD ,∠ABC =∠ADE ,∴△ABC≌△ADE(ASA).(2)∵△ABC≌△ADE,∴AC=AE,∠BCA=∠E.∴∠ACD=∠E.∴∠BCA=∠ACD,即CA平分∠BCD.(3)如图,过点A作AM⊥CE,垂足为点M.∵AM⊥CD,AF⊥CF,∠BCA=∠ACD,∴AF=AM.∵∠BAC=∠DAE,∴∠CAE=∠CAD+∠DAE=∠CAD+∠BAC=∠BAD=90°. ∴∠ACE=∠E=45°.∵AM⊥CE,∴∠ACE=∠CAM=∠EAM=∠E=45°.∴CM=AM=ME.又∵AF=AM,∴CE=CM+ME=2AM=2AF.八年级数学上册期中达标测试卷一、选择题(1~10小题各3分,11~16小题各2分,共42分)1.4的算术平方根是()A.±2 B. 2 C.±2 D.2 2.下列分式的值不可能为0的是()A.4x-2B.x-2x+1C.4x-9x-2D.2x+1x3.如图,若△ABC≌△CDA,则下列结论错误的是()A.∠2=∠1 B.∠3=∠4C.∠B=∠D D.BC=DC(第3题)(第5题)4.小亮用天平称得一个鸡蛋的质量为50.47 g,用四舍五入法将50.47精确到0.1为()A.50 B.50.0C.50.4 D.50.55.如图,已知∠1=∠2,AC=AE,添加下列一个条件后仍无法确定△ABC≌△ADE的是()A.∠C=∠E B.BC=DEC.AB=AD D.∠B=∠D6.如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE =10,AC=7,则AD的长为()A.5.5 B.4 C.4.5 D.3(第6题)(第8题)7.化简x 2x -1+11-x的结果是( )A .x +1 B.1x +1C .x -1D.x x -18.如图,数轴上有A ,B ,C ,D 四点,根据图中各点的位置,所表示的数与5-11最接近的点是( ) A .AB .BC .CD .D9.某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x 件电子产品,则可列方程为( ) A.300x =200x +30B.300x -30=200x C.300x +30=200x D.300x =200x -3010.如图,这是一个数值转换器,当输入的x 为-512时,输出的y 是( )(第10题)A .-32B.32C .-2D .211.如图,从①BC =EC ;②AC =DC ;③AB =DE ;④∠ACD =∠BCE 中任取三个为条件,余下一个为结论,则可以构成的正确说法的个数是( ) A .1B .2C .3D .4(第11题) (第12题)12.如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ ,已知PQ =5,NQ =9,则MH 的长为( ) A .3B .4C .5D .613.若△÷a 2-1a =1a -1,则“△”是( )A.a+1a B.aa-1C.aa+1D.a-1a14.以下命题的逆命题为真命题的是() A.对顶角相等B.同位角相等,两直线平行C.若a=b,则a2=b2D.若a>0,b>0,则a2+b2>015.x2+xx2-1÷x2x2-2x+1的值可以是下列选项中的()A.2 B.1 C.0 D.-1 16.定义:对任意实数x,[x]表示不超过x的最大整数,如[3.14]=3,[1]=1,[-1.2]=-2.对65进行如下运算:①[65]=8;②[8]=2;③[2]=1,这样对65运算3次后的结果就为1.像这样,一个正整数总可以经过若干次运算后使结果为1.要使255经过运算后的结果为1,则需要运算的次数是() A.3 B.4 C.5 D.6二、填空题(17小题3分,18,19小题每空2分,共11分)17.如图,要测量河两岸相对的两点A,B间的距离,先在AB的垂线BF上取两点C,D,使BC=CD,再作出BF的垂线DE,使点A,C,E在同一条直线上,可以证明△ABC≌△EDC,从而得到AB=DE,因此测得DE的长就是AB的长,判定△ABC≌△EDC,最恰当的理由是____________.(第17题)18.已知:7.2≈2.683,则720≈______,0.000 72≈__________.19.一艘轮船在静水中的最大航速为30 km/h,它以最大航速沿江顺流航行120 km 所用的时间与以最大航速逆流航行60 km所用的时间相同,如果设江水的流速为x km/h,根据题意可列方程为________________,江水的流速为________km/h.三、解答题(20小题8分,21~23小题各9分,24,25小题各10分,26小题12分,共67分)20.解分式方程.(1)3x-2=2-xx-2;(2)21+2x-31-2x=64x2-1.21.已知(3x+2y-14)2+2x+3y-6=0.求:(1)x+y的平方根;(2)y-x的立方根.22.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x的值,其中x=2 020.”甲同学把“x=2 020”错抄成“x=2 021”,但他的计算结果也是正确的.你说说这是怎么回事?23.如图,AB∥CD,AB=CD,AD,BC相交于点O,BE∥CF,BE,CF分别交AD于点E,F.求证:(1)△ABO≌△DCO;(2)BE=CF.(第23题)24.观察下列算式:①2×4×6×8+16=(2×8)2+16=16+4=20;②4×6×8×10+16=(4×10)2+16=40+4=44;③6×8×10×12+16=(6×12)2+16=72+4=76;④8×10×12×14+16=(8×14)2+16=112+4=116;….(1)根据以上规律计算: 2 016×2 018×2 020×2 022+16;(2)请你猜想2n(2n+2)(2n+4)(2n+6)+16(n为正整数)的结果(用含n的式子表示).25.下面是学习分式方程的应用时,老师板书的问题和两名同学所列的方程.根据以上信息,解答下列问题:(1)冰冰同学所列方程中的x表示______________________________________,庆庆同学所列方程中的y表示_____________________________________;(2)从两个方程中任选一个,写出它的等量关系;(3)解(2)中你所选择的方程,并回答老师提出的问题.26.如图①,AB=7 cm,AC⊥AB,BD⊥AB,垂足分别为A,B,AC=5 cm.点P 在线段AB上以2 cm/s的速度由点A向点B运动,同时,点Q在射线BD上运动.它们运动的时间为t s(当点P运动至点B时停止运动,同时点Q停止运动).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等?并判断此时线段PC和线段PQ的位置关系,请分别说明理由.(2)如图②,若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,点Q的运动速度为x cm/s,其他条件不变,当点P,Q运动到某处时,有△ACP与△BPQ 全等,求出相应的x,t的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.B 6.D 【点拨】∵AB ∥EF ,∴∠A =∠E .又AB =EF ,∠B =∠F , ∴△ABC ≌△EFD (ASA). ∴AC =DE =7.∴AD =AE -DE =10-7=3. 7.A 8.D 9.C 10.A 11.B 12.B 13.A 【点拨】∵△÷a 2-1a =1a -1,∴△=1a -1·a 2-1a =a +1a .14.B 15.D 16.A二、17.ASA 18.26.83;0.026 83 19.12030+x =6030-x;10 【点拨】根据题意可得 12030+x =6030-x,解得x =10, 经检验,x =10是原方程的解, 所以江水的流速为10 km/h.三、20.解:(1)去分母,得3=2(x -2)-x .去括号,得3=2x -4-x . 移项、合并同类项,得x =7. 经检验,x =7是原方程的解.(2)去分母,得2(1-2x )-3(1+2x )=-6. 去括号,得2-4x -3-6x =-6, 移项、合并同类项,得-10x =-5. 解得x =12.经检验,x =12是原方程的增根, ∴原分式方程无解.21.解:∵(3x +2y -14)2+2x +3y -6=0,(3x +2y -14)2≥0,2x +3y -6≥0,∴3x +2y -14=0,2x +3y -6=0. 解⎩⎨⎧3x +2y -14=0,2x +3y -6=0,得⎩⎨⎧x =6,y =-2. (1)x +y =6+(-2)=4, ∴x +y 的平方根为±4=±2.(2)y -x =-8,∴y -x 的立方根为3-8=-2.22.解:∵x 2-2x +1x 2-1÷x -1x 2+x -x =(x -1)2(x +1)(x -1)·x (x +1)x -1-x =x -x =0,∴该式的结果与x 的值无关,∴把x 的值抄错,计算的结果也是正确的. 23.证明:(1)∵AB ∥CD ,∴∠A =∠D ,∠ABO =∠DCO . 在△ABO 和△DCO 中,⎩⎨⎧∠A =∠D ,AB =CD ,∠ABO =∠DCO ,∴△ABO ≌△DCO (ASA). (2)∵△ABO ≌△DCO , ∴BO =CO . ∵BE ∥CF ,∴∠OBE =∠OCF ,∠OEB =∠OFC . 在△OBE 和△OCF 中,⎩⎨⎧∠OBE =∠OCF ,∠OEB =∠OFC ,OB =OC ,∴△OBE ≌△OCF (AAS),∴BE =CF .24.解:(1) 2 016×2 018×2 020×2 022+16 =(2 016×2 022)2+16=4 076 352+4=4 076 356. (2)2n (2n +2)(2n +4)(2n +6)+16=2n (2n +6)+4=4n 2+12n +4.25.解:(1)小红步行的速度;小红步行的时间(2)冰冰用的等量关系:小红乘公共汽车的时间+小红步行的时间=小红上学路上的时间.庆庆用的等量关系:公共汽车的速度=9×小红步行的速度.(上述等量关系,任选一个就可以)(3)选冰冰的方程:38-29x +2x =1,去分母,得36+18=9x ,解得x =6,经检验,x =6是原分式方程的解.答:小红步行的速度是6 km/h ;选庆庆的方程:38-21-y=9×2y , 去分母,得36y =18(1-y ),解得y =13,经检验,y =13是原分式方程的解, ∴小红步行的速度是2÷13=6(km/h).答:小红步行的速度是6 km/h.(对应(2)中所选方程解答问题即可)26.解:(1)△ACP ≌△BPQ ,PC ⊥PQ .理由如下:∵AC ⊥AB ,BD ⊥AB ,∴∠A =∠B =90°.由题意知AP =BQ =2 cm ,∵AB =7 cm ,∴BP =5 cm ,∴BP =AC .在△ACP 和△BPQ 中,∵⎩⎨⎧AP =BQ ,∠A =∠B ,AC =BP ,∴△ACP ≌△BPQ .∴∠C =∠BPQ .易知∠C +∠APC =90°,∴∠APC +∠BPQ =90°,∴∠CPQ =90°,∴PC ⊥PQ .(2)由题意可知AP =2t cm ,BP =(7-2t )cm ,BQ =xt cm. ①若△ACP ≌△BPQ ,则AC =BP ,AP =BQ ,∴5=7-2t ,2t =xt ,解得x =2,t =1;②若△ACP ≌△BQP ,则AC =BQ ,AP =BP ,∴5=xt ,2t =7-2t ,解得x =207,t =74.综上,当△ACP 与△BPQ 全等时,x =2,t =1或x =207,t =74.。
八年级数学期末考试测试卷(附答案)
八年级数学期末考试测试卷(附答案)班级___________姓名__________得分_________等级_________一、认认真真选,沉着应战!1.23表示().A. 2×2×2B. 2×3C. 3×3D. 2+2+2 2.在平面直角坐标系中。
点P (-2,3)关于x 轴的对称点在(). A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.-27的立方根与9的平方根的和是()A .0B .6C .-6D .0或-64.等腰但不等边的三角形的角平分线、高线、中线的总条数是(). A. 3B. 5C. 7D. 95、已知x 2+kxy+64y 2是一个完全式,则k 的值是() A .8 B .±8 C.16 D.±166.在如图中,AB = AC 。
BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是().A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE 的中点7.如图所示,在下列条件中,不能作为判断△ABD ≌△BAC 的条件是( )A. ∠D =∠C ,∠BAD =∠ABC B .∠BAD =∠ABC ,∠ABD =∠BACC .BD =AC ,∠BAD =∠ABCD .AD =BC ,BD =AC8.在以下四个图形中。
对称轴条数最多的一个图形是().9.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是().D.C.B.A.10.若A (x 1,y 1),B (x 2,y 2)为一次函数y =3x -1的图象上的两个不同的点,且x 1x 2≠0,设M =111x y ,N =221x y ,那么M 与N 的大小关系是 ( ) A .M >N B .M <NC. M =ND .不确定A. B. C. D.FEDCB A第6题第7题第18题二、仔仔细细填,记录自信!(本题共8小题,每小题3分,共24分)11.在数轴上表示3的点离原点的距离是。
初中八年级数学上册期末测试卷及答案【完美版】
初中八年级数学上册期末测试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若二次根式51x -有意义,则x 的取值范围是( )A .x >15B .x ≥15C .x ≤15D .x ≤52.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A .6<m <7B .6≤m <7C .6≤m ≤7D .6<m ≤73.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>4.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .75.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( )A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=6.一元二次方程(1)(1)23x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根7.实数a 、b 在数轴上的位置如图所示,且|a|>|b|2a a b +的结果为()A.2a+b B.-2a+b C.b D.2a-b8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度9.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°10.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x的不等式组531xa x-≥-⎧⎨-<⎩无解,则a的取值范围是________.2.若(x+p)与(x+5)的乘积中不含x的一次项,则p=__________.3.因式分解:24x-=__________.4.如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为________.5.如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为__________ .6.如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD的周长是________.三、解答题(本大题共6小题,共72分)1.解方程:2420x x+-=2.先化简,再求值:(x-1)÷(x-21xx-),其中x2+13.已知222111x x xAx x++=---.(1)化简A;(2)当x满足不等式组1030xx-≥⎧⎨-<⎩,且x为整数时,求A的值.4.(1)如图(1),已知:在△ABC 中,∠BAC =90°,AB=AC ,直线m 经过点A ,BD ⊥直线m, CE ⊥直线m,垂足分别为点D 、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE,若∠BDA=∠AEC=∠BAC ,试判断△DEF 的形状.5.如图,某市有一块长为()3a b +米,宽为()2a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当3,2a b ==时的绿化面积?6.某学校为改善办学条件,计划采购A 、B 两种型号的空调,已知采购3台A 型空调和2台B 型空调,需费用39000元;4台A 型空调比5台B 型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、B4、C5、D6、A7、C8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、a ≥22、-53、(x+2)(x-2)4、1456、20三、解答题(本大题共6小题,共72分)1、12x =-22x =-2、1+3、(1)11x -;(2)14、(1)见解析(2)成立(3)△DEF 为等边三角形5、(5a 2+3ab )平方米,63平方米6、(1)A 型空调和B 型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A 型空调10台,B 型空调20台,方案二:采购A 型空调11台,B 型空调19台,案三:采购A 型空调12台,B 型空调18台;(3)采购A 型空调10台,B 型空调20台可使总费用最低,最低费用是210000元.。
八年级数学期末试卷达标训练题(Word版 含答案)
八年级数学期末试卷达标训练题(Word 版 含答案)一、八年级数学全等三角形解答题压轴题(难)1.取一副三角板按图()1拼接,固定三角板60,()30ADC D ACD ∠=∠=,将三角板45()ABC BAC BCA ∠=∠=绕点A 依顺时针方向旋转一个大小为a 的角00)45(a ≤≤得到ABM ,图()2所示.试问:()1当a 为多少时,能使得图()2中//AB CD ?说出理由,()2连接BD ,假设AM 与CD 交于,E BM 与CD 交于F ,当00)45(a ≤≤时,探索DBM CAM BDC ∠+∠+∠值的大小变化情况,并给出你的证明.【答案】(1)15°;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105,证明见解析.【解析】【分析】(1)由//AB CD 得到30BAC C ∠=∠=,即可求出a ;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105︒,由FEM CAM C ∠=∠+∠,30C ∠=︒, EFM BDC DBM ∠=∠+∠, 45M ∠=︒,即可利用三角形内角和求出答案.【详解】()1当a 为15时,//AB CD ,理由:由图()2,若//AB CD ,则30BAC C ∠=∠=,453015a CAM BAM BAC ∴=∠=∠-∠=-︒=︒,所以,当a 为15时,//AB CD .注意:学生可能会出现两种解法:第一种:把//AB CD 当做条件求出a 为15,第二种:把a 为15当做条件证出//AB CD ,这两种解法都是正确的.()2DBM CAM BDC ∠+∠+∠的大小不变,是105︒证明: ,30FEM CAM C C ∠=∠+∠∠=︒,30FEM CAM ∴∠=∠+︒,EFM BDC DBM ∠=∠+∠,DBM CAM BDC EFM CAM ∴∠+∠+∠=∠+∠,180,45EFM FEM M M ∠+∠+∠=∠=︒,3045180BDC DBM CAM ∴∠+∠+∠+︒+︒=︒,1803045105DBM CAM BDC ∴∠+∠+∠=︒--=︒,所以,DBM CAM BDC ∠+∠+∠的大小不变,是105.【点睛】此题考查旋转的性质,平行线的性质,三角形的外角定理,三角形的内角和,(2)中将角度和表示为三角形的外角是解题的关键.2.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .【答案】(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.【解析】【分析】(1)根据已知条件易证∠BAC=∠DAE ,再由AB=AD ,AE=AC ,根据SAS 即可证得△ABC ≌△ADE ;(2)已知∠CAE=90°,AC=AE ,根据等腰三角形的性质及三角形的内角和定理可得∠E=45°,由(1)知△BAC ≌△DAE ,根据全等三角形的性质可得∠BCA=∠E=45°,再求得∠CAF=45°,由∠FAE=∠FAC+∠CAE 即可得∠FAE 的度数;(3)延长BF 到G ,使得FG=FB ,易证△AFB ≌△AFG ,根据全等三角形的性质可得AB=AG ,∠ABF=∠G ,再由△BAC ≌△DAE ,可得AB=AD ,∠CBA=∠EDA ,CB=ED ,所以AG=AD ,∠ABF=∠CDA ,即可得∠G=∠CDA ,利用AAS 证得△CGA ≌△CDA ,由全等三角形的性质可得CG=CD ,所以CG=CB+BF+FG=CB+2BF=DE+2BF .【详解】(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE ,在△BAC 和△DAE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△DAE (SAS );(2)∵∠CAE=90°,AC=AE ,∴∠E=45°,由(1)知△BAC ≌△DAE ,∴∠BCA=∠E=45°,∵AF ⊥BC ,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF 到G ,使得FG=FB ,∵AF ⊥BG ,∴∠AFG=∠AFB=90°,在△AFB 和△AFG 中,BF F AFB AFG AF AF G =⎧⎪∠=∠⎨⎪=⎩, ∴△AFB ≌△AFG (SAS ),∴AB=AG ,∠ABF=∠G ,∵△BAC ≌△DAE ,∴AB=AD ,∠CBA=∠EDA ,CB=ED ,∴AG=AD ,∠ABF=∠CDA ,∴∠G=∠CDA ,在△CGA和△CDA中,GCA DCACGA CDAAG AD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CGA≌△CDA,∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.【点睛】本题考查全等三角形的判定与性质,解决第3问需作辅助线,延长BF到G,使得FG=FB,证得△CGA≌△CDA是解题的关键.3.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,他们的运动时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由(2)判断此时线段PC和线段PQ的关系,并说明理由。
八年级数学期末试卷达标训练题(Word版 含答案)
八年级数学期末试卷达标训练题(Word版含答案)一、八年级数学全等三角形解答题压轴题(难)1.如图,Rt△ABC≌Rt△CED(∠ACB=∠CDE=90°),点D在BC上,AB与CE相交于点F(1) 如图1,直接写出AB与CE的位置关系(2) 如图2,连接AD交CE于点G,在BC的延长线上截取CH=DB,射线HG交AB于K,求证:HK=BK【答案】(1)AB⊥CE;(2)见解析.【解析】【分析】(1)由全等可得∠ECD=∠A,再由∠B+∠A=90°,可得∠B+ECD=90°,则AB⊥CE.(2)延长HK于DE交于H,易得△ACD为等腰直角三角形,∠ADC=45°,易得DH=DE,然后证明△DGH≌△DGE,所以∠H=∠E,则∠H=∠B,可得HK=BK.【详解】解:(1)∵Rt△ABC≌Rt△CED,∴∠ECD=∠A,∠B=∠E,BC=DE,AC=CD∵∠B+∠A=90°∴∠B+ECD=90°∴∠BFC=90°,∴AB⊥CE(2)在Rt△ACD中,AC=CD,∴∠ADC=45°,又∵∠CDE=90°,∴∠HDG=∠CDG=45°∵CH=DB,∴CH+CD=DB+CD,即HD=BC,∴DH=DE,在△DGH和△DGE中,DH=DEHDG=EDG=45DG=DG⎧⎪∠∠⎨⎪⎩∴△DGH≌△DGE(SAS)∴∠H=∠E又∵∠B=∠E∴∠H=∠B,∴HK=BK【点睛】本题考查全等三角形的判定与性质,利用全等找出角相等,再利用等角对等边判定线段相等是本题的关键.2.如图,在平面直角坐标系中,A、B坐标为()6,0、()0,6,P为线段AB上的一点.(1)如图1,若P为AB的中点,点M、N分别是OA、OB边上的动点,且保持AM ON=,则在点M、N运动的过程中,探究线段PM、PN之间的位置关系与数量关系,并说明理由.(2)如图2,若P为线段AB上异于A、B的任意一点,过B点作BD OP⊥,交OP、OA分别于F、D两点,E为OA上一点,且PEA BDO=∠∠,试判断线段OD与AE的数量关系,并说明理由.【答案】(1)PM=PN,PM⊥PN,理由见解析;(2)OD=AE,理由见解析【解析】【分析】(1)连接OP.只要证明△PON≌△PAM即可解决问题;(2)作AG⊥x轴交OP的延长线于G.由△DBO≌△GOA,推出OD=AG,∠BDO=∠G,再证明△PAE≌△PAG即可解决问题;【详解】(1)结论:PM=PN,PM⊥PN.理由如下:如图1中,连接OP.∵A、B坐标为(6,0)、(0,6),∴OB=OA=6,∠AOB=90°,∵P为AB的中点,∴OP=12AB=PB=PA,OP⊥AB,∠PON=∠PAM=45°,∴∠OPA=90°,在△PON和△PAM中,ON AMPON PAMOP AP=⎧⎪∠=∠⎨⎪=⎩,∴△PON ≌△PAM (SAS ),∴PN=PM ,∠OPN=∠APM ,∴∠NPM=∠OPA=90°,∴PM ⊥PN ,PM=PN .(2)结论:OD=AE .理由如下:如图2中,作AG ⊥x 轴交OP 的延长线于G .∵BD ⊥OP ,∴∠OAG=∠BOD=∠OFD=90°,∴∠ODF+∠AOG=90°,∠ODF+∠OBD=90°,∴∠AOG=∠DBO ,∵OB=OA ,∴△DBO ≌△GOA ,∴OD=AG ,∠BDO=∠G ,∵∠BDO=∠PEA ,∴∠G=∠AEP ,在△PAE 和△PAG 中,AEP G PAE PAG AP AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PAE ≌△PAG (AAS ),∴AE=AG ,∴OD=AE .【点睛】考查了等腰直角三角形的性质、全等三角形的判定和性质、坐标与图形性质、直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.3.已知:在ABC ∆中,,90AB AC BAC =∠=︒,PQ 为过点A 的一条直线,分别过B C 、两点作,BM PQ CN PQ ⊥⊥,垂足分别为M N 、.(1)如图①所示,当PQ 与BC 边有交点时,求证:MN CN BM =-;(2)如图②所示,当PQ 与BC 边不相交时,请写出线段BM CN 、和MN 之间的数量关系,并说明理由.【答案】(1)见解析;(2)MN BM CN =+(或BM MN CN =-或CN MN BM =-),理由见解析【解析】【分析】(1)根据已知条件先证AMB CNA ≌∆∆,得到,AM CN BM AN ==,即可证得MN CN BM =-;(2)由(1)知AMB CNA ≌∆∆,得到,AM CN BM AN ==,即可确定MN BM CN =+.【详解】证明:∵,BM PQ CN PQ ⊥⊥,∴∠AMB=∠CAN=90︒,∵∠BAC=90︒,∴∠CAN+∠ACN=90︒,∠CAN+∠BAM=90︒(或CAN ACN CAN BAM ∠+∠=∠+∠)∴BAM ACN ∠=∠,在AMB ∆和CNA ∆中,∵AMB CNA BAM ACN AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AMB CNA AAS ≌∆∆,∴,AM CN BM AN ==,∵MN AM AN =-,∴MN CN BM =-.(2)MN BM CN =+(或BM MN CN =-或CN MN BM =-).理由:∵,BM PQ CN PQ ⊥⊥,∴∠AMB=∠CAN=90︒,∵∠BAC=90︒,∴∠CAN+∠ACN=90︒,∠CAN+∠BAM=90︒(或CAN ACN CAN BAM∠+∠=∠+∠),∴BAM ACN∠=∠,在AMB∆和CNA∆中,∵AMB CNABAM ACNAB CA∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AMB CNA AAS≌∆∆,∴,AM CN BM AN==,∴MN AN AM BM CN=+=+.【点睛】此题考察三角形全等的应用,正确确定全等三角形是解题关键,由此得到对应相等的线段,确定它们之间的和差关系得到BM CN、和MN之间的关系式.4.如图,ABC∆是等腰直角三角形,090BAC∠=,点D是直线BC上的一个动点(点D与点B C、不重合),以AD为腰作等腰直角ADE∆,连接CE.(1)如图①,当点D在线段BC上时,直接写出,BC CE的位置关系,线段,BC CD,CE之间的数量关系;(2)如图②,当点D在线段BC的延长线上时,试判断线段BC,CE的位置关系,线段,,BC CD CE之间的数量关系,并说明理由;(3)如图③,当点D在线段CB的延长线上时,试判断线段,BC CE的位置关系,线段,,BC CD CE之间的数量关系,并说明理由.【答案】(1)见解析;(2)BC CE⊥,CE BC CD=+,理由见解析;(3),BC CE CD BC CE⊥=+,理由见解析【解析】【分析】(1)根据条件AB=AC,∠BAC=90°,AD=AE,∠DAE=90°,判定△ABD≌△ACE(SAS),利用两角的和即可得出BC CE⊥;利用线段的和差即可得出BC CE CD=+;(2)同(1)的方法根据SAS证明△ABD≌△ACE,得出BD=CE,∠ACE=∠ABD,从而得出结论;(3)先根据SAS证明△ABD≌△ACE,得出ADB AEC∠=∠,BD CE=,从而得出结论.【详解】(1)∵△ABC 、△ADE 是等腰直角三角形,∴AB=AC ,AE =AD ,在△△ABD 和△ACE 中90AB AC BAC DAE AD AE ⎧⎪∠∠=︒⎨⎪⎩=== , ∴△ABD ≌△ACE (SAS ),∴∠B =∠ACE ,BD=CE,又∵△ABC 是等腰直角三角形,∴∠B+∠ACB=90︒,∴∠ACE +∠ACB=90︒,即BC CE ⊥,∵BC=BD+CD, BD=CE ,∴BC CE CD =+;(2)BC CE ⊥,CE BC CD =+,理由如下:∵ABC ∆、ADE ∆是等腰直角三角形,∴0,,90AB AC AD AE BAC DAE ==∠=∠=,∴BAC DAC DAE DAC ∠+∠=∠+∠即BAD CAE ∠=∠,在ABD ∆和ACE ∆中 AB AC BAD CAE AD AE ⎧⎪∠=∠⎨⎪⎩== ∴()ABD ACE SAS ∆≅∆∴BD CE =∵BD BC CD =+∴CE BC CD =+,∴ABD ACE ∠=∠,∵090ABD ACE ∠+∠=∴090ACE ACB ∠+∠=∴BC CE ⊥.(3),BC CE CD BC CE ⊥=+,理由如下:∵ABC ADE ∆∆、是等腰直角三角形,∴0,,90AB AC AD AE BAC DAE ==∠=∠=,∴BAC BAE DAE BAE ∠-∠=∠-∠,即BAD CAE ∠=∠,在ABD ∆和ACE ∆中AB ACBAD CAEAD AE⎧⎪∠=∠⎨⎪⎩==∴()ABD ACE SAS∆≅∆,∴ADB AEC∠=∠,BD CE=,∵CD BD BC=+,∴CD CE BC=+,∵090ADE AED∠+∠=,即090ADB CDE AED∠+∠+∠=∴090AEC CDE AED∠+∠+∠=,∴090DCE∠=,即BC CE⊥.【点睛】考查了全等三角形的判定与性质以及等腰直角三角形的性质的运用,解题关键是根据利用两边及其夹角分别对应相等的两个三角形全等判定三角形全等.5.已知点P是线段MN上一动点,分别以PM,PN为一边,在MN的同侧作△APM,△BPN,并连接BM,AN.(Ⅰ)如图1,当PM=AP,PN=BP且∠APM=∠BPN=90°时,试猜想BM,AN之间的数量关系与位置关系,并证明你的猜想;(Ⅱ)如图2,当△APM,△BPN都是等边三角形时,(Ⅰ)中BM,AN之间的数量关系是否仍然成立?若成立,请证明你的结论;若不成立,试说明理由.(Ⅲ)在(Ⅱ)的条件下,连接AB得到图3,当PN=2PM时,求∠PAB度数.【答案】(1)BM=AN,BM⊥AN.(2)结论成立.(3)90°.【解析】【分析】(1)根据已知条件可证△MBP≌△ANP,得出MB=AN,∠PAN=∠PMB,再延长MB交AN于点C,得出MCN90∠=︒,因此有BM⊥AN;(2)根据所给条件可证△MPB≌△APN,得出结论BM=AN;(3)取PB的中点C,连接AC,AB,通过已知条件推出△APC为等边三角形,∠PAC=∠PCA=60°,再由CA=CB,进一步得出∠PAB的度数.【详解】解:(Ⅰ)结论:BM=AN,BM⊥AN.理由:如图1中,∵MP=AP,∠APM=∠BPN=90°,PB=PN,∴△MBP≌△ANP(SAS),∴MB=AN.延长MB交AN于点C.∵△MBP≌△ANP,∴∠PAN=∠PMB,∵∠PAN+∠PNA=90°,∴∠PMB+∠PNA=90°,∴∠MCN=180°﹣∠PMB﹣∠PNA=90°,∴BM⊥AN.(Ⅱ)结论成立理由:如图2中,∵△APM,△BPN,都是等边三角形∴∠APM=∠BPN=60°∴∠MPB=∠APN=120°,又∵PM=PA,PB=PN,∴△MPB≌△APN(SAS)∴MB=AN.(Ⅲ)如图3中,取PB的中点C,连接AC,AB.∵△APM,△PBN都是等边三角形∴∠APM=∠BPN=60°,PB=PN∵点C是PB的中点,且PN=2PM,∴2PC=2PA=2PM=PB=PN,∵∠APC=60°,∴△APC为等边三角形,∴∠PAC=∠PCA=60°,又∵CA=CB,∴∠CAB=∠ABC=30°,∴∠PAB=∠PAC+∠CAB=90°.【点睛】本题是一道关于全等三角形的综合性题目,充分考查了学生对全等三角形的判定定理及其性质的应用的能力,此类题目常常需要数形结合,借助辅助线才得以解决,因此,作出合理正确的辅助线是解题的关键.二、八年级数学轴对称解答题压轴题(难)6.(1)如图①,D是等边△ABC的边BA上一动点(点D与点B不重合),连接DC,以DC为边,在BC上方作等边△DCF,连接AF,你能发现AF与BD之间的数量关系吗?并证明你发现的结论;(2)如图②,当动点D运动至等边△ABC边BA的延长线时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?若成立,请证明;(3)Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与B不重合),连接DC,以DC为边在BC上方和下方分别作等边△DCF和等边△DCF′,连接AF,BF′,探究AF,BF′与AB有何数量关系?并证明你的探究的结论;Ⅱ.如图④,当动点D在等边△ABC的边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.【答案】(1)AF=BD,理由见解析;(2)AF与BD在(1)中的结论成立,理由见解析;(3)Ⅰ. AF+BF′=AB,理由见解析,Ⅱ.Ⅰ中的结论不成立,新的结论是AF=AB+BF′,理由见解析.【解析】【分析】(1)由等边三角形的性质得BC=AC,∠BCA=60°,DC=CF,∠DCF=60°,从而得∠BCD=∠ACF,根据SAS证明△BCD≌△ACF,进而即可得到结论;(2)根据SAS证明△BCD≌△ACF,进而即可得到结论;(3)Ⅰ.易证△BCD≌△ACF(SAS),△BCF′≌△ACD(SAS),进而即可得到结论;Ⅱ.证明△BCF′≌△ACD,结合AF=BD,即可得到结论.【详解】(1)结论:AF=BD,理由如下:如图1中,∵△ABC是等边三角形,∴BC=AC,∠BCA=60°,同理知,DC=CF,∠DCF=60°,∴∠BCA-∠DCA=∠DCF-∠DCA,即:∠BCD=∠ACF,在△BCD和△ACF中,∵BC ACBCD ACF DC FC=∠=∠=⎧⎪⎨⎪⎩,∴△BCD≌△ACF(SAS),∴BD=AF;(2)AF与BD在(1)中的结论成立,理由如下:如图2中,∵△ABC是等边三角形,∴BC=AC,∠BCA=60°,同理知,DC=CF,∠DCF=60°,∴∠BCA+∠DCA=∠DCF+∠DCA,即∠BCD=∠ACF,在△BCD和△ACF中,∵BC ACBCD ACF DC FC=∠=∠=⎧⎪⎨⎪⎩,∴△BCD≌△ACF(SAS),∴BD=AF;(3)Ⅰ.AF+BF′=AB,理由如下:由(1)知,△BCD≌△ACF(SAS),则BD=AF;同理:△BCF′≌△ACD(SAS),则BF′=AD,∴AF+BF′=BD+AD=AB;Ⅱ.Ⅰ中的结论不成立,新的结论是AF=AB+BF′,理由如下:同理可得:BCF ACD∠=∠′,F C DC=′,在△BCF′和△ACD中,BC ACBCF ACDF C DC=∠⎧⎪=∠=⎪⎨⎩′′,∴△BCF′≌△ACD(SAS),∴BF′=AD,又由(2)知,AF=BD,∴AF=BD=AB+AD=AB+BF′,即AF=AB+BF′.【点睛】本题主要考查等边三角形的性质定理,三角形全等的判定和性质定理,熟练掌握三角形全等的判定和性质定理,是解题的关键.7.定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.【答案】(1)∠A=36°;(2)如图所示:见解析;(3)如图所示:见解析;∠C为20°或40°的角.【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.(2)根据(1)的解题过程作出△ABC的三等分线;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C 在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;【详解】(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=180?-x2,可得2x=180?-x2,解得:x=36°,则∠A=36°;(2)根据(1)的解题过程作出△ABC的三等分线,如图1;由45°自然想到等腰直角三角形,有两种情况,①如图2,过底角一顶点作对边的高,形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;②如图3,以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)如图4所示:①当AD=AE时,∵2x+x=30°+30°,∴x=20°;②当AD=DE时,∵30°+30°+2x+x=180°,∴x=40°;综上所述,∠C为20°或40°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.8.如图,在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边△CDE,连结BE.(1)求∠CAM的度数;(2)若点D在线段AM上时,求证:△ADC≌△BEC;(3)当动D在直线..AM上时,设直线BE与直线AM的交点为O,试判断∠AOB是否为定值?并说明理由.【答案】(1)30°;(2)答案见解析;(3)∠AOB是定值,∠AOB=60°.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC=BC,DC=EC,∠ACB=∠DCE=60°,由等式的性质就可以∠BCE=∠ACD,根据SAS就可以得出△ADC≌△BEC;(3)分情况讨论:当点D在线段AM上时,如图1,由(2)可知△ACD≌△BCE,就可以求出结论;当点D在线段AM的延长线上时,如图2,可以得出△ACD≌△BCE而有∠CBE=∠CAD=30°而得出结论;当点D在线段MA的延长线上时,如图3,通过得出△ACD≌△BCE同样可以得出结论.【详解】(1)∵△ABC是等边三角形,∴∠BAC=60°.∵线段AM为BC边上的中线,∴∠CAM12∠BAC,∴∠CAM=∠BAM=30°.(2)∵△ABC与△DEC都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠DCB+∠BCE,∴∠ACD =∠BCE.在△ADC 和△BEC 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ); (3)∠AOB 是定值,∠AOB =60°.理由如下:①当点D 在线段AM 上时,如图1,由(2)可知△ACD ≌△BCE ,则∠CBE =∠CAD =30°,又∠ABC =60°,∴∠CBE +∠ABC =60°+30°=90°.∵△ABC 是等边三角形,线段AM 为BC 边上的中线,∴AM 平分∠BAC ,即11603022BAM BAC ∠∠==⨯︒=︒,∴∠BOA =90°﹣30°=60°.②当点D 在线段AM 的延长线上时,如图2.∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠DCB =∠DCB +∠DCE ,∴∠ACD =∠BCE . 在△ACD 和△BCE 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴∠CBE =∠CAD =30°.由(1)得:∠BAM =30°,∴∠BOA =90°﹣30°=60°.③当点D 在线段MA 的延长线上时.∵△ABC 与△DEC 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD +∠ACE =∠BCE +∠ACE =60°,∴∠ACD =∠BCE .在△ACD 和△BCE 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴∠CBE =∠CAD .由(1)得:∠CAM =30°,∴∠CBE =∠CAD =150°,∴∠CBO =30°,∠BAM =30°,∴∠BOA =90°﹣30°=60°.综上所述:当动点D 在直线AM 上时,∠AOB 是定值,∠AOB =60°.【点睛】本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.9.小明在学习了“等边三角形”后,激发了他的学习和探究的兴趣,就想考考他的朋友小崔,小明作了一个等边ABC ∆,如图1,并在边AC 上任意取了一点F (点F 不与点A 、点C 重合),过点F 作FH AB ⊥交AB 于点H ,延长CB 到G ,使得BG AF =,连接FG 交AB 于点l .(1)若10AC =,求HI 的长度;(2)如图2,延长BC 到D ,再延长BA 到E ,使得AE BD =,连接ED ,EC ,求证:ECD EDC ∠=∠.【答案】(1)HI =5;(2)见解析.【解析】【分析】(1)作FP ∥BC 交AB 于点P ,证明APF ∆是等边三角形得到AH=PH , 再证明PFI BGI ∆≅∆得到PI=BI ,于是可得HI =12AB ,即可求解; (2)延长BD 至Q ,使DQ=AB ,连结EQ ,就可以得出BE=BQ ,得出△BEQ 是等边三角形,就可以得出BE=QE ,得出△BCE ≌△QDE 就可以得出结论.【详解】解:如图1,作FP∥BC交AB于点P,∵ABC∆是等边三角形,∴∠ABC=∠A=60°,∵FP∥BC,∴∠APF=∠ABC=60°, ∠PFI=∠BGI,∴∠APF=∠A=60°,∴APF∆是等边三角形,∴PF=AF,∵FH AB⊥,∴AH=PH,∵AF=BG,∴PF=BG,∴在PFI∆和BGI∆中,PIF BIGPFI BGIPF BG∠=∠⎧⎪∠=∠⎨⎪=⎩,∴PFI BGI∆≅∆,∴PI=BI,∴PI+PH=BI+AH=12AB,∴HI=PI+PH =12AB=1102⨯=5;(2)如图2,延长BD至Q,使DQ=AB,连结EQ,∵△ABC 是等边三角形,∴AB=BC=AC ,∠B=60°.∵AE=BD ,DQ=AB ,∴AE+AB=BD+DQ ,∴BE=BQ .∵∠B=60°,∴△BEQ 为等边三角形,∴∠B=∠Q=60°,BE=QE .∵DQ=AB ,∴BC=DQ .∴在△BCE 和△QDE 中,BC DQ B Q BE QE =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△QDE (SAS ),∴EC=ED .∴∠ECD=∠EDC.【点睛】本题考查了等边三角形的判定及性质的运用,全等三角形的判定及性质的运用,解答时作出相应辅助线构造全等三角形是关键.本题难度较大,需要有较强的综合能力.10.如果一个三角形能被一条线段割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,ABC ∆是等腰锐角三角形,()AB AC AB BC =>,若ABC ∠的角平分线BD 交AC 于点D ,且BD 是ABC ∆的一条特异线,则BDC ∠= 度.(2)如图2,ABC ∆中,2B C ∠=∠,线段AC 的垂直平分线交AC 于点D ,交BC 于点E ,求证:AE 是ABC ∆的一条特异线;(3)如图3,若ABC ∆是特异三角形,30A ∠=,B 为钝角,不写过程,直接写出所有可能的B 的度数.【答案】(1)72;(2)证明见解析;(3)∠B度数为:135°、112.5°或140°.【解析】【分析】(1)根据等腰三角形性质得出∠C=∠ABC=∠BDC=2∠A,据此进一步利用三角形内角和定理列出方程求解即可;(2)通过证明△ABE与△AEC为等腰三角形求解即可;(3)根据题意分当BD为特异线、AD为特异线以及CD为特异线三种情况分类讨论即可.【详解】(1)∵AB=AC,∴∠ABC=∠C,∵BD平分∠ABC,∴∠ABD=∠CBD=12∠ABC,∵BD是△ABC的一条特异线,∴△ABD与△BCD为等腰三角形,∴AD=BD=BC,∴∠A=∠ABD,∠C=∠BDC,∴∠ABC=∠C=∠BDC,∵∠BDC=∠A+∠ABD=2∠A,设∠A=x,则∠C=∠ABC=∠BDC=2x,在△ABC中,∠A+∠ABC+∠C=180°,即:x+2x+2x=180°,∴x=36°,∴∠BDC=72°,故答案为:72;(2)∵DE是线段AC的垂直平分线,∴EA=EC,∴△EAC为等腰三角形,∴∠EAC=∠C,∴∠AEB=∠EAC+∠C=2∠C,∵∠B=2∠C,∴∠AEB=∠B,∴△EAB 为等腰三角形,∴AE 是△ABC 的一条特异线;(3)如图3,当BD 是特异线时,如果AB=BD=DC ,则∠ABC=∠ABD+∠DBC=120°+15°=135°;如果AD=AC ,DB=DC ,则∠ABC=∠ABD+∠DBC=75°+37.5°=112.5°; 如果AD=DB ,DC=DB ,则∠ABC=∠ABD+∠DBC=30°+60°=90°,不符合题意,舍去;如图4,当AD 是特异线时,AB=BD ,AD=DC ,则:∠ABC=180°−20°−20°=140°;当CD 为特异线时,不符合题意;综上所述,∠B 度数为:135°、112.5°或140°.【点睛】本题主要考查了等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.我们知道对于一个图形,通过不同的方法计算图形的面积时,可以得到一个数学等式.例如由图1可以得到()()22322a ab b a b a b ++=++.请回答下列问题:(1)写出图2中所表示的数学等式是 ;(2)如图3,用四块完全相同的长方形拼成正方形,用不同的方法,计算图中阴影部分的面积,你能发现什么?(用含有x ,y 的式子表示) ; (3)通过上述的等量关系,我们可知: 当两个正数的和一定时,它们的差的绝对值越小,则积越 (填“ 大”“或“小”);当两个正数的积一定时,它们的差的绝对值越小,则和越 (填“ 大”或“小”).【答案】(1)22(2)(2)225a b a b a b ab ++=++;(2)22()()4x y x y xy +=-+;(3)大 小【解析】【分析】(1)图2面积有两种求法,可以由长为2a+b ,宽为a+2b 的矩形面积求出,也可以由两个边长为a 与边长为b 的两正方形,及4个长为a ,宽为b 的矩形面积之和求出,表示即可; (2)阴影部分的面积可以由边长为x+y 的大正方形的面积减去边长为x-y 的小正方形面积求出,也可以由4个长为x ,宽为y 的矩形面积之和求出,表示出即可;(3)两正数和一定,则和的平方一定,根据等式224()()xy x y x y =+--,得到被减数一定,差的绝对值越小,即为减数越小,得到差越大,即积越大;当两正数积一定时,即差一定,差的绝对值越小,得到减数越小,可得出被减数越小;【详解】(1)看图可知,22(2)(2)225a b a b a b ab ++=++(2)22()()4x y x y xy +=-+(3)当两个正数的和一定时,它们的差的绝对值越小则积越大;当两个正数的积一定时,它们的差的绝对值越小则和越小.【点睛】本题考点:整式的混合运算,此题考查了整式的混合运算的应用,弄清题意是解本题的关键.12.(阅读材料)因式分解:()()221x y x y ++++.解:将“x y +”看成整体,令x y A +=,则原式()22211A A A =++=+.再将“A ”还原,原式()21x y =++.上述解题用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法.(问题解决)(1)因式分解:()()2154x y x y +-+-;(2)因式分解:()()44a b a b ++-+;(3)证明:若n 为正整数,则代数式()()()21231n n n n ++++的值一定是某个整数的平方.【答案】(1)()()144x y x y +-+-1.(2)()22a b +-;(3)见解析. 【解析】【分析】(1)把(x-y )看作一个整体,直接利用十字相乘法因式分解即可;(2)把a+b 看作一个整体,去括号后利用完全平方公式即可将原式因式分解;(3)将原式转化为()()223231n n n n ++++,进一步整理为(n 2+3n+1)2,根据n 为正整数得到n 2+3n+1也为正整数,从而说明原式是整数的平方.【详解】(1)()()[][]21541()14()(1)(144)x y x y x y x y x y x y +-+-=+-+-=+-+-; (2)()()2244()4()4(2)a b a b a b a b a b ++-+=+-++=+-; (3)原式()()223231n n n n =++++()()2223231n n n n =++++ ()2231n n =++. ∵n 为正整数,∴231n n ++为正整数.∴代数()()()21231n n n n ++++的值一定是某个整数的平方. 【点睛】本题考查因式分解的应用,解题的关键是仔细读题,理解题意,掌握整体思想解决问题的方法.13.在我国南宋数学家杨辉(约13世纪)所著的《详解九章算术》(1261年)一书中,用下图的三角形解释二项和的乘方规律.杨辉在注释中提到,在他之前北宋数学家贾宪(1050年左右)也用过上述方法,因此我们称这个三角形为“杨辉三角”或“贾宪三角”.杨辉三角两腰上的数都是1,其余每一个数为它上方(左右)两数的和.事实上,这个三角形给出了()n a b +(1,2,3,4,5,6)n =的展开式(按a 的次数由大到小的顺序)的系数规律.例如,此三角形中第三行的3个数1,2,1,恰好对应着222()2a b a ab b +=++展开式中的各项系数,第四行的4个数1,3,3,1,恰好对应着+=+++33223()33a b a a b ab b 展开式中的各项系数,等等.请依据上面介绍的数学知识,解决下列问题:(1)写出4()a b +的展开式;(2)利用整式的乘法验证你的结论.【答案】(1)++++432234a 4a b 6a b 4ab b ;(2)见解析【解析】【分析】(1)运用材料所提供的结论即可写出;(2)利用整式的乘法求解验证即可.【详解】(1)4322344()464a b a a b a b ab b +=++++,(2)方法一:()()()43a b a b a b +=+•+=()()322333a b a a b ab b ++++4322332234=33+33a a b a b ab a b a b ab b ++++++432234464a a b a b ab b =++++方法二:()()()422a b a b a b +=+•+=2222(2)(2)a ab b a ab b ++++=43223223223422422a a b a b a b a b ab a b ab b ++++++++= ++++432234a 4a b 6a b 4ab b .【点睛】解决阅读题的关键是读懂题目所给材料并理解,应用题目中给出的信息解决问题.14.阅读理解题: 定义:如果一个数的平方等于﹣1,记为i 2=﹣1,这个数i 叫做虚数单位.那么形如a+bi (a ,b 为实数)的数就叫做复数,a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i )+(3﹣4i )=5﹣3i .(1)填空:i 3= ,2i 4= ;(2)计算:①(2+i )(2﹣i );②(2+i )2;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:(x+3y )+3i=(1﹣x )﹣yi ,(x ,y 为实数),求x ,y 的值.(4)试一试:请你参照i 2=﹣1这一知识点,将m 2+25(m 为实数)因式分解成两个复数的积.【答案】(1)i ;2(2)①5②3+4i (3)x=5,y=﹣3(4)m 2+25=(m+5i )(m ﹣5i )【解析】【分析】(1)根据同底数幂的乘法法则及2i 的概念直接运算;(2)利用平方差、完全平方公式把原式展开,根据21i =-计算即可;(3)根据虚数定义得出方程组,解方程组即可;(4)根据21i =- 将25转化为2(-5)i ,再利用平方差公式进行因式分解即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学期末试卷达标训练题(Word 版 含答案)一、八年级数学全等三角形解答题压轴题(难)1.如图,在ABC 中,45ABC ∠=,AD ,BE 分别为BC ,AC 边上的高,连接DE ,过点D 作DF DE ⊥与点F ,G 为BE 中点,连接AF ,DG .(1)如图1,若点F 与点G 重合,求证:AF DF ⊥;(2)如图2,请写出AF 与DG 之间的关系并证明.【答案】(1)详见解析;(2)AF=2DG,且AF ⊥DG,证明详见解析.【解析】【分析】(1) 利用条件先△DAE ≌△DBF,从而得出△FDE 是等腰直角三角形,再证明△AEF 是等腰直角三角形,即可.(2) 延长DG 至点M,使GM=DG,交AF 于点H,连接BM, 先证明△BGM ≌△EGD,再证明△BDM ≌△DAF 即可推出.【详解】解:(1)证明:设BE 与AD 交于点H..如图,∵AD,BE 分别为BC,AC 边上的高,∴∠BEA=∠ADB=90°.∵∠ABC=45°,∴△ABD 是等腰直角三角形.∴AD=BD.∵∠AHE=∠BHD,∴∠DAC=∠DBH.∵∠ADB=∠FDE=90°,∴∠ADE=∠BDF.∴△DAE ≌△DBF.∴BF=AE,DF=DE.∴△FDE 是等腰直角三角形.∴∠DFE=45°.∵G 为BE 中点,∴BF=EF.∴AE=EF.∴△AEF 是等腰直角三角形.∴∠AFE=45°.∴∠AFD=90°,即AF ⊥DF.(2)AF=2DG,且AF ⊥DG.理由:延长DG 至点M,使GM=DG,交AF 于点H,连接BM,∵点G 为BE 的中点,BG=GE.∵∠BGM ∠EGD,∴△BGM ≌△EGD.∴∠MBE=∠FED=45°,BM=DE.∴∠MBE=∠EFD,BM=DF.∵∠DAC=∠DBE,∴∠MBD=∠MBE+∠DBE=45°+∠DBE.∵∠EFD=45°=∠DBE+∠BDF,∴∠BDF=45°-∠DBE.∵∠ADE=∠BDF,∴∠ADF=90°-∠BDF=45°+∠DBE=∠MBD.∵BD=AD,∴△BDM ≌△DAF.∴DM=AF=2DG,∠FAD=∠BDM.∵∠BDM+∠MDA=90°,∴∠MDA+∠FAD=90°.∴∠AHD=90°.∴AF ⊥DG.∴AF=2DG,且AF ⊥DG【点睛】本题考查三角形全等的判定和性质,关键在于灵活运用性质.2.取一副三角板按图()1拼接,固定三角板60,()30ADC D ACD ∠=∠=,将三角板45()ABC BAC BCA ∠=∠=绕点A 依顺时针方向旋转一个大小为a 的角00)45(a ≤≤得到ABM ,图()2所示.试问:()1当a 为多少时,能使得图()2中//AB CD ?说出理由,()2连接BD ,假设AM 与CD 交于,E BM 与CD 交于F ,当00)45(a ≤≤时,探索DBM CAM BDC ∠+∠+∠值的大小变化情况,并给出你的证明.【答案】(1)15°;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105,证明见解析.【解析】【分析】(1)由//AB CD 得到30BAC C ∠=∠=,即可求出a ;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105︒,由FEM CAM C ∠=∠+∠,30C ∠=︒, EFM BDC DBM ∠=∠+∠, 45M ∠=︒,即可利用三角形内角和求出答案.【详解】()1当a 为15时,//AB CD ,理由:由图()2,若//AB CD ,则30BAC C ∠=∠=, 453015a CAM BAM BAC ∴=∠=∠-∠=-︒=︒,所以,当a 为15时,//AB CD .注意:学生可能会出现两种解法:第一种:把//AB CD 当做条件求出a 为15,第二种:把a 为15当做条件证出//AB CD ,这两种解法都是正确的.()2DBM CAM BDC ∠+∠+∠的大小不变,是105︒证明: ,30FEM CAM C C ∠=∠+∠∠=︒,30FEM CAM ∴∠=∠+︒,EFM BDC DBM ∠=∠+∠,DBM CAM BDC EFM CAM ∴∠+∠+∠=∠+∠,180,45EFM FEM M M ∠+∠+∠=∠=︒,3045180BDC DBM CAM ∴∠+∠+∠+︒+︒=︒,1803045105DBM CAM BDC ∴∠+∠+∠=︒--=︒,所以,DBM CAM BDC ∠+∠+∠的大小不变,是105.【点睛】此题考查旋转的性质,平行线的性质,三角形的外角定理,三角形的内角和,(2)中将角度和表示为三角形的外角是解题的关键.3.如图1所示,已知点D 在AC 上,ADE ∆和ABC ∆都是等腰直角三角形,点M 为EC 的中点.(1)求证:BMD ∆为等腰直角三角形;(2)将ADE ∆绕点A 逆时针旋转45︒,如图2所示,(1)中的“BMD ∆为等腰直角三角形”是否仍然成立?请说明理由;(3)将ADE ∆绕点A 逆时针旋转一定的角度,如图3所示,(1)中的“BMD ∆为等腰直角三角形”成立吗?请说明理由.【答案】(1)详见解析;(2)是,证明详见解析;(3)成立,证明详见解析.【解析】【分析】()1根据等腰直角三角形的性质得出45ACB BAC ∠∠==,90ADE EBC EDC ∠∠∠===,推出BM DM =,BM CM =,DM CM =,推出BCM MBC ∠∠=,ACM MDC ∠∠=,求出22290BMD BCM ACM BCA ∠∠∠∠=+==即可.()2延长ED 交AC 于F ,求出12DM FC =,//DM FC ,DEM NCM ∠=,根据ASA 推出EDM ≌CNM ,推出DM BM =即可.()3过点C 作//CF ED ,与DM 的延长线交于点F ,连接BF ,推出MDE ≌MFC ,求出DM FM =,DE FC =,作AN EC ⊥于点N ,证BCF ≌BAD ,推出BF BD =,DBA CBF ∠∠=,求出90DBF ∠=,即可得出答案.【详解】()1证明:ABC 和ADE 都是等腰直角三角形,45ACB BAC ∠∠∴==,90ADE EBC EDC ∠∠∠===点M 为EC 的中点,12BM EC ∴=,12DM EC =, BM DM ∴=,BM CM =,DM CM =,BCM MBC ∠∠∴=,DCM MDC ∠∠=,2BME BCM MBC BCE ∠∠∠∠∴=+=,同理2DME ACM ∠∠=,22224590BMD BCM ACM BCA ∠∠∠∠∴=+==⨯=BMD ∴是等腰直角三角形.()2解:如图2,BDM 是等腰直角三角形,理由是:延长ED 交AC 于F ,ADE 和ABC △是等腰直角三角形,45BAC EAD ∠∠∴==,AD ED ⊥,ED DF ∴=,M 为EC 中点,EM MC ∴=,12DM FC ∴=,//DM FC , 45BDN BND BAC ∠∠∠∴===,ED AB⊥,BC AB⊥,//ED BC∴,DEM NCM∠∴=,在EDM和CNM中DEM NCMEM CMEMD CMN∠=∠⎧⎪=⎨⎪∠=∠⎩EDM∴≌()CNM ASA,DM MN∴=,BM DN∴⊥,BMD∴是等腰直角三角形.()3BDM是等腰直角三角形,理由是:过点C作//CF ED,与DM的延长线交于点F,连接BF,可证得MDE≌MFC,DM FM∴=,DE FC=,AD ED FC∴==,作AN EC⊥于点N,由已知90ADE∠=,90ABC∠=,可证得DEN DAN∠∠=,NAB BCM∠∠=,//CF ED,DEN FCM∠∠∴=,BCF BCM FCM NAB DEN NAB DAN BAD∠∠∠∠∠∠∠∠∴=+=+=+=,BCF∴≌BAD,BF BD∴=,DBA CBF∠∠=,90DBF DBA ABF CBF ABF ABC∠∠∠∠∠∠∴=+=+==,DBF∴是等腰直角三角形,点M是DF的中点,则BMD是等腰直角三角形,【点睛】本题考查了等腰直角三角形的性质,全等三角形的性质和判定,直角三角形斜边上中线性质的应用,在本题中需要作辅助线来证明,难度较大.4.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;(2)如图2,若∠AOB=120º,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.【答案】(1)CF=CG;(2)CF=CG,见解析【解析】【分析】(1)结论CF=CG,由角平分线性质定理即可判断.(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF=CG;证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,∴CF=CG(角平分线上的点到角两边的距离相等);(2)CF=CG.理由如下:如图,过点C作CM⊥OA,CN⊥OB,∵OP平分∠AOB,CM⊥OA,CN⊥OB,∠AOB=120º,∴CM=CN(角平分线上的点到角两边的距离相等),∴∠AOC=∠BOC=60º(角平分线的性质),∵∠DCE=∠AOC,∴∠AOC=∠BOC=∠DCE=60º,∴∠MCO=90º-60º =30º,∠NCO=90º-60º =30º,∴∠MCN=30º+30º=60º,∴∠MCN=∠DCE,∵∠MCF=∠MCN-∠DCN,∠NCG=∠DCE-∠DCN,∴∠MCF=∠NCG,在△MCF和△NCG中,CMF CNGCM CNMCF NCG∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MCF≌△NCG(ASA),∴CF=CG(全等三角形对应边相等);【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等.5.如图,AB=12cm,AC⊥AB,BD⊥AB ,AC=BD=9cm,点P在线段AB上以3 cm/s的速度,由A向B运动,同时点Q在线段BD上由B向D运动.(1)若点Q的运动速度与点P的运动速度相等,当运动时间t=1(s),△ACP与△BPQ 是否全等?说明理由,并直接判断此时线段PC和线段PQ的位置关系;(2)将“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,其他条件不变.若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能使△ACP与△BPQ全等.(3)在图2的基础上延长AC,BD交于点E,使C,D分别是AE,BE中点,若点Q以(2)中的运动速度从点B出发,点P以原来速度从点A同时出发,都逆时针沿△ABE三边运动,求出经过多长时间点P与点Q第一次相遇.【答案】(1)△ACP≌△BPQ,理由见解析;线段PC与线段PQ垂直(2)1或32(3)9s 【解析】【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.(3)因为V Q<V P,只能是点P追上点Q,即点P比点Q多走PB+BQ的路程,据此列出方程,解这个方程即可求得.【详解】(1)当t=1时,AP=BQ=3,BP=AC=9,又∵∠A=∠B=90°,在△ACP 与△BPQ 中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS ),∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP=90°,∠CPQ=90°,则线段PC 与线段PQ 垂直.(2)设点Q 的运动速度x,①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,912t t xt =-⎧⎨=⎩, 解得31t x =⎧⎨=⎩, ②若△ACP ≌△BPQ ,则AC=BQ ,AP=BP ,912xt t t =⎧⎨=-⎩解得632t x =⎧⎪⎨=⎪⎩, 综上所述,存在31t x =⎧⎨=⎩或632t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. (3)因为V Q <V P ,只能是点P 追上点Q ,即点P 比点Q 多走PB+BQ 的路程,设经过x 秒后P 与Q 第一次相遇,∵AC=BD=9cm ,C ,D 分别是AE ,BD 的中点;∴EB=EA=18cm.当V Q =1时,依题意得3x=x+2×9,解得x=9;当V Q =32时, 依题意得3x=32x+2×9, 解得x=12.故经过9秒或12秒时P 与Q 第一次相遇.【点睛】本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的性质与运算.6.如图,在△ABC中,∠ABC为锐角,点D为直线BC上一动点,以AD为直角边且在AD 的右侧作等腰直角三角形ADE,∠DAE=90°,AD=AE.(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时,如图1,线段CE、BD的位置关系为___________,数量关系为___________②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立,请说明理由.(2)如图3,如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.探究:当∠ACB多少度时,CE⊥BC?请说明理由.【答案】(1)①垂直,相等.②都成立,理由见解析;(2)45°,理由见解析【解析】【分析】(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;②先根据“SAS”证明△ABD≌△ACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;(2)先过点A作AG⊥AC交BC于点G,画出符合要求的图形,再结合图形判定△GAD≌△CAE,得出对应角相等,即可得出结论.【详解】(1):(1)CE与BD位置关系是CE⊥BD,数量关系是CE=BD.理由:如图1,∵∠BAD=90°-∠DAC,∠CAE=90°-∠DAC,∴∠BAD=∠CAE.又 BA=CA,AD=AE,∴△ABD≌△ACE (SAS)∴∠ACE=∠B=45°且 CE=BD.∵∠ACB=∠B=45°,∴∠ECB=45°+45°=90°,即 CE⊥BD.故答案为垂直,相等;②都成立,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠CAE,在△DAB与△EAC中,AD AEBAD CAEAB AC⎧⎪∠∠⎨⎪⎩===∴△DAB≌△EAC,∴CE=BD,∠B=∠ACE,∴∠ACB+∠ACE=90°,即CE⊥BD;(2)当∠ACB=45°时,CE⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,在△GAD与△CAE中,AC AGDAG EACAD AE⎧⎪∠∠⎨⎪⎩===∴△GAD≌△CAE,∴∠ACE=∠AGC=45°,∠BCE=∠ACB+∠ACE=45°+45°=90°,即CE⊥B C.7.已知4AB cm=,3AC BD cm==.点P在AB上以1/cm s的速度由点A向点B运动,同时点Q在BD上由点B向点D运动,它们运动的时间为()t s.(1)如图①,AC AB⊥,BD AB⊥,若点Q的运动速度与点P的运动速度相等,当1t=时,ACP△与BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图②,将图①中的“AC AB⊥,BD AB⊥”为改“60CAB DBA∠=∠=︒”,其他条件不变.设点Q的运动速度为/xcm s,是否存在实数x,使得ACP△与BPQ 全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【答案】(1)全等,PC 与PQ 垂直;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS 证得△ACP ≌△BPQ ,得出∠ACP=∠BPQ ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP ≌△BPQ ,分两种情况:①AC=BP ,AP=BQ ,②AC=BQ ,AP=BP ,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP 和△BPQ 中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS ).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC 与线段PQ 垂直.(2)①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,34t t xt =-⎧⎨=⎩, 解得11t x =⎧⎨=⎩, ②若△ACP ≌△BQP ,则AC=BQ ,AP=BP ,34xt t t =⎧⎨=-⎩,解得232tx=⎧⎪⎨=⎪⎩,综上所述,存在11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩使得△ACP与△BPQ全等.【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.8.(1)如图(a)所示点D是等边ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明.(2)如图(b)所示当动点D运动至等边ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(直接写出结论)(3)①如图(c)所示,当动点D在等边ABC边BA上运动时(点D与点B不重合),连接DC,以DC为边在BC上方、下方分别作等边DCF和等边DCF',连接AF、BF',探究AF、BF'与AB有何数量关系?并证明.②如图(d)所示,当动点D在等边ABC边BA的延长线上运动时,其他作法与(3)①相同,①中的结论是否成立?若不成立,是否有新的结论?并证明.【答案】(1)AF=BD,理由见解析;(2)AF=BD,成立;(3)①AF BF AB'+=,证明见解析;②①中的结论不成立新的结论是AF AB BF'=+,理由见解析【解析】【分析】(1)根据等边三角形的三条边、三个内角都相等的性质,利用全等三角形的判定定理SAS可证得BCD ACF△≌△,然后由全等三角形的对应边相等知AF BD=.(2)通过证明BCD ACF△≌△,即可证明AF BD=.(3)①'AF BF AB+=,利用全等三角形BCD ACF△≌△的对应边BD AF=,同理'BCF ACD△≌△,则'BF AD=,所以'AF BF AB+=;②①中的结论不成立,新的结论是'AF AB BF=+,通过证明BCF ACD△≌△,则'BF AD =(全等三角形的对应边相等),再结合(2)中的结论即可证得'AF AB BF =+ .【详解】(1)AF BD =证明如下:ABC 是等边三角形,BC AC ∴=,60BCA ︒∠=.同理可得:DC CF =,60DCF ︒∠=.BCA DCA DCF DCA ∴∠-∠=∠-∠.即BCD ACF ∠=∠.BCD ACF ∴△≌△.AF BD ∴=.(2)证明过程同(1),证得BCD ACF △≌△,则AF BD =(全等三角形的对应边相等),所以当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,AF BD =依然成立.(3)①AF BF AB '+=证明:由(1)知,BCD ACF △≌△.BD AF ∴=.同理BCF ACD '△≌△.BF AD '∴=.AF BF BD AD AB '∴+=+=.②①中的结论不成立新的结论是AF AB BF '=+;BC AC =,BCF ACD '∠=∠,F C DC '=,BCF ACD '∴△≌△.BF AD '∴=.又由(2)知,AF BD =.AF BD AB AD AB BF '∴==+=+.即AF AB BF '=+.【点睛】本题考查了三角形的综合问题,掌握等边三角形的三条边、三个内角都相等的性质、全等三角形的判定定理、全等三角形的对应边相等是解题的关键.9.如图,在ABC ∆中,5BC = ,高AD 、BE 相交于点O , 23BD CD =,且AE BE = . (1)求线段 AO 的长;(2)动点 P 从点 O 出发,沿线段 OA 以每秒 1 个单位长度的速度向终点 A 运动,动点 Q 从 点 B 出发沿射线BC 以每秒 4 个单位长度的速度运动,,P Q 两点同时出发,当点 P 到达 A 点时,,P Q 两点同时停止运动.设点 P 的运动时间为 t 秒,POQ ∆的面积为 S ,请用含t 的式子表示 S ,并直接写出相应的 t 的取值范围;(3)在(2)的条件下,点F是直线AC上的一点且CF BO=.是否存在t值,使以点,,B O P为顶点的三角形与以点,,F C Q为顶点的三角形全等?若存在,请直接写出符合条件的t值; 若不存在,请说明理由.【答案】(1)5;(2)①当点Q在线段BD上时,24QD t=-,t的取值范围是12t<<;②当点Q在射线DC上时,42QD t=-,,t的取值范围是152t<≤;(3)存在,1t=或53.【解析】【分析】(1)只要证明△AOE≌△BCE即可解决问题;(2)分两种情形讨论求解即可①当点Q在线段BD上时,QD=2-4t,②当点Q在射线DC 上时,DQ=4t-2时;(3)分两种情形求解即可①如图2中,当OP=CQ时,BOP≌△FCQ.②如图3中,当OP=CQ时,△BOP≌△FCQ;【详解】解:(1)∵AD是高,∴90ADC∠=∵BE是高,∴90AEB BEC∠=∠=∴90EAO ACD∠+∠=,90EBC ECB∠+∠=,∴EAO EBC∠=∠在AOE∆和BCE∆中,EAO EBCAE BEAEO BEC∠=∠⎧⎪=⎨⎪∠=∠⎩∴AOE∆≌BCE∆∴5AO BC==;(2)∵23BD CD=,=5BC∴=2BD,=3CD,根据题意,OP t=,4BQ t=,①当点Q在线段BD上时,24QD t=-,∴21(24)22S t t t t =-=-+,t 的取值范围是102t <<. ②当点Q 在射线DC 上时,42QD t =-, ∴21(42)22S t t t t =-=-,t 的取值范围是152t <≤ (3)存在. ①如图2中,当OP=CQ 时,∵OB=CF ,∠POB=∠FCQ ,∴△BOP ≌△FCQ .∴CQ=OP ,∴5-4t ═t ,解得t=1,②如图3中,当OP=CQ 时,∵OB=CF ,∠POB=∠FCQ ,∴△BOP ≌△FCQ .∴CQ=OP ,∴4t-5=t ,解得t=53. 综上所述,t=1或53s 时,△BOP 与△FCQ 全等. 【点睛】本题考查三角形综合题、全等三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.已知点P 是线段MN 上一动点,分别以PM ,PN 为一边,在MN 的同侧作△APM ,△BPN ,并连接BM ,AN .(Ⅰ)如图1,当PM=AP,PN=BP且∠APM=∠BPN=90°时,试猜想BM,AN之间的数量关系与位置关系,并证明你的猜想;(Ⅱ)如图2,当△APM,△BPN都是等边三角形时,(Ⅰ)中BM,AN之间的数量关系是否仍然成立?若成立,请证明你的结论;若不成立,试说明理由.(Ⅲ)在(Ⅱ)的条件下,连接AB得到图3,当PN=2PM时,求∠PAB度数.【答案】(1)BM=AN,BM⊥AN.(2)结论成立.(3)90°.【解析】【分析】(1)根据已知条件可证△MBP≌△ANP,得出MB=AN,∠PAN=∠PMB,再延长MB交∠=︒,因此有BM⊥AN;AN于点C,得出MCN90(2)根据所给条件可证△MPB≌△APN,得出结论BM=AN;(3)取PB的中点C,连接AC,AB,通过已知条件推出△APC为等边三角形,∠PAC=∠PCA=60°,再由CA=CB,进一步得出∠PAB的度数.【详解】解:(Ⅰ)结论:BM=AN,BM⊥AN.理由:如图1中,∵MP=AP,∠APM=∠BPN=90°,PB=PN,∴△MBP≌△ANP(SAS),∴MB=AN.延长MB交AN于点C.∵△MBP≌△ANP,∴∠PAN=∠PMB,∵∠PAN+∠PNA=90°,∴∠PMB+∠PNA=90°,∴∠MCN=180°﹣∠PMB﹣∠PNA=90°,∴BM⊥AN.(Ⅱ)结论成立理由:如图2中,∵△APM,△BPN,都是等边三角形∴∠APM=∠BPN=60°∴∠MPB=∠APN=120°,又∵PM=PA,PB=PN,∴△MPB≌△APN(SAS)∴MB=AN.(Ⅲ)如图3中,取PB的中点C,连接AC,AB.∵△APM,△PBN都是等边三角形∴∠APM=∠BPN=60°,PB=PN∵点C是PB的中点,且PN=2PM,∴2PC=2PA=2PM=PB=PN,∵∠APC=60°,∴△APC为等边三角形,∴∠PAC=∠PCA=60°,又∵CA=CB,∴∠CAB=∠ABC=30°,∴∠PAB=∠PAC+∠CAB=90°.【点睛】本题是一道关于全等三角形的综合性题目,充分考查了学生对全等三角形的判定定理及其性质的应用的能力,此类题目常常需要数形结合,借助辅助线才得以解决,因此,作出合理正确的辅助线是解题的关键.二、八年级数学轴对称解答题压轴题(难)11.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1).(1)请运用所学数学知识构造图形求出AB的长;(2)若Rt△ABC中,点C在坐标轴上,请在备用图1中画出图形,找出所有的点C后不用计算写出你能写出的点C的坐标;(3)在x轴上是否存在点P,使PA=PB且PA+PB最小?若存在,就求出点P的坐标;若不存在,请简要说明理由(在备用图2中画出示意图).【答案】(1)AB=52)C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0);(3)不存在这样的点P.【解析】【分析】(1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB;(2)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可;(3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案.【详解】解:(1)如图,连结AB,作B关于y轴的对称点D,由已知可得,BD=4,AD=2.∴在Rt△ABD中,AB=5(2)如图,①以A为直角顶点,过A作l1⊥AB交x轴于C1,交y轴于C2.②以B为直角顶点,过B作l2⊥AB交x轴于C3,交y轴于C4.③以C为直角顶点,以AB为直径作圆交坐标轴于C5、C6、C7.(用三角板画找出也可)由图可知,C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0).(3)不存在这样的点P.作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,由图可以看出两线交于第一象限.∴不存在这样的点P.【点睛】本题考查了勾股定理,构造直角三角形,中垂线和轴对称--路径最短问题的综合作图分析,解题的关键是学会分类讨论,学会画好图形解决问题.12.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,点E是BC延长线上的一点,且BD=DE.点G是线段BC的中点,连结AG,交BD于点F,过点D作DH⊥BC,垂足为H.(1)求证:△DCE为等腰三角形;(2)若∠CDE=22.5°,DC=2,求GH的长;(3)探究线段CE,GH的数量关系并用等式表示,并说明理由.【答案】(1)证明见解析;(2)22;(3)CE=2GH,理由见解析.【解析】【分析】(1)根据题意可得∠CBD=12∠ABC=12∠ACB,,由BD=DE,可得∠DBC=∠E=1 2∠ACB,根据三角形的外角性质可得∠CDE=12∠ACB=∠E,可证△DCE为等腰三角形;(2)根据题意可得CH=DH=1,△ABC是等腰直角三角形,由等腰三角形的性质可得BG=GC,BH=HE=2+1,即可求GH的值;(3)CE=2GH,根据等腰三角形的性可得BG=GC,BH=HE,可得GH=GC﹣HC=GC﹣(HE﹣CE)=12BC﹣12BE+CE=12CE,即CE=2GH【详解】证明:(1)∵AB=AC,∴∠ABC=∠ACB,∵BD平分∠ABC,∴∠CBD=12∠ABC=12∠ACB,∵BD=DE,∴∠DBC=∠E=12∠ACB,∵∠ACB=∠E+∠CDE,∴∠CDE=12∠ACB=∠E,∴CD=CE,∴△DCE是等腰三角形(2)∵∠CDE=22.5°,CD=CE2,∴∠DCH=45°,且DH⊥BC,∴∠HDC=∠DCH=45°∴DH=CH,∵DH2+CH2=DC2=2,∴DH=CH=1,∵∠ABC=∠DCH=45°∴△ABC是等腰直角三角形,又∵点G 是BC 中点 ∴AG ⊥BC ,AG =GC =BG ,∵BD =DE ,DH ⊥BC∴BH =HE =2+1∵BH =BG +GH =CG +GH =CH +GH +GH =2+1∴1+2GH =2+1∴GH =22(3)CE =2GH理由如下:∵AB =CA ,点G 是BC 的中点,∴BG =GC ,∵BD =DE ,DH ⊥BC ,∴BH =HE ,∵GH =GC ﹣HC =GC ﹣(HE ﹣CE )=12BC ﹣12BE +CE =12CE , ∴CE =2GH【点睛】本题是三角形综合题,考查了角平分线的性质,等腰三角形的性质,灵活运用相关的性质定理、综合运用知识是解题的关键.13.如图,在ABC △中,已知AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于点F ,求证:AF EF =.【答案】证明见解析【解析】【分析】延长AD 到点G ,使得AD DG =,连接BG ,结合D 是BC 的中点,易证△ADC 和△GDB 全等,利用全等三角形性质以及等量代换,得到△AEF 中的两个角相等,再根据等角对等边证得AE=EF.【详解】如图,延长AD 到点G ,延长AD 到点G ,使得AD DG =,连接BG .∵AD 是BC 边上的中线,∴DC DB =. 在ADC 和GDB △中,AD DG ADC GDB DC DB =⎧⎪∠=∠⎨⎪=⎩(对顶角相等), ∴ADC ≌GDB △(SAS ).∴CAD G ∠=∠,BG AC =.又BE AC =,∴BE BG =.∴BED G ∠=∠.∵BED AEF ∠=∠∴AEF CAD ∠=∠,即AEF FAE ∠=∠∴AF EF =.【点睛】本题考查的是全等三角形的判定与性质,根据题意构造全等三角形是解答本题的关键.14.已知:在平面直角坐标系中,A 为x 轴负半轴上的点,B 为y 轴负半轴上的点.(1)如图1,以A 点为顶点、AB 为腰在第三象限作等腰Rt ABC ∆,若2OA =,4OB =,试求C 点的坐标;(2)如图2,若点A 的坐标为()23,0-,点B 的坐标为()0,m -,点D 的纵坐标为n ,以B 为顶点,BA 为腰作等腰Rt ABD ∆.试问:当B 点沿y 轴负半轴向下运动且其他条件都不变时,整式2253m n +-化,请说明理由;(3)如图3,E 为x 轴负半轴上的一点,且OB OE =,OF EB ⊥于点F ,以OB 为边作等边OBM ∆,连接EM 交OF 于点N ,试探索:在线段EF 、EN 和MN 中,哪条线段等于EM 与ON 的差的一半?请你写出这个等量关系,并加以证明.【答案】(1) C(-6,-2);(2)不发生变化,值为3-;(3)EN=12(EM-ON),证明见详解. 【解析】【分析】 (1)作CQ ⊥OA 于点Q,可以证明AQC BOA ≅,由QC=AD,AQ=BO,再由条件就可以求出点C 的坐标;(2)作DP ⊥OB 于点P ,可以证明AOB BPD ≅,则有BP=OB-PO=m-(-n)=m+n 为定值,从而可以求出结论2253m n +-的值不变为3-.(3)作BH ⊥EB 于点B ,由条件可以得出∠1=30°,∠2=∠3=∠EMO=15°,∠EOF=∠BMG=45°,EO=BM,可以证明ENO BGM ≅,则GM=ON,就有EM-ON=EM-GM=EG ,最后由平行线分线段成比例定理就可得出EN=12(EM-ON).【详解】(1)如图(1)作CQ ⊥OA 于Q,∴∠AQC=90°, ∵ABC △为等腰直角三角形,∴AC=AB,∠CAB=90°, ∴∠QAC+∠OAB=90°,∵∠QAC+∠ACQ=90°,∴∠ACQ=∠BAO,又∵AC=AB,∠AQC=∠AOB,∴AQC BOA ≅(AAS),∴CQ=AO,AQ=BO,∵OA=2,OB=4,∴CQ=2,AQ=4,∴OQ=6, ∴C(-6,-2).(2)如图(2)作DP ⊥OB 于点P ,∴∠BPD=90°,∵ABD △是等腰直角三角形,∴AB=BD,∠ABD=∠ABO+∠OBD=90°, ∵∠OBD+∠BDP=90°,∴∠ABO=∠BDP ,又∵AB=BD,∠AOB=∠BPD=90°,∴AOB BPD ≅∴AO=BP ,∵BP=OB -PO=m-(-n)=m+n, ∵A ()23,0-,∴OA=3∴m+n=23∴当点B 沿y 轴负半轴向下运动时,AO=BP=m+n=23∴整式2253m n +-3-(3)()12EN EM ON =- 证明:如图(3)所示,在ME 上取一点G 使得MG=ON,连接BG 并延长,交x 轴于H.∵OBM 为等边三角形,∴BO=BM=MO,∠OBM=∠OMB=∠BOM=60°,∴EO=MO,∠EBM=105°,∠1=30°,∵OE=OB,∴OE=OM=BM,∴∠3=∠EMO=15°,∴∠BEM=30°,∠BME=45°,∵OF⊥EB,∴∠EOF=∠BME,∴ENO BGM ≅,∴BG=EN,∵ON=MG,∴∠2=∠3,∴∠2=15°,∴∠EBG=90°,∴BG=12EG, ∴EN=12EG, ∵EG=EM-GM, ∴EN=12(EM-GM), ∴EN=12(EM-ON). 【点睛】 本题考查了等腰直角三角形的性质,等边三角形的性质,等腰三角形的性质,三角形的外角与内角的关系,全等三角形的判定与性质,平行线分线段成比例定理的运用.15.如图1,在ABC 中,90BAC ∠=︒,点D 为AC 边上一点,连接BD ,点E 为BD 上一点,连接CE ,CED ABD ∠=∠,过点A 作AG CE ⊥,垂足为G ,交ED 于点F .(1)求证:2FAD ABD ∠=∠;(2)如图2,若AC CE =,点D 为AC 的中点,求证:AB AC =;(3)在(2)的条件下,如图3,若3EF =,求线段DF 的长.【答案】(1)详见解析;(2)详见解析;(3)6【解析】【分析】(1)根据直角三角形的性质可得90ADB ABD ∠=︒-∠,90EFG CED ∠=︒-∠,然后根据三角形的内角和和已知条件即可推出结论;(2)根据直角三角形的性质和已知条件可得AFD ADF ∠=∠,进而可得AF AD =,BFA CDE ∠=∠,然后即可根据AAS 证明ABF ∆≌CED ∆,可得AB CE =,进一步即可证得结论;(3)连接AE ,过点A 作AH AE ⊥交BD 延长线于点H ,连接CH ,如图4.先根据已知条件、三角形的内角和定理和三角形的外角性质推出45AED ∠=︒,进而可得AE AH =,然后即可根据SAS 证明△ABE ≌△ACH ,进一步即可推出90CHD ∠=︒,过点A 作AK ED ⊥于K ,易证△AKD ≌△CHD ,可得DK DH =,然后即可根据等腰三角形的性质推得DF =2EF ,问题即得解决.【详解】(1)证明:如图1,90BAC ∠=︒,90ADB ABD ∴∠=︒-∠,AG CE ⊥,90FGE ∴∠=︒,90EFG AFD CED ∴∠=∠=︒-∠,180FAD AFD ADF CED ABD ∴∠=︒-∠-∠=∠+∠, CED ABD ∠=∠,2FAD ABD ∴∠=∠;(2)证明:如图2,90AFD CED ∠=︒-∠,90ADB ABD ∠=︒-∠,CED ABD ∠=∠,AFD ADF ∴∠=∠,AF AD ∴=,BFA CDE ∠=∠,∵点D 为AC 的中点,∴AD=CD ,AF CD ∴=,ABF ∴∆≌CED ∆(AAS ),AB CE ∴=,CE AC =,AB AC ∴=;(3)解:连接AE ,过点A 作AH AE ⊥交BD 延长线于点H ,连接CH ,如图4. 90BAC ∠=︒,BAE CAH ∴∠=∠,设ABD CED α∠=∠=,则2,902FAD ACG αα∠=∠=︒-,CA CE =,45AEC EAC α∴∠=∠=︒+,45AED ∴∠=︒,45AHE ∴∠=︒,AE AH ∴=,AB AC =,∴△ABE ≌△ACH (SAS ),135AEB AHC ∴∠=∠=︒,90CHD ∴∠=︒,过点A 作AK ED ⊥于K ,90AKD CHD ∴∠=∠=︒,AD CD =,ADK CDH ∠=∠,∴△AKD ≌△CHD (AAS ),DK DH ∴=,∵,,AK DF AF AD AE AH ⊥==,,FK DK EK HK ∴==, 3DH EF ∴==,6DF ∴=.【点睛】本题考查了直角三角形的性质、三角形的内角和定理、三角形的外角性质、等腰直角三角形的判定和性质、全等三角形的判定和性质以及等腰三角形的性质等知识,考查的知识点多、综合性强、难度较大,正确添加辅助线、构造等腰直角三角形和全等三角形的模型、灵活应用上述知识是解题的关键.16.如图,在等边ABC ∆中,线段AM 为BC 边上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边CDE ∆,连结BE .(1)求CAM ∠的度数;(2)若点D在线段AM上时,求证:ADC BEC∆≅∆;(3)当动点D在直线AM上时,设直线BE与直线AM的交点为O,试判断AOB∠是否为定值?并说明理由.【答案】(1)30°;(2)证明见解析;(3)AOB∠是定值,60AOB∠=︒.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC AC=,DC EC=,,60ACB DCE∠=∠=︒,由等式的性质就可以BCE ACD∠=∠,根据SAS就可以得出ADC BEC∆≅∆;(3)分情况讨论:当点D在线段AM上时,如图1,由(2)可知ACD BCE≅∆∆,就可以求出结论;当点D在线段AM的延长线上时,如图2,可以得出ACD BCE≅∆∆而有30CBE CAD∠=∠=︒而得出结论;当点D在线段MA的延长线上时,如图3,通过得出ACD BCE≅∆∆同样可以得出结论.【详解】(1)ABC∆是等边三角形,60BAC∴∠=︒.线段AM为BC边上的中线,12CAM BAC∴∠=∠,30CAM∴∠=︒.(2)ABC∆与DEC∆都是等边三角形,AC BC∴=,CD CE=,60ACB DCE∠=∠=︒,ACD DCB DCB BCE∴∠+∠=∠+∠,ACD BCE∠∠∴=.在ADC∆和BEC∆中AC BCACD BCECD CE=⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆;(3)AOB ∠是定值,60AOB ∠=︒,理由如下:①当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,则30CBE CAD ∠=∠=︒, 又60ABC ∠=︒,603090CBE ABC ∴∠+∠=︒+︒=︒,ABC ∆是等边三角形,线段AM 为BC 边上的中线AM ∴平分BAC ∠,即11603022BAM BAC ∠=∠=⨯︒=︒ 903060BOA ∴∠=︒-︒=︒.②当点D 在线段AM 的延长线上时,如图2,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒, ACB DCB DCB DCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,30CBE CAD ∴∠=∠=︒,同理可得:30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.③当点D 在线段MA 的延长线上时,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒, 60ACD ACE BCE ACE ∴∠+∠=∠+∠=︒,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆,CBE CAD ∴∠=∠,同理可得:30CAM ∠=︒150CBE CAD ∴∠=∠=︒30CBO ∴∠=︒,∵30BAM∠=︒,903060BOA∴∠=︒-︒=︒.综上,当动点D在直线AM上时,AOB∠是定值,60AOB∠=︒.【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,等边三角形三线合一的性质,解题中注意分类讨论的思想解题.17.已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求ABFACFSS的值.【答案】(1)①见解析;②见解析;(2)2【解析】【分析】(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴ABFAFCS2S∆∆=.【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.18.定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.【答案】(1)∠A=36°;(2)如图所示:见解析;(3)如图所示:见解析;∠C为。