硅材料基础知识
硅知识点总结框架
硅知识点总结框架全文共四篇示例,供读者参考第一篇示例:硅是一种常见的半导体材料,广泛应用于电子工业中。
在学习硅的知识点时,我们可以按照以下框架进行总结:硅的基本性质、硅的制备方法、硅的应用领域以及硅的未来发展方向。
我们来看硅的基本性质。
硅是周期表中第14元素,化学符号为Si。
它是一种灰白色的固体,具有金属和非金属的特性。
硅是地壳中含量最丰富的元素之一,其化学性质稳定,不容易与其他元素发生化学反应。
硅具有良好的导电性和热导性,是一种优良的半导体材料。
硅的制备方法主要包括自然硅的提取和人工合成两种。
自然硅主要存在于硅酸盐矿物中,通过矿石的精炼和提纯可以得到高纯度的硅。
人工合成硅主要是指通过化学反应将硅源物质转化为硅材料。
目前,工业上主要采用的制备方法是化学气相沉积法和晶体生长法。
硅的应用领域非常广泛,主要包括电子工业、光伏产业、半导体材料等方面。
在电子工业中,硅被广泛应用于集成电路、太阳能电池、电子器件等领域,是现代电子产品的重要组成部分。
硅还可以用于制备硅钢、硅铁合金等工业原材料,广泛应用于冶金、化工等领域。
未来,硅材料在电子工业中的应用前景非常广阔。
随着5G、人工智能等新兴技术的发展,对集成电路和光伏材料的要求越来越高,硅作为优良的半导体材料将在未来得到更广泛的应用。
人们也在不断研究硅材料的改性方法,以提高其性能和应用范围。
第二篇示例:硅知识点总结框架硅是一种非金属元素,化学符号为Si,原子序数为14。
硅在地壳中含量很高,是地壳中第二多的元素。
硅是一种广泛应用的材料,被广泛用于电子工业、建筑领域、制造业等多个领域。
以下是硅知识点的总结框架:一、硅的性质1. 物理性质:硅是一种灰色的晶体,熔点为1414°C,沸点为3265°C。
硅是半导体材料,其导电性介于导体和绝缘体之间。
2. 化学性质:硅是惰性元素,不容易与其他元素反应。
硅可以与氧形成氧化硅,与氢形成硅氢化合物。
二、硅的结构1. 晶体结构:硅以晶体形式存在,常见的晶体结构包括钻石结构、闪锌矿结构等。
化学硅有关知识点总结
化学硅有关知识点总结硅的物理性质硅是一种灰白色的晶体固体,具有金属性光泽。
在常温下,硅是一种不活泼的物质,不与酸、碱以及大部分常见氧化剂反应。
硅是半导体材料的重要组成部分,可以用来制造集成电路和太阳能电池板等高科技产品。
硅在自然界中还以二价、四价等多种形式存在,如二氧化硅、多硅酸盐和硅酸盐等。
这些形式具有不同的化学性质,从而在地球化学和材料科学领域有着不同的应用。
硅的化学性质硅的化学性质主要表现为在常温下不与酸、碱及大部分氧化剂发生反应。
但是,当高温高压下,硅与氧、氢、氮、卤素等元素都能发生化学反应。
硅的四价化合物是最常见的化合物,包括二氧化硅(SiO2)和硅酸盐等。
在工业和科学领域,二氧化硅是一种重要的原料,用于制备硅酸盐、硅酸及其他硅化合物。
硅的应用硅是一种十分重要的元素,在材料科学、电子工业、太阳能等领域都有着广泛的应用。
其中,硅材料主要用于制备集成电路芯片、太阳能电池板等高科技产品。
此外,硅在冶金、有机合成、橡胶工业等领域也有着广泛的应用。
在集成电路芯片制造过程中,硅晶圆是重要的材料之一,用于制备芯片的基底。
硅晶圆上通过特殊工艺刻蚀和沉积多层金属、氧化物、多晶硅等物质,从而制备集成电路芯片。
硅材料的高纯度和良好的电学性能使其成为集成电路制造中不可或缺的材料。
在太阳能领域,硅是制备太阳能电池板的重要原料。
太阳能电池板是一种高效的可再生能源,通过将太阳能转化为电能,广泛应用于户外照明、通信设备、航空航天等领域。
硅材料的优良导电性和光学性能使其成为太阳能电池板的理想材料。
此外,硅还被应用于冶金、有机合成、橡胶工业等领域。
在冶金工业中,硅铁合金是一种重要的合金材料,用于制备不锈钢、合金钢等产品。
在有机合成领域,硅化合物被广泛应用于合成有机化合物,如硅烷、硅醇等。
在橡胶工业中,硅材料被用于制备硅橡胶,用于生产密封材料、保温材料等。
总结硅是一种重要的化学元素,具有重要的应用价值。
它在材料科学、电子工业、太阳能等领域有着广泛的应用,是现代工业发展的重要支撑。
半导体硅材料基础知识.1
微秒是10-6秒)。
所谓非平衡载流子是指当半导体中载流子的产生与复合处于平衡状态时,由于受某种外界条件的作用,如受到光线照射时而新增加的电子——空穴对,这部分新增加的载流子叫作非平衡载流子。
对于P型硅而言:新增加的电子叫作非平衡少数载流子;而新增加的空穴叫作非平衡多数载流子。
对于N型硅而言:新增加的空穴叫作非平衡少数载流子;而新增加的电子叫作非平衡多数载流子。
当光照停止后,这些非平衡载流子并不是立即全部消失,而是逐渐被复合而消失,它们存在的平均时间就叫作非平衡载流子的寿命。
非平衡载流子的寿命长短反映了半导体材料的内在质量,如晶体结构的完整性、所含杂质以及缺陷的多少,因为硅晶体的缺陷和杂质往往是非平衡载流子的复合中心。
少子寿命是一个重要的参数,用于高能粒子探测器的FZ硅的电阻率高达上万Ωcm,少子寿命上千微秒;用于IC工业的CZ硅的电阻率一般在5—30Ωcm范围内,少子寿命值多要求在100μs以上;用于晶体管的CZ硅的电阻率一般在30—100Ωcm,少子寿命也在100μs以上;而用于太阳能电池CZ硅片的电阻率在0.5—6Ωcm,少子寿命应≥10μs。
5. 氧化量:指硅材料中氧原子的浓度。
太阳能电池要求硅中氧含量<5×1018原子个数/cm3。
6. 碳含量:指硅材料中碳原子的浓度。
太阳能电池要求硅中碳含量<5×1017原子个数/cm3。
7、晶体缺陷另外:对于IC用硅片而言还要求检测:微缺陷种类及其均匀性;电阻率均匀性;氧、碳含量的均匀性;硅片的总厚度变化TTV;硅片的局部平整度LTV等等参数。
一、我公司在采购中常见的几种硅材料1.Cell:称为电池片,常常是电池片厂家外销的产品,它实际是一个单元电池。
2.Wafer:这通常指的是硅片,可能是圆片,也可能是方片。
圆片包括:硅切片,硅磨片、硅抛光片、图形片、污渍片、缺损片。
3.Ingot:常常指的是单晶硅锭,且是圆柱形的硅锭,也有用指多晶硅铸锭的。
硅的知识
地球里的硅硅,在元素周期表中的序号是14,相对原子量为28。
常温下是固体,熔点是1410~1414度,沸点则高得很,要2355度,摄氏哦。
许多人都知道,硅在地壳中的含量,仅次于氧。
如果大家同意氧不能算作矿物质的话,那么,硅就是地壳中含量最丰富的矿物质,它在地壳中的丰度达到27.7%!也就是说,由一百多种元素组成的地壳,硅占了四分之一还多!硅在地壳中,主要以各种各样的氧化物和硅酸盐形式存在。
最常见的氧化物是石英,成分是二氧化硅,水晶是石英的一种特殊存在形式。
此外,云母、石棉、石榴石等,都是硅酸盐。
硅第一次被分离成单质,是在1823年,由瑞典化学家贝采乌里斯用金属钾和氟化硅还原得到的。
而纯净的硅元素结晶,则据说是由法国的无机化学家德维尔在1854年制取的。
现在,一般得到硅是用石英和碳在高温下还原来进行的。
不过,这样得到的硅通常称为金属硅,国内也叫工业硅。
因为硅由于呈蓝灰色且带有金属光泽,起初被认为是金属。
后来,才知道硅是半导体。
被误认为是金属的原因是由于金属硅的导电性,这是由于硅里所带有的金属杂质引起的,因为里面含有不少的铁、铝、钙等金属元素,造成了金属硅的导电性。
在二次大战期间,作为雷达电波的探测器,开始对硅整流器进行了深入的研究。
也是那个时候,才弄清了硅原来是半导体,从此,确定了今天电子时代与信息时代的基础。
半导体里的硅知道了硅是半导体后,人们开始利用硅来制作各种器件。
硅器件需要很纯的晶体硅,晶体硅的提纯技术经过了不少周折,形成了现在的CZ直拉单晶法和悬浮区熔法。
目前,可以得到纯度为12N (99.9999999999%)的硅材料,但通常,只要能够到10N,就可以满足大部分集成电路的需要了。
如果硅的纯度不够,做不了半导体器件,不过完全的纯硅虽然是半导体,但因为载流子浓度太低,所以也没有什么实际作用。
真正半导体的重要性质,就是一旦掺杂有施主(N型)或受主杂质(P型)后,载流子的数量急剧增多,才能具备能够被人们使用的半导体的特性。
硅材料基础知识
基础课件-硅材料基础知识硅材料基础知识主要内容:一、概述二、硅的结构、分类与来源三、硅的物理性质四、硅的化学性质五、硅的物理参数及测量六、硅的应用及注意事项一、概述硅材料的基础知识,课程包括较多,有固体物理、量子力学、半导体物理、半导体化学、半导体器件工艺、半导体材料等方面的知识;内容较多,如半导体电子状态和能级、载流子的发布、导电性、非平衡载流子、P-N结、金属与半导体的接触、表面理论、光电效应、磁电效压阻效应、异质结等。
这里只介绍半导体材料的最基本的内容。
1、材料按导电性能划分,可分为:导体、绝缘体、半导体三类。
导体——容易导电的材料。
如各种金属、石墨等。
一般的,电阻率<0.2Ω·cm 绝缘体——很难导电的材料。
如橡胶、玻璃、背板、EVA、SiO2、Si3N4等。
一般的,电阻率>20000Ω·cm半导体——介于两者之间的材料。
如Si、Ge、GaAs、ZnO等,它具有一些独特的性质。
注:a、金属靠电子导电,溶液靠离子导电,半导体导电靠电子或空穴导电。
b、空穴就是电子的缺少。
2、半导体材料,按组成结构可分为:元素半导体、化合物半导体、非晶半导体、有机半导体。
3、半导体器件对材料的要求:3.1禁带宽度适中(一般0.5~1.5电子伏,硅是1.08)3.2载流子迁移率高(一般1000~5000cm2/V·s)3.3纯度高3.4电阻率要求可靠、均匀(一般0.001~100000 ,硅本征2.3×105)3.5晶体的完整性二、硅的结构、分类与来源1、硅的原子理论1.1元素周期表中,第三周期、第IVA 族元素,原子序数14,原子量28电子排布1S 22S 22P 63S 23P 2 ,化合价为+4价(+2价)1.2硅有三种同位素28Si :92.21%、29Si :4.70%、30Si :3.09%、1.3晶体结构:金刚石结构(正四面体),原子间以共价键结合。
硅胶基础知识
有机硅基础知识什么是有机硅:有机硅产品的基本结构单元是由硅-氧链节构成的,侧链则通过硅原子与其他各种有机基团相连。
因此,在有机硅产品的结构中既含有" 有机基团",又含有"无机结构",这种特殊的组成和分子结构使它集有机物的特性与无机物的功能于一身。
与其他高分子材料相比,有机硅产品的最突出性能是:耐温特性有机硅产品是以硅-氧〔Si-O〕键为主链结构的,C-C键的键能为82.6千卡/克分子,Si-O键的键能在有机硅中为 121千卡/克分子,所以有机硅产品的热稳定性高,高温下〔或辐射照射〕分子的化学键不断裂、不分解。
有机硅不但可耐高温,而且也耐低温,可在一个很宽的温度范围内使用。
无论是化学性能还是物理机械性能,随温度的变化都很小。
耐候性有机硅产品的主链为-Si-O-,无双键存在,因此不易被紫外光和臭氧所分解。
有机硅具有比其他高分子材料更好的热稳定性以及耐辐照和耐候能力。
有机硅中自然环境下的使用寿命可达几十年。
电气绝缘性能有机硅产品都具有良好的电绝缘性能,其介电损耗、耐电压、耐电弧、耐电晕、体积电阻系数和外表电阻系数等均在绝缘材料中名列前茅,而且它们的电气性能受温度和频率的影响很小。
因此,它们是一种稳定的电绝缘材料,被广泛应用于电子、电气工业上。
有机硅除了具有优良的耐热性外,还具有优异的拒水性,这是电气设备在湿态条件下使用具有高可靠性的保障。
生物特性生物活性有机硅是人体必需的一种的营养素。
有机硅是构成人体组织和参与新陈代谢的重要元素。
存于人体的每一个细胞当中,作为细胞构建的支撑,同时帮助其他重要物质如镁,磷,钙等吸收。
人体只能通过食物不断获得有机硅。
科学家们认为,有机硅主要以三种形式存在于人体中:〔一〕可溶性有机硅,占重量的10%〔二〕百分之三十存在于各种细胞基质〔三〕60%用来合成蛋白质这说明我们每天所需的有机硅是相当高。
如果要保持5年,10年甚至于是30年的年轻程度,每天摄入有机硅20-30毫克的有机硅尤为重要。
硅材料化学高考知识点
硅材料化学高考知识点近年来,硅材料化学成为高考重要的考点之一。
硅材料化学不仅与日常生活息息相关,还在工业、农业、医疗等领域具有广泛应用。
下面将从硅材料的性质、制备方法、应用以及环境问题等方面深入探讨硅材料化学的高考知识点。
硅材料是指以硅元素为主要成分的材料,最常见的硅材料是硅石(SiO2)。
硅材料具有高熔点、高硬度、高化学稳定性和良好的光学性能等特点。
这些特性使得硅材料成为制造电子器件、太阳能电池、光纤等高端技术产品的理想材料。
在硅材料的制备方法方面,高考常考的有两种制备方法:熔融法和化学气相沉积法(CVD法)。
熔融法是将硅石与碳等材料加热到高温,使硅石发生还原反应生成硅,然后通过冷却结晶得到硅块。
CVD法则是将硅材料的原料气体通过加热使其分解沉积在衬底上形成薄膜。
这两种方法在工业生产中得到了广泛应用。
硅材料的应用与生产领域广泛,其中最常见的是电子器件制造。
硅材料具有半导体特性,可以通过控制杂质的加入和浓度来调节导电性。
这使得硅材料成为制造集成电路、晶体管、存储器件等电子元件的主要材料之一。
此外,硅材料的光学性能也使其成为制造光纤、太阳能电池等产品的重要原料。
虽然硅材料在工业中得到广泛应用,但也面临一些环境问题。
熔融法生产硅块时产生的高温烟气中含有大量的二氧化硅,如果未经处理直接排放到大气中,会形成硅尘污染和酸雨等环境问题。
此外,硅材料的生产还需要大量的能源输入,导致对能源资源的过度消耗。
因此,在硅材料的制备和使用过程中应注重环保和节能措施的应用。
总之,硅材料化学是高考中的重要考点。
了解硅材料的性质、制备方法、应用和环境问题等方面的知识,对于理解和应用硅材料化学具有重要意义。
希望同学们通过深入学习硅材料化学,加深对此领域的理解,为未来的学习和职业发展打下坚实基础。
基础知识硅材料
基础知识硅材料硅是重要的半导体材料,化学元素符号Si,电子工业上使用的硅应具有高纯度和优良的电学和机械等性能。
硅是产量最大、应用最广的半导体材料,它的产量和用量标志着一个国家的电子工业水平。
在研究和生产中,硅材料与硅器件相互促进。
在第二次世界大战中,开始用硅制作雷达的高频晶体检波器。
所用的硅纯度很低又非单晶体。
1950年制出第一只硅晶体管,提高了人们制备优质硅单晶的兴趣。
1952年用直拉法(CZ)培育硅单晶成功。
1953年又研究出无坩埚区域熔化法(FZ),既可进行物理提纯又能拉制单晶。
1955年开始采用锌还原四氯化硅法生产纯硅,但不能满足制造晶体管的要求。
1956年研究成功氢还原三氯氢硅法。
对硅中微量杂质又经过一段时间的探索后,氢还原三氯氢硅法成为一种主要的方法。
到1960年,用这种方法进行工业生产已具规模。
硅整流器与硅闸流管的问世促使硅材料的生产一跃而居半导体材料的首位。
60年代硅外延生长单晶技术和硅平面工艺的出现,不但使硅晶体管制造技术趋于成熟,而且促使集成电路迅速发展。
80年代初全世界多晶硅产量已达2500吨。
硅还是有前途的太阳电池材料之一。
用多晶硅制造太阳电池的技术已经成熟;无定形非晶硅膜的研究进展迅速;非晶硅太阳电池开始进入市场。
化学成分硅是元素半导体。
电活性杂质磷和硼在合格半导体和多晶硅中应分别低于0.4ppb和0.1ppb。
拉制单晶时要掺入一定量的电活性杂质,以获得所要求的导电类型和电阻率。
重金属铜、金、铁等和非金属碳都是极有害的杂质,它们的存在会使PN结性能变坏。
硅中碳含量较高,低于1ppm者可认为是低碳单晶。
碳含量超过3ppm时其有害作用已较显著。
硅中氧含量甚高。
氧的存在有益也有害。
直拉硅单晶氧含量在5~40ppm范围内;区熔硅单晶氧含量可低于1ppm。
硅的性质硅具有优良的半导体电学性质。
禁带宽度适中,为1.21电子伏。
载流子迁移率较高,电子迁移率为1350厘米□/伏□秒,空穴迁移率为480厘米□/伏□秒。
硅的性质及有关半导体基础理论
硅是典型的具有半导体性质的元素,是很重要的半导体 材料。据统计,目前半导体器件的95﹪以上用硅材料制作,集 成电路99﹪以上是用硅材料制作。
这个比例还在增大。尤其大规模集成电路(LSI)、超大 规模集成电路(VLSI)、甚大规模集成电路(ULSI)都是制作 在高纯优质的硅单晶抛光片或外延片上。
*对于绝缘体而言,价电子紧密地局限在其原子轨道,无法导电。 *对于具有金刚石结构的硅,每个原子与邻近四个原子构成键合。
Z +4
X 金刚石晶格中四面体结构
+4
+4
+4
Y
+4
在金刚石二维空间 结构的键合情况
上面已讲述硅原子的最外层轨道具有四个价电子。它可以与四个临近原子分享其价电子,所以这样的一对分享价电 子即成为共价键。
• 由于半导体的Eg比较小,所以在一定温度下具有能量较大的电子就越过禁带进入导带。使原来空着的导带 有了电子,而且在价带中也出现了一些电子的空位,这样导带中的电子和价带中的电子,在外电场的作用 下,都可作定向运动。因此,半导体在一定的温度下具有导电性。
1、半导体的导电机构—电子和空穴。
电子自价带激发到导带,不仅使导带有了导电的功能,而且原来价带由于有一些状态空了出来,也获得了一 定的导电性能。这一事实在半导体的导电机购具有十分重要的意义。
• 。
绝缘体和半导体,它的电子大多数都处于价带,不能自由移动。但在热、光等外界因素的作用下,可以使少量 价带中的电子越过禁带,跃迁到导带上去成为载流子。
绝缘体和半导体的区别主要是禁带的宽度不同。半导体的禁带很窄,(一般低于3eV),绝缘体的禁带宽一 些,电子的跃迁困难得多。因此,绝缘体的载流子的浓度很小,导电性能很弱。实际绝缘体里,导带里的电子 不是没有,并且总有一些电子会从价带跃迁到导带,但数量极少。所以,在一般情况下,可以忽略在外场作用 下它们移动所形成的电流。但是,如果外场很强,束缚电荷挣脱束缚而成为自由电荷,则绝缘体就会被“击穿” 而成为导体。
硅片相关知识点总结
硅片相关知识点总结一、硅片的特性1.硅片材料:硅片是由硅单质制备而成的,硅单质是一种非金属元素,常温下呈灰色晶体,具有金属性质量良好的晶体是制备硅片的基础。
2.硅片的晶体结构:硅片具有钻石结构,在硅片结晶中,硅原子通过共价键相互连接,形成一种非常坚固稳定的结构。
3.硅片的电学特性:硅片是半导体材料,它在室温下的电导率介于导体和绝缘体之间。
硅片的电导率可以通过掺杂来调节,掺杂后的硅片可以得到P型硅片和N型硅片。
4.硅片的热学特性:硅片的热导率很高,因此可以很好地传导热量,这使得硅片在集成电路等高密度电子器件中有着重要的应用。
5.硅片的光学特性:硅片是半透明材料,对不同波长的光有不同的透射率和反射率。
这些特性使得硅片在太阳能电池等光电器件中有着广泛的应用。
二、硅片的制备工艺1.单晶硅片的制备:单晶硅片是通过在高温下将硅石熔融后缓慢冷却得到的,在冷却过程中控制温度和降温速率,使得硅原子按照晶格结构有序排列。
2.多晶硅片的制备:多晶硅片是通过将熔融的硅融料浇铸在铸模中制备成块状,再通过多次拉拔、切割和去除表面缺陷等加工工艺得到的。
3.硅片的清洗和处理:制备好的硅片需要进行严格的清洗和表面处理,以去除表面的污染物和缺陷,增强硅片的电学和光学性能。
4.硅片的加工和切割:硅片需要根据具体的用途进行加工和切割,例如晶圆的制备、太阳能电池板和集成电路的制备等。
三、硅片在电子器件中的应用1.集成电路:硅片是集成电路的基础材料,通过在硅片上沉积不同的材料和通过光刻、蒸镀等工艺,制备出晶体管、电容器、电阻器等微小电子器件。
2.太阳能电池:硅片是太阳能电池的主要材料之一,通过在硅片上沉积P型或N型硅层,并加工形成PN结,吸收太阳光能产生电流,实现太阳能的转换。
3.光电器件:硅片在光电器件中也有广泛的应用,例如感光元件、光耦合器、激光器等,利用硅片对光的敏感性和半导体特性,实现光信号的检测与处理。
四、硅片相关的新技术和发展趋势1.硅片的微纳加工:随着微纳加工技术的不断发展,硅片的微纳加工工艺也在不断完善,可以制备出更加微小精密的电子器件,实现高集成度、高性能和小尺寸化。
硅材料基础知识
硅材料基础知识主要内容:一、概述二硅的结构、分类与来源三硅的物理性质、硅的化学性质五、硅的物理参数及测量六、硅的应用及注意事项一、概述硅材料的基础知识,课程包括较多,有固体物理、量子力学、半导体物理、半导体化学、半导体器件工艺、半导体材料等方面的知识;内容较多,如半导体电子状态和能级、载流子的发布、导电性、非平衡载流子、P-N结、金属与半导体的接触、表面理论、光电效应、磁电效压阻效应、异质结等。
这里只介绍半导体材料的最基本的内容。
1、材料按导电性能划分,可分为:导体、绝缘体、半导体三类。
导体——容易导电的材料。
如各种金属、石墨等。
一般的,电阻率0.2Q・cm 绝缘体——很难导电的材料。
如橡胶、玻璃、背板、EVA、SiO2、Si3N4等。
—般的,电阻率>20000Q・cm半导体——介于两者之间的材料。
如Si、Ge、GaAs、ZnO等,它具有一些独特的性质。
注:a、金属靠电子导电,溶液靠离子导电,半导体导电靠电子或空穴导电。
b、空穴就是电子的缺少。
2、半导体材料,按组成结构可分为:元素半导体、化合物半导体、非晶半导体、有机半导体。
3、半导体器件对材料的要求:3.1禁带宽度适中(一般0.5 ~ 1.5电子伏,硅是1.08)3.2载流子迁移率高(一般1000 ~ 5000cm2/V-s )3.3纯度高3.4电阻率要求可靠、均匀(一般0.001 ~ 100000,硅本征2.3x105)3.5晶体的完整性二硅的结构,分类与来源1、硅的原子理论1.1元素周期表中,第三周期、第IVA族元素,原子序数14,原子量28 电子排布1S22S22P63S23P2,化合价为+ 4价(+2价)1.2 硅有三种同位素28Si : 92.21%、29Si:4.70%、30Si :3.09%、1.3晶体结构:金刚石结构(正四面体),原子间以共价键结合。
由于外围电子全部形成共价键,结合力较强。
可画出硅的共价键结构示意图。
2、硅的分类2.1按纯净度划分:粗硅、提纯硅、高纯硅、掺杂硅2.2按晶体结构分:单晶硅.多晶硅单晶硅:在晶体中,组成的原子按一定规则呈周期性排列。
硅的基本知识
高纯硅是指将工业硅提纯到硅含量在99.9999%(6N)以上的多晶硅。
高纯硅材料经提拉或铸锭处理制成的单晶硅或多晶硅,是制作集成电路和光伏电池不可或缺的基础材料工业硅金属硅定义:金属硅又称结晶硅或工业硅,其主要用途是作为非铁基合金的添加剂。
硅是非金属元素,呈灰色,有金属色泽,性硬且脆。
硅的含量约占地壳质量的26%;原子量为28.80;密度为2.33g/m3;熔点为1410°C;沸点为2355°C;电阻率为2140Ω.m。
金属硅的牌号:按照金属硅中铁、铝、钙的含量,可把金属硅分为553、441、411、421、3303、3305、2202、2502、1501、1101等不同的牌号。
金属硅的附加产品:包括硅微粉,边皮硅,黑皮硅,金属硅渣等。
其中硅微粉也称硅粉、微硅粉或硅灰,它广泛应用于耐火材料和混凝土行业金属硅的用途:金属硅(Si)是工业提纯的单质硅,主要用于生产有机硅、制取高纯度的半导体材料以及配制有特殊用途的合金等。
(1)生产硅橡胶、硅树脂、硅油等有机硅硅橡胶弹性好,耐高温,用于制作医疗用品、耐高温垫圈等。
硅树脂用于生产绝缘漆、高温涂料等。
硅油是一种油状物,其粘度受温度的影响很小,用于生产高级润滑剂、上光剂、流体弹簧、介电液体等,还可加工成无色透明的液体,作为高级防水剂喷涂在建筑物表面。
(2)制造高纯半导体现代化大型集成电路几乎都是用高纯度金属硅制成的,而且高纯度金属硅还是生产光纤的主要原料,可以说金属硅已成为信息时代的基础支柱产业。
(3)配制合金硅铝合金是用量最大的硅合金。
硅铝合金是一种强复合脱氧剂,在炼钢过程中代替纯铝可提高脱氧剂利用率,并可净化钢液,提高钢材质量。
硅铝合金密度小,热膨胀系数低,铸造性能和抗磨性能好,用其铸造的合金铸件具有很高的抗击冲击能力和很好的高压致密性,可大大提高使用寿命,常用其生产航天飞行器和汽车零部件。
硅铜合金具有良好的焊接性能,且在受到冲击时不易产生火花,具有防爆功能,可用于制作储罐。
关于硅的知识点总结
关于硅的知识点总结如下:
1. 物理性质:硅是半导体材料,具有灰黑色、硬脆的固体性质,且熔点较高,为2303K。
2. 化学性质:硅在常温下不与非氧化性酸反应,但能与氢氟酸反应生成四氟化硅气体。
此外,硅也能与强碱
溶液反应生成硅酸盐和氢气。
3. 用途:硅是现代信息技术的关键元素,被广泛应用于电子工业和半导体制造业等领域。
此外,硅还用于制
造陶瓷、玻璃、耐火材料等。
4. 制备方法:工业上通常采用碳在高温下还原二氧化硅的方法制取硅,即用焦炭还原石英砂或用氢气还原四
氯化硅来制备高纯度硅。
5. 硅酸盐:硅酸盐是由硅、氧和金属元素组成的化合物的总称,是地壳中含量最丰富的矿物之一。
常见的硅
酸盐包括长石、云母、黏土等。
6. 硅酸盐工业:硅酸盐工业是以含硅元素物质为原料通过高温加热制取技术制成陶瓷、玻璃、水泥等硅酸盐
产品的工业。
综上所述,硅作为一种重要的半导体材料,在电子工业、半导体制造业等领域具有广泛应用。
了解硅的性质、用途、制备方法和硅酸盐工业等方面的知识有助于更好地认识和应用硅材料。
有机硅基础知识培训
➢ 比重 Specific Gravity
• 比重也称相对密度,固体和液体的比重是该物质(完全密实状态)的密度与在标准大气压下 3.98℃时纯H2O下的密度(999.972 kg/m3)的比值。
• 比重是无量纲量,即比重是无单位的值,一般情形下随温度、压力而变。
• 硅胶的密度一般比水大,主要取决于硅胶的填料。
• 它们的测量原理完全相同,所不同的是测量针的尺寸不同。其中 A型的针尖直径为 0.79mm, 邵 A型硬度计用来测量软塑料、橡胶、合成橡胶、毡、皮革、D型的针尖直径为 0.2mm.即 半径为R0.1。邵D型硬度计用来测量硬塑料和硬橡胶的硬度,例如:地板材料,保龄 球等现场 测量硬度。C型的测针是一个圆球直径5mm。邵氏 C型硬度计用来测量泡沫材料和海绵等软 性材料。
• 备注:热硫化通常分两段进行,预硫化是在加压下进行,温度为150~160℃;后硫化是为了除去过氧 化物、添加剂分解产生的挥发成分,要在常压热空气中(200℃左右)硫化1~4H(二次硫化)。为使硫 化更稳定、物性更好,后硫化的时间可到12H或更长。
➢ 二次硫化 Post Curing
• 二次硫化又叫后硫化。常用于硅橡胶,氟橡胶和氟硅橡胶硫化。二次硫化的作用:硅橡胶采 用过氧化物硫化时,过氧化物分解引发高聚物反应后,生成了低分子化合物(如苯和苯甲酸 等)存在于橡胶中将影响橡胶机械性能。况且硅橡胶在第一阶段加热成型后,其交联密度不 够,要使其进一步硫化反应才能增加硅橡胶的密度. 拉升强度,回弹性,硬度,溶胀程度,密度,热 稳定性都比一次硫化有较大的改善。
➢ 定义
• 有机硅,主要指以硅氧键(-Si-O-Si-)为骨架组成的聚硅氧烷,是硅微粉与氯甲烷反应得到 的产物,是半无机、半有机结构的高分子化合物,在空间上呈现螺旋状结构。
硅的知识点概述(两篇)
引言概述硅是一种广泛应用于各行各业的重要材料,具有丰富的性能和应用特点。
本文将在前文的基础上,进一步概述硅的知识点,包括硅的物理性质、化学性质、应用领域、制备方法及市场前景等方面。
通过对硅的深入分析,我们可以进一步了解硅的特点,并为其在未来的应用和发展提供指导。
一、硅的物理性质1. 密度与晶体结构:介绍硅的密度及其晶体结构与晶格常数之间的关系。
2. 硬度与弹性模量:解释硅的硬度和弹性模量对其应用性能的影响。
3. 熔点与热膨胀系数:探讨硅的熔点及其热膨胀系数的重要性。
4. 光学性质:分析硅的折射率、透过率等光学性质,以及其对光纤通信等领域的应用。
5. 磁性与电阻率:介绍硅的磁性与电阻率的特点以及在磁存储和半导体器件中的应用。
二、硅的化学性质1. 稳定性与氧化反应:探讨硅的稳定性及其与氧化反应相关的性质。
2. 酸碱性:分析硅与酸、碱反应的性质,及其在化工行业中的应用。
3. 氧化物:介绍硅的氧化物及其在石英、光纤材料等制备中的应用。
4. 氮化物与碳化物:探讨硅的氮化物和碳化物的性质及其在半导体材料中的应用。
5. 其他化学反应:概述硅在其他化学反应中的应用,如硅的氟化、溴化等反应。
三、硅的应用领域1. 半导体材料:介绍硅在集成电路、光电子器件等领域的应用。
2. 光纤通信:概述硅在光纤通信领域的应用及其优势。
3. 太阳能电池:探讨硅在太阳能电池中的重要性,以及不同类型的硅太阳能电池。
4. 石英制品:分析硅在石英制品、陶瓷等材料中的应用领域。
5. 其他应用:概述硅在化工、医疗器械、建筑材料等领域的应用。
四、硅的制备方法1. 硅矿石的提取:介绍硅矿石的提取工艺以及硅矿石的来源。
2. 碳热还原法:探讨碳热还原法制备高纯度硅的原理和工艺流程。
3. 等离子体法:概述等离子体法制备硅的过程以及其特点。
4. 气相沉积法:介绍气相沉积法制备薄膜硅的原理及其应用。
5. 其他制备方法:概述硅的其他制备方法,如溶胶-凝胶法、液相沉积法等。
化学高中硅知识点总结
化学高中硅知识点总结
硅的物理性质
硅是一种灰色的金属loid(半金属),具有金属和非金属的性质。
硅的结晶形式包括普通结构(钻石晶格)和同轴结构(锑状晶格)。
普通结构的石英和同轴结构的金刚石是地球上最常见的硅化合物。
硅的化学性质
硅的原子结构由14个电子组成,排布在四个能级上。
其外层电子结构为2-8-4,因此硅有四个价电子,可以形成四个共价键。
硅与氧的共价键形成了硅氧化合物,这些化合物构成了大部分岩石、矿物和土壤中的成分。
硅的化合物
硅的化合物包括硅酸盐、硅烷和硅醚等。
硅酸盐是一类以硅酸根离子(SiO4)4-为基础的化合物,包括石英、石灰石和长石等。
硅烷是一类含有硅碳键的有机化合物,例如三甲基硅烷((CH3)3SiH)。
硅醚是一类含有硅氧键的有机化合物,例如二甲基二乙基氧硅烷((CH3)2Si(OC2H5)2)。
硅的应用
硅在电子行业中有广泛的应用,主要体现在半导体材料、太阳能电池和纳米技术领域。
半导体材料主要是指硅晶体和硅片,是电子元件和集成电路的基础材料。
太阳能电池则是利用硅的光电性质将太阳能转化为电能。
硅的纳米颗粒也被广泛应用于生物医学和材料科学领域。
总结
硅是一种重要的化学元素,具有丰富的化学性质和广泛的应用价值。
通过深入了解硅的物理性质、化学性质和化合物,可以更好地理解它在自然界和工业上的作用。
在未来的发展中,硅材料和硅技术有望继续发挥重要的作用,为人类社会的进步做出贡献。
高三有关硅的化学知识点
高三有关硅的化学知识点硅是一种非金属元素,化学符号为Si,原子序数为14,属于周期表中的第14组。
硅是地壳中含量第二多的元素,仅次于氧气。
硅在自然界中以二氧化硅(SiO2)的形式广泛存在于沙、岩石和土壤中。
硅的性质:1. 物理性质:硅是一种灰色晶体,具有金属光泽。
硅的熔点高达1414℃,沸点达到3265℃,使其具有较高的熔融温度。
硅具有较低的电导率,属于半导体材料。
2. 化学性质:硅在常温下与氧气反应生成二氧化硅。
它对酸和碱的腐蚀性较小,但在浓碱和盐酸中会发生反应。
硅与磷、氧和卤素等元素反应形成相应的化合物。
硅的应用:1. 光伏产业:硅在光伏产业中被广泛应用,用于制造太阳能电池板。
硅作为一种半导体材料,能够将太阳光转化为电能。
2. 半导体产业:硅是半导体材料的主要成分,被广泛用于电子器件中,如集成电路、晶体管和二极管等。
硅的高熔点和化学稳定性使得它成为电子器件的重要基础材料。
3. 玻璃工业:硅是玻璃和陶瓷制品的主要原料之一。
二氧化硅可制成不同种类的玻璃,如平板玻璃、光纤和光学仪器等。
4. 化妆品和医药产业:硅在化妆品和医药领域表现出特殊的物理和化学性质。
硅可以用于制造化妆品中的防晒霜和美容产品,同时也被广泛应用于医药行业中的药物制剂。
硅的化合物:1. 二氧化硅(SiO2):也被称为石英,是硅最常见的化合物。
它具有高熔点、高硬度、抗化学腐蚀等特性,被广泛用于光学设备、玻璃工业和陶瓷制造等领域。
2. 氢氧化硅(Si(OH)4):是一种无机酸,可溶于水形成硅酸。
氢氧化硅在医药和化妆品行业中作为一种稳定剂使用。
3. 硅酸盐:硅酸盐是由硅酸和金属离子组成的化合物,包括硅酸镁、硅酸钙、硅酸铝等。
硅酸盐在土壤中起到了重要的结构和化学作用。
总结:硅是一种重要的非金属元素,具有广泛的应用价值。
它在光伏、半导体、玻璃工业、化妆品和医药领域发挥着重要作用。
认识硅的性质和化合物对于理解其在不同领域中的应用至关重要。
化学高一有关硅的知识点
化学高一有关硅的知识点硅是一种非金属元素,其化学符号为Si。
作为地壳中最丰富的元素之一,硅的重要性在于它的广泛应用。
在高中化学课程中,学生们学习了一些与硅相关的知识点,本文将探讨硅的物理性质、化学性质以及其在日常生活和工业中的应用。
一、硅的物理性质硅是一种灰色晶体,具有金属性光泽。
它是地壳中丰富的元素之一,占地壳质量的27.7%。
硅具有较高的熔点和沸点,分别为1414°C和3265°C。
其比重为2.33 g/cm³。
硅的确切晶体结构是钻石型结构,每个硅原子与四个相邻的硅原子形成共价键。
这种晶体结构赋予硅高度的稳定性和硬度。
二、硅的化学性质硅是一种单质,与许多元素发生化学反应。
然而,由于硅的电负性较高,大多数化合物都是共价型的。
例如,硅与氧气反应形成二氧化硅(SiO₂),常见的二氧化硅是石英。
此外,硅还可与氮、氢、卤素等元素形成相应的硅化物、硅氮化物和硅氢化物。
这些化合物在材料科学、电子工业等领域有很多应用。
三、硅在日常生活中的应用硅的应用极为广泛,几乎每个人的日常生活都与硅有关。
例如,在建筑材料中,二氧化硅是一种重要的原料,用于制造水泥、玻璃和陶瓷等。
硅还被广泛应用于电子产品,例如计算机芯片、智能手机和平板电脑。
硅在光学领域有很多应用,可以制成光纤传输信息。
此外,硅还被用作化妆品和医疗器械中的材料。
四、硅在工业中的应用硅在工业中也扮演着重要的角色。
由于硅具有高度的稳定性和导电性能,它被广泛应用于半导体领域。
硅晶片作为计算机芯片的基础,推动了现代计算机技术的发展。
此外,硅还用于制造太阳能电池板,以转换太阳能为可再生能源。
陶瓷工业也大量使用硅材料,例如高温陶瓷和瓷砖。
总之,硅是一种非常重要的元素,其应用范围广泛,涉及到日常生活和工业领域的许多方面。
通过学习硅的物理性质和化学性质,我们可以更好地理解它在实际应用中的作用。
随着科学技术的不断进步,硅的应用领域还将不断扩大,为人们的生活和工业发展带来更多的便利与可能性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导体:导体是很容易导电的物质,电阻率约为10-6-10-8Ωcm,
绝缘体:极不容易或根本不导电的一类物质。
半导体:导电性能介于导体和绝缘体之间的一类物质,目前已知的半导体材料有几百种,适合工业化的重要半导体材料有:硅、锗、砷化镓、硫化镉,电阻率介于10-5-1010Ω(少量固体物质如砷、锑、铋,不具备半导体基本特性,叫做半金属。
冶金级硅(工业硅):将自然级自然界的SI02矿石冶炼成元素硅的第一步,冶金级硅分为两类:1、供钢铁工业用的工业硅,硅含量约为75%。
2、供制备半导体硅用,硅含量在99.7%-99.9%,它常用作制备半导体级多晶硅的原料。
多晶硅:1、改良西门子法,2、硅烷法,3、粒状硅法。
改良西门子法:多晶硅生产的西门子工艺,在11000C左右德高纯度硅芯上还原高纯三氯氢硅,生成多晶硅沉积在硅芯上。
过程:1、原料硅破碎;2、筛分(80目)——沸腾氯化制成液态的SIHCL3——粗馏提纯——精馏提纯——氢还原——棒状多晶硅——破碎——洁净分装。
硅烷法:原料破碎——筛分——硅烷生成——沉积多晶硅——棒状多晶——破碎、包装。
单晶硅:硅的单晶体,具有基本完整的点阵结构的晶体,不同的方向具有不同的性质,是一种良好的半导体,纯度要求达到99.9999%甚至达到99.9999999%用于制造半导体器件、太阳能电池等。
区域熔炼法:制备高纯度、高阻单晶的方法。
切克劳斯基法(直拉法):制作大规模集成电路、普通二极管和太阳能电池单晶的使用方法。
硅棒外径滚磨:将单晶滚磨陈完全等径的单晶锭。
硅切片:硅切片是将单晶硅原锭加工成硅圆片的过程(内圆切片机刀口厚度在300-350um,片厚300-400um。
线切机刀口厚度不大于200u,片最薄可达200-250u.).
硅磨片:一般是双面磨,用金刚砂作原料,去除厚度在50-100u,用磨片的方法去除硅片表面的划痕,污渍和图形,提高硅片表面平整度。
用内圆切片机加工的硅片一般都需要进行研磨。
倒角:将硅切片的边沿毛刺、崩边等倒掉。
抛光片:大规模集成电路使用的硅片。
硅材料电性能的三个显著特点:
1、对温度的变化十分灵敏,当温度提高时,电阻率将大幅度下降。
2、微量杂志的存在对电子的影响十分显著,纯硅中加入百万分之一的硼,电阻率就会
从2.14*103下降至4*10-3Ω。
3、半导体材料的电阻率在受到光照时会改变其数值大小。
本征硅:绝对纯净没有缺陷的硅晶体称作本征硅,本征硅中导电的电子和空穴都会由于其价键破裂而产生。
体内电子和空穴浓度相等。
N型硅:在纯硅中掺入V族元素(如、磷、砷等),能够提供自由电子的杂质统称为施主杂质,掺入施主杂质的硅叫N型硅。
以电子为多数载流子的半导体。
P型硅:在纯硅中掺入III型元素(如硼)以后,具有接受电子的杂质成为受主杂质,掺入受阻杂质的硅叫做P型硅。
以空穴为多数载流子的半导体。
单晶:一块晶体如果从头到尾按照同一种排列重复下去叫做单晶体,
多晶:许多微小单晶颗粒杂乱的排列在一起称为多晶体。
晶体中的缺陷:点缺陷、线缺陷、面缺陷、孪晶、旋涡、杂质条纹、堆垛层错、氧化层错、滑移线等
电阻率:
高能粒子探测器:要求几千乃至上万Ω的FZ单晶。
大功率整流器件:SCR(可控硅)要求300——1000Ω的FZ单晶。
IC(集成电路):5-30Ω的CZ单晶。
太阳能单晶:P型(100)0.5-6Ω的CZ单晶。
少子寿命:半导体中非平衡少数载流子平均存在的时间长短,单位是US。
非平衡载流子:当半导体中载流子产生于复合处于平衡状态时,由于受某种外界条件的作用,如收到光纤照射时新增加的电子——空穴对,新增加的载流子叫做非平衡载流子。
对P型而言,新增加的电子叫做非平衡少数载流子,新增加的空穴叫做非平衡多数载流子。
N型正好相反。
注意:光照停止后,非平衡载流子并不是立即全部消失,而是逐渐被复合消失,它们存在的平均时间就叫做非平衡载流子寿命。
非平衡载流子寿命反映了半导体材料的内在质量,如晶体结构完整性,所含杂质以及缺陷的多少,硅晶体中缺陷和杂质往往是非平衡载流子的复合中心。
检测方法:直流光电导衰减法、高频光电导衰减法、微波光电导衰减法、表面光电压法、光电流法、电子束感生电流法、MOS电容法。
少子寿命要求:高能粒子探测器FZ硅的电阻率要求上万Ωcm,少子寿命上千微秒。
IC工业的CZ硅少子寿命在100us以上;晶体管极CZ硅的少子寿命在100us以上,,太阳能电池CZ硅片的少子寿命不小于10us。
氧化量:硅材料中氧原子数量浓度。
太阳能电池要求氧含量小于5*1018原子个数/cm3
碳含量:硅材料中碳原子浓度。
太阳能电池要求碳含量小于5*1017原子个数/cm3
IC用硅片要求检测:
微缺陷种类及均匀性,电阻率均匀性
氧碳含量均匀性
TTV(总厚度变化)、LTV(局部平整度)
导电类型测量方法:冷探针法、热探针法、整流法、霍尔效应法。
电阻率:单位长度、单位面积下的物体的电阻值、电阻率直接反应其导电能力大小,某一物体的电阻率是他电导率的倒数。
在一定的温度条件下,半导体材料的电阻率直接反应了材料的纯度。
电阻率测量方法:二探针法、四探针法、扩展电阻法、范德堡法、涡流法、光电压法。
载流子浓度:在一定温度条件下,内部处于热平衡的半导体中,电子和空穴的浓度基本保持一定,此时的电子及空穴的浓度叫做平衡载流子浓度。
测量方法:三探针击穿电压法、微分电容法、二次谐波法、红外线等离子发射光谱法、红外吸收法。
应用:
FZNTD:硅整流器、可控硅、智能功率器件、
FZGD:半导体功率器件、绝缘栅双极晶体管、
CZ:二极管、三极管、集成电路
FCZ:高效太阳能
FZ:高反压器件、光电子器件
MCZ:集成电路器件、分立器件
硅晶体生长缺陷:点缺陷、线缺陷、面缺陷、体缺陷
点缺陷:自间隙原子、空位、外来原子,根据热力学原理,晶体中一定会产生本征点缺陷,并聚集成为微缺陷。
(结晶过程中形成。
)
线缺陷:最常见为产生位错,范围性变形,分为刃位错(位错线与滑移矢量垂直时形成的位错)和螺位错(位错线与滑移矢量平行时形成的位错)
面缺陷:在密堆积的晶体结构中由于堆积次序发生错乱形成的层错,层错是一种区域性的缺陷,在层错以内及以外的原子都规则排列,只在两部分交界面处原子排列发生错乱。
体缺陷:掺入杂质的量大于硅可接受的浓度时,杂质在晶体中沉积,形成沉淀或者夹杂物。
硅片抛光:为了去除腐蚀过程中形成的损伤层或降低腐蚀后表面的粗糙程度以形成类似于镜面的硅片表面。
背损伤:在硅片的背面进行机械损伤形成金属吸杂中心。
当硅片达到一定温度时,降低载流子寿命的金属原子就会在硅体内运动,当这些原子在硅片背面遇到损伤点,它们就会被诱陷并本能的从内部移动到损伤点。
背封:对于重掺硅片来说,经过一个高温阶段在,硅片背面淀积一层薄膜,能阻止掺杂剂向外扩撒。
二氧化硅、氮化硅、多晶硅通常被用作背封材料,多晶硅用于吸杂、沉积SIO2用于背封,防止自掺杂。
外延:bipolar工艺中,硅片最底层是P型衬底硅(有的加点埋层);然后在衬底层生长一层单晶硅,这层单晶硅称为外延层;再后来在外延层上注入基区和发射区。
最后形成纵向NPN 管结构,外延层在其中是集电区,外延上面有基区和发射区。
外延片是在陈地上做好外延层的硅片。
可控硅:是可控硅整流原件的简称,是一种具有三个PN结的四层结构大功率半导体器件,也称为晶闸管。
PN结:将P型半导体与N型半导体制作在同一块半导体基片上,在他们的交界面形成空间电荷区,称为PN结。
集成电路:一种卫星电子器件或部件,采用一定的工艺,把一个电路中所需的晶体管
电阻、电容和电感等原件及布线互联在一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,具有所需电路功能的微型结构。
中子照射:利用中子照射某些元素,产生核反应,使这些元素转变为放射性核元素,称为活化。
中子嬗变掺杂:采用中子辐射的方法对材料进行掺杂,使得掺入的杂质浓度非常充足。