植物生理学:第6章 植物生长物质
植物生理学教案第六章_植物体内有机物的运输
第六章植物体内有机物质的运输与分配教学时数:4学时教学目的与要求:要求学生掌握韧皮部装载与卸出及其机理;了解有机物运输的途径、速率和溶质种类,以及同化物的分布规律。
教学重点:韧皮部装载与卸出教学难点:韧皮部运输机理本章主要阅读文献资料:1.王宝山主编、刘萍等副主编,植物生理学,科学出版社,2004.12.李合生主编,现代植物生理学,高等教育出版社,2002.13.王忠主编,植物生理学,中国农业出版社,2000.5本章讲授内容:第一节有机物运输的形式、途径、和溶质种类一、有机物质运输的形式1.收集韧皮部汁液的方法:蚜虫吻针法用蚜虫吻针法收集筛管汁液①将蚜虫的吻刺连同下唇一起切下;②切口溢出筛管汁液;③用毛细管汲取汁液2.韧皮部汁液的成分韧皮部汁液分析结果表明:韧皮部汁液干物质占10-25%,其中主要是碳水化合物,其余为蛋白质,氨基酸、激素和一些无机离子。
碳水化合物主要是糖,在筛管中糖通常总是以非还原态进行运输,这可能是因为糖的非还原态形式的反应活性低于它的还原态形式。
对于大多数植物来说,筛管中最主要的非还原糖是蔗糖,筛管中蔗糖浓度可以达到0.3到0.9M,可以占干物质的90%。
除了蔗糖之外,蔗糖还可以与半乳糖(galactose)分子结合形成其他化合物进行运输,如棉子糖(raffinose)是蔗糖结合一分子半乳糖的化合物,水苏糖(stachyose)是蔗糖结合两分子半乳糖的化合物,毛蕊花糖(verbascose)则由蔗糖和三分子半乳糖组成。
在筛管中运输的还有甘露醇(mannitol)和山梨醇(sorbitol)等糖醇。
在韧皮部进行运输的还有其他的有机物(10%):含氮化合物:主要是氨基酸及其酰胺形式,特别是谷氨酸、天冬氨酸以及它们的酰胺,谷氨酰胺和天冬酰胺。
植物激素:生长素、赤霉素、细胞分裂素和脱落酸都可以在韧皮部进行运输。
虽然生长素可以在木质部进行极性运输,但是长距离的激素运输至少部分是在筛管中进行。
植物生理学练习题及答案 第06章 植物生长物质习题
第六章植物生长物质【主要教学目标】★掌握生长素的极性运输、生物合成与降解、主要生理作用及机理;★了解赤霉素的结构、生物合成、主要生理作用;★了解细胞分裂素的结构和生理作用;★了解脱落酸的生物合成和生理作用;★弄清乙烯的生物合成及其影响因素与农业应用;★了解生长抑制物质、油菜素内酯、多胺等的生理作用和农业应用。
【习题】一、名词解释1.植物生长物质 2.植物激素 3.植物生长调节剂 4.极性运输 5.激素受体6. 燕麦单位 7.燕麦试法 8.单位三重(向)反应 9.靶细胞10.生长抑制剂 11.生长延缓剂 12.钙调素二、填空题1.大家公认的植物激素包括五大类:、、、、。
2.首次进行胚芽鞘向光性实验的人是,首次从胚芽鞘分离出与生长有关物质的人是。
3.已经发现植物体中的生长素类物质有、和。
4.生长素降解可通过两个方面:和。
5.生长素、赤霉素、脱落酸和乙烯的合成前体分别是、、和。
6.组织培养研究中证明:当CTK/IAA比值高时,诱导分化;比值低时,诱导分化。
7.不同植物激素组合,对输导组织的分化有一定影响,当IAA/GA比值低时,促进分化;比值高时,促进分化。
8.诱导 -淀粉酶形成的植物激素是,延缓叶片衰老的是,促进休眠的是,促进瓜类植物多开雌花的是,促进瓜类植物多开雄花的是,促进果实成熟的是,打破土豆休眠的是,加速橡胶分泌乳汁的是,维持顶端优势的是,促进侧芽生长的是。
9.激动素是的衍生物。
10.1AA贮藏时必须避光是因为。
11.为了解除大豆的顶端优势,应喷洒。
12.细胞分裂素主要是在中合成的。
13.缺O2对乙烯的生物合成有作用。
14.干旱、淹水对乙烯的生物合成有作用。
15.乙烯利在pH值时分解放出乙烯。
16.矮生玉米之所以长不高,是因为其体内缺少的缘故。
17.甲瓦龙酸在长日照条件下形成,在短日照条件下形成。
18.生长抑制物质包括和两类。
19.矮壮素之所以能抑制植物生长是因为它抑制了植物体内的生物合成。
植物生理学教案植物生长物质
植物生理学教案——植物生长物质第一章:植物生长物质概述一、教学目标1. 了解植物生长物质的定义、分类和作用。
2. 掌握植物生长物质的主要生理功能。
3. 理解植物生长物质在农业生产中的应用。
二、教学内容1. 植物生长物质的定义与分类a. 植物激素b. 植物生长调节剂2. 植物生长物质的主要生理功能a. 促进植物生长b. 调节植物发育c. 调控植物代谢3. 植物生长物质在农业生产中的应用a. 提高作物产量b. 改善作物品质c. 抗逆栽培三、教学方法1. 讲授法:讲解植物生长物质的定义、分类和作用。
2. 案例分析法:分析植物生长物质在农业生产中的应用实例。
四、教学步骤1. 引入话题:介绍植物生长物质的概念。
2. 讲解植物生长物质的分类和生理功能。
3. 分析植物生长物质在农业生产中的应用。
4. 讨论植物生长物质的研究前景。
五、课后作业1. 复习植物生长物质的定义、分类和生理功能。
2. 收集有关植物生长物质在农业生产中的应用案例。
3. 思考植物生长物质研究的发展方向。
第二章:植物激素一、教学目标1. 了解植物激素的定义、分类和作用。
2. 掌握植物激素的主要生理功能。
3. 理解植物激素在农业生产中的应用。
二、教学内容1. 植物激素的定义与分类a. 生长素b. 赤霉素c. 细胞分裂素d. 脱落酸e. 乙烯2. 植物激素的主要生理功能a. 调节植物生长b. 促进植物发育c. 调控植物代谢3. 植物激素在农业生产中的应用a. 促进作物生长b. 提高作物产量c. 改善作物品质三、教学方法1. 讲授法:讲解植物激素的定义、分类和作用。
2. 案例分析法:分析植物激素在农业生产中的应用实例。
四、教学步骤1. 引入话题:介绍植物激素的概念。
2. 讲解植物激素的分类和生理功能。
3. 分析植物激素在农业生产中的应用。
4. 讨论植物激素研究的前景。
五、课后作业1. 复习植物激素的定义、分类和生理功能。
2. 收集有关植物激素在农业生产中的应用案例。
植物生理学 7.植物生长物质
二 生长素的分布和传导(运输)
(一)分布:广,主要集中在生长旺盛的部分(胚芽
鞘、芽和根尖端的分生组织、形成层、 受精后的子房、幼嫩种子等)。
(二)存在状态:自由型和束缚型 (三)运输方式: 1 极性运输:生长素只能从植物形态学的上端向下端输。
抑制解除
DNA RNA a-淀粉酶形成
三 应用 1 促进营养生长 2 促进麦芽糖化
3 防止脱落 4 打破休眠
第三节 细胞分裂素类
一 发现:1955年F.Skoog在研究烟草髓部的组织培养。 N6-呋喃甲基腺嘌呤------具有促进细胞分裂-激动素(KN) 细胞分裂素:把具有和激动素相同生理活性的天然的 和
(2)赤霉素能提高木葡聚糖内转糖基酶(XET)活性,该酶可使 木 葡聚糖产生内转基作用,把木葡聚糖切开,形成新的木葡聚糖子, 由于木葡聚糖是初生壁的主要组成,从而再排列为木葡聚-纤维素
网,(使二细胞)延促长进。RNA和蛋白质的合成 (诱导a-淀粉酶的形成)
在一粒完整的种子(具有胚乳的糊粉层)
细胞核中(存在有处于抑制状态的a-淀粉酶基因) 赤霉素(参与RNA的合成)
2 抑制作用:抑制成熟,侧芽休眠,衰老,块茎形成。
(二)作用机理 1 促进茎的延长
(1)细胞壁中有Ga2+, Ga2+具有降低细胞壁伸长的作用( Ga2+ 能和细胞壁聚合物交叉点的非共价离子结合在一起,不易伸展)。
当赤霉素存在时,它能使细胞壁里的Ga2+移开并进入细胞质 中,使细胞壁里的Ga2+水平下降,细胞壁的伸展性加大,生长 加快。
1 酶促降解:脱酸降解和不脱酸降解
植物生理学书
植物生理学书第一章植物的结构和功能
1.1 植物细胞的结构和功能
1.2 植物组织的类型和特征
1.3 植物器官的形态和功能
第二章植物的营养
2.1 光合作用
2.2 呼吸作用
2.3 矿质营养
第三章植物的生长和发育
3.1 种子萌发
3.2 植物生长素
3.3 开花过程
3.4 果实发育
第四章植物的运输
4.1 根系的结构和功能
4.2 维管束的结构和功能
4.3 液体运输
第五章植物的环境适应
5.1 温度适应
5.2 水分适应
5.3 光照适应
5.4 其他环境因素的适应
第六章植物的生理病理6.1 病毒性病害
6.2 细菌性病害
6.3 真菌性病害
6.4 非生物性病害
第七章植物的生物技术应用7.1 植物组织培养
7.2 基因工程
7.3 农业生物技术。
植物生理学--名词解释
第一章植物的水分代谢一、名词解释1.自由水:距离胶粒较远而可以自由流动的水分。
2.束缚水:靠近胶粒而被胶粒所束缚不易自由流动的水分。
3.渗透作用: 水分从水势高的系统通过半透膜向水势低的系统移动的现象。
4.水势(ψw):每偏摩尔体积水的化学势差。
符号:ψw。
5.渗透势即溶质势(ψπ):由于溶液中溶质颗粒的存在而引起的水势降低值,符号ψπ。
用负值表示。
亦称溶质势(ψs)。
6.压力势(ψp):由于细胞壁压力的存在而增加的水势值。
一般为正值。
符号ψp。
初始质壁分离时,ψp为0,剧烈蒸腾时,ψp会呈负值。
7.衬质势(ψm):细胞胶体物质亲水性和毛细管对自由水束缚而引起的水势降低值,以负值表示。
符号ψm 。
8.小孔扩散律:气体通过多孔表面的扩散速率,不与小孔的面积成正比,而与小孔的周长成正比。
9.水分临界期:10.蒸腾作用:水分以气体状态通过植物体表面从体内散失到体外的现象。
11.根压:植物根部的生理活动使液流从根部上升的压力。
12.质壁分离:将植物细胞放到水势较低的浓溶液中,细胞渗透失水,细胞壁弹性有限,原生质体弹性较大,细胞继续失水造成细胞壁和细胞质分离的现象13.蒸腾速率:又称蒸腾强度,指植物在单位时间内,单位面积通过蒸腾作用而散失的水分量。
(g/dm2·h)14.蒸腾比率(效率):植物每消耗l公斤水时所形成的干物质重量(克)。
15.蒸腾系数:植物制造 1克干物质所需的水分量(克),又称为需水量。
它是蒸腾比率的倒致。
16.内聚力学说:又称蒸腾流-内聚力-张力学说。
即以水分的内聚力解释水分沿导管上升原因的学说。
第二章植物的矿质营养一、名词解释1. 矿质元素:2.灰分元素:亦称矿质元素,将干燥植物材料燃烧后,剩余一些不能挥发的物质称为灰分元素。
3.大量元素:在植物体内含量较多,占植物体干重达万分之一以上的元素。
包括钙、镁、硫、氮、磷、钾、碳、氢、氧等9种元素(C、H、O、N、P、K、Ca、Mg、S)。
潘瑞炽《植物生理学》第六版课后名词解释
《植物生理学》潘瑞炽第六版名词解释第一章水势:水溶液的化学势与纯水的化学势之差,除以水的偏摩尔体积所得的商。
渗透势:即溶质势,是由于溶质颗粒的存在,降低了水的自由能,因而其水势低于纯水水势的水势下降值。
压力势:细胞原生质体吸水膨胀,对细胞壁产生一种作用力相互作用的结果,是由于细胞壁的压力存在而增加的水势的值。
质外体途径:水分通过细胞壁、细胞间隙等没有细胞质部分的移动,阻力小,速度快。
共质体途径:水分从一个细胞的细胞质通过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连续体。
渗透作用:水分从水势高的系统通过半透膜向水势低的系统移动的现象。
根压:由于水势梯度引起水分进入中柱后产生的压力。
蒸腾作用:水分以气体状态,通过植物的表面,从体内散失到体外的现象。
蒸腾速率:植物在一定时间内单位面积蒸腾的水量。
蒸腾比率:光合同化每mol的CO2所需要蒸腾散失的水的摩尔数。
水分利用率:光合同化CO2的速率与同时蒸腾丢失水分速率的比值。
内聚力学说:水分具有较大内聚力足以抵抗张力,保证叶至根水柱不断来解释水分上升原因的学说。
水分临界期:植物对水分不足特别敏感的时期。
矿质营养:以氧化物形式存在于灰分中的元素,亦称灰分元素。
大量元素:指N、P、K、Ca、Mg、S、Si七种元素,植物对这些元素需要量相对较大。
微量元素:指Mo、Fe、B、Mn、Na、Zn、Cu、Ni、Cl九种元素,植物需要的量极小。
溶液培养:在含有全部或部分营养元素的溶液中栽培植物的方法。
透性:让物质通过的性质。
选择透性:对各种物质的通过难易不一,有的容易通过,有的则不易或不能通过。
胞饮作用:细胞通过膜的内陷从外界直接摄取物质进入细胞的过程。
被动运输:载体顺着电化学梯度进行运输。
主动运输:载体逆着电化学梯度进行运输。
转运蛋白:能选择性地使非自由扩散的小分子透过质膜的运输蛋白。
离子通道:细胞膜中由通道蛋白构成的孔道,控制离子通过细胞膜。
载体:一类跨膜运输的内在蛋白,在跨膜区域不形成明显的孔道结构。
植物学与植物生理学复习资料
植物学与植物生理学复习资料植物学部分第一章细胞和组织一、名词:1、胞间连丝2、传递细胞3、细胞周期4、无限维管束5、组织6凯氏带二:填空:1、次生壁是细胞停止生长后,在初生壁内侧继续积累细胞壁,其主要成分是纤维素。
2、植物细胞内没有膜结构,合成蛋白细胞的是核糖体。
3、植物体内长距离运输有机物和无机盐的特化组织是导管。
4、基本组织的细胞分化程度较浅,可塑性较大,在一定条件下,部分细胞可以进一步转化为其他组织或温度分裂性能而转化为分生组织。
5、植物细胞是植物体结构和功能的基本单位。
6、植物细胞在进行生长发育过程中,不断地进行细胞分裂,其中有丝分裂是细胞繁殖的基本方式。
三、选择:1、在减数分裂过程中,同源染色体的联会发生在减数分裂第一次分裂的偶线期。
2、随着筛管的成熟老化,端壁沉积物质而形成胼胝体。
3、裸子植物输导水分和无机盐的组织是管胞。
4、有丝分裂过程中着丝点的分裂发生在分裂的后期。
5、细胞核内染色体的主要组成物质是DNA和组蛋白。
6、植物的根尖表皮外壁突出形成的根毛为吸收组织。
7、植物呼吸作用的主要场所是线粒体。
8、有丝分裂过程中,染色体的复制在分裂的间期。
9、禾谷类作物的拔节抽穗及韭、葱割后仍然继续伸长,都与居间分生组织活动有关。
10、细胞的胞间层,为根部两个细胞共有的一层,主要成分是果胶质。
11、植物细胞的次生壁,渗入角质、木质、栓质、硅质等特化,从而适应特殊功能的需要。
12、有丝分裂过程中,观察染色体形态和数目最好的时期是中期。
13、根尖是根的先端部分,内含有原分生组织,这一组织位于分生区的根冠。
四、简答:1、简述维管束的构成和类型?答:(1)构成:木质部和韧皮部构成。
(2)分类:有限维管束和无限维管束。
2、试述植物细胞有丝分裂各期的主要特征?答:(1)间期:核大、核仁明显、染色质浓、染色体复制。
(2)前期:染色体缩短变粗、核仁、核膜消失、纺锤体出现。
(3)中期:纺锤体形成。
染色体排列在赤道板上;(4)后期:染色体从着丝点分开,并分别从赤道板向两极移动;(5)末期:染色体变成染色质、核膜、核仁重现,形成两个子核。
《植物生理学》第七版课后习题答案
《植物⽣理学》第七版课后习题答案第⼀章植物的⽔分⽣理⽔势:⽔溶液的化学势与纯⽔的化学势之差,除以⽔的偏摩尔体积所得商。
渗透势:亦称溶质势,是由于溶质颗粒的存在,降低了⽔的⾃由能,因⽽其⽔势低于纯⽔⽔势的⽔势下降值。
压⼒势:指细胞的原⽣质体吸⽔膨胀,对细胞壁产⽣⼀种作⽤⼒相互作⽤的结果,与引起富有弹性的细胞壁产⽣⼀种限制原⽣质体膨胀的反作⽤⼒。
质外体途径:指⽔分通过细胞壁、细胞间隙等没有细胞质部分的移动,阻⼒⼩,移动速度快。
共质体途径:指⽔分从⼀个细胞的细胞质经过胞间连丝,移动到另⼀个细胞的细胞质,形成⼀个细胞质的连续体,移动速度较慢。
渗透作⽤:⽔分从⽔势⾼的系统通过半透膜向⽔势低的系统移动的现象。
根压:由于⽔势梯度引起⽔分进⼊中柱后产⽣的压⼒。
蒸腾作⽤:指⽔分以⽓体状态,通过植物体的表⾯(主要是叶⼦),从体内散失到体外的现象。
蒸腾速率:植物在⼀定时间内单位叶⾯积蒸腾的⽔量。
蒸腾⽐率:光合作⽤同化每摩尔CO2 所需蒸腾散失的⽔的摩尔数。
⽔分利⽤率:指光合作⽤同化CO2 的速率与同时蒸腾丢失⽔分的速率的⽐值。
内聚⼒学说:以⽔分具有较⼤的内聚⼒⾜以抵抗张⼒,保证由叶⾄根⽔柱不断来解释⽔分上升原因的学说。
⽔分临界期:植物对⽔分不⾜特别敏感的时期。
1. 将植物细胞分别放在纯⽔和1mol/L 蔗糖溶液中,细胞的渗透势、压⼒势、⽔势及细胞体积各会发⽣什么变化?答:在纯⽔中,各项指标都增⼤;在蔗糖中,各项指标都降低。
2. 从植物⽣理学⾓度,分析农谚“有收⽆收在于⽔”的道理。
答:⽔,孕育了⽣命。
陆⽣植物是由⽔⽣植物进化⽽来的,⽔是植物的⼀个重要的“先天”环境条件。
植物的⼀切正常⽣命活动,只有在⼀定的细胞⽔分含量的状况下才能进⾏,否则,植物的正常⽣命活动就会受阻,甚⾄停⽌。
可以说,没有⽔就没有⽣命。
在农业⽣产上,⽔是决定收成有⽆的重要因素之⼀。
⽔分在植物⽣命活动中的作⽤很⼤,主要表现在4个⽅⾯:⽔分是细胞质的主要成分。
植物生理学
1 绪论植物生理学(Plant Physiology)是研究植物生命活动规律的科学。
植物生命活动包括:物质与能量转化信息传递和信号转导生长发育与形态建成第一章植物的水分代谢动力运输:1.水分压力蒸腾 2.根压根压的存在可以通过下面两种现象证明:伤流与吐水从受伤或折断的植物组织中溢出液体的现象,叫做伤流没有受伤的植物如处在土壤水分充足,气温适宜,天气潮湿的环境中,叶片的尖端或边缘也有液体外泌的现象,这种现象称为吐水导管中水柱如何保持不断?答:由于水分子蒸腾作用与分子间内聚力大于张力,使水分在导管内连续不断上升。
第二章植物的矿质营养植物对矿质盐的吸收、运转和同化(以及矿质元素在生命活动中的作用),叫做矿质营养(mineral nutrition)。
生物膜的功能:1.分室作用 2.代谢反应的场所 3.物质交换 4.识别功能根据跨膜离子运输蛋白的结构及离子运输的方式:1.离子通道(ion channel)2.离子载体(ion carrier)3.离子泵(ion pump)第三章植物的光合作用光合膜蛋白复合体:光系统I(PSI)光系统II(PSII)Cytb6/f复合体ATP酶复合体(ATPase)NADPH脱氢酶电子链:还原型辅酶上的氢原子以质子的形式脱下,其电子沿一系列按一定顺序排列的电子传递体转移,最后转移给分子氧并生成水,这个电子传递体系称为电子传递链光合作用,从能量转化角度,整个光合作用可大致分为三个步骤:A)光能的吸收、传递和转换为电能的过程(通过原初反应完成);B)电能转变为活跃化学能的过程(通过电子传递和光合磷酸化完成);C)活跃化学能转变为稳定化学能的过程(通过碳同化完成)。
第四章植物的呼吸作用植物呼吸主要途径有:1.糖酵解(EMP)-酒精或乳酸发酵2. 糖酵解-三羧酸循环(TCA)3. 磷酸戊糖途径(PPP)。
质子--------ATP电子--------NADPH第五章植物的生长物质植物激素生长素类赤霉素类细胞分裂素类乙烯脱落酸(油菜素内酯为第六类)生长素的生理效应A)促进伸长生长:与顶端生长有关(生长素在低浓度时促进生长浓度较高时则会转化为抑制作用)器官敏感性:根>芽>茎B)促进器官与组织分化:促进根的分化。
植物生理学 第六章 植物体内同化物的运输与分配
韧皮部汁液的物质组成:
• 水分:75-90%,说明物质以溶液形式为运输 • 糖类:占干物质的90%,运输的糖类为非还原糖 (蔗糖、棉子糖、山梨糖醇),但没有还原性糖 (葡萄糖、果糖) • 氨基酸:十余种 • 有机酸:柠檬酸、苹果酸、酒石酸 • 无机离子:阳离子中K+最多,达60-112mmol/L, 可能与有机酸共同维持筛管汁液的离子平衡;阴离 子中不含NO3- • ATP:0.24-0.36 mg/L,说明运输过程需要能量供应 • 植物激素:运输过程拌有信息传递
pumping theory) 3、收缩蛋白学说(Contractile protein theory)
1、压力流动学说(E. MÜnch ,1930) :
韧皮部中物质流沿着 膨压梯度由源移动到库。
压力流学说的物理模式
筛 管
导 管
(源)
(库)
木质部导管分子
韧皮部筛管分子
伴胞 源细胞
水分渗透进入 韧皮部,建立 高的压力势 蔗糖 压力驱动从源 到库的集流 库细胞 蒸腾流
第6章 植物体内同化物的运输与分配
第1节 第2节 第3节 第4节 同化物运输 同化物运输机制 同化物的装载和卸出 同化物的配置和分配
第 1节
同化物运输
• 短距离运输: 细胞内及相邻细胞间的 运输,包括胞内运输和胞间(质外体 和共质体)运输。~μm。 • 长距离运输:通过输导组织(维管束) 中的运输。
利用荧光探剂 (CF)实时显示 韧皮部卸出:
间隔6分钟显示CF 在拟南芥根尖中的 卸出
豆类韧皮部卸出的研究手 段:空胚珠技术
Empty-ovule technique
• 在豆荚切开一口; • 切去种子的一半,并 将另一半种子中的胚 组织挖去,仅留下种 皮组织(杯); • 在杯中注入缓冲液或 琼脂,以接受维管组 织卸出的物质 • 若在杯中加入其他物 质、抑制剂或改变其 pH,则可研究影响卸 出的因素
植物生理学期末复习6 第6章 植物的生长物质-自测题及参考答案+重点
第 6 章 植物的生长物质自测题:一、名词解释:1.植物生长物质2.植物激素3.植物生长调节剂4.生长调节物质5.生长素的极性运输6.激素受体7.自由生长素 8.束缚生长素 9.生长素结合蛋白 10.自由赤霉素 11.束缚赤霉素 12. 乙烯的 “三重反应”13.生长抑制剂 14.生长延缓剂 15.多胺 16.靶细胞二、缩写符号翻译:1. IAA2. IBA3. PAA4. TIBA5. IP36. IPA7. NAA8. 2,4-D9. GA3 10. CTK 11. Z12. 6-BA 13. KN 14. iPP 15. SAM 16.ACC 17. ABA 18. BR 19 JA 20. SA 21. CCC22. PP333 23.MH 24.TIBA 25. B9 26. Eth三、填空题:1. 目前大家公认的植物激素有五类: 、 、 、、 。
2 .首次进行胚芽鞘向光性实验的研究者是 。
3. 已在植物体中发现的生长素类物质有 、 、 和 等。
4. 在高等植物中生长素的运输方式有两种: 和 。
5. 生长素的降解可通过两个途径: 和 。
6. 人工合成的生长素类的植物生长调节剂主要有 、 、 、和 等。
7. 赤霉素的基本结构是 。
8. 玉米素(Z)是在 年首次由 从甜玉米成熟种子中提取出来的。
9. 一般认为,细胞分裂素是在植物的 中合成的。
10. 细胞分裂素有 和 两种存在形式。
11. 乙烯生物合成的前体物质是 。
12. 乙烯是在细胞的 中合成的。
13. 乙烯利在pH值为 时分解放出乙烯。
14. 诱导大麦糊粉层α一淀粉酶形成的植物激素是 ,延缓叶片衰老的植物激素是 ;促进瓜类植物多开雌花的植物激素是 ,促进瓜类植物多开雄花的植物激素是 ,促进植物茎的伸长植物 激素是 。
促使植物生根的植物激素是 ;促进果实成熟的植物激素是 ;破除马铃薯和 洋葱休眠的植物激素是 ;加速橡胶分泌乳汁的植物激素是 ;促进菠萝开花的植物激素 是 。
植物生理学练习题及答案 第06章 植物生长物质习题
第六章植物生长物质【主要教学目标】★掌握生长素的极性运输、生物合成与降解、主要生理作用及机理;★了解赤霉素的结构、生物合成、主要生理作用;★了解细胞分裂素的结构和生理作用;★了解脱落酸的生物合成和生理作用;★弄清乙烯的生物合成及其影响因素与农业应用;★了解生长抑制物质、油菜素内酯、多胺等的生理作用和农业应用。
【习题】一、名词解释1.植物生长物质 2.植物激素 3.植物生长调节剂 4.极性运输 5.激素受体6. 燕麦单位 7.燕麦试法 8.单位三重(向)反应 9.靶细胞10.生长抑制剂 11.生长延缓剂 12.钙调素二、填空题1.大家公认的植物激素包括五大类:、、、、。
2.首次进行胚芽鞘向光性实验的人是,首次从胚芽鞘分离出与生长有关物质的人是。
3.已经发现植物体中的生长素类物质有、和。
4.生长素降解可通过两个方面:和。
5.生长素、赤霉素、脱落酸和乙烯的合成前体分别是、、和。
6.组织培养研究中证明:当CTK/IAA比值高时,诱导分化;比值低时,诱导分化。
7.不同植物激素组合,对输导组织的分化有一定影响,当IAA/GA比值低时,促进分化;比值高时,促进分化。
8.诱导 -淀粉酶形成的植物激素是,延缓叶片衰老的是,促进休眠的是,促进瓜类植物多开雌花的是,促进瓜类植物多开雄花的是,促进果实成熟的是,打破土豆休眠的是,加速橡胶分泌乳汁的是,维持顶端优势的是,促进侧芽生长的是。
9.激动素是的衍生物。
10.1AA贮藏时必须避光是因为。
11.为了解除大豆的顶端优势,应喷洒。
12.细胞分裂素主要是在中合成的。
13.缺O2对乙烯的生物合成有作用。
14.干旱、淹水对乙烯的生物合成有作用。
15.乙烯利在pH值时分解放出乙烯。
16.矮生玉米之所以长不高,是因为其体内缺少的缘故。
17.甲瓦龙酸在长日照条件下形成,在短日照条件下形成。
18.生长抑制物质包括和两类。
19.矮壮素之所以能抑制植物生长是因为它抑制了植物体内的生物合成。
植物生理学教案-第六章生长物质
3、促进侧根、不定根和根瘤的形成 4、促进瓜类多开雌花,促进单性 结实、种子和果实的生长。 5、低浓度的IAA促进韧皮部的分 化,高浓度的IAA促进木质部的分化 6、抑制花朵脱落、侧枝生长、块 根形成、叶片衰老
(二)人工合成的生长素类在生产 上的应用 1、促进插枝生根 2、阻止器官脱落— 防止离层形成, 棉花 3、促进结实 — 无籽番茄 4、促进菠萝开花
细胞壁疏松 水解E 水解 H+ 生长素 质膜 水分 蛋白质 细胞核 mRNA 原生质体 合成E 合成 新细胞壁 物质合成 细胞伸展
生长素对细胞伸展的影响
四、GA和ABA对种子萌发的调控 实验证明,GA参与调节α-淀粉 EmRNA的转录。对种子萌发而言,GA的 主要作用在于调节基因的转录。 ABA通过阻遏α-淀粉E基因的转录 和抑制胚乳中水解E的活性来发挥其直 接拮抗GA的效应。
色氨酸 色氨酸脱羧E 色胺 胺氧化E 色氨酸转氨E 吲哚丙酮酸 吲哚丙酮 酸脱羧E 吲哚乙醛 吲哚乙醇 吲哚乙醇 氧化E
吲哚乙醛脱氢E 色胺途径 吲哚乙酸 吲哚丙酮酸途径 吲哚乙醇途径
(二)IAA的氧化
酶氧化:IAA氧化E (Mn2+和一元酚为辅因子) Mn IAA降解 光氧化:核黄素催化
(三)结合态IAA 自由IAA:可自由移动 IAA 结合态IAA(IAA的钝化形式): 与其它物质共价结合的IAA。如吲哚乙 酰葡萄糖、吲哚乙酰肌醇、吲哚乙酰 天冬氨酸
ETH ); 促进器官脱落的是(ABA )和( 促进果实成熟的是(ETH); 延缓植物衰老的是(CTK ); ABA 促进气孔关闭的是( ); 诱导α-淀粉E形成的是(GA ); 促进细胞分裂的是(CTK )。
第五节 植物激素的作用机制 ※
一、植物激素作用的模式 受体蛋白识别激素 “激素-受体复合物” 放大 生理反应 有活性的 信号转导与
植物生理学名词解释
第一章植物的水分生理名词解释水势 water potential:水溶液的化学势与纯水的化学势之差除以水的偏摩尔体积所得的商。
渗透势 osmotic potential:由于溶质颗粒的存在,降低了水的自由能因而其水势低于纯水的水势。
压力势pressure potential:细胞的原生质体吸水膨胀,对细胞壁产生一种作用,与此同时引起富有弹性的细胞壁产生一种原生质体膨胀的反作用力。
质外体 apoplast:由细胞壁及细胞间隙等空间组成的体系。
共质体symplast:由穿过细胞壁的胞间连丝把细胞相连,构成一个相互联系的原生质的整体。
渗透作用osmosis:水分从水势高的系统通过半透膜向水势低的系统移动的现象。
根压root pressure:靠根部水势梯度使水沿导管上升的动力。
蒸腾作用transpiration:指水分以气体状态通过植物体表面从体内散失到体外的现象。
蒸腾速率transpiration rate:植物在一定时间内单位面积蒸腾的水量。
蒸腾比率transpiration ratio(TR):蒸腾作用丧失水分与光合作用同化CO物质的2量比值。
水分利用率water use efficiency(WUE):TR的倒数。
内聚力学说cohesion theory:以水分具有较大的内聚力是以抵抗张力,保证由叶至根水柱不断来解释水分上升的学说。
水分临界期critical period of water:植物在生命周期中,对水最敏感、最易受伤害的时期。
简答1、从植物生理学角度分析“有收无收在于水”。
①水是细胞质主要成分②代谢作用过程的反应物质③植物对物质吸收和运输的溶剂④保持植物固有形态第二章植物的矿质营养名词解释矿质营养mineral nutrition:植物对矿物质的吸收、转运和同化。
大量元素macroelement:植物对某些元素需要量相对较大(大于10mmol/kg干重),C、H、O、N、P、S、K、Ca、Mg微量元素microelement:植物需要量极微(小于10mmol/kg干重),稍多即发生毒害,Cl、Fe、B、Mn、Zn、Cu、Ni、Mo溶液培养solution culture:在含有全部或部分营养元素的溶液中栽培植物。
植物生理学名词解释
第二章:植物的水分代谢1.水分代谢:植物对水分的吸收、转运和散失的过程。
2.比热容:使单位质量的物质温度升高1℃所需的热量。
3.沸点:随着温度的升高,水的蒸汽压升高,当液体蒸汽压等于外界压力时的温度。
4.汽化热:在一定的温度下,将单位质量的物质由液态变为气态所需的热量。
5.内聚力:同类分子间具有的分子间引力。
6.表面张力:处于界面的水分子均受到垂直向内的拉力,这种作用于单位长度表面上的力。
7.抗张强度:某种物质抵抗张力或拉力的能力。
8.不可压缩性:自然界中液体体积难以压缩的特性。
可以保持植物的固有姿态。
9.束缚水:又称结合水,是存在于细胞原生质胶体颗粒周围或存在于大分子结构空间中被牢固吸附着的水分。
10.自由水:存在于细胞间隙、原生质胶粒间、液泡中、导管和管胞内以及植物体其他间隙中的水分。
11.水势:指相同温度下,一个系统中1偏摩尔容积的混合溶液体系与1偏摩尔容积纯水之间自由能的差数。
12.溶质势:由于水中溶质颗粒的存在而引起细胞水势下降的数值,这部分降低的数值又名渗透势。
13.压力势:由于细胞吸水膨胀,使原生质向外对细胞壁产生膨压,而细胞壁向内产生的反作用力—壁压的存在使细胞水势升高的数值,一般为正值。
初始质壁分离时压力势为0,植物剧烈蒸腾时,为负值,水势下降。
14.衬质势:由于亲水的衬质与水分子间的相互作用而使水的自由能下降的那部分数值,为负值。
15.重力势:指水分在重力场中由于存在高度差而受重力作用,使水势升高的数值。
16.扩散:物质分子由高化学势向较低化学势运转直到在空间均匀分布的趋势。
(小距离)17.集流:由于压力差的存在而形成的大量分子集体的运动。
(大距离)18.质壁分离:外界浓度大于细胞液浓度,细胞失水,原生质体体积缩小的现象。
19.质壁分离复原:把质壁分离的细胞重新置于比细胞液浓度小的外界溶液中时,细胞吸水,原生质体恢复原状的现象。
20.水孔蛋白(AQP):在原生质膜和液泡膜中存在一些蛋白,这些蛋白起着选择性水通道的作用,这些蛋白就称为水孔蛋白或水通道蛋白。
植物生理学名词解释
植物生理学重点名词解释第一章植物的水分代谢1、水势(water potential);就是每偏摩尔体积水的化学势差,即体系中水的化学势与纯水化学势之差除以水的偏摩尔体积所得的商.2、渗透势(osmoticpotential):由于溶质的存在而使水势降低的值,其值为负.3、压力势由于细胞壁压力的存在而引起的细胞水势增加的值,其为正值.4、水孔蛋白(aquaporin):研究发现植物细胞质膜和液泡膜上有一类膜内蛋白,其多肽链穿越膜并形成孔道,特异的允许水分子通过,具有高效转运水分子的功能,这类蛋白被称为水孔蛋白.5、自由水(free water)与束缚水(bound water)自由水:不被胶体颗粒或渗透物质所吸引或吸引力很小,可以自由移动的水分,当温度升高时可以挥发,温度降低到冰点以下可结冰.束缚水:被植物细胞的胶体颗粒或渗透物质所吸引,且紧紧被束缚不能自由移动的水分,当温度升高时不能挥发,温度降低到冰点以下也不结冰.6、共质体(symplast)与质外体(apoplast)共质体:包括所有细胞的原生质,即所有细胞生活的部分.原生质体之间有胞间连丝将它们联系在一起,整个根系中的共质体部分是连续的体系,它对水传导的阻力很大.质外体:指没有原生质的部分,包括细胞壁、细胞间隙以及中柱内的木质导管.质外体对水分运输的阻力很小. 共质体运输:通过活细胞运输径向运输距离虽短,但运输阻力大,速度慢. 质外体运输:是在维管束的死细胞(导管或管胞)和细胞壁与细胞间隙中运输.7、主动吸水(active absorption of water)与被动吸水主动吸水:植物根系通过自身的生理代谢活动所引起的吸水过程称为主动吸水.被动吸水:由于地上枝叶的蒸腾作用产生蒸腾拉力所引起的吸水过程称为被动吸水.8、蒸腾效率与蒸腾系数蒸腾效率或蒸腾比率:植物每消耗1kg水所生产干物质的克数.蒸腾系数或需水量:植物制造1g干物质所消耗的水量(g).它是蒸腾效率的倒数,一般植物的蒸腾系数为125-1000.9、蒸腾作用:是植物体内的水分,以气态方式从植物的表面向外界散失的过程.10、永久萎蔫系数(permanent wilting coefficient);植物刚刚发生永久萎蔫时土壤中尚存留点水分含量.11、根压(root pressure);靠根系的生理活动,使液流由根部上升的压力.12、小孔律(law of small pores);气体通过多孔表面的扩散速率,不与小孔的面积成正比,而与小孔的周长成正比.13、SPAC(Soil-plant-atmosphere-continuum):土壤—植物—大气连续体系.水分经由土壤到达植物根表皮,进入根系后,通过植物茎,到达叶片,再由叶气孔扩散到宁静空气层,最后参与大气湍流交换,形成了一个统一的,动态的相互反馈连续系统.第二章植物的矿质及氮素营养1、矿质元素(mineral element):灰分中的物质为各种矿质的氧化物、硫酸盐、磷酸盐等,构成灰分的元素称为灰分元素又称为矿质元素.2、必需元素(essential element):是植物生长发育必不可少的元素. 必需元素的三条标准是:1.由于缺乏该元素,植物生长发育受阻,不能完成其生活史;2.除去该元素,表现为专一的病症,这种缺素病症可用加入该元素的方法预防和恢复正常;3.该元素在植物营养生理上表现直接的效果,不是由于土壤的物理、化学、微生物条件的改善而产生的间接效果.3、离子的主动吸收与被动吸收被动吸收:溶质顺电化学势梯度进入质外体的吸收过程,不需要代谢提供能量.主动吸收:溶质跨膜进入细胞质和液泡的过程,要利用呼吸释放的能量逆电化学势梯度吸收.4、协助扩散(facilitated diffusion):协助扩散是小分子物质经膜转运蛋白协助,顺浓度梯度或电化学梯度跨膜的转运,不需要细胞提供能量.5、膜转运蛋白(fransport protein):指膜上存在的转运离子跨膜的内在蛋白.可分为通道蛋白和载体蛋白两类.6、载体(carrier):也是内部蛋白,载体转运时被转运物质首先与载体蛋白的活性部位结合,并由此导致载体蛋白构象变化,将被运物质暴露于膜的另一侧.7、离子通道(ion channel):是细胞膜中一类内在蛋白构成的孔道.可为化学方式或电学方式激活,控制离子通过细胞膜的顺势流动.8、离子的选择吸收(selective absorption):是指植物对同一溶液中不同离子或同一盐的阳离子和阴离子,吸收的比例不同的现象.9、平衡溶液(balanced solution):植物能良好生长的含有适当比例的多盐溶液.10、生理酸性盐与生理碱性盐生理酸性盐:植物对其阳离子吸收大于阴离子,长期施用可使土壤酸化的盐.生理碱性盐:植物对其阴离子吸收大于阳离子,长期施用可使土壤碱化的盐.11、单盐毒害与离子拮抗(ion antagonism)单盐毒害:任何植物,假若培养在某一单盐溶液中,不久即呈现不正常状态,最后死亡.这种现象称单盐毒害.离子拮抗:离子间能够互相消除单盐毒害的现象,称离子拮抗,也称离子对抗.第三章植物的呼吸作用1.呼吸作用(respiration):生活细胞内的有机物,在酶的参与下,逐步氧化分解并释放能量的过程. 2.EMP途径(EMP pathway):即糖酵解,己糖在细胞质中分解成丙酮酸的过程.3.三羧酸循环(tricarboxylic acid cycle,TCAC):在有氧条件下丙酮酸在线粒体基质中彻底氧化分解为二氧化碳的途径.4.PPP(pentose phosphate pathway):即戊糖磷酸途径,葡萄糖在细胞质内直接氧化分解,并以戊糖磷酸为重要中间产物的有氧呼吸途径.5.生物氧化(biological oxidation):也称细胞氧化,广义上指生物体内各种有机物质的氧化分解过程,狭义上指发生在线粒体内一系列传递氢和电子的氧化还原过程.6.呼吸链(respiration chain):即呼吸电子传递链,指线粒体内膜上由呼吸传递体组成的电子传递的总轨道.7.巴斯德效应(Pasteur effect):从有氧条件转入无氧条件时酵毋菌的发酵作用增强,反之,从无氧转入有氧时酵毋菌的发酵作用受到抑制,这种氧气抑制酒精发酵的现象叫做巴斯德效应.8.氧化磷酸化(oxidative phosphorylation):氧化磷酸化就是呼吸链上的磷酸化作用,也就是当NADH+H+上的一对电子被传递至氧时,所发生的ADP被磷酸化为ATP的作用.9.能荷调节(regulation of energy charge):细胞中腺苷酸(AMP,ADP,ATP)对呼吸作用和其他一些代谢有明显的调节作用.10.抗氰呼吸(Cyanide resistat repiration):对氰化物不敏感的那一部分呼吸.抗氰呼吸可以在某些条件下与电子传递主路交替运行.11.呼吸商(respiration quotient RQ):植物组织在一定时间内,放出二氧化碳的量与吸收氧气的量的比值叫做呼吸商,又称呼吸系数.12.末端氧化酶(terminal oxidase):处于生物氧化一系列反应的最末端的氧化酶.除了线粒体内膜上的细胞色素氧化酶和抗氰氧化酶之外,还有存在于细胞质中的酚氧化酶、抗坏血酸氧化酶和乙醇酸氧化酶等. 13.无氧呼吸消失点(anaerobic respiration extinetion point):无氧呼吸停止进行的最低氧浓度(10%左右)称为无氧呼吸消失点.第四章植物的光合作用1.光合作用(photosynthesis):通常是指绿色植物吸收光能,把二氧化碳和水合成有机物,同时释放氧气的过程.从广义上讲,光合作用是光养生物利用光能把二氧化碳合成有机物的过程.2.原初反应(primany reaction):是光合作用起始的光物理化学过程,包括光能的吸收、传递与电荷的分离,即天线色素吸收光能并传递给中心色素分子,使之激发,被激发的中心色素分子将高能电子传给原初电子受体.同时又从原初电子供体获得电子.原初反应的速度极快.3.作用中心色素(reaction center pigment):又称为反应中心色素,是指少数特殊状态的叶绿素a分子,具有光化学活性,将获得的光能进行电荷分离,直接参与光化学反应的色素.4.聚光色素(light harvesting pigment):聚光色素没有光化学活性,不直接参与光化学反应,类似无线电天线将吸收的光能以诱导共振方式传递给作用中心色素.包括:大部分叶绿素a分子、全部叶绿素b、类胡萝卜素分子.5.希尔反应(Hill reaction):离体叶绿体在有适当氢受体存在时照光发生放氧的反应称为希尔反应. 6.红降现象(red drop)与爱默生效应(Emerson effect)红降现象:光合作用的量子产额在波长大于680nm时急剧下降的现象.爱默生效应:指如果用波长大于685nm的红光补充一个波长较短的红光(650nm),则量子产额比分别单独用这种光照射的产量产额之和还要高,这种现象为双光增益效应.7.PSI(photosystem I)与PSII(photosystem II)PSI:光系统 I,作用中心I,其作用中心色素最大吸收峰在700nm处,也称P700; PSII:光系统II,作用中心II,其作用中心色素最大吸收峰在680nm处,也称P680. 8.Rubisco(RuBP carboxylase/oxygenase):1,5-二磷酸核酮糖羧化酶/加氧酶9.荧光现象(fluorescence):激发态的叶绿素分子回到基态时,可以光子形式释放能量.处在第一单线态的叶绿素分子回至基态时所发出的光称为荧光.10.作用中心(reaction centre):是叶绿体中进行光合原初反应的最基本的色素蛋白结构.它至少包括:1个作用中心色素分子(P);1个原初电子受体(A);1个原初电子供体(D).作用中心基本成分是由结构蛋白质和脂类组成.11.光合链(photosynthetic chain):由PSII和PSI以及一系列电子传递体组成的使水中的电子最终传给NADP+的电子传递轨道称为光合电子传递链,简称光合链12.光合磷酸化(photophosphorylation):光下在叶绿体(或载色体)中发生的由ADP与Pi合成ATP的反应. 13.光呼吸(photorespiration):植物的绿色细胞在光照下吸收氧气释放CO2的过程,由于这种反应仅在光下发生,需叶绿体参与,并与光合作用同时发生,故称作为光呼吸.因为光呼吸的底物乙醇酸和其氧化产物乙醛酸,以及后者经转氨作用形成的甘氨酸皆为C2化合物,因此光呼吸途径又称为C2光呼吸碳氧循环14.生物产量(biolgical yield)与经济产量(economic yield) 生物产量:植物一生中合成并积累下来的全部有机物质. 经济产量:指对人类有直接经济价值的光合生产量.15.表观光合速率或净光合速率:指光合作用实际同化的CO2量减掉同一时间内呼吸释放的CO2量的差值,常用单位是CO2mg/dm2.hr.16.光补偿点与光饱和点(1ight saturation point):光补偿点:随着光强的增高,光合速率相应提高,当到达某一光强时,叶片的光合速率等于呼吸速率,即CO2吸收量等于O2释放量,表观光合速率为零,这时的光强称为光补偿点.光饱和点:当达到某一光强时,光合速率就不再随光强的增高而增加,这种现象称为光饱和现象.开始达到光合速率最大值时的光强称为光饱和点.17.CO2补偿点与CO2饱和点(CO2 saturation point): CO2补偿点:指光合速率与呼吸速率相等时,也就是净光合速率为零时环境中的CO2浓度.CO2饱和点:当CO2达到某一浓度时,光合速率达到最大值,开始达到光合最大速率时的CO2浓度称为CO2饱和点.18.光能利用率:植物光合作用积累的有机物中所含的化学能占光能投入量的百分比.第六章植物的生长物质1.植物激素(plant hormones,phytohormones):在植物体内合成的、能从合成部位运往作用部位、对植物生长发育产生显著调节作用的微量小分子有机物.目前国际上公认的植物激素有五大类:生长素类、赤霉素类、细胞分裂素类、脱落酸、乙烯.另外有人建议将油菜素甾体类、茉莉酸类也列为植物激素.2.三重反应(triple response):乙烯对植物生长具有的抑制茎的伸长生长、促进茎或根的增粗和使茎横向生长(即使茎失去负向地性生长)的三方面效应.3.植物生长调节剂(plant growth regulators):人们研究并合成的与天然植物激素具有同样生理作用的有机化合物.4.植物生长物质(plant growth substances):能够调节植物生长发育的微量化学物质,包括植物激素和植物生长调节剂、抑制物质、植物生长调节剂.5.生长抑制剂(growth inhibitor):抑制顶端分生组织生长的生长调节剂,它能干扰顶端细胞分裂,引起茎伸长的停顿和破坏顶端优势,其作用不能被赤霉素所恢复,常见的有脱落酸、青鲜素、水杨酸、整形素等. 6.生长延缓剂(growth retardant):抑制植物亚顶端分生组织生长的生长调节剂,它能抑制节间伸长而不抑制顶芽生长,其效应可被活性GA所解除.生产中广泛使用的生长延缓剂有矮壮素、烯效唑、缩节安等. 7.极性运输(polar transport):只能从形态学的一端运向另一端的运输,如生长素的运输,只能从形态学的上端运向形态学的下端,而不能从形态学下端运向上端.8.激素受体:能与激素特异结合并引起特殊生理效应的物质,一般是属于蛋白质.第七章植物的生长生理1、植物的生长(growth)和发育(development):植物的生长:在生命周期中,植物的细胞、组织和器官的数目、体积或干重的不可逆增加长.植物的发育:是指植物的生命周期中,细胞、器官或整体在遗传基因支配和环境条件影响下,在形态结构和功能上有序的变化过程.包括生长和分化两个方面.2、细胞的分化(differentiatkm) 脱分化(dedifferentiation) 再分化(redifferentiation) :细胞的分化:从一种同质的细胞类型转变成形态结构和功能与原来不相同的异质细胞类型的过程称为分化.它可在细胞、组织、器官的不同水平上表现出来.脱分化:植物已经分化的细胞在切割损伤或在适宜的培养基上诱导形成失去分化状态的、结构均一的愈伤组织或细胞团的过程. 再分化:由处于脱分化状态的愈伤组织或细胞再度分化形成不同类型细胞、组织、器官乃至最终再生成植株的过程.3、植物细胞的全能性(totipotency):植物体每一个细胞都具有分化成一个完整植株的潜在能力,即具有形成完整生物个体的全套基因.4、黄化现象(ctiolation):在黑暗中生长的植物茎柔嫩而细长,叶片似小鳞片状紧贴于茎上,茎的顶端一直保持弯曲状态而不伸展;内部组织分化不完全,薄壁细胞多,输导和机械组织不发达,茎叶中没有叶绿素,整个植株呈黄白色.5、.生长协调最适温度(grow coordinate temperature):能使植株生长最健壮的温度.协调最适温度通常要比生长最适温度低.6、温周期现象(thermoperiodicity):植株或器官的生长速率随昼夜温度变化而发生有规律变化的现象.7、光形态建成(photomorphogenesis):由光调节植物生长、分化与发育的过程称为植物的光形态建成,或称光控发育作用.8、蓝光效应(blue effect):蓝紫光抑制生长,促进分化,抑制黄化现象的产生,诱导向光性反应,这种现象称为蓝光效应.9、光敏色素(Phytochrome,Phy):一种对红光和远红光的吸收有逆转效应、参与光形态建成、调节植物发育的色素蛋白.11、生长相关性(correlation):植物各部分之间的相互制约与协调的现象.12、顶端优势(apical dominance):植物的顶芽生长占优势而抑制侧芽生长的现象.13、根冠比(root top ratio,R/I):植物地下部分与地上部分干重或鲜重的比值,它能反映植物的生长状况以及环境条件对地上部与地下部生长的不同影响.14、生长大周期(grand period of growth):植物器官或整株植物的生长速度表现出"慢-快-慢"的基本规律,即开始时生长缓慢,以后逐渐加快,然后又减慢以至停止.这一生长全过程称为生长大周期.15、生物钟(biological clock) rhythm):生命活动中有内源性节奏的周期变化现象.亦称生理钟.由于这种内源性节奏的周期接近24小时,因此又称为近似昼夜节奏.16、向光性(phototropism):植物随光的方向而弯曲生长的现象.包括正向光性、负向光性、横向光性. 第八章植物的成花生理1、春化作用(vernalization)与春化处理(vernalization)春化作用:低温诱导促使植物开花的作用叫春化作用.一般冬小麦等冬性禾谷类作物和某些二年植物以及一些多年生草本植物的开花都需要经过春化作用.春化处理:对萌动的种子或幼苗进行人为的低温处理,使之完成春化作用促进成花的措施称为春化处理.1、光周期现象与光周期诱导(photoperiodic induction)光周期现象:昼夜的相对长度对植物生长发育的影响叫做光周期现象.光周期诱导:植物在达到一定的生理年龄时,经过一定天数的适宜光周期处理,以后即使处于不适宜的光周期下,仍能保持这种刺激的效果而开花,这种诱导效应叫做光周期诱导.3、临界日长(critical daylength)与临界夜长(critical dark period)临界日长:引起长日植物成花的最短日照长度或引起短日植物成花的最长日照长度.临界夜长:引起短日植物成花的最短暗期长度或长日植物成花的最长暗期长度.同临界日长相比,临界暗期对诱导成花更为重要.4、识别蛋白:存在于花粉与柱头上能够起识别作用的蛋白质.5、群体效应:一定面积内,画粉数量越多,密度越大,花粉的萌发和生长也就越好.6、花熟状态(ripeness to flower state):植物经过一定的营养生长期后具有了能感受环境条件而诱导开花的生理状态被称为花熟状态.花熟状态是植物从营养生长转为生殖生长的转折点.7、C/N比学说(carbon/nitrogen ratio):C为碳水化合物,N为可利用的含氮化合物,当植物体内C/N比值高时,有利于生殖体的形成,促进开花;反之,有利于营养生长,延迟开花.8、长日植物(long-day plant,LDP)与短日植物(short-day plant,SDP)长日植物:在24小时昼夜周期中,日照长度长于一定时数才能成花的植物.短日植物:在24小时昼夜周期中,日照长度短于一定时数才能成花的植物.第九章植物的生殖与衰老1、休眠(dormancy):植物的整体或某一部分生长暂时停顿的现象.它是植物抵制不良自然环境的一种自身保护性的生物学特性.一、二年生植物大多以种子为休眠器官;多年生落叶树以休眠芽过冬;多种多年生草本植物则以休眠的根系、鳞茎、球茎、块根、块茎等渡过不良环境.2、单性结实(parthenocarp):不经过受精作用,子房直接发育成果实的现象.单性结实一般都形成无籽果实,故又称"无籽结实".3、生长素梯度学说(auxin gradient theory):不是叶片内生长素的绝对含量,而是横过离层区两边生长素的浓度梯度影响脱落.梯度大,即远轴端生长素含量高,不易脱落;梯度小时,即近轴端生长素含量高于或等于远轴端的量,则促进脱落.4、生理后熟(after-ripening):种子胚的分化发育虽已完成(形态上貌似成熟),其实生理上尚未成熟.经某些生理生化变化(主要是要完成内部有机物和激素等物质的转化,积累种子萌发所要的一些物质)后,才具备发芽的能力,这种现象称为生理后熟.5、生物自由基(biological radicals)和活性氧(active oxygen)生物自由基:自由基是具有未配对价电子的基因或分子.生物自由基,通过生物自身代谢产生的一类自由基. 活性氧:化学性质活泼、氧化能力很强的含氧物质的总称,包括含氧自由基和含氧非自由基.6、呼吸跃变:果实成熟过程中,呼吸速率突然增高,然后又迅速下降的现象.呼吸跃变的产生与外界温度和果实内乙烯的释放密切相关.呼吸跃变是果实进入完熟的一种特征.7、衰老(senescence):在正常条件下发生在生物体的机能衰退并逐渐趋于死亡的现象,具体指的是植物的细胞、组织、器官或整个植株的生理功能衰退的现象.第十章植物的抗逆生理1、逆境(stress)与植物的抗逆性(stress resistance)逆境:对植物生存生长不利的各种环境因素的总称.逆境的种类可分为生物逆境、理化逆境等类型.植物的抗逆性:植物在长期系统发育中逐渐形成的对逆境的适应和抵抗能力.2、渗透调节(osmotic adjustment)和渗调蛋白(osmoregulation protein)渗透调节:指细胞通过增加或减少胞液中的溶质调节细胞的渗透势,以期达到与外界环境渗透势相平衡的调节.渗调蛋白:干旱和盐渍都能诱导植物产生一些新的蛋白质,这些蛋白质的合成或积累起着调节细胞渗透势的作用.3、交叉适应(cross adaptation):植物经历了某种逆境后,能提高对另一些逆境的抵抗能力,这种对不良环境之间的相互适应作用,称为植物的"交叉适应".4、膜脂相变:指膜脂在一定条件下的物相变化,也就是液晶相-凝胶相或液晶相-液相的相互转变.这主要是由温度变化引起的.5、膜脂过氧化作用:指生物膜中不饱和脂肪酸在自由基诱发下发生的过氧化反应,其结果不仅使膜中不饱和脂肪酸含量降低,引起膜流动性下降以致膜相分离和膜通透性增大,膜的正常功能破坏,而且膜脂过氧化物MDA等也能直接对细胞起毒害作用.6、水合补偿点:缺水会导致植物光合作用降低,当植物因缺水而使其光合速率与呼吸速率相等(即净光合速率为零)时,植物叶片的水势称为水合补偿点.7、干旱(drought):土壤缺水,大气干燥,导致植物过度水分亏缺的现象.8、SOD(super-oxide dismutase):超氧化物歧化酶.存在于植物细胞中最重要的清除自由基的酶,能催化生物体内分子氧活化的第一个中间产物氧自由基发生歧化反应,生成氧气和过氧化氢.SOD分Cu-Zn-SOD,Mn-SOD和Fe-SOD三种类型,主要分布在叶绿体、线粒体和细胞质中9、活性氧:化学性质活泼、氧化能力很强的含氧物质的总称,包括含氧自由基和含氧非自由基.10、环境污染(environmental pollution):由于某些原因(人类生产生活)排放到环境中的各种有害物质(污染物)的量超过了生态系统的自然净化能力,造成环境污染.11、诱导抗病性:利用特定的因子处理植物,改变其对病害的反应,产生局部或系统的抗性称为诱导抗病性.。
植物生理学教案植物生长物质
一、植物生长素的发现与作用1. 教学目标:了解生长素的发现过程,理解生长素的作用及其在植物生长中的重要性。
2. 教学内容:生长素的发现过程,生长素的作用,生长素在植物生长中的应用。
3. 教学方法:讲授法,案例分析法,小组讨论法。
4. 教学步骤:步骤1:引入生长素的概念,讲解生长素的发现过程。
步骤2:分析生长素的作用,如促进细胞伸长、影响植物向光性等。
步骤3:探讨生长素在植物生长中的应用,如促进插条生根、控制植物形态等。
步骤4:案例分析,分析实际应用中生长素的作用及效果。
步骤5:小组讨论,思考生长素在农业生产中的应用前景。
5. 教学评价:课堂问答,小组讨论,课后作业。
二、植物生长素的合成与运输1. 教学目标:了解生长素的合成过程,理解生长素的运输方式及其在植物体内的分布。
2. 教学内容:生长素的合成过程,生长素的运输方式,生长素在植物体内的分布。
3. 教学方法:讲授法,实验分析法,小组讨论法。
4. 教学步骤:步骤1:讲解生长素的合成过程,如色氨酸的转化等。
步骤2:分析生长素的运输方式,如极性运输、非极性运输等。
步骤3:探讨生长素在植物体内的分布,如茎、叶、根等器官。
步骤4:实验分析,观察生长素在植物体内的运输和分布。
步骤5:小组讨论,思考生长素合成和运输的调控机制。
5. 教学评价:课堂问答,实验报告,小组讨论。
三、植物生长素的生物学功能1. 教学目标:了解生长素的生物学功能,理解生长素在植物生长发育中的作用。
2. 教学内容:生长素的生物学功能,生长素在植物生长发育中的应用。
3. 教学方法:讲授法,案例分析法,小组讨论法。
4. 教学步骤:步骤1:讲解生长素的生物学功能,如促进细胞伸长、影响植物向光性等。
步骤2:分析生长素在植物生长发育中的应用,如促进种子萌发、控制植物形态等。
步骤3:案例分析,分析实际应用中生长素的生物学功能及效果。
步骤4:小组讨论,思考生长素在农业生产中的应用前景。
5. 教学评价:课堂问答,小组讨论,课后作业。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Nature 435|26 May 2005|doi:10.1038
The F-box protein TIR1 is an auxin receptor
Nihal Dharmasiri1, Sunethra Dharmasiri1 & Mark Estelle1
Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
第6章 植物生长物质
Plant Growth Regulation, Monthly, ISSN: 0167-6903, ETHERLANDS J. Plant Growth Regulation, Quarterly, ISSN: 0721-7595, USA
植物生长物质(Plant growth substances):
Nature 446, 640-645 (5 April 2007) | doi:10.1038/nature05731; Received 27 January 2007;
Accepted 8 March 2007
Mechanism of auxin perception by the TIR1 ubiquitin ligase
Jasmonic acid, Salicylic acid, Brassinosteroids, Polyamines
第1节、生长素类
一、 发 现
• C. Darwin & F. Darwin (1880):
Canary grass
达尔文发现顶端被切除或被遮挡的情况下不发生向光性 弯曲生长。感受光的部位是尖端。
1 激素信号的感受
• 激素受体:位于细胞膜上或细胞内的特异的蛋 白质,能与激素特异结合,并在结合后引起特 定的生理效应。
• 激素与其受体的特异结合是激素发挥作用的第 一步。
• 激素结合蛋白:与激素特异结合是受体的最基 本特征,受体的研究必然从提取和鉴定激素结 合蛋白(准受体)开始。只有被证实具有生理 功能的激素结合蛋白才是真正的受体。
顶端分生组织、幼叶、 受精后的子房、幼嫩 的果实和种子;
• 分布较少的部位:成 熟或衰老的器官
生长素运输的2种方式
• 被动运输:成熟叶 子中合成的IAA经 由韧皮部向上或向 下被运输到其他部 位。无极性,为被 动运输形式。
• 主动运输:茎尖或 根尖中,IAA经由 维管束鞘细胞,总 是从形态学上端运 向下端。为主动运 输形式。
• 在核黄素等致敏色素的作用下,IAA易被酸、紫外、离子辐射及 可见光分解
• IAA亦可被酶(IAA氧化酶、过氧化物酶等)分解,为清除IAA的 不可逆途径。IAA的降解特性限制了其生产应用
五、 生长素类的作用机理
• 植物激素发挥作用的3个步骤:
(1)激素信号的感受 (2)信号的转导和放大 (3)基因表达和最终的生理反应
1934,从孕妇尿液中提取出活性成分:吲哚-3-乙 酸(IAA); 1946,从未成熟的玉米籽粒中提取出IAA,说明: IAA为天然的产物;
IAA为主要的 生长素类物质
4-Cl-IAA
PAA
迄今,还发现
其他3种天然的
生长素类成分
(p201)
NAA
• 生长素类的几种调节剂
二、 分布和运输
• 主要集中在生长旺盛 的组织或器官:
Xu Tan1, Luz Irina A. Calderon-Villalobos2, Michal Sharon3, Changxue Zheng1, Carol V. Robinson3, Mark
为植物激素和植物生长调节剂的总称。
植物生长调节剂(Plant growth regulators):
指化学合成的具有激素生理效应的化合物, 主要用于化学工业和农业生产中。
那么,什么是植物激素? 归属为植物激素的物质具备哪些特点?
The Hormone Concept in Plants
概念
在特定部位合成
三、IAA的生物合成
• 色胺 途径 • 吲哚丙酮 酸途径
吲哚乙腈途径
四、 IAA的降解途径 1、 产生结合态IAA
芸苔葡糖硫苷
结合态IAA的作用:
• 贮藏IAA的作用 • 运输IAA的作用 • 平衡体内IAA水平,起解毒作用
2, 氧化降解途径
3-羟甲基氧吲哚
吲哚-3-甲醛
3-亚甲基氧吲哚
吲哚-3-甲醇
萘基邻氨甲酰苯甲酸
2,3,5-三碘苯甲酸
IAA极性运输抑制剂:非竞争性结合细胞基部的 IAA运输载体上,改变该载体(IAA转运蛋白)的 构象,以阻断对IAA的跨膜转运
IAA极性运输的化学渗 透极性扩散假说 (The chemiosmoticpolar diffusion model)
IAAH,亲脂,易通过膜 扩散; IAA-,疏水,不易通过 膜扩散; IAA转运蛋白(运输载 体):位于细胞的基 部
Hale Waihona Puke Animals Plants
yes
?
运输到靶组织或细胞
yes
?
依赖浓度控制生理效应
yes
?
• Plant Hormones are naturally occurring, organic substances that, at low concentration, exert a profound influence on physiological processes.
Boysen-Jensen证明胚芽鞘顶端产生的信号可以透过凝 胶块传递,证明这种信号是一种化学物质。
胚芽鞘顶端产生了一种化学物质,刺激胚芽鞘背光面的组织 生长快于向光面的组织生长,这种不均衡的生长导致了胚
芽鞘的向光弯曲现象。
燕麦胚芽鞘弯曲实验
A、证明胚芽鞘顶端产生调节物质 B、建立了提取和定量检测活性物 质的方法 把此物质命名为:Auxin (希腊语, to increase) ,生长素
• 植物激素为天然存在的有机化合物,以极低的浓度调 控 植物的生理过程
The five classical plant hormones:
Auxins, Gibberellins, Cytokinins, Abscisic acid, Ethylene
The new type plant hormones: