建筑深基坑工程检测要求
建筑工程质量检查内容
工序(一) 地基基础1 2 3 4 地基强度或者承载力检验、工程桩承载力检验桩位偏差、桩顶标高、试件强度基坑施工材料、成品、半成品制作与贮存条件与管理(二) 打(压)桩1 2 3 4 5 测量质量控制现场制桩质量打(压)桩过程中的桩身垂直度和打(压)入深度焊接或者硫磺胶泥接桩质量开挖后桩位偏差及桩顶处理质量(三) 灌注桩备注地基强度或者承载力检验、工程桩承载力检验方法和数量应符合要求。
偏差及试件留置数量应符合要求。
基坑要有专项施工方案、深基坑要有专项论证施工方案,基坑周边严禁超堆荷载,要有基坑(槽)开挖对周围建造物的影响及监控记录。
现场钢筋、水泥、砂石料等原材料的贮存与管理、现场预制桩、钢筋笼等成品半成品的现场制作及贮运管理应符合要求;现场标准试块的养护条件应符合要求。
控制点桩位既要便于作业,又要便于保存,可利用小木桩、钢筋头作为定位标志物,桩位测量放线误差应控制在20mm 以内。
横断面边长±5mm ;桩顶对角线差<10mm ;桩尖中心线<10mm ;桩身弯曲矢高<1/1000ι用尺量检查;桩顶平整度<2mm,用水平尺检查。
压桩过程中检查压力、桩垂直度、接桩间歇时间、桩的连接质量及压入深度接桩时上下节平面偏差<10mm 尺量检查;接桩节点弯曲矢高<1/1000ι 拉线和尺量检查。
胶泥浇注时间<2min ;浇后停歇时间>7min,秒表检查。
按钢桩电焊接桩焊缝检查。
焊后停歇时间>1min,秒表测定。
重要工程应对电焊接桩的接头做10%的探伤检查;焊工必须经考试合格取得合格证书,且在认可范围内施焊。
有相应措施要求序号在灌注砼前,应进行清孔工作,要求孔壁、孔底必须清理干净, 孔底无浮渣,孔壁无松动。
孔底沉渣厚度应符合端承桩≤ 50mm 、磨擦端承桩和端承磨擦桩≤100mm 、磨擦桩≤300mm 主筋间距±10mm,尺量检查。
长度±100mm,尺量检查。
箍筋间距 ±20mm,尺量检查,直径±10mm,尺量检查。
深基坑监测方案
目录一、工程概况 (1)二、编制根据 (1)三、基坑侧壁安全级别划分 (1)四、基坑支护方案 (1)五、监测目的及规定 (2)六、工程地质概要 (2)七、监测内容 (3)八、监测频率 (8)九、测试重要仪器设备........................... 错误!未定义书签。
十、监测工作管理、保证监测质量的措施........... 错误!未定义书签。
十一、监测人员配备............................. 错误!未定义书签。
十二、监测资料的提交........................... 错误!未定义书签。
一、工程概况:本项目为CENTER工程, 本子项为通风中心;工程号为HB1001, 子项号为VX。
建设地点: 四川省乐山市夹江县南岸乡。
通风中心长58.60m, 宽33.10m, 建筑高度(室外地坪至女儿墙)为22.900m, 消防高度(室外地坪至屋面面层)为22.200m, 地上二层, 局部三层。
占地面积1956.19㎡, 建筑面积4298.00㎡。
建筑构造形式:钢筋混凝土框架——抗震墙构造, 本建筑设计使用年限为50年, 抗震Ⅰ类建筑。
二、编制根据:1.《建筑基坑工程变形技术规范》(GB50497-)2.《都市测量规范》(CJJ/T8-)3.《精密水准测量规范》(GB/T15314-940)4.《工程测量规范》(GB 50026-)5.《建筑边坡工程技术规范》(GB50330-)6.《建筑基坑支护技术技术规程》(JGJ120-)7、基坑支护工程施工方案设计三、基坑侧壁安全级别划分:基坑 1-2交A-B, 1-2交E-F, 开挖的基坑深度较大概为8m, 放坡系数80°, 近似垂直开挖, 如破坏后果较严重, 因此侧壁安全级别定为一级, 侧壁重要性系数1.1。
基坑其她位置地势相对开阔, 无相邻建筑级别评估为二级, 侧壁重要性系数1.0。
四、基坑支护方案:放坡体系:根据设计图纸的规定, 本工程的基坑放坡为80°, 近似垂直开挖, 基坑壁失稳对周边有一定危害, 采用垂直开挖形成基坑, 开挖前必须先对其设立支挡, 保证既有周边的安全, 根据场地周边环境、场地工程地质条件及水文地质状况。
深基坑支护施工质量检验方法
深基坑支护施工质量检验方法(1)施工前应检查水泥的质量、桩位、搅拌机工作性能及各种计量设备完好程度。
水泥必须具有供应商提供的出厂合格证和质保书,并按批次取样送检测中心试验合格后方能使用。
(2)施工中质量检验包括机械性能、材料质量、掺合比试验等资料的验证,以及逐量桩位、桩长、桩顶高程、桩身垂直度、桩身水泥掺量、喷浆速度、水灰比、搅拌和喷浆起止时间、喷浆量的均匀度、搭接桩施工间歇时间等。
(3)施工结束后,应检查桩体强度、桩体直径、防渗效果及地基承载力。
(4)水泥土搅拌桩桩身强度应符合设计要求水泥土搅拌桩的桩身强度应采用试块试验确定,试块制作好后进行编号、记录、养护。
试验数量方法:每天作一组试块规格7.07×7.07×7.07cm,水泥土试块采用自然养护测定28天后无侧限抗压强度。
测得的28天无侧限抗压强度应不小于1.0MPa。
(5)检验批抽检计划水泥土搅拌桩的成桩验收按100米施工段划分若干检验批,除桩体强度检验项目外,每一检验批至少抽查桩数的20%。
检验批的质量验收程序和组织应符合《建筑工程施工质量验收统一标准》(GB50300-2001)的有关规定。
水泥土搅拌桩止水帷幕的检验批合格判定应符合《建筑地基基础工程施工质量验收规范》(GB50202-2002)的有关规定。
水泥土搅拌桩止水帷幕检验批质量验收计划如下:主控项目1)浆液拌制选用的水泥等原材料的技术指标和检验项目应符合设计要求和国家现行标准的规定。
检验方法:查产品合格证及28天复试报告。
2)浆液水灰比、水泥掺量应符合设计和施工工艺要求,浆液不得离析。
检验方法:浆液水灰比用比重计抽查,水泥掺量查施工记录,每台班不少于3次。
3)水泥土搅拌桩桩身强度应符合设计要求。
水泥土搅拌桩的桩身强度应采用试块试验确定。
试验数量及方法:每天制作水泥土试块一组,取样点应取沿桩长不同深度处的三点,最上点应低于有效桩顶下3m,采用自然养护测定28d无侧限抗压强度不小于1.0MPa。
建筑工程项目深基坑工程监测措施
建筑工程项目深基坑工程监测措施摘要:建筑工程项目深基坑监测技术对于整个项目的顺利开展和后期使用安全起着重要的决定作用。
本文对建筑工程项目深基坑工程监测措施进行了探讨。
关键词:建筑工程;深基坑工程;监测措施引言在建筑工程项目开展过程中,基坑施工作为比较基础的内容,由于施工较为专业,工作量大,施工周期长,施工中的不稳定性因素较多,基坑施工面临着较大的风险。
为了降低基坑施工风险,维护现场和施工人员的生命安全,给后续施工创建一个良好的环境,除了要合理选择支护技术,还需完善基坑监测方案,提高基坑监测技术水平,进而可以全面掌握基坑施工中的变化情况、支护结构承载性能、地下水位变化、周边建构筑受到的影响,并以此指导施工活动进行和施工管理工作开展,尽可能消除基坑支护施工的所有安全隐患,实现有效的风险管理,确保施工安全。
1建筑工程项目深基坑工程监测的必要性1.1深基坑施工的风险性首先,要分析深基坑施工的特点,由于深基坑施工位于基底标高和基础平面以下,受地下地质和水文条件的影响,深基坑施工具有明显的区域性,不同地区的地下土层结构不同,水位及其变化也有差异,且当前大部分建筑工程的深基坑开挖工程量较大,越向下,面对的岩土也愈加丰富,涉及的岩土区范围也比较大。
其次具有综合性,由于深度加大,对土方开挖、基坑支护、排水降水等专业施工的要求更高,各专业需要保持高度的协调性,同时在施工设计中,也需综合考虑岩土工程、测量工程、排水工程等多方面的规范,需要合理融会贯通才能制定科学的深基坑施工及监测方案。
最后其不稳定特征也较为突出,因为深基坑在施工过程中面临的风险因素较多,地下水位上升、土体压力增加会增加施工风险,影响施工正常开展。
此外,在开挖过程中,由于基坑四周土体产生向基坑内的位移,作为临时结构的支护体系面对的压力会加大,很有可能会失稳造成坍塌事故,也有可能造成附近地面不均匀沉降,进而降低建构物的安全性。
因此深基坑工程是一项较为危险的工作,要想保证整个工程的安全性与可靠性,必须考虑如何基于事实来制定完善的防范措施来降低深基坑工程施工风险,而这就涉及到下文继续介绍的深基坑监测技术。
房屋建筑深基坑工程监测备案规定
房屋建筑深基坑工程监测备案管理规定第一章总则第一条为进一步加强本市房屋建筑深基坑工程监测工作的监督管理,提高监测水平,保证房屋建筑深基坑工程的质量和安全,根据《南京市建设工程深基坑工程管理办法》和《南京市房屋建筑深基坑工程质量监督管理实施细则》等文件,结合本市实际,制订本规定。
第二条本规定所称的监测能力,是指与监测级别、监测项目相适应的包括仪器设备的数量、精度,监测人员的数量、专业技术素质、监测工作经历及管理水平等因素的综合能力。
本规定所称的监测方案,是指建设单位组织设计、监理、监测等单位,根据设计文件及相关法律法规、技术规范的要求,共同制定的适合工程监测要求的具有针对性和指导性的监测工作文件,包括监测项目、监测数量及频率、监测方法、监测人员和仪器设备等内容。
第三条本市行政区域内房屋建筑深基坑工程(以下简称深基坑工程)的监测活动,应遵守本规定。
第四条在本市从事深基坑工程监测的单位在承接监测业务前应办理监测能力备案手续。
南京市建筑安装工程质量监督站(以下简称质监站)负责深基坑工程监测单位监测能力的备案工作。
第五条在深基坑工程施工前,建设单位应将有关单位确定的监测方案报辖区质监站并办理监测方案备案手续。
第二章监测能力备案第六条深基坑工程监测单位应在已备案的监测能力范围内从事监测活动。
第七条监测能力分为两级。
一级可监测所有的深基坑工程;二级可监测基坑安全等级为二级及以下的深基坑工程。
第八条监测能力备案应符合以下要求:(一)监测人员应是本单位在职职工(与本单位有合法的人事、工资及社会保险关系)。
(二)单位技术负责人应具有土木工程专业的高级职称。
(三)注册资金:一级监测单位不少于200万元;二级监测单位不少于100万元;(四)仪器设备应符合附件1的要求,并取得与监测能力相对应的计量认证证书;(五)人员要求:一级监测单位的人员要求:相关单位培训考核合格的持证人员不少于10人;其中具备工程师及以上职称者不少于5人,高级职称者不少于2人,岩土工程和测量方面的专业人员不少于4人,注册岩土工程师不少于1人;二级监测单位的人员要求:相关单位培训考核合格的持证人员不少于6人;其中具备工程师及以上职称者不少于4人,高级职称者不少于1人,岩土工程和测量方面的专业人员不少于3人。
深基坑工程施工监测方案
施施工工监监测测方方案案1 施工监测目的及意义基坑开挖、支护施工将不可避免地对地层、地下管线、建(构)筑物等造成一定的影响。
为确保基坑周边建筑物及管线安全,做到信息化安全施工,必须对地表、地下管线和周边建筑物进行全面系统的监控量测。
通过监控量测可以达到如下目的:1、了解基坑周围土体在施工过程中的动态变化,明确施工对原始地层的影响程度以及可能产生失稳的薄弱环节。
2、了解支护结构的受力和变位状态,并对其安全稳定性进行评价。
3、了解工程施工对地下管线、建筑物等周边环境条件的影响程度,确保它们仍处于安全的工作状态。
4、了解施工降水效果对周围地下水位的影响程度。
5、将量测结果反馈到施工中,及时修改施工参数和步骤进行信息化施工。
2仪器选择和精度要求1、基坑位移监测采用拓普康TKS-202全站仪,精度2秒。
仪器在检验有效期内作业,并在作业期间进行检查校核。
2、沉降观测使用徕卡N2精密水准仪(带测微器)及2米铟钢水准标尺。
仪器最小分辨率为0.01mm 。
仪器及标尺在检验有效期内作业,并在作业期间进行检查校核。
沉降观测按二等水准精度要求进行观测,执行的各项规定和限差如下:等级 仪器类型视线长度前后视距差任一测站上前后距差视线高度 二等DS0.5≤30m≤1.0m≤0.5m>0.3m项目 等级基、辅分划读数差基、辅分划所测高差之差检测间歇点高差之差上下丝读数平均值与中丝读数之差基辅尺分划读数差≤0.3mm,闭合差≤±0.3√N mm(N代表测站数)。
3监测项目及控制标准3.1监测项目1、本次基坑安全等级为一级,基坑监测按《建筑基坑工程监测技术规》(GB50497-2009)执行。
2、本次监测可分为基坑工程主体监测和周围环境及地下管线监测,施工监测项目和内容有:3、水位观测、钢筋应力等监测见第三方监测方案。
3.2监测控制标准1、基坑监测控制标准及报警指标如下表所示:2、水位变化控制标准为:要求水位变化值累计值不大于1m或每天变化值不大于0.50m。
深基坑作业氧气检测标准
深基坑作业氧气检测标准
1、深基坑工程监测内容深基坑工程的监测包括支护结构监测和周围环境监测两个方面内容。
支护结构需监测挡土墙墙顶的位移、倾斜、主钢筋应力、土压力、孔隙水压力、压顶梁、腰梁及内支撑轴力、应变、立柱的沉降与隆起、锚杆的锚固力等。
周围环境需监测开挖影响范围内的建筑物、地下管线和土体的沉降、倾斜、水平位移,以及土体内的水位等。
在深基坑工程监测项目中,支护结构水平位移、邻近建筑物及地下管线的沉降是必不可少的内容,其余项目可根据基坑工程安全等级、场地地质条件及周围环境状况作出合理的选择。
2、支护结构监测根据前期开挖中监测到各类支护结构的应力、变形数据,与设计中支护结构受力和变形进行比较,对原设计进行评价,判断基坑在目前开挖工况下的安全状况,并通过分析,预测下一步工况下支护结构变形和稳定状况,为优化设计提供可靠的信息,并对后续开挖及支护方案提出建议,对施工过程中可能发生的险情报警,确保基坑工程的安全。
2.1墙顶位移监测挡土墙桩墙顶位移常用经纬仪和全站仪监测。
其原理为:应用水平角全圆方向观测法,测出各点水平角度,然后计算出各点水平位移。
其特点为测试简单,费用低,数据量适用。
在桩墙顶冠梁上布置测点,其位置和数量根据基坑侧壁安全等级及周围建筑物和地下管线可能受影响的程度而定。
对于重要基坑,一般沿地下连续墙或桩顶每隔10~15m布置一个测点。
在现场建立的半永久性测站要求妥善保护,基准点设在便于观测,不受施工影响的场地,基准点宜做成深埋式。
基坑开挖期间,每隔2~3d监测一次,位移速率达到5~10mm/d时,每天监测1~2次。
建筑深基坑工程监测要求
建筑深基坑工程监测要求一、监测范围和监测点布设:深基坑工程监测应涵盖整个基坑施工区域,包括基坑的边界、支护结构、地下室和邻近地表等。
监测点布设应有代表性,覆盖主要土层、建筑物周边等重点区域。
监测的主要指标包括变形、沉降、裂缝等。
二、监测方案设计:监测方案应根据工程的特点和实际需求进行设计,包括监测时间、监测方法、监测频率、监测指标等。
监测时间应从基坑开挖开始,至基坑支护、地下室施工、施工结束等各个阶段。
监测方法可以采用物理监测技术、遥感监测技术、数值模拟等。
监测频率应根据施工过程中的变化情况确定,一般情况下,监测频率可以每天、每周或每月进行一次。
监测指标应包括工程变形变化、土体沉降、水平位移、裂缝变化等。
三、监测仪器设备选择:监测仪器设备应根据监测指标和监测方法的要求进行选择。
常用的监测仪器设备包括全站仪、测斜仪、支撑内力测试仪、GIS导线测量系统等。
监测设备应具备高精度、高稳定性,能够长时间连续工作,并能够进行数据采集和处理。
四、监测数据处理与分析:监测数据应及时进行采集、传输、处理和分析。
监测数据应进行质量检测,包括数据的准确性、完整性、一致性等。
监测数据应与设计要求和标准进行对比,及时发现和解决问题。
监测数据应进行分析,包括数据趋势分析、变形趋势预测、模型校正等。
五、监测报告编写:监测工作结束后,应编写监测报告。
报告中应包括监测工作的目的、范围、方法、结果等内容。
报告应清晰明确,结论准确可靠,并提出相应的建议和措施。
综上所述,建筑深基坑工程监测要求包括监测范围和监测点布设、监测方案设计、监测仪器设备选择、监测数据处理与分析以及监测报告编写。
通过合理的监测要求,可以确保深基坑工程的安全和稳定。
基坑施工质量检测规程(15篇范文)
基坑施工质量检测规程(15篇范文)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、合同协议、心得体会、演讲致辞、规章制度、岗位职责、操作规程、计划书、祝福语、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts, such as work reports, contract agreements, insights, speeches, rules and regulations, job responsibilities, operating procedures, plans, blessings, and other sample texts. If you want to learn about different sample formats and writing methods, please pay attention!基坑施工质量检测规程(15篇范文)【第1篇】基坑施工质量检测规程基坑施工质量检测(一)钢板桩监测钢板桩的垂直度要求不超过1%,钢板桩的轴线偏差为±10cm。
深基坑施工监测技术
一、深基坑施工监测技术(一)技术内容基坑工程监测是指通过对基坑控制参数进行一定期间内的量值及变化进行监测,并根据监测数据评估判断或预测基坑安全状态,为安全控制措施提供技术依据。
监测内容一般包括支护结构的内力和位移、基坑底部及周边土体的位移、周边建筑物的位移、周边管线和设施的位移及地下水状况等。
监测系统一般包括传感器、数据采集传输系统、数据库、状态分析评估与预测软件等。
通过在工程支护(围护)结构上布设位移监测点,进行定期或实时监测,根据变形值判定是否需要采取相应措施,消除影响,避免进一步变形发生的危险。
监测方法可分为基准线法和坐标法。
在水平位移监测点旁布设围护结构的沉降监测点,布点要求间隔15~25m 布设一个监测点,利用高程监测的方法对围护结构顶部进行沉降监测。
基坑围护结构沿垂直方向水平位移的监测,用测斜仪由下至上测量预先埋设在墙体内测斜管的变形情况,以了解基坑开挖施工过程中基坑支护结构在各个深度上的水平位移情况,用以了解和推算围护体变形。
临近建筑物沉降监测,利用高程监测的方法来了解临近建筑物的沉降,从而了解其是否会引起不均匀沉降。
在施工现场沉降影响范围之外,布设 3 个基准点为该工程临近建筑物沉降监测的基准点。
临近建筑物沉降监测的监测方法、使用仪器、监测精度同建筑物主体沉降监测。
(二)技术指标(1)变形报警值。
水平位移报警值,按一级安全等级考虑,最大水平位移≤0.14%H;按二级安全等级考虑,最大水平位移≤0.3%H。
(2)地面沉降量报警值。
按一级安全等级考虑,最大沉降量≤0.1%H;按二级安全等级考虑,最大沉降量≤0.2%H。
(3)监测报警指标一般以总变化量和变化速率两个量控制,累计变化量的报警指标一般不宜超过设计限值。
若有监测项目的数据超过报警指标,应从累计变化量与日变量两方面考虑。
(三)适用范围用于深基坑钻、挖孔灌注桩、地连墙、重力坝等围(支)护结构的变形监测。
(四)工程案例深圳中航广场工程、上海万达商业中心等。
房屋建筑和市政基础设施深基坑工程质量监督管理细则
关于印发《XX市房屋建筑和市政基础设施深基坑工程质量监督管理细则》的通知(发稿时间:2012-07-26 阅读次数:428)各有关单位:为加强我市房屋建筑和市政基础设施深基坑工程质量的监督管理,确保深基坑工程与其相邻建(构)筑物和地下管线的安全,根据国家有关法律、法规和规X,结合近年来的工程实践,我委制定了《XX市房屋建筑和市政基础设施深基坑工程质量监督管理细则》,现印发给你们,请遵照执行。
附件:XX市房屋建筑和市政基础设施深基坑工程质量监督管理细则二〇一二年六月六日XX市房屋建筑和市政基础设施深基坑工程质量监督管理细则第一章总则第一条为加强本市房屋建筑和市政基础设施深基坑工程质量管理,规X建设各方责任主体和相关单位的质量行为,保证深基坑工程与其相邻建(构)筑物和地下管线、人员的安全,根据《建设工程质量管理条例》、《建设工程安全生产管理条例》、《房屋建筑和市政基础设施工程质量监督管理规定》和《XX市建设工程深基坑工程管理办法》等法规、规章和规定,结合本市实际,制订本细则。
第二条本市行政区域内房屋建筑和市政基础设施深基坑工程(以下简称深基坑工程)的施工与验收活动,应遵守本细则。
第三条本细则所称深基坑,是指开挖深度超过5米(含5米)的基坑。
本细则所称深基坑工程,包括基坑(含边坡)支护结构、支撑体系、地下水控制(降水、排水、截水、回灌)、土方开挖、检测和监测等内容。
第四条 XX市有关工程质量监督机构(以下简称监督机构)受市住建委委托具体负责所监督深基坑工程质量的监督管理和抽查工作。
雨花、栖霞、江宁、浦口、六合(含沿江)等五区与溧水、高淳两县的工程质量监督机构分别受建设行政主管部门的委托具体负责所监督深基坑工程质量的监督管理和抽查工作。
第二章监督手续第五条建设单位应当在深基坑工程开工前,持下列文件和资料办理质量监督手续。
(一)工程质量监督申报表;(二)工程地质勘察报告与施工图设计文件审查合格证(批准书);(三)施工、监理中标通知书与合同;(四)法律、法规、规章规定的其它文件。
深基坑工程监测
●深基坑工程监测●基本规定<1>开挖深度大于等于5m、或开挖深度小于5m但现场地质情况和周围环境较复杂的基坑工程以及其他需要监测的基坑工程应实施基坑工程监测。
<2>基坑工程设计提出的对基坑工程监测的技术要求应包括监测项目、监测频率和监测报警值等。
<3>基坑工程施工前,应由建设方委托具备相应资质的第三方对基坑工程实施现场监测。
监测单位应编制监测方案,监测方案须经建设方、设计方、监理等认可,必要时还需与基坑周边环境涉及的有关管理单位协商一致后方可实施。
<4>监测工作宜按下列步骤进行:<4.1>接受委托;<4.2>现场踏勘,收集资料;<4.3>制定监测方案;<4.4>监测点设置与验收,设备、仪器校验和元器件标定;<4.5>现场监测;<4.6>监测数据的处理、分析及信息反馈;<4.7>提交阶段性监测结果和报告;<4.8>现场监测工作结束后,提交完整的监测资料。
<5>监测单位在现场踏勘、资料收集阶段的主要工作包括:<5.1>了解建设方和相关单位的具体要求;<5.2>收集和熟悉岩土工程勘察资料、气象资料、地下工程和基坑工程的设计资料以及施工组织设计(或项目管理规划)等;<5.3>按监测需要收集基坑周边环境各监测对象的原始资料和使用现状等资料。
必要时应采用拍照、录像等方法保存有关资料或进行必要的现场测试取得有关资料;<5.4>通过现场踏勘,复核相关资料与现场状况的关系,确定拟监测项目现场实施的可行性;<5.5>了解相邻工程的设计和施工情况。
<6>监测方案应包括下列内容:<6.1>工程概况;<6.2>建设场地岩土工程条件及基坑周边环境状况;<6.3>监测目的和依据;<6.4>监测内容及项目;<6.5>基准点、监测点的布设与保护;<6.6>监测方法及精度;<6.7>监测期和监测频率;<6.8>监测报警及异常情况下的监测措施;<6.9>监测数据处理与信息反馈;<6.10>监测人员的配备;<6.11>监测仪器设备及检定要求;<6.12>作业安全及其他管理制度。
深基坑施工中的基坑监测技术
深基坑施工中的基坑监测技术摘要:在我国城市建设发展过程中,随着地价的逐渐增加。
由于地下土体性质、荷载条件、施工环境的复杂性,基坑开挖过程中的不确定性较大,因而对施工的影响也越来越大。
基于此,本文对新形势下基坑监测技术的重要意义以及深基坑施工中的基坑监测技术的措施进行了分析。
关键词:基坑监测;深基坑;施工;技术在社会经济与科技飞速进步的背景下,各类基础工程建设项目也在不断扩张。
由于受到原始地质环境和施工技术的影响,在施工过程中要加强关注对地基基坑的建设和监测,这样有利于维护工程建设质量与建设安全性。
基坑监测技术在目前的建筑工程项目中应用较多,不仅可以实现不同方向上的基坑变形监测,还可以对地质结构进行检测,并通过与其他技术的结合,发挥监测技术在建工项目中的重要价值。
1 新形势下基坑监测技术的重要意义建筑基坑是建筑施工的基础,起着承载建筑的重要作用。
新形势下,建筑行业在发掘土地资源的过程中,不断加深基坑的深度,使得建筑基坑的建设施工难度加大,同时也对建筑周边的环境造成了一定的影响。
为了确保建筑本身的安全性、稳定性以及保护周边环境,基坑监测技术由此得到了进一步加强。
基坑监测技术的主要工作是检查和监控建筑基坑和周边环境,保证基坑的建设施工进度和在整个施工过程中的施工质量。
该技术对于基坑施工的监测从施工前就已开始,通过详细了解建筑工程所在位置范围的地质条件,基坑监测技术以真实的施工规划数据承担起了为基坑施工提供指导的任务。
相关数据中包括施工区域地质土体的分析数据和负荷数据等,这为基坑的施工排除了诸多不确定因素,使得后期施工的开展具有更明确的施工方向。
在施工的过程中,基坑监测技术通过对施工具体情况的实时监测,收集、分析基坑施工的各项数据,从而得到基坑强度的相关结果,为工程施工进行成本控制提供科学依据。
在施工的过程中,基坑监测技术还可为相关技术、施工人员提供基坑的具体情况,如地下管道和线路的分布等,为避免基坑施工破坏地下设施提供重要参考。
深基坑安全检查重点及控制措施
深基坑安全检查重点【一】施工方案1.危险性较大的分部分项工程基础施工必须有支护方案或施工组织设计,超过一定规模的危险性较大的分部分项工程应组织专家论证,所有支护方案或施工组织设计必须审批合格。
2.针对地质情况及周边环境,基坑支护方案或施工组织设计必须明确针对性的措施(如降水方案、监测方案、挖土方案等),明确给出控制参数(如周边建筑物沉降报警值、管线及路面沉降报警值、坑口位移报警值、支撑应力报警值、坑边堆最大值、监测周期、监测频率等)。
3.开挖深度超过5m的基坑或开挖深度虽未超过5m,但地质情况和周边环境较复杂的基坑,必须由具有资质的设计单位进行专项支护设计。
4.支护设计方案或施工组织设计必须按企业内部管理规定进行审批。
【二】临边防护及安全通道1.深度超过2m的基坑,坑边必须设置防护栏杆,并且用密目网封闭,栏杆立杆应与便道预埋件电焊连接。
栏杆宜采用48钢脚手管,表面喷黄漆标识。
2.基坑必须设置安全通道,应搭设牢固,符合相关规范要求。
3.坑口应砖砌翻口,防坑边碎石和坑外水进入坑内。
对于取土口、栈桥边、行人支撑边等部位必须设置安全防护设施并符合要求。
【三】坑壁支护1.进行放坡开挖的基坑,放坡比例必须符合支护方案或施工组织设计要求,应根据地质报告对边坡稳定性进行计算,基坑成型验收合格后及时施工,严禁长时间不施工。
有支护要求的基坑,基坑成型后应及时支护,坡边宜采用钢丝网细石砼护坡。
2.特殊支护结构的施工质量必须符合支护方案和支护设计的要求。
(如土钉支护的土钉锚内注浆量、喷射砼的厚度、每皮土开挖的厚度等,又如换撑的部位等)。
3.通过监测和观察,发现支护体系发生异常变化时(如监测值超过报警值、变化速率突然变大、坑壁突然渗水或漏水等),必须及时分析原因,制定和实施相应的措施。
【四】排水措施1.坑内、坑外必须采取有效的排水措施。
根据支护方案及支护设计或施工组织设计要求,应对坑内进行轻型井点降水或其他方法降水。
每坡挖土面应采用明沟排水。
深基坑支护及监测施工工艺标准
深基坑支护及监测施工工艺标准一、使用条件及范围1、复合土钉墙的使用条件本施工工艺标准适用于地下水位以上或进行人工降水后可塑、硬塑或坚硬的粘性土、胶结或弱胶结粉土、填土,随着土钉墙理论与施工技术的不断成熟,土钉支护在杂填土、松散土、软弱土也得以应用,并可与混凝土灌注桩、微型钢管桩等配合进行支护,但土钉墙支护的基坑深度不易超过18米。
2、复合土钉墙的使用范围①、基坑或竖井的支挡②、基坑工程抢险③、斜坡面的稳定④、与预应力锚杆结合做斜面的防护二、施工准备1、深基坑支护材料要求:①、土钉杆体材料采用HRB400 Φ22、Φ25、Φ28钢筋,土钉墙面采用Q235 Φ6.5钢筋网,复合土钉锚索采用15。
2钢绞线(1860级),锚索端部在水平方向上采用腰梁(14#槽钢)。
②、土钉墙面层土钉灌浆采用P C 42.5R的水泥。
③、微型钢管桩采用Q235B 114×3.5钢管,灌注桩砼强度等级为C30。
④、钢筋、钢绞线、水泥、钢管必须有出厂检验报告,并及时抽样送检,合格后方可用于工程中。
槽钢必须有出厂检验报告.三、主要机具设备和监测仪器1、深基坑支护机具设备①、反循环钻机、台式电钻、电焊机、切割机、灰浆搅拌机、高压注浆泵、高压注浆管等施工机具。
2、深基坑监测仪器①、基坑竖向位移、周边环境沉降观测使用美国产天宝DINI03数字水准仪配一对2m条码尺。
②、基坑水平位移观测使用日本产索佳SET220K型全站仪进行观测。
四、复合土钉支护施工工艺1、施工准备:a、认真学习规范,熟悉设计图纸,根据甲方提供的地下障碍物和周边管线位置图.b、编制施工方案,经集团公司总工审批,报淄博市住建局专家论证后,方可进行施工.c、施工前应确定基坑开挖线、轴线定位点、水准基点、变形观测点等,并在设置后妥善保护。
d、施工前,由技术人员对班组进行技术和安全交底.2、工艺流程(1)、微型钢管桩支护施工工艺流程:平整场地→钢管桩制作焊接→测量放线→孔距定位→机械开挖循环集水坑、水沟和水坑→钻孔机就位钻孔→清洗钻孔→注浆机安装→安装下放钢管→安装注浆管→拌制水泥浆→注水泥浆→多次补浆直至上口翻浆。
深基坑工程验收应具备的条件
深基坑工程验收应具备的条件深基坑工程是指在建筑施工中需要挖掘较深的土方工程,用于建造地下空间或地下设施。
深基坑工程的验收是确保工程质量和安全的重要环节,下面将介绍深基坑工程验收应具备的条件。
一、基坑开挖和支护条件1. 基坑开挖的深度、宽度和形状应符合设计要求,施工过程中不得超过设计允许的偏差范围。
2. 基坑开挖过程中,必须采取适当的支护措施,确保基坑的稳定性和安全性。
3. 基坑支护结构的设计和施工必须符合相关规范和标准,保证支护结构的稳定性和承载能力。
二、土体处理和排水条件1. 在基坑开挖过程中,需要对土体进行适当的处理,包括土方开挖、土方回填等,确保基坑周围土体的稳定性。
2. 基坑开挖过程中,需要进行有效的排水措施,防止地下水对工程造成不良影响。
三、地下水处理条件1. 基坑开挖前需要进行地下水勘测,确保对地下水的了解和控制。
2. 基坑开挖过程中,需要采取适当的地下水处理措施,如抽水、降水等,确保基坑的稳定性和安全性。
四、基坑周边建筑物和管线保护条件1. 基坑开挖过程中,需要采取措施保护周边建筑物和管线的稳定性和安全性,防止对其造成损害。
2. 基坑开挖前需要进行周边建筑物和管线的详细调查,制定相应的保护措施。
五、基坑监测条件1. 基坑开挖过程中,需要进行基坑监测,包括地表沉降、地下水位、支护结构变形等监测内容,确保工程的稳定性和安全性。
2. 基坑监测数据需要及时记录和分析,对异常情况需要及时采取相应的措施。
六、安全管理和文明施工条件1. 施工单位需要制定详细的安全管理措施和施工方案,确保施工过程中的安全性。
2. 施工单位需要遵守相关法律法规和规范标准,进行文明施工,保证工程的质量和环境的卫生。
七、验收文件和证明材料1. 验收过程中需要提供相关的施工图纸、设计文件、施工记录等,作为验收的依据。
2. 验收需要提供相关的检测报告、监测数据等,证明工程的质量和安全性。
深基坑工程验收应具备以上条件,通过严格的验收程序和标准,确保工程的质量和安全,保障建筑施工的顺利进行。
建筑深基坑工程检测要求
建筑深基坑工程检测要求
基坑
类型
检测项目
检测方法及数量
检测单位
排桩
灌注桩
完整性检查
抽取总桩数的30%,且不少于20根进行小应变检测
检测单位
小应变检测结果影响受力时,采用钻芯法进行补充检测,其检测数量为总桩数的2%,不少于3根
对于直径大于800mm的灌注桩应抽取10%进行超声波或取芯检测
成孔的垂直度
不应少于锚杆总数的1%,且不应少于3根
检测单位
支撑
体系
焊缝探伤检测
钢支撑的焊缝应抽取总数的20%进行探伤检测
检测单位
基坑土体加固
同水泥土墙
水泥土达到28天后,采用钻芯法检测完整性及其强度,其钻芯数量不少于总桩数的2%,且不少于5根
检测单位
土钉墙
承载力
采用抗拉试验检测承载力。在同一条件下,试验数量不少于土钉总数的1%,且不应少于6根
检测单位
喷射混凝土厚度检测
喷射混凝土的厚度采用钻孔检测,钻孔数为每100m2墙面1组,每组不少于3点
锚杆
锚杆抗拔力
钻孔桩采用测斜仪测量,其数量为总桩数的10%,且不少于10根
检测或施工单位
孔径
钻孔桩采用井径仪测量,其数量为总桩数的10%,且不少于10根
预制桩
焊缝探伤检测
对焊接接头抽取总桩数的10%
检测单位
完整性检查
抽取总桩数的30%,且不少于20根进行小应变检测
钢桩
焊缝探伤检测
抽取总桩数的20%
检测单位
地下连续墙混ຫໍສະໝຸດ 土质量检验抽取大于总槽段数20%的槽段,且不少于3个槽段进行声波透射法检查墙身混凝土结构内在质量
检测单位
建筑工程基坑监测施工一般规定模版
建筑工程基坑监测施工一般规定模版一、概述基坑监测施工是指在建筑施工中对基坑工程进行监测的施工活动。
基坑是建筑施工中开挖的深基础结构,其稳定性和安全性对整个建筑工程至关重要。
基坑监测施工的目的是及时发现和监测基坑工程的变化和变形情况,保证基坑施工的安全性和稳定性。
二、监测设备和仪器1. 基坑监测施工需要配备专业的监测设备和仪器,包括但不限于:a. 地下水位监测:使用水位计、水位传感器等仪器,对基坑中的地下水位进行实时监测。
b. 基坑变形监测:使用测斜仪、水准仪等仪器,对基坑变形情况进行实时监测。
c. 地下管线监测:使用管线探测仪、电磁法检测仪等仪器,对地下管线进行实时监测。
d. 基坑应力监测:使用应力计、应变计等仪器,对基坑内部的应力情况进行实时监测。
三、监测方案1. 在进行基坑监测施工前,应编制详细的监测方案,包括监测点设置、监测频率、监测方法等内容。
2. 监测点设置应覆盖基坑的各个重要部位和关键节点,以确保监测的全面性和准确性。
3. 监测频率应根据基坑的变化情况和施工进度确定,一般应进行定期监测,并在特殊情况下进行实时监测。
4. 监测方法应根据监测对象和监测要求选择合适的方法,包括实地测量、遥感技术、无人机测绘等。
四、施工管理1. 基坑监测施工应由专业人员负责,并按照监测方案进行操作和记录。
2. 在施工过程中,应注意监测数据的准确性和可靠性,及时处理和分析监测数据,发现异常情况应及时报告相关部门。
3. 在施工过程中,应加强对基坑周边环境的保护,防止土方坍塌、地下水渗漏等不良影响。
五、安全措施1. 基坑监测施工前应进行安全评估,并采取必要的安全措施,确保施工人员的人身安全。
2. 施工现场应设置明显的警示标志和安全防护设施,防止外来人员进入施工区域,并确保基坑周边的交通安全。
3. 在施工过程中,应加强对施工人员的安全教育和培训,提高员工的安全意识。
六、监测报告1. 每次监测完成后,应编制监测报告,包括监测数据、数据分析和处理结果等内容,并及时上报相关部门。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成桩三天内, 轻便动力触探不少于总桩数的 不少于 5 根
2% ,且 施工或检测单位
水泥土达到 28 天后,采用钻芯法检测完整性及其强
度,其钻芯数量不少于总桩数的 2% ,且不少于 5
检测单位
根
土钉墙
承载力 喷射混凝土厚度检
采用抗拉试验检测承载力。在同一条件下,试验数 量不少于土钉总数的 1% ,且不应少于 6 根 喷射混凝土的厚度采用钻孔检测,钻孔数为每
排桩
成孔的垂直度 孔径
钻孔桩采用测斜仪测量,其数量为总桩数的 且不少于 10 根 钻孔桩采用井径仪测量,其数量为总桩数的 且不少于 10 根
10% , 检测或施工单位
10% ,
焊缝探伤检测
对焊接接头抽取总桩数的 10%
预制桩 完整性检查
抽取总桩数的 30% ,且不少于 20 根进行小应变检 测
检测单位
附件 2:
建筑深基坑工程检测要求
基坑 类型
检测项目
检测方法及数量
检测单位
抽取总桩数的 30% ,且不少于 20 根进行小应变检
测
完整性检查
小应变检测结果影响受力时,采用钻芯法进行补充 检测,其检测数量为总桩数的 2% ,不少于 3 根检测单位Fra bibliotek灌注桩
对于直径大于 800mm 的灌注桩应抽取 10% 进行超 声波或取芯检测
检测单位
锚杆
测 锚杆抗拔力
100m2 墙面 1 组,每组不少于 3 点 不应少于锚杆总数的 1% ,且不应少于 3 根
检测单位
支撑 体系
焊缝探伤检测
钢支撑的焊缝应抽取总数的 20% 进行探伤检测
检测单位
基坑土体加固 同水泥土墙
钢桩 焊缝探伤检测
抽取总桩数的 20%
检测单位
地下连续墙
混凝土质量检验
抽取大于总槽段数 20% 的槽段,且不少于 3 个槽段 进行声波透射法检查墙身混凝土结构内在质量
成槽的垂直度、 倾斜 采用井径仪等,其数量为总槽段数的
度、沉渣
20%
检测单位 检测或施工单位
成桩质量检查 水泥土墙 (SMW 支护)
完整性及其强度