空气湿度的观测与测量

空气湿度的观测与测量
空气湿度的观测与测量

空气湿度的观测与测量2010-3-15 14:30:51 来源:上海懿凌环境科技有限公司表示空气中水汽多寡亦即干湿程度的物理量,称为空气湿度。湿度的大小常用水汽压、绝对湿度、相对湿度和露点温度等表示。公众天气预报中最常用的是相对湿度。相对湿度是空气中实际水汽含量(绝对湿度)与同温度下的饱和湿度(最大可能水汽含量)的百分比值。它只是一个相对数字,并不表示空气中湿度的绝对大小。

在一定的气温条件下,一定体积的空气只能容纳一定量的水汽。如果水汽量达到了空气能够

容纳水汽的限度,这时的空气就达到了饱和状态,相对湿度为100%。在饱和状态下,水份不再

蒸发。高热的夏季遇到这种天气,人体分泌的汗水难以蒸发,感到闷热难以忍受。反之,秋天有

时也会遇到高温这只“秋老虎”,但由于度明显降低,人们浑身淌汗却很少会有“闷”的感觉。

如果冬天遇到低温高湿天气,人们又会感到阴湿寒冷。空气中湿度太小,同样会使人感到不舒

服。南方人初到北方,沿海人咋去大西北,常会感到唇干口燥,甚至鼻出血。当然,这是属于人

的适应性问题了。

一般而言,相对湿度的日变化与气温的日变化相反,最大值出现在日出前后,最小值出现在

下午2时左右。当然,当某地的天气发生突变时,湿度的这种变化规律就会被破坏。如高温低湿

的午后,突然乌云翻滚,湿空气汹涌而至,当地的湿度就会迅速猛升。相对湿度的年变化比较复

杂,通常是多雨的季节湿度高,晴朗的天气湿度低,但各地的地理条件、气温条件和雨季情况差

异很大,难以概括出一个具有普遍性的规律。电视观众朋友们一定会注意到,当要预报一场降水

即将发生时,预报员常会给出一张高空形势预报图,图中用红色箭头表示西南暖湿气流,用蓝色

箭头表示来自北方的干冷气流,并预报说这两支气流将在某地区交汇,产生强降雨。当然,这

只是诸多降雨因素中的两个因素,是一种直观的图示。不过,它至少表明了两个含义:其一,大

气中的暖湿气流一般来自南方,干冷气流来自北方;其二,暖湿气流是产生降水的必不可少的基

本条件。事实上,空气中的水汽一部分来自其下垫面上江河湖泊和潮湿土壤的蒸发,另一部分

(在许多情况下是主要的一部分)则来自热带地区特别是热带洋面。我国地处亚欧大陆东南部,因

此,偏南或西南气流一般携带有暖湿空气,而西北气流是干冷空气的同义语。由春至夏,高温高

湿的西太平洋副热带高压向北挺进,我国自南向北先后进入高温高湿的多雨季节。由秋至冬,来

自西伯利亚的干冷空气步步南侵,我国又自北向南先后经历低温低湿的少雨时光。

中国加湿器网提供

空气湿度观测

空气湿度即是空气的干湿程度。根据不同需要,通常分别以绝对湿度、水汽压、相对湿度和露点

温度表示。它的大小和增减,会直接或间接地引起云、雾、降水等现象的生消演变。气象部门

测定的空气湿度有好几种,包括相对湿度、绝对湿度、水汽压和露点等。相对湿度是其中最常用

的。相对湿度的单位是百分数(%),空气中没有水汽时相对湿度为零,空气中容纳水汽已达到

最大限度时(称为空气已经饱和),相对湿度就是100%。测量空气湿度通常用干湿球温度表。

它是两支同样的温度表,干球温度表用来测量气温;湿球温度表的水银球用湿润纱布包裹着,纱

布下端浸在水盂里。使湿球纱布始终保持湿润状态(因而称为湿球温度表)。湿球纱布上的水在

空气没有达到饱和时会不断蒸发。蒸发的快慢决定于空气相对湿度:湿度大时蒸发慢,湿度小时

蒸发快。湿度是100%时,空气中所含水汽已饱和,水分停止蒸发。

水分蒸发是要消耗热量的,这样湿球温度表的读数就会减小。因此,除了空气饱和,即相对湿度

为100%(此时湿球温度表的读数和干球温度表一样)以外,干球温度表的读数总比湿球温度表

的读数要高。两者差值越大表示空气越干燥,相对湿度越低。因此利用干湿球温度差使可以知道

空气相对湿度的高低。利用气象部门已出版的对照表册,可以很方便地查用所需数据。

湿度的测量

发湿度表(计)

湿度表示空气中水汽的含量或干湿程度,在气象观测中常用水汽压、相对湿度和露点温度三种物理量表

示。

1) 水汽压(e):是水汽在大气总压力中的分压力。它表示了空气中水汽的绝对含量的大小,以毫巴

为单位。空气吸收水汽有一定限量,达到了限量就不再吸收,这个限量叫“饱和点”。空气中水汽达到

饱和点时的水汽压,称为饱和水汽压(或称最大水汽张力)。饱和水汽压是温度的函数,随温度升高而

增大。在同一温度下,纯冰面上的饱和水汽压要小于纯水面上的饱和水汽压。

2) 相对湿度(rh):湿空气中实际水汽压e与同温度下饱和水汽压E的百分比,即rh =(e/E)* 100%

相对湿度的大小能直接表示空气距离饱和的相对程度。空气完全干燥时,相对湿度为零。相对湿度越

小,表示当时空气越干燥。当相对湿度接近于100%时,表示空气很潮湿,越接近于饱和。

3) 露点(或霜点)温度:指空气在水汽含量和气压都不改变的条件下,冷却到饱和时的温度。形象地

说,就是空中的水蒸气变为露珠时候的温度叫露点温度。露点温度本是个温度值,可为什么

用它来表示

湿度呢?这是因为,当空气中水汽已达到饱和时,气温与露点温度相同;当水汽未达到饱和时,气温一

定高于露点温度。所以露点与气温的差值可以表示空气中的水汽距离饱和的程度。

测定湿度的仪器常用的有干湿球温度表,毛发湿度表(计)和电阻式湿度片等。

a) 干湿球温度表:用一对并列装置的、形状完全相同的温度表,一支测气温,称干球温度表,另一支

包有保持浸透蒸馏水的脱脂纱布,称湿球温度表。当空气未饱和时,湿球因表面蒸发需要消耗热量,从

而使湿球温度下降。与此同时,湿球又从流经湿球的空气中不断取得热量补给。当湿球因蒸发而消耗的

热量和从周围空气中获得的热量相平衡时,湿球温度就不再继续下降,从而出现一个干湿球温度差。干

湿球温度差值的大小,主要与当时的空气湿度有关。空气湿度越小,湿球表面的水分蒸发越快,湿球温

度降得越多,干湿球的温差就越大;反之,空气湿度越大,湿球表面的水分蒸发越慢,湿球温度降得越

少,干湿球的温差就越小。当然,干湿球的温差的大小还与其他一些因素有关,如湿球附近的通风速

度、气压、湿球大小、湿球润湿方式等有关。可以根据干湿球温度值,并将一些其它因素考虑在内,从

理论上推算出当时的空气湿度来。干湿球温度表是当前测湿的主要仪器,但不适用于低温(-10℃以

下)使用。

b) 发湿度表(计):利用脱脂人发(或牛的肠衣)具有空气潮湿时伸长,干燥时缩短的特性,制成毛

发湿度表或湿度自记仪器,它的测湿精度较差,毛发湿度表通常在气温低于-10℃时使用。

c) 电阻式湿度片:利用吸湿膜片随湿度变化改变其电阻值的原理,常用的有碳膜湿敏电阻和氯化锂湿

度片两种。前者用高分子聚合物和导电材料碳黑,加上粘合剂配成一定比例的胶状液体,涂覆到基片上

组成的电阻片;后者是在基片上涂上一层氯化锂酒精溶液,当空气湿度变化时,氯化锂溶液浓度随之改

变从而也改变了测湿膜片的电阻。这类元件测湿精度较干湿表低,主要用在无线电探空仪和遥测设备

中。

d) 薄膜湿敏电容:是以高分子聚合物为介质的电容器,因吸收(或释放)水汽而改变电容值。它精

巧,性能优良,常用在探空仪和遥测中。

e) 露点仪:能直接测出露点温度的仪器。使一个镜面处在样品湿空气中降温,直到镜面上隐现露滴

(或冰晶)的瞬间,测出镜面平均温度,即为露(霜)点温度。它测湿精度高,但需光洁度很高的镜

面,精度很高的温控系统,以及灵敏度很高的露滴(冰晶)的光学探测系统。使用时必须使吸入样本空

气的管道保持清洁,否则管道内的杂质将吸收或放出水分造成测量误差。

湿度:湿度就是指空气中湿气的含量.物理定义:空气湿度是用来表示空气中的水汽含量多少或空气潮湿

程度的物理量。相对湿度:实际空气的湿度与在同一温度下达到饱和状况时的湿度之比值。单位:%

相对湿度过(RH)= Ma/Mg * 100% / t

Ma = 空气中水的含量

Mg = 该空气可含水的最大容量

t= 温度

同样体积空气的含水饱和度随着温度的变化而变化。温度越高,空气含水饱和度越高。

绝对湿度:空气中的水蒸气质量与湿空气的总体积之比。

露点温度:在给定的压力下,混合比为γ的湿空气被水饱和时的温度。在该温度下水的饱和蒸气压等于

混合比为γ的湿空气的水蒸气分压。

露点:指空气中饱和水汽开始凝结结露的温度,在100%的相对湿度时,周围环境的温度就是露点温

度。露点温度越小于周围环境的温度,结露的可能性就越小,也就意味着空气越干燥,露点不受温度影

响,但受压力影响。

饱和水汽压:饱和空气下产生的压力,饱和水汽压间接反映大气中的水汽压力,是温度的系数,温度越

高,空气中所容量水分子数量越多;反之,越少。

饱和差:在一定温度条件下,饱和水汽压与当时的实际水汽压之差,间接表示空气中的水汽含量,单位

hPa。d=E-e ,d=0,r=100%。在讨论水面蒸发强度时,多用饱和差,因饱和差的大小表示水分的蒸

发能力,气温越高,饱和差越大,则蒸发进行的越强烈;气温越低,饱和差越小,蒸发进行缓慢。

混合比:湿空气中所含的确定气体质量与它共存的干空气质量之比。

比湿:湿空气中水蒸气的分体积与干空气的分体积之比。

体积比:水蒸气摩尔数与总摩尔数之比

水蒸气摩尔分数:水蒸气摩尔数与总摩尔数之比

水蒸气分压:湿气(体积为V,温度为T)中的水蒸气相同V、T条件下单独存在时的压力

湿度:湿度就是指空气中湿气的含量.物理定义:空气湿度是用来表示空气中的水汽含量多少或空气潮湿

程度的物理量。相对湿度:实际空气的湿度与在同一温度下达到饱和状况时的湿度之比值。

单位:%

相对湿度过(RH)= Ma/Mg * 100% / t

Ma = 空气中水的含量

Mg = 该空气可含水的最大容量

t = 温度

同样体积空气的含水饱和度随着温度的变化而变化。温度越高,空气含水饱和度越高。

绝对湿度:空气中的水蒸气质量与湿空气的总体积之比。

露点温度:在给定的压力下,混合比为γ的湿空气被水饱和时的温度。在该温度下水的饱和蒸气压等于

混合比为γ的湿空气的水蒸气分压。

露点:指空气中饱和水汽开始凝结结露的温度,在100%的相对湿度时,周围环境的温度就是露点温

度。露点温度越小于周围环境的温度,结露的可能性就越小,也就意味着空气越干燥,露点不受温度影

响,但受压力影响。

饱和水汽压:饱和空气下产生的压力,饱和水汽压间接反映大气中的水汽压力,是温度的系数,温度越

高,空气中所容量水分子数量越多;反之,越少。

饱和差:在一定温度条件下,饱和水汽压与当时的实际水汽压之差,间接表示空气中的水汽含量,单位

hPa。d=E-e ,d=0,r=100%。

在讨论水面蒸发强度时,多用饱和差,因饱和差的大小表示水分的蒸发能力,气温越高,饱和差越大,

则蒸发进行的越强烈;气温越低,饱和差越小,蒸发进行缓慢。

混合比:湿空气中所含的确定气体质量与它共存的干空气质量之比。

比湿:湿空气中水蒸气的分体积与干空气的分体积之比。

体积比:水蒸气摩尔数与总摩尔数之比

水蒸气摩尔分数:水蒸气摩尔数与总摩尔数之比

水蒸气分压:湿气(体积为V,温度为T)中的水蒸气相同V、T条件下单独存在时的压力文章链接:中国化工仪器网https://www.360docs.net/doc/288351323.html,/Tech_news/Detail/52635.html

湿度的计算

空气相对湿度RH%的计算 空气相对湿度RH%,计算 内容摘要:相对湿度是绝对湿度与最高湿度之间的比,它的值显示水蒸气的饱和度有多高,它的单位是% 相对湿度 相对湿度是绝对湿度与最高湿度之间的比,它的值显示水蒸气的饱和度有多高,它的单位是%。相对湿度为100%的空气是饱和的空气。相对湿度是50% 的空气含有达到同温度的空气的饱和点的一半的水蒸气。相对湿度超过100%的空气中的水蒸气一般凝结出来。随着温度的增高空气中可以含的水就越多,也就是说,在同样多的水蒸气的情况下温度升高相对湿度就会降低。因此在提供相对湿度的同时也必须提供温度的数据。通过相对湿度和温度也可以计算出露点。 以下是计算相对湿度的公式: 其中的符号分别是: ρw–绝对湿度,单位是克/立方米 ρw,max–最高湿度,单位是克/立方米 e–蒸汽压,单位是帕斯卡 E–饱和蒸汽压,单位是帕斯卡 s–比湿,单位是克/千克 S–最高比湿,单位是克/千克

「绝对湿度」指一定体积的空气中含有的水蒸气的质量,一般其单位是克/立方米。绝对湿度的最大限度是饱和状态下的最高湿度。绝对湿度只有与温度一起才有意义,因为空气中能够含有的湿度的量随温度而变化,在不同的高度中绝对湿度也不同,因为随着高度的变化空气的体积变化。但绝对湿度越靠近最高湿度,它随高度的变化就越小。 下面是计算绝对湿度的公式: 其中的符号分别是: [编辑]相对湿度(RH) 一台溼度計正在紀錄相對濕度 「相对湿度」(RH)是绝对湿度与最高湿度之间的比,它的值显示水蒸气的饱和度有多高。相对湿度为100%的空气是饱和的空气。相对湿度是50%的空气含有达到同温度的空气的饱和点的一半的水蒸气。相对湿度超过100%的空气中的水蒸气一般凝结出来。随着温度的增高,空气中可以含的水就越多。也就是说,在同样多的水蒸气的情况下,温度降低,相对湿度就会升高;温度升高,相对湿度就会下降低。因此在提供相对湿度的同时也必须提供温度的数据。通过最高湿度和温度也可以计算出露点。

大气压的五种变化

大气压的五种变化 在不同的季节,不同的气候条件和地理位置等条件下,地球上方大气压的值有所不同。本文择取大气压的五种主要变化,做一些分析讨论,供参考。 从微观角度看,决定气体压强大小的因素主要有两点:一是气体的密度n;二是气体的热力学温度T。在地球表面随地势的升高,地球对大气层气体分子的引力逐渐减小,空气分子的密度减小;同时大气的温度也降低。所以在地球表面,随地势高度的增加,大气压的数值是逐渐减小的。如果把大气层的空气看成理想气体,我们可以推得近似反映大气压随高度而变化的公式如下: μ=p0gh/RT 由上式我们可以看出,在不考虑大气温度变化这一次要因素的影响时,大气压值随地理高度h的增加按指数规律减小,其函数图象如图所示。在2km以内,大气压值可近似认为随地理高度的增加而线性减小;在2km以外,大气压值随地理高度的增加而减小渐缓。所以过去在初中物理教材中有介绍:在海拔2千米以内,可以近似地认为每升高12米,大气压降低1毫米汞柱。 地球表面大气层里的成份,变化比较大的就是水汽。人们把含水汽比较多的空气叫“湿空气”,把含水汽较少的空气

叫“干空气”。有些人直觉地认为湿空气比干空气重,这是不正确的。干空气的平均分子量为,而水气的分子量只有,所以含有较多水汽的湿空气的密度要比干空气小。即在相同的物理条件下,干空气的压强比湿空气的压强大。 在地球表面,由赤道到两极,随地理纬度的增加,一方面由于地球的自转和极地半径的减小,地球对大气的吸引力逐渐增大,空气密度增大;另一方面由于两极地区温度较低,所以空气中的水汽较少,可近似看成干空气,所以由赤道向两极,随地理纬度增加,大气压总的变化规律是逐渐增大。 对于同一地区,在一天之内的不同时间,地面的大气压值也会有所不同,这叫大气压的日变化。一天中,地球表面的大气压有一个最高值和一个最低值。最高值出现在9~10时。最低值出现在15~16时。 导致大气压日变化的原因主要有三点。一是大气的运动;二是大气温度的变化;三是大气湿度的变化。 日出以后,地面开始积累热量,同时地面将部分热量输送给大气,大气也不断地积累热量,其温度升高湿度增大。当温度升高后,大气逐渐向高空做上升辐散运动,在下午15~16时,大气上升辐散运动的速度达最大值,同时大气的湿度也达较大值,由于此二因素的影响,导致一天中此时的大气压最低。16时以后,大气温度逐渐降低,其湿度减小,向上的辐散运动减弱,大气压值开始升高;进入夜晚;大气

公共场所空气湿度测定方法

公共场所空气湿度测定方法 前言 为贯彻执行《公共场所卫生管理条例》和GB 9663~9673--1996、GB 16153—1996《公共场所卫生标准》,加强对公共场所卫生监督管理,特制定本标准。本标准中的方法是与GB 9663~9673--1996、GB 16153—1996相配套的监测检验方法。 本标准第一法为仲裁法。 本标准为首次发布。 本标准由中华人民共和国卫生部提出。 本标准起草单位:吉林省卫生防疫站。 本标准主要起草人:吴世安、李延红、朱颖俐、唐旭、石岩。 1范围 本标准规定了空气湿度(简称气湿)的测定方法。 本标准适用于各类公共场所气湿的测定,也适用于室内场所气湿的测定。2定义 本标准采用下列定义。 2.1 绝对湿度absolute humidity 单位体积空气中所含水气的质量,称为绝对湿度,单位用g/m3来表示。2.2 相对湿度relative humidity 空气中实际水气压与同一温度条件下饱和水气压之比值,称为相对湿度(RH),用%表示。 3监测点的确定和要求 3.1 室内面积不足16m2,测室中央一点;16m2以上但不足30m2测二点(居室对角线三等分,其二个等分点作为测点);30m2以上但不足60m2测三点(居室对角线四等分,其三个等分点作为测点);60m2以上测五点(二对角线上梅花设点)。 3.2 测点离地面高度0.8m~1.6m,应离开墙壁和热源不小于0.5m。 第一法通风干湿表法 4原理

将两支完全相同的水银温度计都装入金属套管中,水银温度计球部有双重辐射防护管。套管顶部装有一个用发条或电驱动的风扇,启动后抽吸空气均匀地通过套管,使球部处于≥2.5m/s的气流中(电动可达3m/s),以测定干湿球温度计的温度,然后根据干湿球温度计的温差,计算出空气的湿度。 5仪器 5.1 机械通风干湿表:温度刻度的最小分值不大于0.2'C,测量精度土3%,测量范围为109/5~100%RH。 5.2 电动通风干湿表:温度刻度的最小分值不大于0.2℃,测量精度±3%,测量范围为10%~100%RH。 6测定步骤 6.1 仪器校正 通风器作用时间的校正:将纸条止动风扇,上足发条,抽出纸条,风扇转动,开动秒表,待风扇停止转动后,按下秒表,其通风器的全部作用时间不得少于 6min。 通风器发条盒转动的校正:挂好仪器,上弦使之转动。当通风器玻璃孔中条盒上的标线与孔上红线重合时以纸棒止动风扇。上满弦,抽掉纸棒,待条盒转过一周,标线与玻璃孔上红线重合时,开动秒表,当标线与红线重合时,停表。其时间即为发条盒第二周转动时间。这一时间不应超过检定证上所列时间6s。 6.2 用吸管吸取蒸馏水送入湿球温度计套管内,湿润温度计头部纱条。 6.3 上满发条,如用电动通风干湿表则应接通电源,使通风器转动。 6.4通风5min后读干、湿温度表所示温度。 7结果计算 7.1水气压的计算 见式(1)。e=Bt’-AP(T-T’) (1) 式中: e——监测时空气中的水气压,hPa; Bt’——湿球温度下的饱和水气压,hPa; P——监测时大气压,hPa; A——温度计系数,依测定时风速而定,与湿球温度计头部风速有关,风速0.2m /s以上时为0.00099,2.5m/s时为0.000677;

湿度空气计算方法

相对湿度、露点温度转换的基本原理说明 湿度研究对象是气体和水汽的混合物。 无论是对于自由大气中的空气而言,还是对密闭容器中的特定气体而言,但凡是气体和水汽的混合物,都可以作为湿度的研究对象,湿度研究的一般理论大多都是通用的。 湿度的表示方法很多,包括混合比、体积比、比湿、绝对湿度、相对湿度等等,虽然各单位之间的转换非常复杂,但其定义都是基于混合气体的概念引出的。相对湿度是比较常用的湿度单位,是一个相对概念(所以,相对湿度是一个无量纲单位),主要有以下几种定义表达: 1、 压力为P,温度为T的湿空气的相对湿度,是指在给定的湿空气中,水汽的摩尔分数(或实际水汽压)与同一温度T和压力P下纯水表面的饱和水汽的摩尔分数(或饱和水气压)之比,用百分数表示。 2、实际水汽压与同一温度条件下的饱和水汽压的比值 从相对湿度的定义中可以看出,相对湿度的计算,是通过混合气体的实际水汽压与同状态下(温度、压力)水汽达到饱和时其饱和水汽压相比得来的。 对于混合气体而言,其实际水汽压与总压力和混合比相关,但对于物质的量而言,是独立的,也就是无相关的。但是,在保持混合气体压力不变的情况下,混合气体的饱和水汽压是与温度相关的(在湿度论坛中,本人给出了温度to饱和水汽压的简化公式以及计算程序,可下载)。 上面说道:饱和水汽压是与温度相关的量。 在保持系统的混合比、总压力不变的情况下,降低混合气体的温度,能够降低混合气体的饱和水汽压,从而使得混合气体的饱和水汽压等于混合气体的实际水汽压,此时,相对湿度为100%,该温度,即为混合气体的露点温度。 基于上述解释,可以看出,只要测量得到了露点温度,通过温度to饱和水汽压的计算公式或者计算程序,即可计算出混合气体的在露点温度时的饱和水汽压,也就是正常状态下混合气体的实际水汽压。 同样,只要测量了当前混合气体的正常温度,就可以通过温度to饱和水汽压的计算公式或者计算程序,得到当前系统正常温度下的饱和水汽压 实际水汽压除以饱和水汽压,就可以得到相对湿度。 湿度的单位换算 测湿仪表的显示值,通常是相对湿度或露点温度,在需要用其它单位时可进行换算。换算的方法如下: 1.相对湿度与实际水汽压间的换算 由相对湿度的定义可得: ---------------------------(1) 式中:RH----相对湿度,%RH; e----实际水汽压,hPa; E---饱和水汽压,hPa。 因此: -------------------------------(2) 即:实际水汽压等于相对湿度乘以相同温度下的饱和水汽压。 由于饱和水汽压E是温度的函数,所以用相对湿度换算为实际水汽压或用实际水汽压计算相对湿度,都必须已知当时的温度值。在计算饱和水汽压时,应确定是冰面还是水面,以正确选用计算公式。 2.相对湿度换算为露点温度 由于露点温度定义为空气中的水汽达到饱和时的温度,所以,必须先计算出实际水汽压。根据露点的定义,这时的水汽压就是露点温度对应的饱和水气压。因此,可以用对饱和水汽压求逆的方法计算露点温度。 用Goff-Grattch方程求逆非常困难,常用饱和水汽压的简化公式计算,而 简化公式很多,一般采用国军标GJB1172推荐的公式: ----------(3) 式中:E------为饱和水汽压,Pa;

大气温度垂直分布规律及原因

大气温度垂直分布规律及原因各层的特点及原因:

大气温度随高度变化曲线: 逆温现象:对流层由于热量主要直接来自地面辐射,所以海拔越高,气温越低。一般情况下,海拔每上升1000米,气温下降6°C。有时候出现下列情况:①海拔上升,气温升高;②海拔上升1000米,气温下降幅度小于6°C。这就是逆温现象。逆温现象往往出现在近地面气温较低的时候,如冬季的早晨。逆温现象使空气对流运动减弱,大气中的污染物不易扩散,大气环境较差。 对流层中温度的垂直分布: 在对流层中,总的情况是气温随高度而降低,这首先是因为对流层空气的增温主要依靠吸收地面的长波辐射,因此离地面愈近获得地面长波辐射的热能愈多,气温乃愈高。离地面愈远,气温愈低。其次,愈近地面空气密度愈大,水汽和固体杂质愈多,因而吸收地面辐射的效能愈大,气温愈高。愈向上空气密度愈小,能够吸收地面辐射的物质——水汽、微尘愈少,因此气温乃愈低。整个对流层的气温直减率平

均为0.65℃/100m。实际上,在对流层内各高度的气温垂直变化是因时因地而不同的。 对流层的中层和上层受地表的影响较小,气温直减率的变化比下层小得多。在中层气温直减率平均为0.5—0.6℃/100m,上层平均为 0.65—0.75℃/100m。 对流层下层(由地面至2km)的气温直减率平均为0.3—0.4℃/100m。但由于气层受地面增热和冷却的影响很大,气温直减率随地面性质、季节、昼夜和天气条件的变化亦很大。例如,夏季白昼,在大陆上,当晴空无云时,地面剧烈地增热,底层(自地面至300—500m高度)气温直减率可大于干绝热率(可达1.2—1.5℃/100m)。但在一定条件下,对流层中也会出现气温随高度增高而升高的逆温现象。造成逆温的条件是,地面辐射冷却、空气平流冷却、空气下沉增温、空气湍流混合等。但无论那种条件造成的逆温,都对天气有一定的影响。例如,它可以阻碍空气垂直运动的发展,使大量烟、尘、水汽凝结物聚集在其下面,使能见度变坏等等。下面分别讨论各种逆温的形成过程。(一)辐射逆温 由于地面强烈辐射冷却而形成的逆温,称为辐射逆温。图2·35表明辐射逆温的生消过程。图中a为辐射逆温形成前的气温垂直分布情形;在晴朗无云或少云的夜间,地面很快辐射冷却,贴近地面的气层也随之降温。由于空气愈靠近地面,受地表的影响愈大,所以,离地

空气湿度的观测与测量

空气湿度的观测与测量2010-3-15 14:30:51 来源:上海懿凌环境科技有限公司表示空气中水汽多寡亦即干湿程度的物理量,称为空气湿度。湿度的大小常用水汽压、绝对湿度、相对湿度和露点温度等表示。公众天气预报中最常用的是相对湿度。相对湿度是空气中实际水汽含量(绝对湿度)与同温度下的饱和湿度(最大可能水汽含量)的百分比值。它只是一个相对数字,并不表示空气中湿度的绝对大小。 在一定的气温条件下,一定体积的空气只能容纳一定量的水汽。如果水汽量达到了空气能够 容纳水汽的限度,这时的空气就达到了饱和状态,相对湿度为100%。在饱和状态下,水份不再 蒸发。高热的夏季遇到这种天气,人体分泌的汗水难以蒸发,感到闷热难以忍受。反之,秋天有 时也会遇到高温这只“秋老虎”,但由于度明显降低,人们浑身淌汗却很少会有“闷”的感觉。 如果冬天遇到低温高湿天气,人们又会感到阴湿寒冷。空气中湿度太小,同样会使人感到不舒 服。南方人初到北方,沿海人咋去大西北,常会感到唇干口燥,甚至鼻出血。当然,这是属于人 的适应性问题了。 一般而言,相对湿度的日变化与气温的日变化相反,最大值出现在日出前后,最小值出现在 下午2时左右。当然,当某地的天气发生突变时,湿度的这种变化规律就会被破坏。如高温低湿 的午后,突然乌云翻滚,湿空气汹涌而至,当地的湿度就会迅速猛升。相对湿度的年变化比较复 杂,通常是多雨的季节湿度高,晴朗的天气湿度低,但各地的地理条件、气温条件和雨季情况差 异很大,难以概括出一个具有普遍性的规律。电视观众朋友们一定会注意到,当要预报一场降水 即将发生时,预报员常会给出一张高空形势预报图,图中用红色箭头表示西南暖湿气流,用蓝色 箭头表示来自北方的干冷气流,并预报说这两支气流将在某地区交汇,产生强降雨。当然,这 只是诸多降雨因素中的两个因素,是一种直观的图示。不过,它至少表明了两个含义:其一,大 气中的暖湿气流一般来自南方,干冷气流来自北方;其二,暖湿气流是产生降水的必不可少的基 本条件。事实上,空气中的水汽一部分来自其下垫面上江河湖泊和潮湿土壤的蒸发,另一部分 (在许多情况下是主要的一部分)则来自热带地区特别是热带洋面。我国地处亚欧大陆东南部,因 此,偏南或西南气流一般携带有暖湿空气,而西北气流是干冷空气的同义语。由春至夏,高温高 湿的西太平洋副热带高压向北挺进,我国自南向北先后进入高温高湿的多雨季节。由秋至冬,来

露点和相对湿度

露点的原始定义一般说来是:湿度一定压力一定的被测量气体被降温,当降到一个特定的温度时出现结露现象,此时这个特定温度就是这个压力条件下的露点温度。所以才出现了从原始定义出发测量露点的镜面式露点仪,GE的测量镜面采用铂铑合金。 相对湿度是被测量气体的水蒸气分压与相同压力、温度条件下净水表面饱和水蒸气分压的比值。范围0-100% 单位RH,无量纲单位。 露点的测量环境要根据测量仪器的不同而定,镜面式露点仪一般要求流量,基本都为0.25升/分钟至5升/分钟之间,流量过大或过小都将导致测量不准确。探头式的在线露点仪也要求流量条件,它的流量性质准确的称为流速,不同压力下流速允许范围因传感器不同而异。GE的金基三氧化二铝传感器有许多种,种种不同,根据测量条件内置针阀式采样器的可测量更大压力气体的露点,MMY35典型的流速允许为 1bar 基本是常压了,可达50米/秒。但在10bar压力条件下,只有5米/秒的最大流速。 相对湿度基本没碰到过有什么要求,一般常见的是在相对湿度含量很低的情况下用露点表示,或者直接用含水PPM表示,因为你不能用小数点以后几个零的数字来表示,那样没有意义。高温下也一般已经不存在相对湿度的概念,因为水已经被完全汽化,根本不存在含水量的概念(高压下例外)。无论是高温还是高温高压下,现在的相对湿度传感器基本都是通过采样气体测量常温湿度,然后反推得出的。 结论:如果空气相对湿度达到100%RH,那么此时的空气温度就是露点温度,这个结果不难得出。 而且现在的计量单位,从一级到二级站基本都已经将镜面露点仪作为相对湿度的最高标准。 什么是相对湿度? 在相同温度下,空气中水汽含量与饱和水汽含量之间的比例。 详细解释:压力为P,温度为T的湿空气的相对湿度是指给定的湿空气中,水汽的摩尔分数怀同一温度T和压力P下纯水表面的饱和水汽的摩尔分数之比,用百分数表示。相对湿度是两个压强值之比: %RH = 100 x p/ps 在这里p 是周围环境中水蒸汽的实际部分压强值;ps是周围环境中水的饱合压强值. 相对湿度传感器通常是在标准室温情况下校准的(高于0度),相应的,通常认为这种传感器可以指示在所有温度条件下的相对湿度(包括在低于0度的情况).

湿度及其计算【内容充实】

什么是湿度(RH%)及计算公式 一、湿度定义 在计量法中规定,湿度定义为“物象状态的量”。日常生活中所指的湿度为相对湿度,用RH%表示。总言之,即气体中(通常为空气中)所含水蒸汽量(水蒸汽压)与其空气相同情况下饱和水蒸气量(饱和水蒸气压)的百分比。 二、湿度测量方法 湿度测量从原理上划分有二、三十种之多。但湿度测量始终是世界计量领域中著名的难题之一。一个看似简单的量值,深究起来,涉及相当复杂的物理—化学理论分析和计算,初涉者可能会忽略在湿度测量中必需注意的许多因素,因而影响传感器的合理使用。 常见的湿度测量方法有:动态法(双压法、双温法、分流法),静态法(饱和盐法、硫酸法),露点法,干湿球法和电子式传感器法。 三、绝对湿度和相对湿度、露点 湿度很久以前就与生活存在着密 切的关系,但用数量来进行表示较为困难。对湿度的表示方法有绝对湿度、相对湿度、露点、湿气与干气的比值(重量或体积)等等。 ?绝对湿度是指每立方米的空气中含有水蒸气的质量。 ?相对湿度(Relative Humidity,缩写为RH)是指水蒸气在空气中达到饱和的程度,饱和时为100%RH。当绝对湿度不变时温度越高相对湿度越小。当空气中的含水量没有达到饱和状态,实际含水量与饱和含水量的比值就是相对湿度。相对湿度达到100%,水就不会再自然蒸发了。温度不同,饱和水量也不同,温度越高,容纳的水越多,温度降低了,空气中不能容纳原来那麽多的水了就会出现结露。 ?凝露是当空气湿度达到一定饱和程度时,在温度相对较低的物体上凝结的一种现象。 湿度是普遍存在的,而凝露只是湿度达到一定程度时的一种特殊现象。 四、相对湿度RH%的计算公式

温度与相对湿度要点

温度与相对湿度、绝对湿度、饱和湿度的关系 绝对湿度 (1)定义或解释 ①空气里所含水汽的压强,叫做空气的绝对湿度。 ②单位体积空气中所含水蒸汽的质量,叫做空气的绝对湿度。 (2)单位 绝对湿度的单位习惯用毫米水银柱高来表示。也常用l 立方米空气中所含水蒸汽的克数来表示。 (3)说明 ①空气的干湿程度和单位体积的空气里所含水蒸汽的多少有关,在一定温度下,一定体积的空气中,水汽密度愈大,汽压也愈大,密度愈小,汽压也愈小。所以通常是用空气里水蒸汽的压强来表示湿度的。 ②湿度是表示空气的干湿程度的物理量。空气的湿度有多种表示方式,如绝对湿度,相对湿度、露点等。 相对湿度 2 5 4P su x =? (1)定义或解释 ①空气中实际所含水蒸汽密度和同温度下饱和水蒸汽密度的百分比值,叫做空气的相对湿度。 ②在某一温度时,空气的绝对湿度,跟在同一温度下的饱和水汽压的百分比值,叫做当时空气的相对湿度。 (2)说明 ①实际上碰到许多跟湿度有关的现象并不跟绝对湿度直接有关,而是跟水汽离饱和状态的程度有直接关系,因此提出了一个能表示空气中的水汽离开饱和程度的新概念——相对湿度。也是空气湿度的一种表示方式。 ②由于在温度相同时,蒸汽的密度和蒸汽压强成正比,所以相对湿度通常就是实际水蒸汽压强和同温度下饱和水蒸汽压强的百分比值。 露点 (1)定义或解释 ①使空气里原来所含的未饱和水蒸汽变成饱和时的温度,叫做露点。 ②空气的相对湿度变成100%时,也就是实际水蒸汽压强等于饱和水蒸汽压强时的温度,叫做露点。 (2)单位 习惯上,常用摄氏温度表示。 (3)说明 ①人们常常通过测定露点,来确定空气的绝对湿度和相对湿度,所以露点也是空气湿度的一种表示方式。例如,当测得了在某一气压下空气的温度是20℃,露点是12℃那么,就可从表中查得20℃时的饱和蒸汽压为17.54mmHg ,12℃时的饱和蒸汽压为lO.52mmHg 。则此时:空气的绝对湿度p=10.52mmHg , 空气的相对湿度.B=(10.52/17.54)×100%=60%。 采用这种方法来确定空气的湿度,有着重大的实用价值。但这里很关键的一点,要求学生学会露点的测定方法。 ②露点的测定,在农业上意义很大。由于空气的湿度下降到露点时,空气中的水蒸汽就凝结成露。如果露点在O℃以下,那末气温下降到露点时,水蒸汽就会直接凝结成霜。知道了露点,可以预报是否发生霜冻,使农作物免受损害。 ⑨气温和露点的差值愈小,表示空气愈接近饱和。气温和露点接近,也就是此时的相对湿度百分比值大,人们感觉气候潮湿;气温和露点差值大,即此时的相对湿度百分比值小,人们感觉气候干燥。人体感到适中的相对湿度是60~70%。 ④严格地说,露点时的饱和汽压和空气当时的水汽压强是不相等的。

湿度测量的基本概念

湿度测量的基本概念 在工农业生产、气象、环保、国防、科研、航天等部门,经常需要对环境湿度进行测量及控制。对环境温、湿度的控制以及对工业材料水份值的监测与分析都已成为比较普遍的技术条件之一,但在常规的环境参数中,湿度是最难准确测量的一个参数。这是因为测量湿度要比测量温度复杂得多,温度是个独立的被测量,而湿度却受其他因素(大气压强、温度)的影响。此外,湿度的校准也是一个难题。国外生产的湿度标定设备价格十分昂贵。 一、湿度定义 在计量法中规定,湿度定义为“物象状态的量”。日常生活中所指的湿度为相对湿度,用RH%表示。总言之,即气体中(通常为空气中)所含水蒸气量(水蒸气压)与其空气相同情况下饱和水蒸气量(饱和水蒸气压)的百分比。 湿度很久以前就与生活存在着密切的关系,但用数量来进行表示较为困难。对湿度的表示方法有绝对湿度、相对湿度、露点、湿气与干气的比值(重量或体积)等等。 二、湿度测量方法 湿度测量从原理上划分有二、三十种之多。但湿度测量始终是世界计量领域中著名的难题之一。一个看似简单的量值,深究起来,涉及相当复杂的物理—化学理论分析和计算,初涉者可能会忽略在湿度测量中必需注意的许多因素,因而影响传感器的合理使用。 常见的湿度测量方法有:动态法(双压法、双温法、分流法),静态法(饱和盐法、硫酸法),露点法,干湿球法和电子式传感器法。 ①双压法、双温法是基于热力学P、V、T帄衡原理,帄衡时间较长,分流法是基于绝对湿气和绝对干空气的精确混合。由于采用了现代测控手段,这些设备可以做得相当精密,却因设备复杂,昂贵,运作费时费工,主要作为标准计量之用,其测量精度可达±2%RH以上。 ②静态法中的饱和盐法,是湿度测量中最常见的方法,简单易行。但饱和盐法对液、气两相的帄衡要求很严,对环境温度的稳定要求较高。用起来要求等很长时间去帄衡,低湿点要求更长。特别在室内湿度和瓶内湿度差值较大时,每次开启都需要帄衡6~8小时。

大气温度垂直分布规律及原因

大气温度垂直分布规律及原因 各层的特点及原因: 层次特点原因 对流层①气温随高度增加而递减,每上升100米降低℃。 ②对流动动显著(低纬17~18、中纬10~12、高纬 8~9千米)。 ③天气现象复杂多变。 热量绝大部分来自地面, 上冷下热,差异大,对流 强, 水汽杂质多、对流运动显 著。 平流层起初气温变化小,30千米以上气温迅速上升。 大气以水平运动为主。 大气平稳天气晴朗有利高空飞行。 臭氧吸收紫外线。 上热下冷。 水汽杂质少、水平运动。 高层大气存在若干电离层,能反射无线电波,对无线电通信 有重要作用。[自下而上分三层:中间层、暖层(电 离层)、逃逸层] 太阳紫外线和宇宙射线作 用 大气温度随高度变化曲线: 逆温现象:对流层由于热量主要直接来自地面辐射,所以海拔越高,气温越低。一般情况下,海拔每上升1000米,气温下降6°C。有时候出现下列情况:①海拔上升,气温升高;②海拔上升1000米,气温下降幅度小于6°C。这就是逆温现象。逆温现象往往出现在近地面气温较低的时候,如冬季的早晨。逆温现象使空气对流运动减弱,大气中的污染物不易扩散,大气环境较差。

对流层中温度的垂直分布: 在对流层中,总的情况是气温随高度而降低,这首先是因为对流层空气的增温主要依靠吸收地面的长波辐射,因此离地面愈近获得地面长波辐射的热能愈多,气温乃愈高。离地面愈远,气温愈低。其次,愈近地面空气密度愈大,水汽和固体杂质愈多,因而吸收地面辐射的效能愈大,气温愈高。愈向上空气密度愈小,能够吸收地面辐射的物质——水汽、微尘愈少,因此气温乃愈低。整个对流层的气温直减率平均为℃/100m。实际上,在对流层内各高度的气温垂直变化是因时因地而不同的。 对流层的中层和上层受地表的影响较小,气温直减率的变化比下层小得多。在中层气温直减率平均为—℃/100m,上层平均为—℃/100m。 对流层下层(由地面至2km)的气温直减率平均为—℃/100m。但由于气层受地面增热和冷却的影响很大,气温直减率随地面性质、季节、昼夜和天气条件的变化亦很大。例如,夏季白昼,在大陆上,当晴空无云时,地面剧烈地增热,底层(自地面至300—500m 高度)气温直减率可大于干绝热率(可达—℃/100m)。但在一定条件下,对流层中也会出现气温随高度增高而升高的逆温现象。造成逆温的条件是,地面辐射冷却、空气平流冷却、空气下沉增温、空气湍流混合等。但无论那种条件造成的逆温,都对天气有一定的影响。例如,它可以阻碍空气垂直运动的发展,使大量烟、尘、水汽凝结物聚集在其下面,使能见度变坏等等。下面分别讨论各种逆温的形成过程。 (一)辐射逆温 由于地面强烈辐射冷却而形成的逆温,称为辐射逆温。图2·35表明辐射逆温的生消过程。图中a为辐射逆温形成前的气温垂直分布情形;在晴朗无云或少云的夜间,地面很快辐射冷却,贴近地面的气层也随之降温。由于空气愈靠近地面,受地表的影响愈大,所以,离地面愈近,降温愈多,离地面愈远,降温愈少,因而形成了自地面开始的逆温(图2·35b);随着地面辐射冷却的加剧,逆温逐渐向上扩展,黎明时达最强(图2·35中c);日出后,太阳辐射逐渐增强,地面很快增温,逆温便逐渐自下而上地消失(图2·35中d、e)。 辐射逆温厚度从数十米到数百米,在大陆上常年都可出现,以冬季最强。夏季夜短,逆温层较薄,消失也快。冬季夜长,逆温层较厚,消失较慢。在山谷与盆地区域,由于冷却的空气还会沿斜坡流入低谷和盆地,因而常使低谷和盆地的辐射逆温得到加强,往往持续数天而不会消失。

空气负离子与温湿度的关系

空气负离子与温湿度的关系 摘要:研究了在自然条件下温度、湿度和温湿度同时改变时空气负离子浓度的变化规律。实验表明,湿度对负离子浓度有明显作用,随湿度逐渐升高(相对湿度 10%~80%),负离子浓度从200个/cm3升至8000个/cm3以上,负离子浓度上升的幅度随湿度增加逐渐增大;负离子浓度也随温度升高而升高 (在5~40C之间);温湿度同时变化时,负离子浓度变化率增大。 关键词:空气负离子;相对湿度;温度 空气负离子被称做空气的维生素,对人体健康有利。自然界的空气负离子主要来源于自然界中放射性物质、水的冲击作用引起的Lenard效应、宇宙射线、空气与地面的摩擦、风的作用以及闪电雷电等[1]。空气分子或原子被电离时,释放出一个电子,该电子附着在周围的分子或原子上,结合一定的水分子(一般结合 8~10个水分子)形成空气负离子,失去电子的形成正离子。日本医学界通过大量的观测和临床实验,证实空气负离子有益人体健康 [2-4]。根据大地测量学和地理物理学国际联盟大气联合委员会采用的理论,空气负离子是02-(H20)n或0H-(H20)n或C032- (H20)n [5]。空气负离子浓度因地区气候不同有明显差异,大气流动、异性电荷中和、电场、微粒吸附、土壤中放射性物质的活动、自然地理条件的变化和季节等因素都会影响空气负离子的浓度。一般认为,夏季的温度高于冬季,夏季的负离子浓度也较高;在雨或雪后,湿度的变化很大,空气负离子浓度也很高 [6]。对空气负离子的研究已有100多年,但其随自然条件变化的规律目前仍鲜见详细的报道,笔者针对温度和湿度对空气负离子浓度的影响进行了详细研究。 1.实验 1.1实验地点 为减少外界因素影响,模拟自然条件的空气负离子浓度变化趋势,所以选择污染较少,植有很多树木的郊区为实验点,实验时避免外界的噪声、振动、电场和人走动等因素的影响,进行长时间(从2002年12月至2003年3月)的连续测试。 1.2实验仪器 采用由中国建筑材料科学研究院研制的静态法离子测定仪AIT-!。静态法是测定离子采集器上的电荷,而不是测定电流。先用稳恒电源对采集器充一定电量,让其在空中自由放电,通过对带电体剩余电荷(O)与放电时间(t)的关系进行科学分析,得出带电体周围空气中负离子浓度。用浙江浙大中控自动化仪表有限公司生产的中控仪表(JL-30B彩屏无纸记录仪)记录温度和湿度的变化。空气离子测定仪和中控仪表的采样装置放在1m3密闭仓中,外部连接电脑。通过电脑选择测试参数、记录测试条件和测试结果。 1.3实验过程 空气离子测定仪每20min采集1个数据,24h连续测试,由计算机随时记录其放电曲线,并保存测试时间和与之相对应点的负离子浓度值,同时记录温度和湿度。通过1台电炉加热来控制环境温度,用2个直径为22.5cm圆形敞口盛有水的器皿调节湿度。在1次测试完成后,用制图程序对测试数据进行处理,绘出浓度变化与温度和湿度的关系曲线。

相对湿度

在计量法中规定,湿度定义为“物象状态的量”。日常生活中所指的湿度为相对湿度,用RH%表示。总言之,即气体中(通常为空气中)所含水蒸汽量(水蒸汽压)与其空气相同情况下饱和水蒸气量(饱和水蒸气压)的百分比。 二、湿度测量方法 湿度测量从原理上划分有二、三十种之多。但湿度测量始终是世界计量领域中著名的难题之一。一个看似简单的量值,深究起来,涉及相当复杂的物理—化学理论分析和计算,初涉者可能会忽略在湿度测量中必需注意的许多因素,因而影响传感器的合理使用。 常见的湿度测量方法有:动态法(双压法、双温法、分流法),静态法(饱和盐法、硫酸法),露点法,干湿球法和电子式传感器法。 三、绝对湿度和相对湿度、露点 湿度很久以前就与生活存在着密 切的关系,但用数量来进行表示较为困难。对湿度的表示方法有绝对湿度、相对湿度、露点、湿气与干气的比值(重量或体积)等等。 绝对湿度是指每立方米的空气中含有水蒸气的质量。 相对湿度(Relative Humidity,缩写为RH)是指水蒸气在空气中达到饱和的程度,饱和时为100%RH。当绝对湿度不变时温度越高相对湿度越小。当空气中的含水量没有达到饱和状态,实际含水量与饱和含水量的比值就是相对湿度。相对湿度达到100%,水就不会再自然蒸发了。温度不同,饱和水量也不同,温度越高,容纳的水越多,温度降低了,空气中不能容纳原来那麽多的水了就会出现结露。

凝露是当空气湿度达到一定饱和程度时,在温度相对较低的物体上凝结的一种现象。 湿度是普遍存在的,而凝露只是湿度达到一定程度时的一种特殊现象。 四、相对湿度RH%的计算公式 计算相对湿度可按照下述公式: 其中的符号分别是: ρw –绝对湿度,单位是克/立方米 ρw,max –最高湿度,单位是克/立方米 e –蒸汽压,单位是帕斯卡 E –饱和蒸汽压,单位是帕斯卡 s –比湿,单位是克/千克 S –最高比湿,单位是克/千克 湿空气 大气中的空气总含有水蒸气,通常称为湿空气。在许多工程实际中都要利用湿空气,它所含的水蒸气量虽不多,却显得特别重要。由于水蒸气的性质不同于气体,而有其本身的特殊性,因此本章专题讨论湿空气的基本知识。

大气温度垂直分布规律及原因

大气温度垂直分布规律及原因各层的特点及原因: 大气温度随高度变化曲线:

对流层中温度的垂直分布: 在对流层中,总的情况是气温随高度而降低,这首先是因为对流层空气的增温主要依靠吸收地面的长波辐射,因此离地面愈近获得地面长波辐射的热能愈多,气温乃愈高。离地面愈远,气温愈低。其次,愈近地面空气密度愈大,水汽和固体杂质愈多,因而吸收地面辐射的效能愈大,气温愈高。愈向上空气密度愈小,能够吸收地面辐射的物质——水汽、微尘愈少,因此气温乃愈低。整个对流层的气温直减率平均为0.65℃/100m。实 际上,在对流层内各高度的气温垂直变化是因时因地而不同的。 对流层的中层和上层受地表的影响较小,气温直减率的变化比下层小得多。在中层气温直减率平均为0.5—0.6℃/100m,上层平均为0.65—0.75℃/100m。 对流层下层(由地面至2km)的气温直减率平均为0.3—0.4℃/100m。但由于气层受地面增热和冷却的影响很大,气温直减率随地面性质、季节、昼夜和天气条件的变化亦很大。例如,夏季白昼,在大陆上,当晴空无云时,地面剧烈地增热,底层(自地面至300—500m 高度)气温直减率可大于干绝热率(可达1.2—1.5℃/100m)。但在一定条件下,对流层中也会出现气温随高度增高而升高的逆温现象。造成逆温的条件是,地面辐射冷却、空气平流冷却、空气下沉增温、空气湍流混合等。但无论那种条件造成的逆温,都对天气有一定的影响。例如,它可以阻碍空气垂直运动的发展,使大量烟、尘、水汽凝结物聚集在其下面,使能见度变坏等等。下面分别讨论各种逆温的形成过程。 (一)辐射逆温 由于地面强烈辐射冷却而形成的逆温,称为辐射逆温。图2·35表明辐射逆温的生消过程。图中a为辐射逆温形成前的气温垂直分布情形;在晴朗无云或少云的夜间,地面很快辐射冷却,贴近地面的气层也随之降温。由于空气愈靠近地面,受地表的影响愈大,所以,离地面愈近,降温愈多,离地面愈远,降温愈少,因而形成了自地面开始的逆温(图2·35b);随着地面辐射冷却的加剧,逆温逐渐向上扩展,黎明时达最强(图2·35中c);日出后,太阳辐射逐渐增强,地面很快增温,逆温便逐渐自下而上地消失(图2·35中d、e)。 辐射逆温厚度从数十米到数百米,在大陆上常年都可出现,以冬季最强。夏季夜短,逆温层较薄,消失也快。冬季夜长,逆温层较厚,消失较慢。在山谷与盆地区域,由于冷却的空气还会沿斜坡流入低谷和盆地,因而常使低谷和盆地的辐射逆温得到加强,往往持续数天而不会消失。 (二)湍流逆温

相对湿度 、露点温度转换的计算公式

相对湿度、露点温度转换的计算公式 湿度研究对象是气体和水汽的混合物。 无论是对于自由大气中的空气而言,还是对密闭容器中的特定气体而言,但凡是气体和水汽的混合物,都可以作为湿度的研究对象,湿度研究的一般理论大多都是通用的。 湿度的表示方法很多,包括混合比、体积比、比湿、绝对湿度、相对湿度等等,虽然各单位之间的转换非常复杂,但其定义都是基于混合气体的概念引出的。相对湿度是比较常用的湿度单位,是一个相对概念(所以,相对湿度是一个无量纲单位),主要有以下几种定义表达: 1、压力为P,温度为T 的湿空气的相对湿度,是指在给定的湿空气中,水汽的摩尔分数(或实际水汽压)与同一温度T 和压力P 下纯水表面的饱和水汽的摩尔分数(或饱和水气压)之比,用百分数表示。 2、实际水汽压与同一温度条件下的饱和水汽压的比值 从相对湿度的定义中可以看出,相对湿度的计算,是通过混合气体的实际水汽压与同状态下(温度、压力)水汽达到饱和时其饱和水汽压相比得来的。 对于混合气体而言,其实际水汽压与总压力和混合比相关,但对于物质的量而言,是独立的,也就是无相关的。 但是,在保持混合气体压力不变的情况下,混合气体的饱和水汽压是与温度相关的(在湿度论坛中,本人给出了温度to 饱和水汽压的简化公式以及计算程序,可下载)。 上面说道:饱和水汽压是与温度相关的量。 在保持系统的混合比、总压力不变的情况下,降低混合气体的温度,能够降低混合气体的饱和水汽压,从而使得混合气体的饱和水汽压等于混合气体的实际水汽压,此时,相对湿度为100%,该温度,即为混合气体的露点温度。 基于上述解释,可以看出,只要测量得到了露点温度,通过温度to 饱和水汽压的计算公式或者计算程序,即可计算出混合气体的在露点温度时的饱和水汽压,也就是正常状态下混合气体的实际水汽压。 同样,只要测量了当前混合气体的正常温度,就可以通过温度to 饱和水汽压的计算公式或者计算程序,得到当前系统正常温度下的饱和水汽压 实际水汽压除以饱和水汽压,就可以得到相对湿度。

相对湿度计算含湿量焓值

根据相对湿度计算含湿量的公式 op d 622- =B ( op )) /( 其中:o为相对湿度,百分比 P为水蒸气饱和分压力,可查水蒸气表,和温度一一对应,pa B为大气压,不同的海拔和地区不一样。一般为101325pa 温度与湿空气的水蒸气饱和分压力的拟合公式(我们一般用到的范围为(0~50°),拟合范围越小,则精度越高。 饱和水蒸气表 Linear model Poly3: f(x) = p1*x^3 + p2*x^2 + p3*x + p4 Coefficients (with 95% confidence bounds): p1 = 0.07394 (0.06667, 0.08122) p2 = -0.2556 (-0.8097, 0.2985) p3 = 62.49 (50.92, 74.06) p4 = 581.9 (518.4, 645.4) Goodness of fit: SSE: 6391 R-square: 1 Adjusted R-square: 0.9999 RMSE: 30.21

空气焓值的定义及空气焓值的计算公式: 空气的焓值是指空气所含有的决热量,通常以干空气的单位质量为基准。焓用符号i表示,单位是kj/kg干空气。湿空气焓值等于1kg干空气的焓值与dkg水蒸气焓值之和。 湿空气焓值计算公式化: i=1.01t+(2500+1.84t)d 或i=(1.01+1.84d)t+2500d (kj/kg干空气) 式中:t—空气温度℃ d —空气的含湿量g/kg干空气 1.01 —干空气的平均定压比热kj/(kg.K) 1.84 —水蒸气的平均定压比热kj/(kg.K) 2500 —0℃时水的汽化潜热kj/kg 由上式可以看出:(1.01+1.84d)t是随温度变化的热量,即“显热”;而2500d 则是0℃时dkg水的汽化潜热,它仅随含湿量而变化,与温度无关,即是“潜热”。

温度和湿度基础知识

第4节温度和湿度基础知识 学习目标 掌握温度和湿度及其相关概念 了解温度与湿度的关系 理解温度和湿度变化规律和干湿球温度计的测湿原理 能够正确设置、使用干湿球温度计和应用《温度和湿度查对表》知识要求 不同的商品,它们的性能也不一致。有的怕潮,有的怕干,有的怕热,有的怕冻。例如,食糖、食盐潮解融化;奶粉、漂白粉受潮结块;金属受潮锈蚀;闷热、潮湿的空气,容易引起动植物商品生霉、生虫;而空气过分干燥,又会引起肥皂干缩,皮革、竹木制品干裂等。温度过高或过低,也会引起某些商品质量的变化,例如,蜡质品遇热发黏或熔化;医药针剂、 福尔马林、墨水等受冻则聚合沉淀等。影响仓储商品变化的外界因素很多,其中最主要的是 仓库的温度和湿度。商品发生质量变化,几乎都与空气的温度、湿度有密切的关系。 各种商品,一般都具有与大气相适应的性能。按其内在的特性,又都要求有一个适宜的 温度、湿度范围。而库内温度、湿度的变化,直接收到库外自然气候变化的影响。因此,我们不但要熟悉各种商品的特性,还必须了解自然气候变化的规律,以及气候对不同仓库温度、 湿度的影响,以便积极采取措施,适当第控制与调节库内的温度、湿度,创造适宜商品储存 的温度、湿度条件,确保商品质量安全。 一、空气温度及变化规律 1?空气温度 空气温度是指空气的冷热程度,简称气温。空气中热量的来源,主要是由太阳通过光辐 射把热量传到地面,地面又把热量传到近地面的空气中。因为空气的导热性很小,所以,距 地面越近气温越高,距地面越远气温越低。 气温是用温度来测定的。衡量空气温度高低的尺度成为温标。常用的温标有摄氏温标和 华氏温标两种,都以水沸腾时的温度(沸点)与水结冰时的温度(冰点)作为基准点。 摄氏温标的结冰点为0 C,沸点为100C,中间分成100等份,每一份为1摄氏度,摄氏度用符号“C”来表示。 华氏温标的结冰点为32 T,沸点为212 °F,中间分成180等份,每一等份为1华氏度,华氏度用符号“T”来表示。 在仓库哭日常温度管理中,我国规定采用摄氏度表示,凡0C以下度数,在度数前加负 号“―”。 摄氏温标和华氏温标可以互相换算,其公式如下: t1=5/9(t2-32) 式中t1――摄氏度度数,C t2――华氏度度数,F 2?空气温度的变化规律 空气的温度处于经常的、不断的运动变化中。它的变化有周期性变化和非周期性变化两种类型。周期性变化又有日变化和年变化。 (1)气温的日变化。气温的日变化是指一昼夜间气温的变化。一日之中,日出前温度最低,因为在夜间,地面得不到太阳的照射,加上不断地散热,温度下降。日出以后,由于太阳照射地面,地面吸收的热量多于散失的热量,使地面的温度不断升高,空气的温度也随 之逐渐升高,通常在午后 2 —3时,温度上升较快,从午后到黄昏,温度下降较慢,夜间到次日日出,温度下降较快。一日内气温变化最快的时间是上午8—10时,其次是午后6—8 时。 一天中气温的最高值和最低值的差叫做气温日较差。气温日较差的大小受纬度、季节、地形等因素的影响很

相对湿度

相对湿度 前言:空气有吸收水分的特征,PCB主料和辅料有相当部分也是对湿度十分敏感的材料,它们遇到空气中的相对湿度比工艺条件高或低时会吸湿或缩水造成自身形体变化,如黑菲林、重氮片、半固化片等。造成制程中不稳定的质量缺陷。今天我们来谈谈空气一个状态的参数——相对湿度。 生产中的相对湿度是由工业除湿机组和超声波加湿器自动调节的,当生产过程相对湿度局部出现小偏差,我们可以通过局部加减湿度来满足生产需求。例如直接喷水、开启超声波雾化加湿器设备、煮开水来增加空气湿度、开启除湿机及抽湿机,升温可以降低空气湿度。 湿度的概念是空气中含有水蒸气的多少。它有三种表示方法: 第一是绝对湿度,它表示每立方米空气中所含的水蒸气的量,单位是千克/立方米; 第二是含湿量,它表示每千克干空气所含有的水蒸气量,单位是千克/千克·干空气; 第三是相对湿度,表示空气中的绝对湿度与同温度下的饱和绝对湿度的比值,得数是一个百分比。(也就是指在一定时间内,某处空气中所含水汽量与该气温下饱和水汽量的百分比。) 相对湿度用RH表示。相对湿度的定义是单位体积空气内实际所含的水气密度(用d1 表示)和同温度下饱和水气密度(用d2 表示)的百分比,即RH(%)= d1/ d2 x 100%;另一种计算方法是:实际的空气水气压强(用p1 表示)和同温度下饱和水气压强(用p2表示)的百分比,即RH(%)= p1/ p2 x 100%。 前两种湿度表示它的计算结果是一个量化,并未能满足空气可利用的工艺状态,而我们工艺生产条件更注重空气状态,所以相对湿度是我们最常用衡量空气湿度的一种指标。饱和空气:一定温度和压力下,一定数量的空气只能容纳一定限度的水蒸气。当一定数量的空气在该温度和压力下最大限度容纳水蒸气,这样的空气称饱和空气;未能最大限度容纳水蒸气,这样的空气称未饱和空气。假如空气已达到饱和状态,人为的把温度下降,这时的空气进入一个过饱和状态,水蒸气开始以结露的形式从空气中分离出来变成液态水,这就是我们抽湿机的工作原理。 干球温度:指温度计测得的空气温度,常采用摄氏温度。在老式医疗用的温湿度计(现在CC TC 一厂还有在使用)左边那条温度计实测的温度即干球温度。 湿球温度:指湿球温度计测得的温度,常采用摄氏温度。在老式医疗用的湿温度计右边的那条温度计上面就写着湿球温度。可以发现它的构造,是在温度计的感温球包绕上一层棉纱,棉纱引到下面的水槽里,水槽注满水,水被棉纱吸上来包围着温度计的感湿球。水在常温下蒸发必须有外界的热能支持才能进行,热能的供给速度和水蒸发的速度达到一个稳定的平衡,而在这个平衡界面的湿度就是湿球温度。这湿球温度的大小将反映出空气相对湿度的大小。 温湿计:最原始的温湿计就像是老式医疗用的那种温湿度计,测定干球温度,然后与湿球温度比较差度,在刻度盘中查出现在实际的相对湿度的值,来得知现在空气的湿度状态。这刻度盘中的数据来自被誉为“空调之父”的美国人开利研制出的空气焓湿图。现在大部分采用特种感温感湿材料制成的温湿计,有的更加上机械旋转装置构成温湿自动记录仪,现在CCTC 普遍使用这种温湿记录仪。

相关文档
最新文档