周期函数,复合函数,分段函数的精讲与练习(快速提高解函数题的能力)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
周期函数
通俗定义
对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。事实上,任何一个常数kT (k∈Z且k≠0)都是它的周期。
严格定义
设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质:f (x+T)=f(x);
则称f(x)是数集M上的周期函数,常数T称为f(x)的一个周期。如果在所有正周期中有一个最小的,则称它是函数f(x)的最小正周期。
由定义可得:周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。
正弦函数图象
编辑本段周期函数性质
⑴若T(≠0)是f(X)的周期,则-T也是f(X)的周期。
⑵若T(≠0)是f(X)的周期,则nT(n为任意非零整数)也是f(X)的周期。
⑶若T1与T2都是f(X)的周期,则T1±T2也是f(X)的周期。
⑷若f(X)有最小正周期T*,那么f(X)的任何正周期T一定是T*的正整数倍。
⑸若T1、T2是f(X)的两个周期,且是无理数,则f(X)不存在最小正周期
⑹若T1、T2是f(X)的两个周期,且T1/T2是无理数,则f(X)不存在最小正周期。
⑺周期函数f(X)的定义域M必定是至少一方无界的集合。
编辑本段判定
定理1
若f(X)是在集M上以T*为最小正周期的周期函数则K f(X)+C(K≠0)和1/ f(X)分别是集M和集{X/ f(X) ≠0,X }上的以T*为最小正周期的周期函数。[1]
证:
∵T*是f(X)的周期,∴对有X±T* 且f(X+T*)= f(X),∴K f(X)+C=K f(X+T*)+C,
∴K f(X)+C也是M上以T*为周期的周期函数。
假设T* 不是Kf(X)+C的最小正周期,则必存在T’(0 有K f(X+T’)+C=K f(X) +C K[f(X+T’)- f(X)]=0,∵K≠0,∴f(X+T’)- f(X)=0,∴f(X+T’)= f(X), ∴T’是f(X)的周期,与T*是f(X)的最小正周期矛盾,∴T*也是K f(X)+C 的最小正周期。 同理可证1/ f(X)是集{X/ f(X) ≠0,X }上的以T*为最小正周期的周期函数。 定理2 若f(X)是集M上以T*为最小正周期的周期函数,则f(aX+n)是集{X/aX+ n }上的以T*/ a为最小正周期的周期函数,(其中a、b为常数)。 证: 先证是f(ax+b)的周期 ∵T*是f(X)的周期,∴ ,有X±T*∈M,∴a(X)+b=ax+b ±T*∈M,且f[a(X+ T)+b]=f(ax+b±T*)=f(ax+b)∴ 是f(ax+b)的周期。 再证是f(ax+b)的最小正周期 假设存在T’(0 则f(a(x+T’)+b)=f(ax+b),即f(ax+b+aT’)=f(ax+b), 因当X取遍{X/X∈M,ax+b∈M}的各数时,ax+b就取遍M所有的各数, ∴aT’是f(X)的周期,但 <=T*这与T*是f(X)的最小正周期矛盾。 定理3 设f(u)是定义在集M上的函数u=g(x)是集M1上的周期函数,且当X∈M1时,g(x)∈M,则复合函数f(g(x))是M1上的周期函数。 证: 设T是u=g(x)的周期,则 1有(x±T)∈M1且g(x+T)=g(x) ∴f(g(x+T))=f(g(x)) ∴=f(g(x))是M1上的周期函数。 例1 设=f(u)=u2是非周期函数,u= g(X)=cosx是实数集R上的周期函数,则f(g(x))=cos2x是R上的周期函数。 同理可得:⑴f(X)=Sin(cosx),⑵f(X)=Sin(tgx),⑶f(X)=Sin2x,⑷f(n)=Log2Sinx(sinx>0)也都是周期函数。 例2 f(n)=Sinn是周期函数,n=g(x)=ax+b(a≠0)是非周期函数, f(g(x))=Sin(ax+b)是周期函数(中学数学中已证)。 例3 f(n)=cosn是周期函数,n=g(x)= (非周期函数)而f(g(x))=cos 是非周期函数。 证:假设cos 是周期函数,则存在T>0使cos (k∈Z)与定义中T是与X无关的常数矛盾, ∴cos 不是周期函数。 由例2、例3说明,若f(u)是周期函数,u= g(X)是非周期函数,这时f(g(x))可能是,也可能不是周期函数。 定理4 设f1(X)、f2(X)都是集合M上的周期函数,T1、T2分别是它们的周期,若T1/T2∈Q则它们的和差与积也是M上的周期函数,T1与T2的公倍数为它们的周期。 证: 设((p·q)=1)设T=T1q=T2p则有:有(x±T)=(x±T1q)=(x±T2p)∈M,且f1(x+T) ±f2(x+T)= f1(x+T1q) ±f2(x+T2p)= f1(X)±f2(X) ∴f1(X) ±f2(X)是以T1和T2的公倍数T为周期的周期函数。同理可证:f1(X) 、f2(X)是以T为周期的周期函数。 定理4推论 设f1(X) 、f2(X)……fn(X) 是集M上的有限个周期函数T1、T2……Tn 分别是它们的周期,若,… (或T1,T2……Tn中任意两个之比)都是有理数,则此n个函数之和、差、积也是M上的周期函数。 例4 f(X)=Sinx-2cos2x+sin4x是以2π、π、π/2的最小公倍数2π为周期的周期函数。 例5 讨论f(X)= 的周期性 解:2tg3 是以T1= 为最小正周期的周期函数。 5tg 是以T2 为最小正周期的周期函数。 tg2 是以T3= 为最小正周期的周期函数。 又都是有理数 ∴f(X)是以T1、T2、T3最小公倍数(T1、T2、T3)= 为最小正周期的周期函数。 同理可证: ⑴f(X)=cos ; ⑵f(x)=sin2xcos2x+cos2xcos3x+cos3xsin3x。是周期函数。 定理5 设f1(x)=sin a1x,f2(x)=cosa2x,则f1(x)与f2(x)之和、差、积是周期函数的充要条件是a1/a2∈Q。 证 先证充分性: 若a1/a2∈Q,设T1、T2分别为f1(x)与f2(x)的最小正周期,则T1= 、T2= ,又∈Q 由定理4可得f1(x)与f2(x)之和、差、积是周期函数。 再证必要性(仅就f1(x)与f2(x)的差和积加以证明)。