静定梁与静定刚架习题课
李廉锟《结构力学》笔记和课后习题(含考研真题)详解-第3章 静定梁与静定刚架【圣才出品】
第3章 静定梁与静定刚架
3.1 复习笔记【知识框架】
【重点难点归纳】
一、单跨静定梁 ★★★★
1.内力
表3-1-1 内力的基本概念
图3-1-1
图3-1-22.内力与外力间的微分关系及积分关系(1)由平衡条件导出的微分关系式
计算简图如图3-1-3所示,微分关系式为
(Ⅰ)
d d d d d d s
s N
F q x
x M F
x F p x
x ⎧=⎪⎪⎪=
⎨⎪⎪=-⎪⎩-()()
图3-1-3
(2)荷载与内力之间的积分关系
如图3-1-4
所示,结合式(Ⅰ)可得梁的内力积分公式,积分公式及其几何意义见表3-1-2。
图3-1-4
表3-1-2 内力的积分公式及几何意义
3.叠加法作弯矩图
表3-1-3 常用叠加法及其作图步骤
图3-1-5
图3-1-6
二、多跨静定梁 ★★★★
多跨静定梁是由构造单元(如简支梁、悬臂梁)多次搭接而成的几何不变体系,其计算简图见图3-1-7,几何构造、计算原则、传力关系见表3-1-4。
长沙理工结构力学期末考试题库和答案第二章静定梁与钢架 结构力学超静定
长沙理工结构力学期末考试题库和答案第二章静定梁与钢架结构力学超静定第二章静定梁及静定刚架一、判断题1.静定结构在荷载作用下产生的内力与杆件弹性常数、截面尺寸无关。
( O )2.计算位移时,对称的静定结构是指杆件几何尺寸、约束、刚度均对称的结构。
( O ) 3.静定结构在支座移动、变温及荷载分别作用下,均产生位移和内力。
( X )4.几何不变体系一定是静定结构。
( X )25.图示结构 MK = ql/2(内侧受拉)。
( X )q6.图示结构中 AB 杆弯矩为零。
( X ) q7.图示结构中 |MAC|=|MBD|。
( O )|8.图示结构中 |MAC|=|MBD。
( O )l9.图示结构 M 图的形状是正确的。
( X ) M 图 10.图示结构|MC|=0 。
( O)11.图示结构中 A、B 支座反力均为零。
d二、选择题12.静定结构有变温时:( C )A. 无变形,无位移,无内力;B. 有变形,有位移,有内力;C. 有变形,有位移,无内力;D. 无变形,有位移,无内力。
13.静定结构在支座移动时:( D )A. 无变形,无位移,无内力;B. 有变形,有位移,有内力;C. 有变形,有位移,无内力; D 无变形,有位移,无内力。
O )(14.静定结构的内力计算与( A )A. EI 无关;B. EI 相对值有关;C. EI 绝对值有关;D. E 无关, I 有关。
15.图示结构MA 、MC (设下面受拉为正)为:( C )A.MA =0 ,MC=Pa/2 ;B.MA =2Pa ,MC=2Pa ;C.MA =Pa ,MC=Pa ;D.MA =-Pa,MC=Pa 。
16.图示结构 MA、 MB (设以内侧受拉为正)为:( DA. MA=-Pa , MB =Pa;B. MA=0 , MB =-Pa ;C. MA=Pa ,MB =Pa ;D.MA=0 , MB =Pa 。
17.图示结构 B 点杆端弯矩(设内侧受拉为正)为:( C )A.MBA = Pa, MBC = -Pa ;B.MBA = MBC = 2Pa;C. MBA = MBC = Pa ;D.MBA = MBC = 0 。
静力学习题课答案
【1】 梁AB 一端为固定端支座,另一端无约束,这样的梁称为悬臂梁。
它承受均布荷载q 和一集中力P 的作用,如图4-9(a )所示。
已知P =10kN , q =2kN/m ,l =4m ,︒=45α,梁的自重不计,求支座A 的反力。
【解】:取梁AB 为研究对象,其受力图如图4-9(b )所示。
支座反力的指向是假定的,梁上所受的荷载和支座反力组成平面一般力系。
在计算中可将线荷载q 用作用其中心的集中力2qlQ =来代替。
选取坐标系,列平衡方程。
)(kN 07.7707.010cos 0cos - 0A A →=⨯====∑ααP X P X X)(kN 07.11707.010242sin 2 0sin 2 0A A ↑=⨯+⨯=+==--=∑ααP ql Y P qlY Y )( m kN 28.404707.0108423sin 83 0sin 422ql 022A A ⋅=⨯⨯+⨯⨯=⋅+==⋅-⎪⎭⎫⎝⎛+-=∑l P ql m l P l l m M A αα力系既然平衡,则力系中各力在任一轴上的投影代数和必然等于零,力系中各力对任一点之矩的代数和也必然为零。
因此,我们可以列出其它的平衡方程,用来校核计算有无错误。
校核028.40407.114424242A A B =+⨯-⨯⨯=+⋅-⨯=∑m l Y l ql M 可见,Y A 和m A 计算无误。
【2】 钢筋混凝土刚架,所受荷载及支承情况如图4-12(a )所示。
已知kN 20 m,kN 2 kN,10 kN/m,4=⋅===Q m P q ,试求支座处的反力。
【解】:取刚架为研究对象,画其受力图如图4-12(b )所示,图中各支座反力指向都是假设的。
本题有一个力偶荷载,由于力偶在任一轴上投影为零,故写投影方程时不必考虑力偶,由于力偶对平面内任一点的矩都等于力偶矩,故写力矩方程时,可直接将力偶矩m 列入。
设坐标系如图4-12(b )所示,列三个平衡方程)(kN 3446106 06 0A A ←-=⨯--=--==++=∑q P X q P X X)(kN 296418220310461834 036346 0B B A ↑=⨯++⨯+⨯=+++==⨯--⨯-⨯-⨯=∑q m Q P Y q m Q P Y M)(kN 92920 00B A B A ↓-=-=-==-+=∑Y Q Y Q Y Y Y校核3462203102)9(6)34(6363266 C=⨯⨯+-⨯+⨯+-⨯--⨯=⨯+-++-=∑qmQPYXMAA说明计算无误。
李廉锟《结构力学》(上册)配套题库【课后习题】(静定梁与静定刚架)【圣才出品】
第3章静定梁与静定刚架复习思考题1.用叠加法作弯矩图时,为什么是竖标的叠加,而不是图形的拼合?答:因为有时叠加弯矩图时的基线与杆轴不重合,如果用图形拼合,不能完全保证叠加后弯矩值是实际同一点的两个弯矩相加后的值。
2.为什么直杆上任一区段的弯矩图都可以用简支梁叠加法来作?其步骤如何?答:(1)因为根据内力分析可以求出直杆任一区段两端的内力,所以直杆任一区段两端均可以看成两端有外力(集中力或集中力偶)的简支梁。
(2)设有直杆任一区段简支梁AB,具体步骤如下①分解作用区段AB上的荷载;②分别作出分解荷载下的弯矩图;③求解出区段AB两端的弯矩M A和M B;④将两端弯矩M A和M B绘出并连以直线(虚线);⑤以步骤④中的虚线为基线叠加各个分解荷载下的弯矩图(竖标叠加),得最终弯矩图。
3.试判断图3-1所示刚架中截面A、B、C的弯矩受拉边和剪力、轴力的正负号。
图3-1答:轴力以受压为负,受拉为正;剪力以使截面顺时针旋转为正。
(1)截面A:左边受拉,剪力为负,轴力为负;(2)截面B:右边受拉,剪力为正,轴力为正;(3)截面C:左边受拉,剪力为正,轴力为正。
4.怎样根据静定结构的几何构造情况(与地基按两刚片、三刚片规则组成,或具有基本部分与附属部分等)来确定计算反力的顺序和方法?答:(1)与地基按两刚片,例如简支梁,支座反力只有三个,对某一端点取矩直接解除约束反力。
(2)与地基按三刚片规则组成,例如三铰刚架,支座反力有四个,考虑结构整体的三个平衡方程外,还需再取刚架的左半部(或右半部,一般取外荷载较少部分)为隔离体建立一个平衡方程方可求出全部反力。
(3)具有基本部分与附属部分时,按先附属后基本的计算顺序,求解支座反力。
5.当不求或少求反力而迅速作出弯矩图时,有哪些规律可以利用?答:当不求或少求反力而迅速作出弯矩图时,如下规律可以利用(1)结构上若有悬臂部分及简支梁部分(含两端铰接直杆承受横向荷载)弯矩图可先行绘制出;(2)直杆的无荷区段弯矩图为直线和铰处弯矩为零;(3)刚结点的力矩平衡条件;(4)外力与杆轴重合时不产生弯矩;(5)外力与杆轴平行及外力偶产生的弯矩为常数;(6)对称性的合理利用;(7)区段叠加法作弯矩图。
3静定梁和静定刚架
2a 2a
NCA VCA MCA
4qa - 2qa
AC杆弯矩图的做法:
16qa2
8qa2
C
A 16qa2
AC杆剪力图的做法: A端剪力的确定
X 0,VAC 4qa
12qa -
VAC
+ 4qa
NAC VAC 4qa
-2qa
AC杆轴力图的做法:
NAC
2qa
A端轴力的确定
Y 0, NAC 2qa 0
q
MDC
D
VDC P
NDC
D
VDA
MDA
NDA
NDA
VDA
MDA
D
A FAX
FAY
FCY
C
FCX
内力求出后,用图形表示杆各截面的内力变化:
把内力的大小按一定的比例尺, 以垂直于杆轴的方向标出
且规定: 剪力和轴力画在杆的任一侧,标明正负号、大小; 弯矩画在杆件的受拉纤维一侧,标明大小,不标明正负号;
∑Y=0,VDC= -2qa ; ∑X=0,NDC= -12qa
∑M=0,MDC= -24qa2(上侧受拉)
VA
2a 2a
MDC
NDC
VDC
HA
CD杆弯矩图做法 由于CD杆没有作用荷载,两端连线即可
16qa2
24qa2
C 4q
A
6qa2
D 12qa
B
4a
1.5a 1.5a
2a NDB
2a y
3、在D结点的右侧作截面,取BD为研究对象,
桁架,铰结点约束
刚架,有刚结点约束
(二)、基本形式 1. 悬臂刚架
细石混凝土
2. 简支刚架
结构力学 第三章 静定梁和静定平面钢架
2、截面法 若要求某一横截面上的内力,假想用一平面沿杆轴垂直方向将该 截面截开,使结构成两部分;在截开后暴露的截面上用力(内力)代 替原相互的约束。
对于截开后结构的两部分上,截面上的内力已成为外力,因此,
由任一部分的静力平衡条件,均可列出含有截面内力的静力平衡方程。 解该方程即将内力求出。
3、截面内力 截开一根梁式杆件的截面上有三个内力(分量),即:轴力FN 、 剪力FQ和弯矩Μ 。
dFN/dx=-qx
dFQ/dx=-qy dM/dx=Q
d2M/dx2=-qy
增量关系: DFN=-FPx
DFQ=-FPy
DM=m
1)微分关系及几何意义: dFN/dx=-qx dFQ/dx=-qy dM/dx=Q d2M/dx2=-qy (1)在无荷载区段,FQ图为水平直线;
当FQ≠0时,Μ图为斜直线;
右右为正。
FQ=截面一侧所有外力在杆轴垂直方向上投影的代数和。左上为正, 右下为正。
Μ =截面一侧所有外力对截面形心力矩代数和。弯矩的竖标画在杆
件受拉一侧。
例3-1-1 求图(a)所示简支梁在图示荷载下截面的内力。
解:1)支座反力 ∑ΜA=0 FBy×4﹣10×4×2﹣100× (4/5)×2=0 Fby=60kN (↑) ∑ΜB=0 FAy=60kN (↑) ∑Fx= 0 FAx+100×(3/5)=0 FAx=-60kN (← ) 由 ∑Fy= 0 校核,满 足。
(下侧受拉)
区段叠加法求E、D截面弯矩; ΜE=20×42/8+120/2=100kNm ΜD=40×4/4+120/2=100kNm
(下侧受拉) (下侧受拉)
内力应考虑
说明:集中力或集中力偶作用点,注意对有突变的 分两侧截面分别计算。
结构力学 静定梁与静定刚架习题
M BC 2kNm
3、取AB为研究对象
MBA
或 取B节点为研究对象
2 kNm 2 kNm MBA
MBA=0
-4 kN
练习题
2
M
2
B
A 2m 1m
D
2m L P L L L L L
P
练习题
L
P L
P
L
P L
练习题
C
1kN/m
VC A VA 4m D
3、取AD为研究对象 B 4m
4m
VA
MDA VDA
3 kNm
3、取BCD为研究对象
2 kN
B
A 2m
C
D
1m
1m
MBC
1m
MBC= -1 kNm,上侧 1
MBA
1、取整体为研究对象
VC=4 kN
HA=2 kN 2、取AB为研究对象 MBA= - 2 kNm ,右侧受拉
B
2 A
C
D
练习题 2kN/m
C
8kN
20kNm 2m
3、BC为悬臂部分 MBC= 4 kNm,左侧
20 kN/m
4m
VB
MCB
MCD=90
MCF=135
VF
3.基本部分的计算,为悬臂杆。
VB=135
ME=135×3=405 kNm,左侧受拉
4. 作出弯矩图。
90 90
405
135
45
[习题3] 作弯矩图,剪力图,轴力图。
1.取整体为研究对象, ∑MA=0 ,VC×94×5-2×5×2.5=0 , 解得VC= 5 kN , ∑Y=0,VA=5 kN ∑X=0,HA=8 kN 8 kN 4 kN 2 kN/m HA VA VC
04静定刚架--习题
XC YC
B
YB
M A 2Pm(
)
结构力学电子教程
4 静定刚架
4.9-4.14 计算刚架指定截面内力。 4.9 计算题4-1图刚架结点C各杆截面内力。 2kN/m N CD C 解: Q C D M CD CD
4m
2kN/m
D
A
6m
B
2kN/m
(1)取CB为隔离体
C
M CA QCA N CA
NCE 0, QCE 2P, M CE 2Pa
(右边受拉)
B
结构力学电子教程
4 静定刚架
4.13 计算题4-13图刚架结点D各杆截面内力。 解: 2kN NDC 4 3 4 16kN
3kN/m 4m C D E
QDC 5.33kN
M DC 4 3 3 4 2 5.33 6 68kN m(上边受拉)
M A 0 : 2 5 7.5 YB 10 0
XA
2.08kN
B
5m
YC XC C
XB M B 2.08kN YB 7.5kN
YB 7.5kN( )
0 : 2 5 2.5 YA 8 0
YA 2.5kN( ) X 0 : X A XB 0
A
2m
9kN
2m
C
2m
6.31kN
9.69kN
NEF 0 QEF 8 9.69 1.69kN
M EF 9.69 4 8 2 22.76kN m (下边受拉) NEB 0
1.69kN1.69kN 9kN 22.76kN m 4.26kN m E 9kN 27kN m
结构力学章节习题及参考答案
习题2.1(6)图
习题2.2填空
(1)习题2.2(1)图所示体系为_________体系。
习题2.2(1)图
(2)习题2.2(2)图所示体系为__________体系。
习题2-2(2)图
习题2.2(5)图
(6)习题2.2(6)图所示体系为_________体系,有_________个多余约束。
习题2.2(6)图
(7)习题2.2(7)图所示体系为_________体系,有_________个多余约束。
习题2.2(7)图
习题2.3对习题2.3图所示各体系进行几何组成分析。
习题2.3图
第3章静定梁与静定刚架习题解答
习题7.2(4)图
习题9.3用力矩分配法计算习题7.3图所示连续梁,作弯矩图和剪力图,并求支座B的反力。
(1)(2)
习题7.3图
习题9.4用力矩分配法计算习题7.4图所示连续梁,作弯矩图。
(1)(2)
习题7.4图
习题9.5用力矩分配法计算习题7.5图所示刚架,作弯矩图。
(1)(2)
习题7.5图
第11章影响线及其应用习题解答
习题11.1是非判断题
(1)习题8.1(1)图示结构BC杆轴力的影响线应画在BC杆上。( )
习题8.1(1)图习题8.1(2)图
(2)习题8.1(2)图示梁的MC影响线、FQC影响线的形状如图(a)、(b)所示。
(3)习题8.1(3)图示结构,利用MC影响线求固定荷载FP1、FP2、FP3作用下MC的值,可用它们的合力FR来代替,即MC=FP1y1+FP2y2+FP3y3=FR 。( )
结构力学-静定结构的内力分析
计算多跨梁的原则:先附属,后基本。
多跨梁
单跨梁
单跨梁内力图
多跨梁内力28 图
[例1] 作多跨静定梁的弯矩图和剪力图
40KN/m
120KN
A
D
B
C
3m
8m
2m
6m
解: (1)作层次图
40KN/m
C
A B
120KN D
29
(2)求反力
40KN/m A
B 8m
C 2m
120KN D
3m 6m
C
120KN D
A
mC 0
FAH
FBH
FAV
l 2 FP1 f
l 2 a1
FA0V
a2
C
FP2
f
B FBH
FBV
l
FP2
C
B
FH
M
0 C
f
FB0V 55
三、 静定拱的内力计算:
1. 静定拱的内力有: M、 FQ 、FN 。
弯矩:使拱内侧受拉为正。
145KN 8m
60KN
60KN
B 235KN
3m
2m
6m
60KN
32
[例2] 作多跨静定梁的弯矩图和剪力图
q
A
B
C
qa
D
E
2qa2 F
a/2 a/2
a
a
a/2 a/2
q
AB
C 7qa/ 8
3qa/8 D
qa D
2qa2
E
F
3qa/8
6qa/8
11qa3/38
作弯矩图: 3qa2
qa2
8
8
结构力学第03章习题课
集中力 作用点
集中力
铰处和自由端
偶作用点 有力偶 无力偶
剪水 力平 图线
斜 直 线
Q
为 零 处
有突变(突 变值等于该 集中力的 值)
如 变 号
无变化
无变化 无变化
弯 矩 图
斜 直 线
抛物线 (凸向 与q指向
相同)
有 极 值
有尖角(尖 角方向与集 中力指向相 同)
有 极 值
有突变 (突
变值等于该 集中力偶 值)
等于该 力偶值
为 零
(2)增量关系
DN = -Px DQ = -Py DM = m
(3)积分关系
NB = N A -
xB xA
q
x
dx
QB = QA -
xB xA
q
y
dx
M B = M A +
xBQdx
xA
.
3-6
二、分段叠加法作弯矩图
1、叠加原理 由各力分别产生的效果(内力、应力、变形、位移等)的 总和等于各力共同作用时所产生的效果。
(5) 内力图的绘制规定同前。
.
3-9
3、力学特性 (1) 具有超静定结构、静定结构两者的优点,截面弯矩 小,抗弯刚度好;
(2) 避开了超静定结构的缺点,不受温度变化、支座移 动(沉陷)的影响;
(3) 要保证较好的力学特性,关键是中间铰的设置。
四、静定刚架
1、刚架的特点
(1) 由直杆组成的结构(一般梁与柱刚结而成); (2) 结点全部或部分为刚结点; (3) 刚结点承受和传递弯矩,结点处各杆无相对转动; (4) 弯矩是刚架的主要内力。
该体系的组成次序为先固定
DF和GH,再固定FG和HI。因此 基本部分为DF和GH,附属部分为 FG和HI。
第三章:静定梁和静定刚架
二.多跨静定梁 多跨静定梁
第三章 静定梁与静定钢架 二.多跨静定梁 多跨静定梁 基本部分--能独立 基本部分--能独立 1.多跨静定梁的组成 承载的部分。 1.多跨静定梁的组成 承载的部分。 附属部分--不能独 附属部分--不能独 立承载的部分。 立承载的部分。
基、附关系层叠图
练习:区分基本部分和附属部分并画出关系图 练习 区分基本部分和附属部分并画出关系图 第三章 静定梁与静定钢架
ql 2 / 2
Q=0的截面为抛 Q=0的截面为抛 物线的顶点. 物线的顶点.
ql / 2
ql
2
M图 Q图
第三章 静定梁与静定钢架
例: 作内力图
ql 2 / 2
M图 Q图
第三章 静定梁与静定钢架
1.无荷载分布段(q=0),Q图为水平线,M图为斜直线. 1.无荷载分布段 无荷载分布段(q=0),Q图为水平线 图为斜直线 图为水平线,M图为斜直线. 2.均布荷载段(q=常数),Q图为斜直线,M图为抛物线, 2.均布荷载段 常数 图为斜直线 图为抛物线 均布荷载段(q=常数),Q图为斜直线,M图为抛物线, 且凸向与荷载指向相同. 且凸向与荷载指向相同. 3.集中力作用处,Q图有突变,且突变量等于力值; M 3.集中力作用处 图有突变 且突变量等于力值; 集中力作用处,Q图有突变, 图有尖点,且指向与荷载相同. 图有尖点,且指向与荷载相同.
P
1 Pl 4 1 Pl 4
P 1 Pl
4
l/2
q
l/2
l/2
1 2 ql 4
l/2
l/2
ql 1 ql 2 4
l/2
l/2
l 静定梁与静定钢架
§3-2 静定刚架受力分析
一. 刚架的受力特点
结构力学第3章静定梁与静定刚架(f)
§3-2 多跨静定梁
例3-4 试作图a所示多跨静定梁的内力图,并求出各支座反力。
解:不算反力 先作弯矩图
1)绘AB、GH段弯矩图,与悬臂梁相同; 2)GE间无外力,弯矩图为直线,MF=0,可绘出; 同理可绘出CE段; 3)BC段弯矩图用叠加法画。
§3-2 多跨静定梁
由弯矩与剪力的微分关系画剪力图
由若干根梁用铰相联,并用若干支座与基础相联而组成的静定结构。
分析多跨静定梁的一般步骤
对如图所示的多跨静定梁,应先从附属部分CE开始分析:将 支座C 的支反力求出后,进行附属部分的内力分析、画内力图, 然后将支座 C 的反力反向加在基本部分AC 的C 端作为荷载,再 进行基本部分的内力分析和画内力图,将两部分的弯矩图和剪力 图分别相连即得整个梁的弯矩图和剪力图 。
弯矩图为直线:其斜率为剪力。图形从基线顺时针转,
剪力为正,反之为负。 弯矩图为曲线:根据杆端平衡条件求剪力,如图c。
剪力图作出后即可求支座反力 取如图e的隔离体可求支座 c— 的反力 弯矩—剪力 支座反力
§3-3 静定平面刚架
常见静定刚架的型式
悬臂刚 架
简支刚 架
三铰刚 架
§3-3 静定平面刚架
R FSR F E SD 8kN
FSR F 12kN
FSR B 0
§3-1 单跨静定梁
用截面法计算 控制截面弯矩。
MC 0
M A 20kN 1m 20kN m
M D 20kN 2m 58kN 1m 18kN m M E 20kN 3m 58kN 2m 30kN 1m 26kN m M F 12kN 2m 16kN m 10kN m 18kN m
02彭旭龙-结构力学机考题库二(静定梁与刚架)(选择题-已补充)
说明:(1) 总成绩构成:平时作业20分,机考20分,期末考试60分,合计共100分。
(2) 机考题型分二类,一、判断题(10分);二、选择题(10分)。
(3) 机考题库一为判断题已有120题,机考题库二为选择题已有110题。
(4) 机考时,每位学生从题库一、二中各随机抽取6题,共作12题,每小题2分,满分20分。
机考时间为一节课(30分钟)A、B、C、D四选一选择题(已有110题,待补充)二、静定梁与刚架(已有19题)1.图示结构中,B点处两杆端的杆端弯矩(设内侧受拉为正)为:( C )A. M BA = Fa,M BC = -Fa;B. M BA =2Fa,M BC = -2Fa;C. M BA = M BC = Fa;D. M BA = M BC = 0。
2.图示结构BA杆B端的杆端弯矩M BA(设左侧受拉为正)为:( C )A. 2Fa;B. Fa;C. 3Fa;D. -3Fa。
3.图示结构杆端弯矩M BA(设左侧受拉为正)为:( B )A. -Fa;B. Fa;C. -2Fa;D. 2Fa。
4.静定结构的内力分布,与:( A )A. EI无关;B. EI相对值有关;C. EI绝对值有关;D. E无关,I有关。
5.图示结构C截面的弯矩M C(设下侧受拉为正)为:( B )A. M C = 0;B. M C = +Fa;C. M C = -Fa;D. M C = +Fa/2。
6.图示结构杆端A的弯矩M A(设下侧受拉为正)为:( B ) A. M A = 0;B. M A = +Fa;C. M A = -Fa;D. M A = +2Fa。
7.在图示结构中:( B )A. ABC段有内力;B. ABC段无内力;C. CDE段无内力;D. 全梁无内力。
8.图示结构中,支座A发生转动ϕ,则:( D )A. ABC部分有内力,CD部分有内力;B. ABC部分无内力,CD部分有内力;C. ABC部分有内力,CD部分无内力;D. ABC部分无内力,CD部分无内力。
第三章 静定梁与静定刚架
§3-1 单跨静定梁1 反力的求解简支梁伸臂梁悬臂梁 三个支座反力,可由三个平衡方程求解2 截面法求内力轴力(N)—截面一侧所有外力沿杆轴方向投影的代数 和。
以拉为正,压为负。
N+N剪力(Q)—截面一侧所有外力沿垂直杆轴方向投影的 代数和。
使隔离体顺时针转为正,逆时针转为负。
Q+Q弯矩(M)—截面一侧所有外力对截面形心力矩的代数 和。
弯矩图画在杆件的受拉侧!!!截面法—将指定截面切开,取截面任一侧部 分为隔离体,利用平衡条件求得内力。
P1 A由∑X=0 得 HA 由∑MB=0 得 VAP2K由∑Y=0 得 VBBP1HA VA A K QM N步骤:先求反力,再求指定截面的内力。
隔离体与周围约束要全部截断,用相应的约束力代替。
约束力要符合约束力的性质: 链杆: 轴力受弯杆件:轴力、剪力、弯矩 只画隔离体本身所受的荷载与截断约束处的约束力。
未知力假设为正方向,已知外力按实际方向画出。
任 意 截 面{轴力=截面一侧所有轴线方向力的代数和 剪力=截面一侧所有垂直轴线方向力的代数和 弯矩=截面一侧所有力对截面取矩的代数和例:求M、 Q、 N值。
A FP1=10kN C2m 2m FP2=5kNB解:1) 求支反力FxA FP1=10kN FP2=5kN FyBFyA∑Fx=0 ∑MA=0 ∑Fy=0FxA=-5kN ( ) FyB =5kN ( ) FyA =5kN ( )2)取隔离体,求C左截面内力左部分为隔离体 MCL LA5kN 5kNCNCLQC∑ FX = 0 ∑ FY = 0 ∑MX = 0L N C = 5 KN L Q C = 5 KN L M C = 10 KN ⋅ m3)取隔离体,求C右截面内力 右部分为隔离体 NCRMCRCRB5kNQC∑ FX = 0 ∑ FY = 04)画内力图 M图10kN⋅ mR NC = 0 R Q C = −5 KN R M C = 10 KN ⋅ m∑MX=0Q N5kN5kNAaPb lBPb lPab lPa lq AlBql 2ql 82ql 2a m lm Aa l bBm lb m lm l内力图-表示结构上各 截面内力数值的图形 P 横坐标--截面的位置 A 纵坐标--内力的数值a l bPbB弯矩图—必须绘在 杆件受拉的一侧, 不须标正负号。
李廉锟结构力学3
【例3-1】 1.反力 2.控制截面 C-A-(D)-EF-GL-GR-B 3.FS-连线 4.M-连线 直线 曲线
(极值)
滚小球作Q图 力推小球同向走,力尽小球平行走 集中力偶中间铰,方向不变无影响 反推小球回到零,上正下负剪力图
斜梁 基本方法 ——截面法 斜杆内力 ——FS、FN随截面方向倾斜 1.支座反力 2.内力: M FS、FN:投影方向 3.内力图 4.斜长分布→水平分布
§3—2 多跨静定梁
1. 几何组成 基本部分——独立地维持其几何不变的部分 附属部分——依靠基本部分才能维持其几何不变 的部分 层叠图——层次关系
2.受力分析——特点 基本部分——荷载作用其上,附属部分不受力 附属部分——荷载作用其上,基本部分受力 3.内力分析步骤 未知反力数 = 独立平衡方程数 计算——按几何组成的相反次序求解 (避免解联立方程) 反力、内力计算,内力图绘制——同单跨梁
【例3-5】
1.简支
-反力 2.M图 3.FS图 4.FN图 5.校核
【例3-6】 1、反力* 2、M图 3、FS图 AD、BE *DC、CE: -M→FS 4、FN图 AD、BE DC、EC (结点)
【例3-7】组成分析——基本、附属部分 按组成相反次序,分别按基本形式计算
§3-4 快速绘制 M 图
任意直杆段——适用 叠加法作M图 (1)求控制截面值 外力不连续点 (F,M作用点, q的起点,终点等) (考虑全部荷载) (2)分段画弯矩图 控制截面间无荷载 ——连直线 控制截面间有荷载(q、F) ——连虚线, ——再叠加标准M0图
5.绘制内力图的一般步骤 (1)求反力(悬臂梁可不求) (2)分段 ——外力不连续点:q端点,F、M作用点 (3)定点 ——求控制截面内力值(全部荷载) (4)连线 ——按微分关系 连直线 曲线:连虚线,叠加简支梁M0图
《结构力学》第三章 静定梁和静定刚架.
返19回
§3—4 少求或不求反力绘制弯矩图
弯矩图的绘制,以后应用很广,它是本课最 重要的基本功之一。
静定刚架常常可少求或不求反力绘制弯矩图。
例如:1. 悬臂部分及简支梁部分,弯矩图可先绘出。
2. 充分利用弯矩图的形状特征(直线、零值)。
3.刚结点处的力矩平衡条件。
4. 用叠加法作弯矩图。
5. 平行于杆轴的力及外力偶产生的弯矩为常数。 6. 与杆轴重合的力不产生弯矩等。
满足投影平衡条件。
0 24kN C 0
22kN
24kN 22kN (返1b8 回)
例题 3—6 作三铰刚架的内力图
→HA VA↑ 26.7 20 6.7
解(:1)求反力
←HB
↑VB
由(∑2Y由)=V刚0A求VH作得架=AA杆=弯整1=30H体端矩0Bk8平4=弯图N6衡↑矩.,66,以,7kV∑D3NMB0C(=kBN杆1=→0o↑为k可←N例得↑)
M图: 通常检查刚结点处是否满足力矩的平衡条件。
例如取结点C为隔离体(图a),有:
∑MC=48-192+144=0 满足这一平衡条件。
48kN·m
C
192kN·m
Q(N)图:可取刚架任何一部分为隔
离体,检查∑X=0 和 ∑Y=0 是否满足。 144kN·m (a)
例如取结点C为隔离体(图b), 有: ∑X=24-24=0 ∑Y=22-22=0
dQ q(x) dx
dM Q dx
d2M dx2
q(x)
据此,得直梁内力图的形状特征
梁上情况 q=0
q=常数
q↓ q↑
P 作用处
m 铰或
作用处 自由端 (无m)
水平线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、取节点D为研究对象
MDC
4
4
MDB
VDB
VB
M DB 4kNm(下侧受拉)
M DC 8kNm(左侧受拉 )
练习题
C
A
4
B
8D 4
单位:kNm
练习题
2 kN B
2 kN D
3、由节点B的平衡
MBD
2m
HA A
VC
2m 1m
1、取整体为研究对象,求支座反力
VC=5kN, HA=2kN 2、取AB为研究对象,
F
a
a
a
5、取EF为研究对象
MEF
MEF= -11qa2/6 右侧受拉
11qa/12
qa2/12 4qa2/3 25qa2/12
11qa2/6
小结:
1、结构是由杆件通过结点连接而成; 2、作结构的弯矩图,就是做杆件的弯矩图; 3、作杆件的弯矩图,就是确定该杆件的杆端的弯矩; 4、确定杆端的弯矩,就要用截面法,暴露该杆端弯矩; 5、每个杆端弯矩确定后,用直杆弯矩的叠加法做杆件的弯矩图
4m A
XB
YB
3、取BHG为研究对象,
∑MG=0 YB×4 = XB×5
-------(2)
由两式解得:YB=15 kN ,XB= 12 kN 从而,MHB=60 kNm(右侧受拉)
XB YB
4、 取ECFGHB为研究对象,
D
∑ME=0,得:XC= -24 kN
MFC= 60 kNm(左侧受拉)
3、BC为悬臂部分
2m
MBC= 4 kNm,左侧
4m
C 20
4
MBA
B
36
D 16
A 单位:kNm
练习题
8 kN
6 kN
B
C
16 kNm 2m
D 2m
A
2m
2m
2m
1、取整体,求支座反力
E
MDE
2、取DE为研究对象
HA= - 7 kN VA= - 4 kN HE=1 kN
MDE=2 kNm 右侧受拉
q qa
2qa2
C
D
E
a
B
a
A
F
a
a
a
MBC 2qa2
3、在B的上侧做截面,
MBC=25qa2/12 内侧受拉
取AB为研究对象
q qa
2qa2
C
D
E
a
B
a
A
F
a
a
a
MCB
4、取ABC为研究对象
MCB=4qa2/3 内侧受拉
4qa2/3 qa2/12
25qa2/12
q qa
2qa2
C
D
E
a
B
a
A
静定梁与静定刚架习题
[例题1] 作弯矩图
取整体为研究对象, ∑MB=0,VAL+M=0, 得:VA= -M/L
HA VA
HB VB
∑Y=0,VA+VB=0,得:VB= M/L
取AC为研究对象,
HA VA
∑MC=0,VAL/2=HAL, 得:HA= -M/2L(向左) ∑X=0,HA -HB=0, 得:HB= HA= -M/2L(向右)
A
∑Y=0,YE= -15 kN MFE= 30 kNm(上侧受拉)
120kNm
5、取DE为研究对象
MDE=60 kNm (下侧受拉)
YE
XC
XB
YB
4.弯矩图
30
60
60
60
30
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
HF
VF
HB 2kN,VB 3kN
练习题
C
D
B
18 kNm
E 3m
4、取结点E的弯矩平衡
MED
18
12
3m
MED= - 6 kNm,
A
F
上侧受拉
2m 2m
3、取EF为研究对象
5、取BC为研究对象
E
MEF=12 kNm,
MEF
左侧受拉
MCB MCB= -6 kNm, 右侧受拉
F -2 3
-2 -3
练习题 C
D E
B
A
F
2m 2m
6、取AB为研究对象
VB= -3 HB= -2
18 kNm 3m 3m
A MAB= -6 kNm 左侧受拉
6
C
D
6
12 E
B
6
A
F
单位:kNm
练习题
3 kNm
B 2 kN
2 kN/m
3、取BCD为研究对象
C D 1m
A
1m
MBC
2m 1m
MBC= -1 kNm,上侧
MDE 80
160
MEF
0
MGF 160
MHG 40
60
80 160
160
40
100
60
单位:kNm
练习题
2qa2
q
C
D
qa
2、取AB为研究对象
E
a
B
a
A
F
MB
A
aaa
MBA=qa2/12
1、求支座反力
右侧受拉
取整体为研究对象,
VA= -5qa/6,VF=11qa/6
再取一半为研究对象
HF=11qa/12,HA= -qa/12
C
q
2qa2
q
E
F 6qa2 G
4qa2
B
2qa2
q
E
F
q G
6qa2 H C
H
B
C
练习题
q
q
3qa2/2
qa2
qa2/2
6a RH
qa2 2a
qa2
RC
qa 3qa/2
3qa/2 qa
VB
qa
3qa/2 MB VB
qa2/2 3qa2/2
3qa2/2
qa2
3qa2/2
qa2 qa2/2
qa2/2
E B
F
G
20kN/m 2m
H
2m
C
3m
3m
2m 2m 2m
5、取HC为研究对象
6、取GHC为研究对象
MHC
MGH
MHC= -60 kNm,右侧
MGH= -160 kNm
右侧受拉
30kN D A
E B
F
G
20kN/m 2m
H
2m
C
3m
3m
2m 2m 2m
7、由结点D、E、G、H的弯矩平衡,求MDE,MEF,MGF,MHG
3m
3m
2m 2m 2m
1、求支座约束反力
(1)取整体为研究对象 HC=30 kN
(2)取FGHC为研究对象
VC=120 kN
F
G
20kN/m
H
HC
C
VC
30kN D A
E B
F
G
20kN/m 2m
H
2m
C
3m
3m
2m 2m 2m
MDA
(3)取整体为研究对象,以B为力矩中心
VA=80/3 kN (4)取整体,Y方向平衡,VB= -320/3 2、取AD为研究对象,
[练习题] 作弯矩图
1.几何构造分析
120 kNm
2.5m 2.5m
4m
2m 2m
4m
ADE、BHG看作链杆,CEFG、地基看作刚片 由两刚片法则得,构成几何不变,无多余约束的体系。
2. 求支反力
D
支座A的约束力的作用线为AE,
如图,取整体为研究对象
E O
120kNm
∑MO=0 YB×10 = XB×2.5+120 ---(1)
1、取整体为研究对象
VC=4 kN
MBA
HA=2 kN
2、取AB为研究对象
MBA= - 2 kNm ,右侧受拉
1
B
CD
2
A 单位:kNm
练习题
2kN/m
C
8kN
B
20kNm
D
VD
HA
A
2m
2m
1、取整体为研究对象 VD=18 kN,HA= 12 kN
2、取AB为研究对象 MBA= -32 kNm,右侧 HA
小结:作结构弯矩图的步骤
1、对结构进行几何构造分析,确定计算顺序; 2、一般先求出支座反力; 3、找控制截面(杆端),利用截面法确定杆端内力; 4、杆件两端弯矩确定后,先连虚线,然后叠加把该杆件看作
简支梁,受同样荷载时的弯矩图; 5、弯矩图的校核重点
(1)杆端铰结时,除杆端作用力矩外,杆端没有弯矩; (2)结点弯矩是否平衡; (3)连接两个杆端的结点,其杆端弯矩图画在同侧。
VBA
MBA
MBA
MBD=MBA= - 4 kNm; 下侧受拉
4 、做弯矩图
2kNm
B
D
4kNm
A
HA
MBA= -4kNm,右侧受拉
练习题
4kNm A