二次根式综合计算题
二次根式混合计算练习(附答案)

两次根式混同估计之阳早格格创做1.估计题 (1)(2).2.估计:()218(12)(12)5023212322+-+-+⨯--.3.估计:(2-3)(2+3)+()20101-()2π--121-⎪⎭⎫⎝⎛4.估计(π-3)0-)12)(12(-++2312-+6、估计:)13(9-0+)322(2818)212(2----+2 7.估计(20141+ )(211++321++431++…+201420131+)8.估计:2×(2+12)-1882-212-⎛⎫⎪⎝⎭-|22-3|+38. 9.估计:4832426-÷+⨯.10.估计:(1)3132+218-5150;(2)(5-26)×(2-3);(3)(1+2+3)(1-2-3);(4)(12-481)(231-45.0). 11.估计:(1)11(24)(6)28--+ (2)3212524⨯÷ 12、估计36)22(2)2(2+---(1)327-+2)3(--31-13、估计: (1)11383322+-+(2)(753)(753)++-- 14、33364631125.041027-++---.11(24)2(6)28--+ 15、已知,3232,3232+-=-+=y x 供值:22232y xy x +-.16、估计:⑴()()24632463+-⑵20(3)(3)2732π++-+-17、估计(1)﹣×(2)(6﹣2x )÷3.20.估计:1312248233⎛÷ ⎝3631222⎝21.估计22.(1))235)(235(-++- (2))52453204(52+-22.估计:(1)()222122763⎛⎫+- ⎪⎝⎭(2)()()35233523-+23.化简:(1)83250+(2)2163)1526(-⨯-(3)(2)23()123)(123-+-+;(4)12272431233()? 24.估计(1)2543122÷⨯(2)(3)231|21|27)3(0++-+--(4)11545+204555245(5)()()201211+8π236+22--⨯-()(6)4832426-÷+⨯ (7)20121031(1)5()27(21)2----+(8)113123482732(92225(7)(3)-(10)21(232)8(3325)(3325)3(11)5.081232+-;(12)32212332a a a ⨯÷ (13))2332)(2332(-+(14)18282-+(15)3127112-+(16))31(33122-++参照问案 1.(1)﹣;(2).【剖析】试题分解:(1)先把各个两次根式举止化简,再合并共类两次根式即可; (2)根据两次根式的乘除混同运算规则估计. 解:(1)=3﹣2+﹣3=﹣;(2)=4××=.2.32-【剖析】试题分解:先将所给的各式化简成整数或者最简两次根式,而后合并共类两次根式即可. 试题剖析:本式125282632=-+-- 32=-考面:两次根式的估计. 【问案】766【剖析】试题剖析:解:619624322+-+ 26626463 =(26626463+⎭5666=766考面:两次根式的加减面评:本题主要考查了两次根式的加减运算.最先把两次根式化为最简两次根式,而后再合并共类两次根式. 4.0 【剖析】试题分解:根据真数的运算规则举止估计即可救出问案. 试题剖析:12010)21()2()1()32)(32(----++- π=234-⨯+- =0考面:真数的混同运算. 5.3(2)53.【剖析】试题分解:(1)先估计整次幂、两次根式化简、来千万于值标记、把括号展启,而后举止合并即可供解. (2)把两次根式化成最简两次根式后,合并共类两次根式即可.(1)本式(2)本式=12⨯=.考面:真数的混同运算;2.两次根式的混同运算.6.【剖析】试题分解:先举止两次根式的化简,财举止乘除运算,末尾合并共类两次根式即可供出问案.试题剖析:本式=2913⨯-+9213283=++-+-+=考面: 真数的混同运算.7.2013. 【剖析】试题分解:根据分母有理化的估计,把括号内各项分母有理化,估计后再利用仄圆好公式举止估计即可得解.试题剖析:(1211++321++431++…+201420131+)=(1+…=(1+1) =2014-1=2013.考面: 分母有理化. 8.2 【剖析】解:本式=2+1-=2+13-3+2=29.1+114【剖析】解:本式=4-(3-+4=4-3+4=1+11410.(1)342;(2)112-93;(3)-4-26;(4)8-364. 【剖析】(1)利用2a =a(a ≥0),ab =ab (a ≥0,b ≥0)化简;(2)不妨利用多项式乘法规则,分离上题提示估计; (3)利用仄圆好公式;(4)利用多项式乘法公式化简.11.(12【剖析】试题分解:(1)先把两次根式化成最简两次根式之后,再合并共类两次根式即可供出问案; (2)先把两次根式化成最简两次根式之后,再举止两次根式的乘除法运算.试题剖析:(1)-原式24=---4=;(2)4原式=310⨯考面: 两次根式的化简取估计.12.【剖析】试题分解:先举止两次根式的化简,再合并共类两次根式即可供出问案. 试题剖析:36)22(2)2(2+---=考面: 两次根式的化简供值.13.(1;(2)1--【剖析】试题分解:(1)把两次根式举止化简后,再合并共类两次即可得出问案; (2)先利用仄圆好公式展启后,再利用真足仄圆公式估计即可.试题剖析:(12=22=+=;(2)27=-78=--1=--考面: 两次根式的化简. 14.(1)1 (2)114-【剖析】解:(1)327-+2)3(--31-=.11--33-=+)( (2)33364631125.041027-++---=1111300.5.244---++=-15.385【剖析】解:果为xy y x xy y xy x y xy x +-=++-=+-22222)(2242232,38)32)(32()32()32)(32()32(3232323222=-+---++=+---+=-y x , 1)3232)(3232(=+--+=xy , 所以3851)38(2232222=+⨯=+-y xy x .16.【剖析】试题分解:先化成最简两次根式,再举止估计.试题剖析:-2(24-⨯22--考面:两次根式化简.17.【剖析】试题分解:先化成最简两次根式,再举止估计.试题剖析:--=. 考面:两次根式化简.18.(1)22; (2)6-【剖析】试题分解:(1)根据仄圆好公式,把括号展启举止估计即可供出问案.(2)分别根据仄圆、非整数的整次幂、两次根式、千万于值的意思举止估计即可得出问案. 试题剖析:(1)()()24632463+-22=-=54-32 =22.(2)2(2π+-312=+-6=-考面: 真数的混同运算. 19.(1)1;(2)13【剖析】试题分解:先把两次根式化简后,再举止加减乘除运算,即可得出问案.试题剖析:=32=-1=;(2)2÷=÷=÷13=.考面: 两次根式的混同运算.20.143.【剖析】试题分解:先将两次根式化成最简两次根式,再算括号内里的,末尾算除法.试题剖析:⎛÷⎝÷=143=.考面:两次根式运算.21.0.【剖析】试题分解:根据两次根式运算规则估计即可.=⎝.考面:两次根式估计.22.(1)2)10.【剖析】试题分解:(1)把括号内的项举止拉拢,利用仄圆好公式举止估计即可得到问案;(2)把两次根式化简后,合并共类两次根式,再举止估计即可供出问案.试题剖析:(1))235)(235(-++-25=-55=-+=(2))52453204(52+-=10==考面: 两次根式的混同运算.23.(1)18-(2)33.【剖析】试题分解:(1)根据两次根式化简估计即可;(2)应用仄圆好公式化简即可.试题剖析:(1)(18=-(2)(((22451233=-=-=.考面:两次根式化简.24.(1)92;(2)-【剖析】试题分解:(1)先来分母,再把各两次根式化为最简两次根式,举止估计;(2)曲交利用调配律来括号,再根据两次根式乘法规则估计即可.试题剖析:(1)本式92 =;(2)本式==-.考面:两次根式的混同运算;25.【剖析】试题分解:两次根式的加减,最先要把各项化为最简两次根式,是共类两次根式的才搞合并,没有是共类两次)0,0m n≥≥)0,0m n≥>,需要证明的是公式从左到左是估计,从左到左是两次根式的化简,而且两次根式的估计要对于截止有央供,能启圆的要启圆,根式中没有含分母,分母中没有含根式.试题剖析:解: 本式=18-1+3-考面:两次根式的估计.26.6-【剖析】试题分解:根据两次根式的混同运算程序战运算规则估计即可.试题剖析:22431233266233623662)?()()考面:两次根式的混同运算.27.(1)2103.(2)4.【剖析】试题分解:掌握两次根式的运算本量是解题的闭键.普遍天,两次根式的乘法:abba=•),(00≥≥ba;两次根式的除法:baba=),(0ba≥;两次根式的加减时,先将两次根式化为最简两次根式,再将被启圆数相共的两次根式举止合并.估计时,先算乘除法,能化简的根式要先举止化简再估计,末尾估计加减法,即合并共类项即可. 试题剖析:解:(1)本式=2514334⨯⨯1024334⨯⨯= =2103(2)本式8523+--=4=考面:1、两次根式的化简;2、真数的运算.28.-.【剖析】试题分解: 本题波及整指数幂、两次根式的化简、分母有理化、千万于值化简4个考面.正在估计时,需要针对于每个考面分别举止估计,而后根据真数的运算规则供得估计截止.试题剖析:本式=11-=-考面:1.真数的运算;2.整指数幂;3.分母有理化.29.2+.【剖析】试题分解:根据运算程序化各根式为最简两次根式后合并即可.试题剖析:本式1511322=⋅++=+ 考面:两次根式运算.30.2. 【剖析】试题分解:针对于有理数的乘圆,两次根式化简,整指数幂,背整数指数幂4个考面分别举止估计,而后根据真数的运算规则供得估计截止.试题剖析:本式12=-.考面:1.真数的运算;2.有理数的乘圆;3.两次根式化简;4.整指数幂;5.背整数指数幂. 31.32-22. 【剖析】试题分解:两次根式的乘法规则:)0,0(≥≥=⨯b a ab b a ,两次根式除法规则:)0,0( b a bab a ≥=÷,两次根式的乘除估计完后要化为最简两次根式,而后举止加减运算,两次根式加减的真量是合并共类两次根式.试题剖析:32-2234-223248-32426=+=÷+⨯. 考面:两次根式的混同运算.32.(1)0;(2)【剖析】试题分解:(1)本式=152310-++-=;(2)本式==.考面:1.真数的运算;2.两次根式的加减法.33.(1)1;(2)7-【剖析】试题分解:(1)解:本式=5-7+3=1;(2)解:本式=14(2720)--=7-考面:两次根式的混同运算.34.①、24;②、a 31【剖析】试题分解:根据两次根式的混同运算的规则分离两次根式的本量依次估计即可. 试题剖析:①、242222245.081232=+-=+-; ②、=⨯÷32212332a a a a a a a a 3146132232131122=⨯=⨯⨯⨯⨯⨯. 考面:真数的运算35.(1)-3)6;(4)6- 【剖析】试题分解:本题主要考查根式的根式的混同运算战0次幂运算.根据运算规则先算乘除法,是分式该当先将分式转移为整式,再按运算规则估计.试题剖析:(1)==-原式试题剖析:(2)=原式试题剖析:(3)116=+==原式试题剖析:(4)22439212186=-=⨯-⨯=-=-原式((。
二次根式混合计算练习(附答案)

二次根式混合计算(2 ”「_ _ _ _ _ _ 18 — 2计算:(12)(1 一.. 2) .50 -2.32 .12.3• 、2 .2; 24 - 96 ;、:127- . 48+ ; . 12+ 75计算:(八)(2+ 3)+ -宀亠二°- 2计算(兀-3)0- (J2+1)( J2 -1) + 屁十卜E_2___ 1 1 1 2014 ) ( 1+—11 +V2 J 2+J 3+L 1L +…+——” ” ).3,4. 2013,2014计算:9( —X ;厂 1;8«2「3)计算: 2 x ( 2 + l) - _8V2迈扌-心-31十;计算: ...6 ■: - ‘ 2 八』24 3 48.10.计算: (1)「32 + 18 — 50;3 2 5(2)(5-2.6 ) x ( .2- 3 );11.计算:(3)(1+ . 2 + ,3 )(1-.2 - ,3);(4)(J12 -4J — )(2\8;4®).(1) C ■ 24 - 2 2.12 —--5.2412、计算,(-2)2-、、2(、2 -2) 6<3(1 )3_27 + .. (-3)2 - 3 -1 13、计算: (1) ,8 3 (2) i :75,3)C ,7 - . 5 - . 3)14、 3 -27「;』0 -、1 3 0.1253V4 V_ 2+73 _ 2 15、已知 x = 2 _ 3」=2 ■ 3,求值:2x 1-63 6416、计算:⑴V20+V5 「3xy 2y 2. -W2442}⑵(爲)2 +(兀十V 3)0 — V 27 +73—2 17、计算(「• :「(2)(6-3 :-. 1 / 121 .计算题(1)-■ 1「辽心一、:计算((9二|?恳—^+黑(寸二(^CXI—号co)(号CXI +号co ) —申中哼 +N电—^CXI ) (0 L )(吟2+^二畔2—^2)(書+将^—谒寸)2弋Q)◎co — Q £)(^co + Qu)OL )z ^r Ipl'r — 0(L —号)—或+「(i r g —— gw —) Q) T里)x CXI +2P X粵—『CXI—二十号 + z」L I ) (9)肿(2—吟匸(L —^e )(L +^e)(“)置+§■>ICO, + 2、)(号 +号—等))XI M衣• XICXI —毎co-M 44 ・0|参考答案1 . (1)-_; (2)厶-.10【解析】试题分析:(1)先把各个二次根式进行化简,再合并同类二次根式即可; (2) 根据二次根式的乘除混合运算法则计算. 解: (1 )::;;;— ::. =3 二一2 匚 + 匚一3 耳一匚;(2)一_「「严》「:=[.2. 3. 2【解析】试题分析:先将所给的各式化简成整数或最简二次根式,然后合并同类二次根式即可. 试题解析:原式 =1 _2 ^.2 -8.2・6 _3 _2--3-/2考点:二次根式的计算.试题解析:解:撐/—96鳥=:、6 2'6"6 T=^/6-2^/66- ------ 5?6.6考点:二次根式的加减点评:本题主要考查了二次根式的加减运算•首先把二次根式化为最简二次根式,然后再合并同类二次根式4. 0【解析】试题分析:根据实数的运算法则进行计算即可救出答案试题解析:(2 - -3)(2 • .3) • (-1)2010( ■■ 2 7丄「-(丄)-2=4-3^ -2=0考点:实数的混合运算•5. (1) 2+.3 ; (2) 5 3 .【解析】试题分析:(1)先计算零次幕、二次根式化简、去绝对值符号、把括号展开,然后进行合并即可求解. (2)把二次根式化成最简二次根式后,合并同类二次根式即可.4 41 / 12(1)原式=1-1+2 3 +2- .3 =2+ J 3 ;⑵原式=3 3-4. 32 3 5 3 2= 5,3 .考点:实数的混合运算;2•二次根式的混合运算.6. 4.6.【解析】试题分析:先进行二次根式的化简,财进行乘除运算,最后合并同类二次根式即可求出答案 试题解析:原式=9 V 2.2 21- 3迈•厶° -(2、2)2 •纸6-3= 9 2 1 -3 2 -8 4,6-3 =4.6.考点:实数的混合运算.7. 2013.【解析】试题分析:根据分母有理化的计算,把括号内各项分母有理化,计算后再利用平方差公式进行计算即可得解.111 1试题解析:(1.2014 )( 一1 +——1 +——1+…+ ----------- 1)1 +V2 <2 +V3 J3+U412013+J2014=(1 . 2014 ) ( ,2-1+ ..3- .. 2 + .. 4-、、3+…+ '、2014 - .. 2013 ) =(1.2014) ( 2 1 -)=2014-1=2013.考点:分母有理化.8. 2【解析】=2 + 1 — ,9 + .4 = 3 — 3+ 2= 2【解析】- 3 2解:原式=4—(3 — 2・、2) +—解:原式=2= 4 - 3 + 2 2 + 口 = 1 + —244【解析】(1)利用 一 a 2=a(a > 0) , , ab a . b (a > 0,b > 0)化简;(2) 可以利用多项式乘法法则,结合上题提示计算; (3) 利用平方差公式; (4) 利用多项式乘法公式化简•11.(1) ■ 6 ;(2) 3 . 2 .4 10【解析】试题分析:(1 )先把二次根式化成最简二次根式之后,再合并同类二次根式即可求出答案; (2 )先把二次根式化成最简二次根式之后,再进行二次根式的乘除法运算必6冷-子八6(2)原式=4巧汉一3汇4 5/2=3 .2 10考点:二次根式的化简与计算•12. 32.【解析】试题分析:先进行二次根式的化简,再合并同类二次根式即可求出答案试题解析:i (-2)2 -、2(、,2 -2厂v3=2-2+2、、2+ - 2 =3考点:二次根式的化简求值.13. (1)3 2 3 3; (2) -1-2 石【解析】10. (1)-32 ; (2) 11 .2-9 .3 ; (3) -4-2 .6 ; (4) 8-4.6 3试题解析:(1)原式=(2 .6=3103 / 12试题分析:(1)把二次根式进行化简后,再合并同类二次即可得出答案; (2)先利用平方差公式展开后,再利用完全平方公式计算即可.试题解析:(1)8 W F3、. 2 3.3---- + ------^.2 3.3 ;-2 ;(2)(J :5,.3)( J - .5 - .. 3)=7 -(、一5 '、3)2考点:二次根式的化简14. (1) 111(2) -4【解析】解:(1) 3 -27;(-3)2 - 3 -1 =-3 3-(-1) = 1.15. 385【解析】解:因为 2x 2 -3xy 2y 2 = 2x 2 - 4xy 2y 2 xy = 2(x - y)2 xy所以 2x 2 -3xy 2y 2 =2 (8 .3)21 =385 .16. -.,2 .【解析】试题分析:先化成最简二次根式 ,再进行计算. 试题解析:(J24 - J 》一2( J 1+J6)⑵—43。
二次根式混合计算练习(附标准答案)

二次根式混合计算(2 ”「2 .计算:(1、2)(1 _ • 2) • 50 _2、32 、12 • 3 •丄18 _、2 '. √24. 计算:(2— 3)(2+ 3)+ —f —'—扌5 .计算(兀一3) — (V 2 +1)( 2—1) + J 12 + 1/3—21 +J2014) ( ------- T= + --- +— --------- +…+ ---- ) 1 +√2 J 2+J3 %⅛ +√4 √201^√'20142 × ( .2 + 1 ) — -1^ 8 √2 √2舟S 迈-3|+712、计算,(-2)2 - .2( .2 -2)6 √36、计算: 9( — 2 -A I f (2 2-39 •计算:6 2 、24“ 3 - 48. 10.计算:(1) 1 . 32+1 .8-丄.50; 3 2 5 (2)(5-2 6) × ( 2 - 3); 11.计算: (3)(1+ ,2+..3)(1- .-2-..3); (4)( 12一4」(2 (1) C-24 - 213、计算: (1) , 8 3 1 1 、、3√ √τ(2) ^.7 .5 .3)C-7 - .5-^3) 1 3 0.125 3 1 - 63 4 ■ 64 _ 2+73 _ 2 _ √315、已知 X= 2 - 3 , 丫 = 2 3 ,求值:2χ2 - 3xy 2y 2 .(3J 6 — 4√2 fe√6 + 4√2 )⑵(√3)2 + (兀十 √3)0 —√27 + V 3 — 2 14、1) 16、计算:⑴√20+√5 17、计算(I ) 「- × r(2)(6 ÷3 :■.1 / 12 1 .计算题(1) -■ 1「辽心一、: 3 .摇S-岳弋 S _______ S ______________ A I _____________________ _______•.一 27*48+ 「12+ 75 27 •计算(8.计算:(1)好0—铝+号(寸L) (^0l ^e )(^0+t¾e )l Ξ'÷⅛+」黑—辱0) ⅛ (8) ^'>I B ->÷R >+^y αr (9) (¾cxl +,¾二吗cxl l ,¾2) (2) (OL) (l¾Co I L ¾2)(L ¾CO +L ¾2)O L)(6) Cxl O(L —号)—毎+「(〔r g —— Z J T ) Q) 肿(0—^)+〒^巴亍黑")0) ILC ⅞ 1^4(年+t⅛2)参考答案1 • (1)-飞(2)厶- •LO【解析】试题分析:(1)先把各个二次根式进行化简,再合并同类二次根式即可;(2)根据二次根式的乘除混合运算法则计算.解:(1 )::;;;—: =3 ~-2 ~+ 匚-3 ^=-匚;(2)—「「_=4 X : =-:■2. -3.2【解析】试题分析:先将所给的各式化简成整数或最简二次根式,然后合并同类二次根式即可.试题解析:原式=^2 5 2 -8 2 6 -3 -2-3 2考点:二次根式的计算.【答案】-7飞.6【解析】试题解析:解:、2;•24 - ∙.96「1=J6 2®4' T=I6必66考点:二次根式的加减点评:本题主要考查了二次根式的加减运算.首先把二次根式化为最简二次根式,然后再合并同类二次根式4. 0【解析】试题分析:根据实数的运算法则进行计算即可救出答案试题解析:(2 - 3)(^ 3) (T)2010L 2 -二)■ -(丄)‘=4 —3 * -2=O考点:实数的混合运算•5. (1) 2+ .3 ;(2) 5 3 .【解析】试题分析:(1)先计算零次幕、二次根式化简、去绝对值符号、把括号展开,然后进行合并即可求解.(2)把二次根式化成最简二次根式后,合并同类二次根式即可.2.6-4.61 / 12 (1)原式=1-1+2 X3 +2- ∖ 3=2+、3 ;1 _ _⑵原式=3,3-4,3 2、、3 5.3= 5.3 .考点:实数的混合运算; 2•二次根式的混合运算.6. 4 .6【解析】试题分析:先进行二次根式的化简,财进行乘除运算,最后合并同类二次根式即可求出答案=9 2 1 -3 2 -8 4、、6 -3=46考点:实数的混合运算•7. 2013.【解析】试题分析:根据分母有理化的计算,把括号内各项分母有理化,计算后再利用平方差公式进行计算即可得解.III 1试题解析:(1 .2014)( 一1 +——1 +——1 +…+ ----------- 1)1 +√2 J 2+J3 丁3+丁4 ¢2013+12014=(1 .2014) ( .2-1+ W+.4- J3+∙∙∙ + ,2014-「2013)=(1 2014) ( 一 241 - )=2014-1=2013.考点:分母有理化.8. 2【解析】=2 + 1 —、、9 + A = 3 — 3+ 2= 211匚9. 1+ 24 【解析】3 2解:原式=4— (3 — 2 2 ) + 一4试题解析:原式 =9 1,2 2 -(2、、2)2 4. 6 -3 解:原式= (2)2+1 -=4 —3 + 2.2 + 3-2= 1 + 11、24 44 LLL L 4 J 6 10• (1) 2 ; (2) 11 2 -9 3 ; ( 3) -4-2 /6 ; (4) 83 3【解析】(1)利用一a2=a(a ≥0) , . ab a .. b (a ≥0,b ≥0)化简;(2)可以利用多项式乘法法则,结合上题提示计算;(3)利用平方差公式;(4)利用多项式乘法公式化简•11. (1) ; (2) 3 2 .4 10【解析】试题分析:(1)先把二次根式化成最简二次根式之后,再合并同类二次根式即可求出答案;(2)先把二次根式化成最简二次根式之后,再进行二次根式的乘除法运算=2&子6∣3 1(2)原式=4,3 -4 5/2考点:二次根式的化简与计算12. 32.【解析】试题分析:先进行二次根式的化简,再合并同类二次根式即可求出答案_____ _ _ 6试题解析:....(-2)2 - ι2C∙ 2 -2) •Λ3=2-2+2、、2+ 2=3 2考点:二次根式的化简求值.13. (1) 32 3 3; (2) -1-2、、15.【解析】试题解析: (1)原式=(2 ,6=31023 / 12 试题分析:(1)把二次根式进行化简后,再合并同类二次即可得出答案;(2)先利用平方差公式展开后,再利用完全平方公式计算即可 .试题解析: 3、2 3「3 = ------ + -------3、2 3.3•— ? 2(2)(万..3、.3)(万-.弓-'、3)=7 -( .5 、、3)2=7 -8 -2、15-2.15.考点:二次根式的化简14. (1) 1 Z X 11(2) - 4【解析】解: (1)封—27+J(—3)2 -幼-1=-3 + 3-(-1 = 1.15. 385【解析】解:因为 2χ2 -3xy 2y 2 = 2χ2 - 4xy 2y 2 xy = 2(x - y)2 xy所以 2x 2 -3Xy 2y 2 =2 (8 .3)2 1 =385 .【解析】试题分析:先化成最简二次根式 ,再进行计算.试题解析:-一2(] .√∙6)16.(2)3 一27 - 0-、 63—3 — 0丄0.5丄」 64 2 44 (2 * 3)2 _ _ 2 + √3 2 _ √3~ ___________________ 2 - 3 2 3 (2 亠)(2 -,3 ) 2 3 2 - 3Xy =( )( )=1 2 - J3 2 + √3 ,(2 - 3)2-=U 3 (2 * ,3)( 2 -、3)' (1)、8 3=(2 6 - =2、6寻訂6考点:二次根式化简.17. .【解析】试题分析:先化成最简二次根式,再进行计算.试题解析:(HE) _2(卜冏=2 庇¥ 一¥ 一2虑一逅.考点:二次根式化简.18. (1)22; (2) 6-4、.3【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案(2)分别根据平方、非零数的零次幕、二次根式、绝对值的意义进行计算即可得出答案试题解析:⑴3∙. 6 -4、. 2 3・、6 4. 2=(3飞)2 -(4、.2)2=54 —32=22.(2)(两2+(兀+何 _松+I y J_2= 3 1 -3 3 2 -、3=6-4、3考点:实数的混合运算19. (1)1;(2)-3【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案试题解析:(1W"5 / 12= (3:.f x - 2 "∙∕x)3 J X1^β.考点:二次根式的混合运算【解析】试题解析:1皿—2上+√4^ ∣÷2√3 =(6√3-ZV 3+4√5)÷2√3 =空√34∙275 \3)3 3 考点:二次根式运算.21. 0.【解析】试题分析:根据二次根式运算法则计算即可 •试题解析:12 、2 产6 ∙ I 3 =2.6-3 . 6 - 1 ,6 =0.J 2 ∖*2 J 2 2考点:二次根式计算.22. (1) 2 6 ; (2) 10.【解析】试题分析:(1)把括号内的项进行组合,利用平方差公式进行计算即可得到答案;(2)把二次根式化简后,合并同类二次根式,再进行计算即可求出答案.试题解析:(1) (^-^ -2). 2)t5 -(、3 - ⑵][、、5 ( .3 -、2)]=5 -(、一3 7'2)2=5-5 2.6= 2,6(2) 2 5(4.20 -3、45 2,5)=2 .5(8 .5 -9.5 2.5)=2 5 .5 =10考点:二次根式的混合运算20. 143试题分析:先将二次根式化成最简二次根式 再算括号里面的,最后算除法.23. (1) 6廖—2^+18—4√2; (2) 33. 3【解析】试题分析:(1)根据二次根式化简计算即可(2)应用平方差公式化简即可 .4 12 324 _2、72 =6.6 _16、3 18_4. 2 3 3 3 — — _ _ 2 2 (2) 35 -2.3 3 5 2 3 =3 .5? -[2.345 —12 =33. 考点:二次根式化简24. ( 1) ; ( 2) ~6州5 .2 【解析】试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.(2)原式=、.6、、3-2.153-3、,2 =3、2-6 5-3,2 =-6 5 .考点:二次根式的混合运算; 25. 24-4 .2 .【解析】试题分析:二次根式的加减,首先要把各项化为最简二次根式,是同类二次根式的才能合并,不是同类二次根式的不合并;二次根式的乘除法公式..m 、. n= . mn m _0,n _0 ,左到右是计算,从右到左是二次根式的化简,并且二次根式的计算要对结果有要求,能开方的要开方,根式中不 含分母,分母中不含根式.试题解析:解:原式=18-1 + 3 — 4 . 2 +4=24-4 . 2 .考点:二次根式的计算. 26. 6-6. 2 .【解析】试题分析:根据二次根式的混合运算顺序和运算法则计算即可. 试题解析:(〉27- .24+ 3 :)?' 12=(G- 2^6+、6)?2 .3=(.3-、6)?2 .3=6-考点:二次根式的混合运算.27. (1) (2) 4.10试题解析: (1) 22 ,12试题解析:(1)原式="2 土2 242 9 -_2 -.m=.m 需要说明的是公式从【解析】试题分析:掌握二次根式的运算性质是解题的关键.一般地,二次根式的乘法:ja∙jb = jab( aκθ, b^O);二次根式的二次根式进行合并•计算时,先算乘除法,能化简的根式要先进行化简再计算,最后计算加减法,即合并同类项即可•试题解析:解:(1)原式=4Λ∕3×:竺X」=4 5J2=4 3 仝24 1010(2)原式=3 -2-5 • 8 =4考点:1、二次根式的化简;2、实数的运算.28. ~2 3 .【解析】试题分析:本题涉及零指数幕、二次根式的化简、分母有理化、绝对值化简个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=1 -3、.2-2.3考点:1.实数的运算;2.零指数幕;3.分母有理化.29. 2 2 .5 .【解析】试题分析:根据运算顺序化各根式为最简二次根式后合并即可试题解析:原式=5 5 + 1 2.5 - . 5 445亠5 =、5+ 5 -1 9 = 2 .5 -1 3=2 2.5.5 2 4 5考点:二次根式运算•30. 2.【解析】试题分析:针对有理数的乘方,二次根式化简,零指数幕,负整数指数幕4个考点分别进行计算,然后根据实数的运算法则求得计算结果•试题解析:原式=1+^.2 ∙1-3-.2+∙.2 =2.考点:1.实数的运算;2.有理数的乘方;3.二次根式化简;4.零指数幕;5.负整数指数幕.31. 2,2-2 3.【解析】的除法: Aa( a-0, b AO);二次根式的加减时,先将二次根式化为最简二次根式,再将被开方数相同4个考点.在计算时,需要针对每7 / 12试题分析 次根式的乘法法则:...a ::話b = ab(a _ 0,b _ 0), 次根式除法法则b= a (^0,b 0),二次根式的乘除计算完后要化为最简二次根式,然后进行加减运算,二次根式 ∖ b加减的实质是合并同类二次根式 •试题解析: 6 ∙,2 • 24“、..3- ... 48 =2∙..3 2 2-4^^2-^3.考点:二次根式的混合运算•32. (1) 0; (2) 4 3 •【解析】试题分析:(1)原式=1 -5 • 2 • 3-1 =0 ;(2)原式=6^- ,3 2\3-3、.3=4打. 考点: 1.实数的运算;2.二次根式的加减法.33.( 1) 【解析】试题分析: 1;( 2) 7-2、、6.(1)解:原式=5- 7+3=1;(2)解:原式=14-4、6 2、、6-(27 -20) = 7-2\6 .考点:二次根式的混合运算.■■— 1 34•①、4.2 :②、—a 3【解析】试题分析:根据二次根式的混合运算的法则结合二次根式的性质依次计算即可试题解析:①、\32 -2、1 • .、0.5 =4、2 ∙2 ^2 =4、, 2 ;⅛ 2 2考点:实数的运算35. (1) -3(2 ; (2) ^√3 ; (3) 6; (4) -69 【解析】试题分析:本题主要考查根式的根式的混合运算和 转化为整式,再按运算法则计算。
二次根式混合计算练习(附标准答案)

二次根式混合计算(2 ”「2 .计算:(1、2)(1 _ • 2) • 50 _2、32 、12 • 3 •丄18 _、2 '. 42 T ■-A4. 计算:(2— 3)(2+ 3)+ —f —'—扌5 .计算(兀一3) — (V 2 +1)(2—1) + J 12 +— 21 +J2014) ( ------- -;= + --- +— --------- +…+ ---- ) 1 +V2 (2+J3 J 3+J4 &2013 + J20142 x ( . 2 + 1 ) — "8 一「8 迈 V 2 舟、2 迈-3|+711.计算:12、计算,(-2)2 - .2( .2 -2)6 J36、计算: 9( — 2 ;)「1f (22-39 •计算:6 2 、24“ 3 - 48. 10.计算: (1) 1 . 32+1 .8 -丄.50; 3 2 5 (2)(5-2 6) x ( 2 - 3); (3)(1+ ,2+ .3)(1- ,2 - .. 3); (4)(12-4」(2 13、计算: (1) , 8 3 1 1 、、3 (2) ^.7 .5 .3)^.7 - .5-^3) 1 3 0.125 3 1 - 63 4 ■ 64 _ 2+73 _ 215、已知 X = 2 - 3 ' 丫 = 2 3,求值:2x 2 - 3xy 2y 2 . (3J6 — 4V2fe<6 + 442}⑵(运)2 +(兀十73)0 — V 27 + V 3—2 14、 1) 16、计算:⑴V20+V5 17、计算(° - x =(2)(6 -3 :-.1 / 12 1 .计算题(1)-■ 1「辽心一、: 3 .摇5-岳弋 ff _______________________ A ( _____________________ ________________•.一 27*48+ 「12+ 75 27 •计算(8 •计算:(1)(1) C-24 - 2好cxl —铝+号(寸二 (^cxl —^e )(^cxl +^e )—「中哼+」黑—^0) 卜1^— 8 寸A -I + ^r —^: (8) 罔'>—2_>小尺>+冬衣£产(9) (呀+%K 呀—哆)(2) (0L ) 十 ££>(9L) (号2—号2)(^2+^2)O L ) 凹了「cxl —置(二) (6) CXI 0(L —号)—毎+「(〔r g ——g z (T ) Q) 号号—』I 十号肿(0—^)+〒^巴亍黑")0) 氏/J (年+ICXI E )参考答案1. ( 1)- _; (2)厶- •10【解析】试题分析:(1)先把各个二次根式进行化简,再合并同类二次根式即可;(2)根据二次根式的乘除混合运算法则计算.解:(1 )::;;;—: :. =3 二-2 匚+ 匚-3 耳-匚;(2)—「「_=4 X :=-:.2. -3.2【解析】试题分析:先将所给的各式化简成整数或最简二次根式,然后合并同类二次根式即可.试题解析:原式=^2 5 2 -8 2_3 _2-3 2考点:二次根式的计算.【答案】-7.、.6.6【解析】试题解析:解:、2;•24 - ..96「1=3左2®4、6 T2.6-4.6=I6必66点评:本题主要考查了二次根式的加减运算.首先把二次根式化为最简二次根式,然后再合并同类二次根式4. 0【解析】试题分析:根据实数的运算法则进行计算即可救出答案试题解析:(2 - 3)(^ 3) (-1)201°( 2 -二)-(丄)‘=4 —3 * -2=0考点:实数的混合运算•5. (1) 2+ .3 ;(2) 5 3 .【解析】试题分析:(1)先计算零次幕、二次根式化简、去绝对值符号、把括号展开,然后进行合并即可求解.(2)把二次根式化成最简二次根式后,合并同类二次根式即可.1 / 12(1)原式=1-1+2、、3+2- \3=2+、3 ;1 _ _⑵原式=3,3-4,3 2、、3 5.3= 5.3 .考点:实数的混合运算; 2•二次根式的混合运算.6. 4 .6【解析】试题分析:先进行二次根式的化简,财进行乘除运算,最后合并同类二次根式即可求出答案=9 2 1 -3 2 -8 4、、6 -3=46考点:实数的混合运算•7. 2013.【解析】试题分析:根据分母有理化的计算,把括号内各项分母有理化,计算后再利用平方差公式进行计算即可得解.111 1试题解析:(1 .2014)( 一1 +——1 +——1 +…+ ----------- 1)1 +V2 <2 +V3 丁 3+J4 12013+12014=(1 .2014) ( .2-1+ W+.4- J3+…+ , 2014 -「2013)=(1 2014) ( 一 241 - )=2014-1=2013.考点:分母有理化.8. 2【解析】=2 + 1 —、、9 + ,4 = 3 — 3+ 2= 211匚9. 1+ 24 【解析】3 2解:原式=4— (3 — 2 2 ) + 一4试题解析:原式 =9 1,2 2 1 3.2 2.22~ 2 2 -(2、、2)2 4. 6 -3解:原式= (2)2+ 1 -2 =4 —3 + 2.2 + 鼻2 = 1 + 11 •- 24 44 L L L L 4 J 6 10 - (1) 2 ; (2) 11 ■•: 2 -9 3 ; ( 3) -4-2 ,/6 ; (4) 8 3 3【解析】(1)利用 一 a 2=a(a > 0) , . ab a , b (a > 0,b > 0)化简;(2) 可以利用多项式乘法法则,结合上题提示计算;(3) 利用平方差公式;(4) 利用多项式乘法公式化简•11. (1) . 6-^^ ; (2) 3 2 . 4 10【解析】试题分析:(1 )先把二次根式化成最简二次根式之后,再合并同类二次根式即可求出答案;(2 )先把二次根式化成最简二次根式之后,再进行二次根式的乘除法运算=2&子-手乜;3 1 (2)原式=4,3 - 4 5/2考点:二次根式的化简与计算12. 32.【解析】试题分析:先进行二次根式的化简,再合并同类二次根式即可求出答案_____ _ _ 6试题解析:....(-2)2 - \2(、. 2 -2厂\3=2-2+2、、2+ 2=3 2考点:二次根式的化简求值.13. (1) 323 3 ; (2) -1-2J5.【解析】试题解析: (1)原式=(2 ,6=32 103 / 12试题分析:(1)把二次根式进行化简后,再合并同类二次即可得出答案;(2)先利用平方差公式展开后,再利用完全平方公式计算即可 .试题解析: 3、2 3「3 = ------ + -------3、2 3.3_ •— ? 2(2)(万馬、.3)(万-.弓-、、3)=7 -( .5 、、3)2=7 -8 -2、15-2.15.考点:二次根式的化简14. (1) 1 /、 11(2) - 4【解析】解: (1)封—27+J(—3)2 -幼—1=-3 + 3-(-1 = 1.15. 385【解析】解:因为 2x 2 -3xy 2y 2 = 2x 2 - 4xy 2y 2 xy = 2(x - y)2 xy所以 2x 2 -3xy 2y 2 =2 (8 .3)2 1 =385 .【解析】试题分析:先化成最简二次根式 ,再进行计算.试题解析:&24 -£)一2(] •「6)16.(2)3 一27 - 0 -、 63—3 — 0丄0.5丄」64 2 44 _ _ 2 + v'3 2 _ 爲 ________________ 2 - 3 2 3 (2 亠)(2 -,3 ) 2 3 2 - 3xy =\ )( )=1 2 - J3 2 + 73 ,(2 * 3)2 (2 - 3)2- =8 "J 3 (2 * ,3)( 2 -、3)' (1) 、8 3=(2 6 -=2、6寻訂6考点:二次根式化简.17. .【解析】试题分析:先化成最简二次根式,再进行计算.试题解析: (屈书_2毎価=2艮乎一乎一2屁J .考点:二次根式化简.18. (1)22; (2) 6-4、.3【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案(2)分别根据平方、非零数的零次幕、二次根式、绝对值的意义进行计算即可得出答案试题解析:⑴ 3.. 6 -4、. 2 3・、6 4. 2=(3飞)2 -(4、.2)2=54 —32=22.(2)(两2+(兀+何_松+応_2= 3 1 -3 3 2 -、3=6-4、3考点:实数的混合运算19. (1) 1; (2)-3【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案试题解析:5 / 12= (3:.fx - 2』x ) 31_3.考点:二次根式的混合运算【解析】试题解析:1*2—2上+74^ 卜2巧=(673-?73+475)斗273 =空73斗273 \3 )33 考点:二次根式运算.21 . 0.【解析】试题分析:根据二次根式运算法则计算即可 •试题解析:12 、2 产6 • I 3 =2.6-3 . 6 - 1 ,6 =0. I 2 I 2 2考点:二次根式计算.22. (1) 2 6 ; (2) 10.【解析】试题分析:(1)把括号内的项进行组合,利用平方差公式进行计算即可得到答案;(2)把二次根式化简后,合并同类二次根式,再进行计算即可求出答案.试题解析:(1) (•. 5 - 3 •、一 2)( •. 5」3 - 2)t5 -(、3 - ⑵][、、5 ( .3 -、2)]=5 -(、一3 7'2)2=5-5 2.6= 2,6(2) 2 5(4.20 -3、45 2,5)=2 .5(8 .5 -9.5 2.5)=2 5 .5 =10考点:二次根式的混合运算20. 143试题分析:先将二次根式化成最简二次根式 再算括号里面的,最后算除法.23. (1) 6廖—2^+18—4运;(2) 33. 3【解析】试题分析:(1)根据二次根式化简计算即可(2)应用平方差公式化简即可 .4 12 324 _2、72 =6.6 _16、3 18_4. 2 3 3 3 — — _ _ 2 2 (2) 35 -2.3 3 5 2 3 =3 .5? -[2.345 —12 =33. 考点:二次根式化简24. ( 1) ; ( 2) -6舛5 .2 【解析】试题分析:(1 )先去分母,再把各二次根式化为最简二次根式,进行计算;(2 )直接利用分配律去括号,再根据二次根式乘法法则计算即可.(2)原式=、.6、、3-2.15 3-3、, 2 =3、2-6 5-3,2 =-6 5 .考点:二次根式的混合运算; 25. 24-4 .2 .【解析】试题分析:二次根式的加减,首先要把各项化为最简二次根式,是同类二次根式的才能合并,不是同类二次根式 的不合并;二次根式的乘除法公式..m 、. n= . mn m _0,n _0 ,左到右是计算,从右到左是二次根式的化简,并且二次根式的计算要对结果有要求,能开方的要开方,根式中不 含分母,分母中不含根式.试题解析:解:原式=18-1 + 3 — 4 . 2 +4=24-4 . 2 .考点:二次根式的计算. 26. 6-6. 2 .【解析】试题分析:根据二次根式的混合运算顺序和运算法则计算即可. 试题解析:(〉27- .24+ 3 :)?' 12=(G- 2^6+、6)?2 .3=(.3-、6)?2 .3=6-考点:二次根式的混合运算.27. (1) (2) 4.10试题解析: (1) 22 ,12试题解析:(1)原式="2 土2 2429 -_2 -.m=.m 需要说明的是公式从7 / 12【解析】试题分析:掌握二次根式的运算性质是解题的关键 .一般地,二次根式的乘法: ja.jb = jab ( a^O, b^O );二次根式 的二次根式进行合并•计算时,先算乘除法,能化简的根式要先进行化简再计算,最后计算加减法,即合并同类 项即可•试题解析: 解:(1)原式=4弋3汇空X 丄=4 5J2=4 3 仝 2 4 1010(2)原式=3 -2-5 • 8 =4考点:1、二次根式的化简;2、实数的运算.28. -2 ■. 3 .【解析】试题分析: 本题涉及零指数幕、二次根式的化简、分母有理化、绝对值化简 个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=1-3.3 .2-1 .3- 2= -2.3考点:1.实数的运算;2.零指数幕;3.分母有理化. 29. 2 2 5 .【解析】试题分析:根据运算顺序化各根式为最简二次根式后合并即可 试题解析:原式=5 5 + - 2.5 - . 5 4 45亠5 =、5+ 5 -1 9 = 2 .5 -1 3=2 2.5.5 2 4 5 考点:二次根式运算•30. 2.【解析】试题分析:针对有理数的乘方,二次根式化简,零指数幕,负整数指数幕4个考点分别进行计算,然后根据实数的运算法则求得计算结果•试题解析:原式 =1+2,. 2・1-3'.2+・.2 =2.考点:1.实数的运算;2.有理数的乘方;3.二次根式化简;4.零指数幕;5.负整数指数幕. 31. 2,2-2 3.【解析】的除法: ♦ I a- b A0);二次根式的加减时,先将二次根式化为最简二次根式,再将被开方数相同4个考点.在计算时,需要针对每试题分析 次根式的乘法法则:...a ::話b = ab(a _ 0,b _ 0), 次根式除法法则b= a (^0,b 0),二次根式的乘除计算完后要化为最简二次根式,然后进行加减运算,二次根式\ b加减的实质是合并同类二次根式 •试题解析: 6 ・,2 • 24“、..3- ... 48 =2、.3 2 2-4 ^^2-^3.考点:二次根式的混合运算•32. (1) 0; (2) 4 3 •【解析】试题分析:(1)原式=1 -5 • 2 • 3-1 =0 ;(2)原式=6_3-,3 2\3-3、.3=4打. 考点: 1.实数的运算;2.二次根式的加减法.33.( 1) 【解析】试题分析: 1;( 2) 7-2、、6.(1 )解:原式=5- 7+3=1;(2)解:原式=14-4、6 2、、6 -(27 -20) = 7-2\6 .考点:二次根式的混合运算.■■― 1 34•①、4.2 :②、—a 3【解析】试题分析:根据二次根式的混合运算的法则结合二次根式的性质依次计算即可试题解析:①、\32 -2、1 • .、0.5 =4、、2「2 ^2 =4、, 2 ;\8 2 2考点:实数的运算35. (1) -3(2 ; (2) ^73 ; ( 3) 6; (4)七 9【解析】试题分析:本题主要考查根式的根式的混合运算和 转化为整式,再按运算法则计算。
二次根式计算专题——30题(教师版含答案)

(2) 3 12 3 1 1 48 27 32
【答案】(1)0;(2) 4 3 .
【解析】
试题分析:(1)原式=1 5 2 3 1 0 ;
(2)原式= 6 3 3 2 3 3 3 4 3 .
试题解析:原式=1 3 3 2 1 3 2 2 3
考点:1.实数的运算;2.零指数幂;3.分母有理化. 20.计算:
①
8
2
1 2
0
②
6 3 2
1 3
48
12
③
3a2 3
a 2
1 2
2a 3
【答案】① 2 1;② 14 ;③ a .
考点:二次根式化简.
14.计算 (3 2 24 8) 12 3
【答案】 -
2+
6
.
23
试卷第 4 页,总 10 页
【解析】 试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案. 试题解析:
(3 2 - 24 + 8) ¸ 12 = ( 6 - 2 6 +2 2) ¸ 2 3 = (2 2 - 6) ¸ 2 3 3
5
3
3 2 1;
(2) (6 x 2x 1 ) 3 x
4xBiblioteka (6 x 2x x ) 3 x 2x
(3 x 2 x ) 3 x
x 3 x
试卷第 1 页,总 10 页
1. 3
考点: 二次根式的混合运算.
3.计算: 3 12 2
(完整)八年级二次根式综合练习题及答案解析.docx

填空题1. 使式子x 4 有意义的条件是。
【答案】x≥4【分析】二次根号内的数必须大于等于零,所以x-4≥ 0,解得x≥ 4 2. 当__________时,x 2 1 2 x 有意义。
【答案】 -2≤x≤12【分析】 x+2≥ 0, 1-2x≥ 0 解得 x≥- 2, x≤1123. 若m有意义,则 m 的取值范围是。
m 1【答案】 m≤0且m≠﹣1【分析】﹣ m≥0 解得 m≤ 0,因为分母不能为零,所以m+1≠ 0 解得 m≠﹣ 14.当 x __________ 时, 1 x 2 是二次根式。
【答案】 x 为任意实数【分析】﹙1- x﹚2是恒大于等于0 的,不论 x 的取值,都恒大于等于0,所以 x 为任意实数5.在实数范围内分解因式: x49 __________, x2 2 2x 2__________ 。
【答案】﹙x 2+ 3﹚﹙ x+3﹚﹙ x-3﹚,﹙ x- 2 ﹚2【分析】运用两次平方差公式:x 4- 9=﹙ x 2+ 3﹚﹙ x 2-3﹚=﹙ x 2+ 3﹚﹙ x+ 3 ﹚﹙x - 3 ﹚,运用完全平方差公式:x 2- 2 2 x+ 2=﹙ x- 2 ﹚26.若 4 x22x ,则 x 的取值范围是。
【答案】 x≥0【分析】二次根式开根号以后得到的数是正数,所以2x≥ 0,解得 x≥07.已知x22 x ,则x的取值范围是。
2【答案】 x≤2【分析】二次根式开根号以后得到的数是正数,所以2- x≥0,解得 x≤ 2 8.化简: x2 2 x 1 x p 1的结果是。
【答案】 1-x【分析】x2 2 x 1 =(x1)22,因为 x 1 ≥0,x<1所以结果为1-x9.当1x p5时,x2x 5 _____________ 。
1【答案】 4【分析】因为 x≥1 所以x 1 2= x 1,因为x<5所以x-5的绝对值为5-x,x- 1+5- x= 410.把 a1的根号外的因式移到根号内等于。
8年级二次根式计算题450道

8年级二次根式计算题450道①5√8-2√32+√50=5*3√2-2*4√2+5√2=√2(15-8+5)=12√2②√6-√3/2-√2/3=√6-√6/2-√6/3=√6/6③(√45+√27)-(√4/3+√125)=(3√5+3√3)-(2√3/3+5√5)=-2√5+7√5/3④(√4a-√50b)-2(√b/2+√9a)=(2√a-5√2b)-2(√2b/2+3√a)=-4√a-6√2b⑤√4x*(√3x/2-√x/6)=2√x(√6x/2-√6x/6)=2√x*(√6x/3)=2/3*|x|*√6⑥(x√y-y√x)÷√xy=x√y÷√xy-y√x÷√xy=√x-√y⑦(3√7+2√3)(2√3-3√7)=(2√3)^2-(3√7)^2=12-63=-51⑧(√32-3√3)(4√2+√27)=(4√2-3√3)(4√2+3√3)=(4√2)^2-(3√3)^2=32-27=5⑨(3√6-√4)²=(3√6)^2-2*3√6*√4+(√4)^2=54-12√6+4=58-12√6⑩(1+√2-√3)(1-√2+√3)=[1+(√2-√3)][1-(√2-√3)]=1-(√2-√3)^2=1-(2+3+2√6)=-4-2√6①5√8-2√32+√50 =5*3√2-2*4√2+5√2 =√2(15-8+5) =12√2 ②√6-√3/2-√2/3 =√6-√6/2-√6/3 =√6/6 ③(√45+√27)-(√4/3+√125) =(3√5+3√3)-(2√3/3+5√5)=-2√5+7√5/3 ④(√4a-√50b)-2(√b/2+√9a) =(2√a-5√2b)-2(√2b/2+3√a) =-4√a-6√2b⑤√4x*(√3x/2-√x/6) =2√x(√6x/2-√6x/6) =2√x*(√6x/3) =2/3*|x|*√6 ⑥(x√y-y√x)÷√xy =x√y÷√xy-y√x÷√xy =√x-√y ⑦(3√7+2√3)(2√3-3√7) =(2√3)^2-(3√7)^2 =12-63 =-51⑧(√32-3√3)(4√2+√27) =(4√2-3√3)(4√2+3√3) =(4√2)^2-(3√3)^2 =32-27 =5⑨(3√6-√4)2 =(3√6)^2-2*3√6*√4+(√4)^2 =54-12√6+4 =58-12√6 ⑩(1+√2-√3)(1-√2+√3)=[1+(√2-√3)][1-(√2-√3)] =1-(√2-√3)^2 =1-(2+3+2√6) =-4-2√6二次根式计算题30道带答案1/6√1又3/5×(-5√3又√3/5)=1/6√(8/5)×(-5/3√(3/5)=-5/18√(24/25)=-5/18×2/5√6=-1/9√6(2)√8/a×√2a/b=√(8/a×2a/b)=√(16/b)=4/b(√b)(3)√2x乘以√2y乘以√x=√(2x*2y*x)=2x√y(4)2√a÷4√b=√a/2√b=1/2b√ab(5)5√xy÷√5x^3=5√(xy/5x³)=1/x√5y(6)√x-y÷√x+y=1/(x+y)√(x²-y²)(7)√x(x+y)÷√xy^2/x+y(x>0,y>0)=√[x(x+y)÷xy²/(x+y)]=(x+y)/y(8)√xy乘以√6x÷√3y=√6x²y÷√3y=x√2(9)(√mn-√m/n)÷√m/n(n>0)=√mn÷m/n-√m/n÷m/n=n-1(10)√3/8-(-3/4√27/2+3√1/6)=1/4√6+3/8√6-1/2√6=1/8√6(11)2/3√9x+6√x/4-2x√1/x=2√3x+3/2√x-2√x=5/2√x(12)2/a√4a+√1/a-2a√1/a^3=1/a√a+1/a√a-2/a√a=0(13)√0.2m+1/m√5m^3-m√125/m=1/5√5m+√5m-5√5m=-19/5√5m(14)√a+b/a-b-√a-b/a+b-√1/a^2-b^2(a>b>0)=1/(a-b)√(a²-b²)-1/(a+b)√(a²-b²)-1/(a²-b²)√(a²-b²) =(a+b-a+b-1)/(a²-b²)√(a²-b²)=(2b+1)/(a²-b²)√(a²-b²)解不等式(15)2x+√32<x+√22x-x<√2-4√2x<-3√216)√3/8-(-3/4√27/2+3√1/6)=1/2√3/2 + 9/4√3/2 - 1/2√6=1/4√6 + 9/8√6 - 1/2√6=7/8√6(17)√0.2m+1/m√5m^3-m√125/m=√1/5*m + 1/m√5m*m^2 - m√25*5m/m^2=1/5√5m+√5m-5√5m=-19/5√5m(18)(√45+√27)+(√1又1/3-√125)=3√5+3√3 + √4/3-5√5=3√3 + 2/3√3 + 3√5 - 5√5=5√3 -2√5(19)2/3√9x+6√x/4-2x√1/x=2√x+3√x-2√x=3√x20 √40÷√5=√8*√5÷√5=√8=2√221 √32/√2=√16*√2/√2=√16=422 √4/5÷√2/15=√4/5*√15/2=√(4/5*15/2)=√623 2√a^3b/√ab=2√a²√ab/√ab=2√a²=2|a|(24)√18-√32+√2=√2×9-√4×4×2+√2=3√2-4√2+√2=0(25)√75-√54+√96-√108=√5×5×3-√6×3×3+√6×4×4-√3×6×6=5√3-3√6+4√6-6√3=√6-√3=√3(√2-1)(26)(√45+√18)-(√8-√125)=√5×3×3+√2×3×3-√2×2×2+√5×5×5=3√5+3√2-3√2+5√5=8√5(27)½(√2+√3)-¾(√2+√27)=¼(2√2+2√3-√2-√27)此处通分,分子不变,分母都分别乘进去了,因为不好写就省略了=¼(2√2+2√3-√2-√3×3×3)=¼(√2-√3)(28)¼根号下18ab×(-2/b根号下6a²/a)=1/4×(-2/b)×√(18ab×6a²/a)=-1/(2b)×3a√(2b)=-3a/(2b) √(2b)(29)根号下50a²b(a<0,b>0)=√(25a²×2b)=-5a√(2b)(30)根号18×3/2根号20×(-1/3根号15)=-1/3×3/2×√(18×20×15)=-1/2×√5400=-1/2×30√6=-15√6帮我找50道一元二次方程计算题和50道二次根式计算题(带答案过程哦)。
二次根式计算专题——30题(教师版含答案)

二次根式计算专题——30题(教师版含答案)二次根式计算专题——30题(教师版含答案)在代数学中,二次根式是指形如√a的数,其中a是非负实数。
二次根式的计算是代数学的重要组成部分,对于学生来说也是一项基本技能。
本文将介绍30道关于二次根式的计算题,并附上教师版含答案,供教师参考。
题目1: 计算√9的值。
解答: 由于9是一个完全平方数,所以√9=3。
题目2: 计算√25的值。
解答: 由于25是一个完全平方数,所以√25=5。
题目3: 计算√2的值。
解答: √2是一个无理数,无法精确计算,可以使用近似值1.414进行计算。
题目4: 计算√32的值。
解答: 首先将32分解为16×2,再将16分解为4×4,可以得到√32=√(4×4×2)=4√2。
题目5: 计算√(3×5)的值。
解答: √(3×5)=√15。
题目6: 计算√(8×12)的值。
解答: 首先将8和12分别分解为2×2×2和2×2×3,可以得到√(8×12)=√(2×2×2×2×2×3)=4√6。
题目7: 计算√(a^2×b^2)的值。
解答: √(a^2×b^2)=√(a^2)×√(b^2)=|a|×|b|。
题目8: 计算√(16÷4)的值。
解答: 首先计算16÷4=4,然后√4=2,所以√(16÷4)=2。
题目9: 计算√(x^2÷y^2)的值。
解答: √(x^2÷y^2)=√(x^2)÷√(y^2)=|x|÷|y|。
题目10: 计算√(4^2÷2^2)的值。
解答: 首先计算4^2=16和2^2=4,然后16÷4=4,所以√(4^2÷2^2)=√4=2。
二次根式综合练习

1二次根式综合练习一、单选题1.下列各式成立的是( )A .√(−3)2=−3B .√x 2=xC .√(−5)2=5D .√a 2+1=a +1 2.二次根式 √x −5 中字母x 的取值可以是( )A .x =5B .x =1C .x =2D .x =-1 3.当a <1时,化简√−a 3(1−a)的结果是( )A .a √(a −1)B .−a √a(a −1)C .a √a(−a)D .−a √a(−a) 4.二次根式 √2x −1 有意义时,x 的取值范围是( ). A .x >12 B .x ≥12 C .x <12 D .x ≤12 5.下列根式中,最简二次根式的是( )A .√4B .√12C .√12D .√106.计算并化简√5×√45 的结果为( ) A .2 B .√4 C .±2 D .±√47.下列运算正确的是( )A .√2+√3=√5B .√3−√2=1C .√2×√3=√5D .√24÷√8=√3 8.函数y =√x+3中,自变量x 的取值范围是( ) A .x >﹣3且x≠0 B .x >﹣3 C .x≥﹣3D .x≠﹣39.下列等式何者不成立( ) A .4√3+2√3=6√3 B .4√3−2√3=2√3 C .4√3×2√3=8√3 D .4√3÷2√3=2 10.下列二次根式是最简二次根式的为( )A .√10B .√20C .√23D .√3.6 11.已知y =√x −3+√3−x +1,则x +y 的平方根是( )A .2B .-2C .±2D .±112.实数a 、b 在数轴上的位置如图所示化简,√(a −b)2+√a 2−√b 2的结果为( )A .2a +2bB .−2aC .−2bD .2a −2b 13.把代数式 (a −1)√11−a中的 a −1 移到根号内,那么这个代数式等于()2A .−√1−aB .√a −1C .√1−aD .−√a −1 14.计算√2×√8+√−273的结果为( )A .﹣1B .1C .4−3√3D .7 15.若一个直角三角形的两条直角边长分别为 √13 cm 和 √14 cm ,那么此直角三角形的斜边长是( ) A .3 √2 cm B .3 √3 cm C .9cm D .27 cm 16.已知 √7 =a , √70 =b ,则 √10 等于( )A .a+bB .b-aC .abD .b a17.如图,长方形内三个相邻的正方形面积分别为4,3,和2,则图中阴影部分的面积为( )A .2B .√6C .2√3+√6−2√2−3D .2√3+2√2−5 18.√16 的值为( ) A .4 B .-4 C .±4 D .219.下列计算正确的是( ) A .√(−3)2=−3 B .√9=±3C .√−83=2D .√(−4)33=−4 20.估计 2√6 的大小应( )A .在2~3之间B .在3~4之间C .在4~5之间D .在5~6之间 21.若式子 √3−x 在实数范围内有意义,则x 的取值范围是( )A .x <3B .x ≤3C .x ≥3D .x ≠3 22.下列二次根式中,最简二次根式是( ) A .√12B .√17C .√75D .√5a 3 23.如果 a =√3+2, b =√3−2 ,那么 a 与 b 的关系是( ) A .a +b =0 B .a =b C .a =1b D .a <b 24.下列计算正确的是( )A .√2+√3=√5B .3√2−2√2=1C .√2×√3=√6D .√24÷√6=4 25.计算 4√12+3√13−√8 的结果是( ) A .√3+√2 B .√3 C .√33 D .√3−√226.下列计算正确的是( )3A .(3−2√2)(3−2√2)=9−2×3=3B .(2√x +√y )(√x −√y )=2x −yC .(3−√3)2=32−(√3)2=6D .(√x +√x +1)(√x +1−√x )=1 27.已知x 为实数,化简√−x 3−x √−1x的结果为( ) A .(x −1)√−x B .(−1−x )√−x C .(1−x )√−x D .(1+x )√−x二、填空题28.若二次根式 √x −3 在实数范围内有意义,则x 的取值范围是 . 29.二次根式 √x +4 中,字母x 的取值范围是 . 30.(√6+√5)2021×(√6−√5)2022 = . 31.若一个二次根式与 √12 的积为有理数,则这个二次根式可以是 32.计算√−83+√36−√49= ;33.如果最简二次根式√2x −1与√5是同类二次根式,那么x 的值为 . 34.已知实数a ,b ,c 表示一个三角形的三边长,它们满足 √a −3 +|b-3|+ √c −4 =0,则该三角形的形状为 35.已知1<a <3,则化简 √1−2a +a 2 ﹣ √a 2−8a +16 的结果是 .36.函数y = √x+5x 的自变量x 的取值范围为 . 37.比较大小: 1√6−√5 1√7−√6(用 >,< 或 = 填空) 38.①比较大小:- 3√2 -4;②√33的倒数为 . 39.若x 、y 满足y= √x −2 + √2−x +4,xy= . 40.如果最简二次根式 √2a −3 与 √7 是同类二次根式,那么a 的值是 .三、计算题41.计算: (1)4√12−√18+√8 (2)√12×√36√6 (3)(√2−√3)2−(√3+√2)(√3−√2) .四、解答题42.计算: 3√3−√27+(π−2020)0+√24÷√2 43.若 x , y 为实数,且 x =√y 2−1+√1−y 2+y y+1,求 x −3+y 的值.44.已知a ,b 分别为等腰三角形的两条边长,且a ,b 满足 b =3+√3a −6+5√2−a ,求此三角形的周4 长.45.有一道练习题是:对于式子 2a −√a 2−4a +4 先化简,后求值.其中 a =√2 . 小明的解法如下:2a −√a 2−4a +4 = 2a −√(a −2)2 =2a ﹣(a ﹣2)=a+2= √2 +2. 小明的解法对吗?如果不对,请改正.46.如果最简二次根式 √3a −8 与 √17−2a 是同类二次根式,那么要使式 √4a −2x +√x −a 有意义,x 的取值范围是什么?47.实数a 、b 、c 在数轴上的对应点位置如图所示,化简: √(−c)2+|a −b|+√(a +b)33−|b −c|48.古希腊的几何学家海伦给出了求三角形面积的公式:S= √p(p −a)(p −b)(p −c) ,其中a ,b ,c 为三角形的三边长,p= a+b+c 2.若一个三角形的三边长分别为2,3,4,求该三角形的面积.49.若a 、b 、c 是△ABC 的三条边长,且满足等式 √a −1+(b −√3)2+(c −2)2=0 求证:△ABC 是直角三角形50.如图所示是工人师傅做的一块三角形铁板材料,BC 边的长为2 √35 cm ,BC 边上的高AD 为 √28 cm ,求该三角形铁板的面积.每天进步一点点,就是迈向卓越的开始 5 答案解析部分1.【答案】C2.【答案】A3.【答案】B4.【答案】B5.【答案】D6.【答案】A7.【答案】D8.【答案】B9.【答案】C10.【答案】A11.【答案】C12.【答案】B13.【答案】A14.【答案】B15.【答案】B16.【答案】D17.【答案】D18.【答案】A19.【答案】D20.【答案】C21.【答案】B22.【答案】B23.【答案】A24.【答案】C25.【答案】B26.【答案】D27.【答案】C28.【答案】x≥329.【答案】x≥-430.【答案】√6−√531.【答案】√3632.【答案】-333.【答案】334.【答案】等腰三角形35.【答案】2a−536.【答案】x≥-5且x≠037.【答案】< 38.【答案】<;√339.【答案】840.【答案】541.【答案】(1)解:原式=2 √2 -3 √2 +2 √2 = √2 (2)解:原式= √12×√3×√66 =√12×3×66 =√6 (3)解:原式=5- 2 √6 -(3--2)=4- 2 √6 42.【答案】解:原式= √3−3√3+1+2√3 =143.【答案】解:由题意得,y 2-1≥0且1-y 2≥0, 所以,y 2≥1且y 2≤1,所以,y 2=1所以,y=±1,又∵y+1≠0,∴y≠-1,所以,y=1,所以,x= 11+1=12 ,∴x −3+y =(12)−3+1=944.【答案】解:∵b =3+√3a −6+5√2−a ∴3a -6≥0,2-a≥0∴a=2∴b=3∵a ,b 分别为等腰三角形的两条边长 ∴等腰三角形的另一条边为2或3∴等腰三角形的周长为:2+2+3=7或2+3+3=845.【答案】解:小明的解法不对.改正如下:7 2a −√a 2−4a +4 = 2a −√(a −2)2 =2a ﹣|a ﹣2|, ∵a= √2 ,∴a ﹣2<0,∴原式=2a+a ﹣2=3a ﹣2,把a= √2 代入得原式=3 √2 ﹣246.【答案】解:由题意,得3a ﹣8=17﹣2a ,解得a=5;4a ﹣2x≥0且x ﹣a≥,解得5≤x≤10,√4a −2x +√x −a 有意义,x 的取值范围是5≤x≤1047.【答案】解:原式=|-c|+|a-b|+a+b-|b-c|, =c+(-a+b )+a+b-(-b+c ),=c-a+b+a+b+b-c ,=3b.48.【答案】解:设a=2,b=3,c=4, ∴p= a+b+c 2=2+3+42=92∴S= √p(p −a)(p −b)(p −c)= √92(92−2)×(92−3)×(92−4) = 3√154∴该三角形的面积为 3√15449.【答案】证明:由题意,得a= 1,b= √3 ,c= 2,∵a 2+b 2= 4,c 2= 4,∴a 2+b 2=c 2, ∴△ABC 是直角三角形50.【答案】解:解:根据题意可知,S △ABC =12×BC ×AD =12×2√35×√28=√35×28=14√5故三角形铁板的面积为14 √5 cm 2。
二次根式计算题 100 道

二次根式计算题 100 道一、单项选择题1. 下面哪个是二次根式的定义?A. √a = bB. a^2 = bC. √a = √bD. (a + b)^2 = √c2. 计算√16 + √9 的结果是:A. 4B. 5C. 6D. 73. 简化√25 + √144 的结果是:A. 13B. 16C. 17D. 194. 化简√32 + 2√8 的结果是:A. 4√2B. 5√2C. 6√2D. 7√25. 计算(3√2 + 5) - (√2 - 1) 的结果是:A. 5√2 + 6B. 4√2 + 8C. 3√2 + 4D. 2√2 + 7二、填空题1. 简化2√12 的结果是 _______。
2. 计算(√32 + √8) ÷ 2 的结果是 _______。
3. 简化(√50 + √32) ÷ √18 的结果是 _______。
4. 计算√18 ÷ √2 的结果是 _______。
5. 化简5√3 - 2√3 的结果是 _______。
三、解答题1. 将(√48 + √12) ÷ (√3 + √12) 化简为最简形式。
2. 将(√27 + 2√12) ÷ (√3 + √12) 化简为最简形式。
3. 计算3√8 - 4√2 的结果。
4. 计算2(√3 + 1) - (√12 - 3) 的结果。
5. 计算(√2 + 2)(√2 - 2) 的结果。
四、综合应用题1. 甲、乙、丙三人参与拍卖会,最终甲以 1000 元的价格得到一件商品。
若乙比甲出价低了 15%,丙比甲出价低了 25%,那么乙出价是多少元?丙出价是多少元?2. 一个正方形的边长为16√2 cm,求该正方形的对角线长度。
3. 某种药物加工后的产物总重量为 120g,其中有效成分的重量占总重量的 25%,剩余部分为其它杂质。
求该产物的有效成分的重量和杂质的重量分别是多少?4. 一个长方体的长、宽、高分别为5√3 cm、8√2 cm、2√5 cm,求其表面积和体积。
二次根式混合运算题含答案

二次根式混合运算题含答案本文是一份数学题目,需要进行排版和改写以更好地呈现。
二次根式混合运算125题(含答案)1、原式=2-3=-12、原式=√(4+9)=√133、原式=2-√(12+1)= -104、原式=(√5+√7)²=12+2√355、原式=(√6-√2)²=4+4√36、原式=(√5-1)²+(√5+1)²=10+2√57、原式=(√3+√2)(√3-√2)=18、原式=(√5-√3)²=8-2√159、原式=(3+√2)(3-√2)=710、原式=√(3+2√2)×√(3-2√2)=111、原式=(4+√7)(4-√7)=912、原式=2√3+√12+√27=5√3+√313、原式=(2√6-3√2)(√6+√2)=814、原式=(7+4√3)(7-4√3)=4115、原式=(√2+√3)²=5+2√616、原式=√12+√27-√48=2√3+317、原式=(√3+1)²-(√3-1)²=4√318、原式=(3-√2)²=11-6√219、原式=(3-2√2)(3+2√2)=720、原式=(√2-1)(2√2+1)=121、原式=(√3+√5)²=8+2√1522、原式=(√3-√2)(√3+√2)=123、原式=(√2+1)²-(√2-1)²=4√224、原式=(√3-1)(√3+1)=225、原式=(√5+2)(√5-2)=2126、原式=(√6+√2)²=8+4√327、原式=(√2+√3)(√2-√3)=-128、原式=(√3-√2)²=5-2√629、原式=(√3+2)(√3-2)=730、原式=(√2+√3)²-2√6=5+√631、原式=(√3+√2)²+(√3-√2)²=1632、原式=(√6+√2)(√6-√2)=433、原式=√(5+2√6)×√(5-2√6)=134、原式=(√6+√3)²-(√6-√3)²=12√235、原式=(√2+1)²+(√2-1)²=636、原式=3√2-2√3+√6=√2-2√3+337、原式=(√3+√2)²-(√3-√2)²=4√638、原式=(√3+√2)(√3-√2)=139、原式=(√2+1)²-(√2-1)²=4√240、原式=(√3+√2)²-2√6=5+√641、原式=√(7+4√3)×√(7-4√3)=142、原式=(√5+√6)²-11=2√30-443、原式=√(3+2√2)÷(√2-1)=√2+144、原式=(√2+√3)÷(√3-√2)=-145、原式=(√3+√2)÷(√3-√2)=5+2√646、原式=(√2+√3)÷(√2-√3)=-√6-247、原式=-2-(√2+√3)÷(√2-√3)=-2-5√648、原式=(√3+√2)²+(√3-√2)²=1649、原式=(√5+√3)²-(√5-√3)²=12√1550、原式=√(7+4√3)÷(√3-√2)=√6+√251、原式=(√5+√3)÷(√5-√3)=2+√352、原式=(√3+√2)÷(√3-√2)=5+2√653、原式=3-√5+(-2)(√5+1)=1-3√554、原式=(√2+√3)²-2√6=5+√655、原式=(√5+√3)²-2√15=8+2√1556、原式=(√3+√2)²-2√6=5+√657、原式=(√6+√2)²-2√12=8+2√358、原式=√(5+2√6)÷(√3-√2)=√259、原式=2√5-√80+√45=√5-4√2+360、原式= -2+(-1)²÷(2-1)²= -161、原式=(2-1)²-(-2)²=162、原式=(√5-√3)²-(√5+√3)²=-8√1563、原式=(√3+√2)²-(√3-√2)²=4√664、原式=(√5+√2)÷(√5-√2)=3+2√1065、原式=(√3+√2)÷(√3-√2)=5+2√666、原式=(√6+√2)÷(√6-√2)=2+√367、原式=(√5+√3)÷(√5-√3)=2+√668、原式=(√3+√2)÷(√2-√3)=-√6-269、原式=(√5+√3)÷(√2-√3)=(-√6-√2)÷570、原式=3-(√5+√2)²= -8-2√1071、原式=(√3+√2)²-(√3-√2)²=4√672、原式=(√2+√3)²-2√6=5+√673、原式=(√5+√2)²-2√10=7+2√1074、原式=(√3+√2)²-2√6=5+√675、原式=(√6+√2)²-2√12=8+2√376、原式=(-1)²÷(2-1)²-2= -177、原式=(√2+√3)²-2√6=5+√678、原式=(√5+√3)²-2√15=8+2√1579、原式=(√3+√2)²-2√6=5+√680、原式=(√6+√2)²-2√12=8+2√381、原式=(√5+√3)÷(√3-√2)=4+√682、原式=(√3+√2)÷(√5-√2)=(-√2+√3)÷283、原式=(√5+√3)÷(√6-√2)=(√6+√2)÷484、原式=(√2+√3)÷(√5-√2)=(-√2+√3)÷385、原式=(1+√2)²-2(1-√2)²=5+4√286、原式=(1-√2)²+2(1+√2)²=11+4√287、原式=(√2+1)²+(√2-1)²=688、原式=(√5+√3)²-2√15=8+2√1589、原式=(√3+√2)²-2√6=5+√690、原式=(√6+√2)²-2√12=8+2√391、原式=(√5+√3)÷(√2-√3)=(√6+√2)÷292、原式=(√5+√3)÷(√3-√2)=2+√693、原式=(√3+√2)÷(√5-√2)=(-√2+√3)÷394、原式=(√6+√2)÷(√5-√2)=(√6+√2)÷495、原式=(√2+√3)÷(√3-√2)=-√6-296、原式=(√5+√3)÷(√6-√2)=(√6+√2)÷497、原式=(√3+√2)÷(√2-√3)=-√6-298、原式=(√5+√3)÷(√5-√2)=3+2√599、原式=(√6+√2)÷(√6-√2)=1100、原式=(√5+√3)÷(√3-√2)=(√6+√2)÷3101、原式=(√2008-√2009)÷(√2008+√2009)=√\frac{2008}{2009}102、原式=(√3+√2)²-(√3-√2)²=4√6103、原式=(√5+√3)²-(√5-√3)²=12√15104、原式=(√6+√2)²-(√6-√2)²=8√3105、原式=(3+√5)÷(3-√5)= -2+√5106、原式=(√2-√3)²-(√2+√3)²=-8√6107、原式=(√5+√3)÷(√2-√3)=(-√6-√2)÷5108、原式=(√6+√2)÷(√5-√2)=(√6+√2)÷4109、原式=(√3+√2)÷(√5-√3 - 2 + 3 ÷ 3 - 2 = 27 + (-2) = 14 × 2 = 283) × (-2) = -62 - (3 - 22 + 1) = -181 + (-3) + 6 - 10 = -82 + (-2b) + 1 - (2 - 3) = 5 - 2b2 + 1 - (-2) = 317 - (19 - (-2)) = 02 -3 - 2 = -34 + 12 = 164 - 10 + 2 - (-2) = -2 6 -5 = 112 + 18 - 12 = 182 + 3) × (-2) = -10m = 2m + 3m - m = 0 6 ÷ (-2) = -312 ÷ 2 = 66 × (-2) = -123) × 2 = -62 - 2x = 23 - 2) ÷ (2 - 3) = -14 ÷ 2) - (-3) = 53 + (-7) = -41) × 1 = -12 +3 + 2 = 74 × 2 - 3 = 56 + (-2) - (2 - 3) = 5 5| + |-4| = 94 × 2 - 16 + 12 - 16 - 8 = -242 + 3) × 2 = 10a + 2 = 33 ÷ (-1) = 39 - (-3) = 122 × (-3) = -612 ÷ 3 = 427 ÷ 3 = 9XXX。
(完整版)二次根式混合计算练习(附答案)

(1)原式=1-1+2 +2-
=2+ ;
(2)原式=
= .
考点:实数的混合运算;2.二次根式的混合运算.
6. .
【解析】
试题分析:先进行二次根式的化简,财进行乘除运算,最后合并同类二次根式即可求出答案.
试题解析:原式=
.
考点: 实数的混合运算.
15.385
【解析】解:因为 ,
,
,
所以 .
16. .
【解析】
试题分析:先化成最简二次根式,再进行计算.
试题解析:
.
考点:二次根式化简.
17. .
【解析】
试题分析:先化成最简二次根式,再进行计算.
试题解析: .
考点:二次根式化简.
18.(1)22; (2)
【解析】
试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案.
=2+1- + =3-3+2=2
9.1+
【解析】
解:原式=4-(3-2 )+
=4-3+2 + =1+
10.(1) ;(2)11 -9 ;(3)-4-2 ;(4)8- .
【解析】(1)利用 =a(a≥0), = (a≥0,b≥0)化简;
(2)可以利用多项式乘法法则,结合上题提示计算;
(3)利用平方差公式;
点评:本题主要考查了二次根式的加减运算.首先把二次根式化为最简二次根式,然后再合并同类二次根式.
4.0
【解析】
试题分析:根据实数的运算法则进行计算即可救出答案.
试题解析:
=
=0
考点:实数的混合运算.
5.(1) 2+ ;(2) .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数的运算(1)5032283-+ (2)48512739+- (3)101252403--(4213 (5)20)21(821)73(4--⨯++(6)102006)21()23()1(-+--- (7)10)21()2006(312-+---+(8)02)36(2218)3(----+-- (9)326⨯(10)4327-⨯ (11)2)13(-(12)22)52()2511(- (13)36(14)75.0125.204112484--+- (15)1215.09002.0+(16)250580⨯-⨯ (17)3721⨯(18))25)(51(-+ (19)2)313(-(20)892334⨯÷ (21)20032002)23()23(+⋅-(22)75.0421*******+-+ (23)3333222271912105+-⨯---(24)753131234+- (25)3122112--(26)5145203-+ (27)48122+(28)325092-+ (29)2)231(-30、))((36163--⋅-; 31、63312⋅⋅32、 )1021(32531-⋅⋅ 33、z y x 10010101⋅⋅-.: 34、20245-; 35、14425081010⨯⨯..; 36、521312321⨯÷;37 38 39、40、0.5 41 4243、 44、 45、)21+46、47一、认认真真选(每小题3分,共30分) 1. 下列各式中正确的是 ( )A. 25 =±5B. (-2)2 = -2C. ±36=±6D. 100-=102. 已知正方形的边长为a ,面积为S ,则( )A. S=aB. a 是S 的算术平方根C. S 的平方根是aD. a=±S3. 下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a 2的算术平方根是a ;④(π-4)2的算术平方根是π-4;⑤算术平方根不可能是负数。
其中,不正确的有( )A. 2个 B. 3个 C. 4个 D. 5个4. 5=,则x 为( ) A. 5 B. -5 C. ±5D. 以上都不对5. 当0x ≤时, ) A. 0 B. x - C. x D. x ±6.下列说法中正确的是( ) A.-4没有立方根 B.1的立方根是±1 C.361的立方根是61D.-5的立方根是35- 7.若m<0,则m 的立方根是( )A.3mB.-3mC.±3mD.3m -8.已知858.46.23=,536.136.2=,则00236.0的值等于( ) A .485.8 B .15360 C .0.01536 D .0.048589.若81-x 3x 的值是( )A.0B. 21C. 81D. 16110.若9,422==b a ,且0<ab ,则b a -的值为 ( ) A. 2- B. 5± C. 5 D.5- 二、仔仔细细填(每小题3分,共30分)11. 下列各数:①3.141 ②0.33333… ③π ④-32⑤0.3030003000003…(相邻两个3之间0的个数逐次增加2) ⑥0.•40•1.其中是有理数的有_________;是无理数的有__________.12. 0.0036的平方根是 ,81的算术平方根是 。
13. 如果一个正数的平方根是a+3与2a-15,则这个正数是______.14. 已知032=++-b a ,则______)(2=-b a .15.-81的立方根是 ,125的立方根是 。
16.若31255=,则30.000125______=17.36-的绝对值是______。
2的相反数是______。
|3.14-π|=___________。
18.大于5-且小于3的所有整数是_______________。
19.化简:18=________ 348-=________________,1125613=-21、(1)1683+- 2232-+))(( (3) |23- | + |23-|- |12- |22.(1)125x 3=8 (2)9x 2-16=0 (3)(-2+x)3=-21623.(1)实数a 、b 在数轴上的位置如图所示,则化简代数式︱a +b ︱-a 的结果是( )A. 2a +b B. 2a C. a D. b(2)实数a 在数轴上的位置如图所示. 化简:︱a -π︱+︱-a ︱1、()26-的算术平方根是__________。
2、ππ-+-43= _____________。
3、2的平方根是__________。
4、实数a ,b ,c 在数轴上的对应点如图所示化简c b c b a a ---++2=________________。
5、若m 、n 互为相反数,则n m +-5=_________。
6、若2)2(1-+-n m =0,则m =________,n =_________。
7、若a a -=2,则a______0。
8、12-的相反数是_________。
cba9、38-=________,38-=_________。
10、绝对值小于π的整数有_________________________。
11、代数式12+x ,x ,y ,2)1(-m ,33x 中一定是正数的有( )。
A 、1个 B 、2个 C 、3个 D 、4个 12、若73-x 有意义,则x 的取值范围是( )。
A 、x >37-B 、x ≥ 37- C 、x >37 D 、x ≥3713、若x ,y 都是实数,且42112=+-+-y x x ,则xy 的值( )。
A 、0B 、21C 、2D 、不能确定 14、下列说法中,错误的是( )。
A 、4的算术平方根是2B 、81的平方根是±3C 、8的立方根是±2 D、立方根等于-1的实数是-1 15、64的立方根是( )。
A 、±4 B 、4 C 、-4D 、16 16、已知04)3(2=-+-b a ,则ba3的值是( )。
A 、 41 B 、- 41 C 、433 D 、4317、计算33841627-+-+的值是( )。
A 、1B 、±1C 、2D 、718、有一个数的相反数、平方根、立方根都等于它本身,这个数是( )。
A 、-1 B 、1 C 、0 D 、±1 19、下列命题中,正确的是( )。
A 、无理数包括正无理数、0和负无理数B 、无理数不是实数C 、无理数是带根号的数D 、无理数是无限不循环小数 20、下列命题中,正确的是( )。
A 、两个无理数的和是无理数B 、两个无理数的积是实数C 、无理数是开方开不尽的数D 、两个有理数的商有可能是无理数 三、解答题:(本题共6小题,每小题5分,共30分)24、若0)13(12=-++-y x x ,求25y x +的值。
26、若13223+-+-=x x y ,求3x +y 的值。
27、若a 、b 、c 满足01)5(32=-+++-c b a ,求代数式acb -的值。
二次根式1.(2016•武汉)若代数式在实数范围内有意义,则x 的取值范围是( )A .x ≥﹣2B .x >﹣2C .x ≥2D .x ≤22.(2016•永州)下列运算正确的是( )A .﹣a •a 3=a 3B .﹣(a 2)2=a 4C .x ﹣x=D .(﹣2)(+2)=﹣13.(2016•咸宁)下列运算正确的是( ) A .﹣=B .=﹣3 C .a •a 2=a 2D .(2a 3)2=4a 64.(2016•河南)下列计算正确的是( ) A .﹣=B .(﹣3)2=6C .3a 4﹣2a 2=a 2D .(﹣a 3)2=a 55.(2016•桂林)计算3﹣2的结果是( )A .B .2C .3D .66.(2016•广州)下列计算正确的是( ) A . B .xy 2÷C .2D .(xy 3)2=x 2y 67.(2016•凉山州)下列计算正确的是( ) A .2a+3b=5ab B .(﹣2a 2b )3=﹣6a 6b 3 C .D .(a+b )2=a 2+b 28.(2016•巴中)下列二次根式中,与是同类二次根式的是( )A.B.C.D.9.(2016•长沙)下列计算正确的是()A.×=B.x8÷x2=x4C.(2a)3=6a3D.3a5•2a3=6a610.(2016•临夏州)下列根式中是最简二次根式的是()A.B.C.D.11.(2016•自贡)下列根式中,不是最简二次根式的是()A.B.C.D.12.(2016•杭州)下列各式变形中,正确的是()A.x2•x3=x6B.=|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+13.(2016•南充)下列计算正确的是()A.=2B.=C.=x D.=x14.(2016•潍坊)实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b15.(2016•荆门)要使式子有意义,则x的取值范围是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣116.(2016•重庆)若二次根式有意义,则a的取值范围是()A.a≥2 B.a≤2 C.a>2 D.a≠217.(2016•贵港)式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥118.(2016•宁波)使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥1。