大学物理-波动光学2
大学物理第十七章波动光学(二)双缝干涉
3. 菲涅耳双棱镜干涉实验
pM
E
s1
ds
s2
N E`
B
C
4. 菲涅耳双面镜干涉实验
点光源 s
屏
平面镜
M1
A
C
M2
B
4. 菲涅耳双面镜干涉实验
点光源 s
屏
平面镜
s1
M1
A
虚光源
s2
C
M2
B
4. 菲涅耳双面镜干涉实验
xk红
k
D d
红
x(k 1)紫
(k
1)
D d
紫
干涉明暗条纹的位置
由 xk红 = x(k+1)紫 的临界情况可得
k红 (k 1)紫
将 红 = 7600Å, 紫 = 4000Å代入得 k=1.1
因为 k只能取整数,所以应取 k=2
这一结果表明:在中央白色明纹两侧, 只有第一级彩色光谱是清晰可辨的。
当容器未充气时,
测量装置实际上是杨氏
l
·P`
双缝干涉实验装置。其
s1
零级亮纹出现在屏上与 s
p0
S1 、S2 对称的P0点.从
s2
S1 、S2射出的光在此处
相遇时光程差为零。
容器充气后,S1射出的光线经容器时光程要增加, 零级亮纹应在 P0的上方某处P出现,因而整个条纹要向 上移动。
干涉明暗条纹的位置
高等教育大学教学课件 大学物理-波动光学
§17-2 双缝干涉 1. 杨氏双缝实验
托马斯• 杨
杨氏双缝实验
相干光的获得:分波阵面法
大学物理课件光学-2
驶员从机上向下观察,他所正对的油层厚度为460nm,
则他将观察到油层呈什么颜色?
(2) 如果一潜水员潜入该区域水下,又将看到油
层呈什么颜色?
解 (1) Δr 2dn1 k
2n1d , k 1,2,
k
k 1, 2n1d 1104 nm
k 2,
符合能量守恒定律.
11 - 3 薄膜干涉
当光线垂直入射时 i 0
当 n2 n1 时
Δr
2dn2
2
当 n3 n2 n1 时
Δr 2dn2
第十一章 波动光学
n1 n2 n1
n1 n2
n3
例
11 - 3 薄膜干涉
第十一章 波动光学
例1 一油轮漏出的油(折射率 n1 =1.20)污染了某
海域, 在海水( n2 =1.30)表面形成一层薄薄的油污.
2n
11-4 劈尖 牛顿环
第十一章 波动光学
2)厚度线性增长条纹等间距,厚度非线性增长 条纹不等间距
3)条纹的动态变化分析( n, , 变化时)
11-4 劈尖 牛顿环
第十一章 波动光学
4 )半波损失需具体问题具体分析
n n
n1 n3
n2
n1 n2 n3
11 - 5 迈克耳孙干涉仪
一 迈克耳孙干涉仪
r (k 1)R (k 1,2,3,)
2
r kR (k 0,1,2,)
1)从反射光中观测,中心点是暗点还是亮点? 从透射光中观测,中心点是暗点还是亮点?
2)属于等厚干涉,条纹间距不等,为什么?
3)将牛顿环置于 n 1 的液体中,条纹如何变化?
4)应用例子:可以用来测 量光波波长,用于检测透镜质 量,曲率半径等.
大学物理波动光学课件
麦克斯韦电磁理论:19 世纪中叶,英国物理学 家麦克斯韦建立了电磁 理论,揭示了光是一种 电磁波,为波动光学提 供了更加深入的理论根 据。
在这些重要人物和理论 的推动下,波动光学逐 渐发展成为物理学的一 个重要分支,并在现代 光学、光电子学等领域 中发挥了重要作用。
02 光的干涉
干涉的定义与分类
定义 分类 分波前干涉 分振幅干涉
干涉是指两个或多个相干光波在空间某一点叠加产生加强或减 弱的现象。
根据光源的性质,干涉可分为两类,分别是ห้องสมุดไป่ตู้波前干涉和分振 幅干涉。
波前上不同部位发出的子波在空间某点相遇叠加产生的干涉。 如杨氏双缝干涉、洛埃镜、菲涅尔双面镜以及菲涅尔双棱镜等
。
一束光的振幅分成两部分(或以上)在空间某点相遇时产生的 干涉。例如薄膜干涉、等倾干涉、等厚干涉以及迈克耳孙干涉
波动光学与几何光学的比较
几何光学
几何光学是研究光线在介质中传播的光学分支,它主要关注 光线的方向、成像等,基于光的直线传播和反射、折射定律 。
波动光学与几何光学的区分
波动光学更加关注光的波动性质,如光的干涉、衍射等现象 ,而几何光学则更加关注光线传播的几何特性。两者在研究 对象和方法上存在差异,但彼此相互补充,构成了光学的完 整体系。
VS
马吕斯定律
当一束光线通过两个偏振片时,只有当两 个偏振片的透振方向夹角为特定值时,光 线才能通过。这就是马吕斯定律,它描述 了光线通过偏振片时的透射情况。这两个 定律在光学和物理学中都有着广泛的应用 。
THANKS
感谢观看
分类
根据障碍物的大小和光波波长的相对 关系,衍射可分为菲涅尔衍射和夫琅 禾费衍射。
单缝衍射与双缝衍射
单缝衍射
大学物理下册波动光学习题解答
波动光学习题解答1-1 在杨氏实验装置中,两孔间的距离等于通过光孔的光波长的100倍,接收屏与双孔屏相距50cm 。
求第1 级和第3级亮纹在屏上的位置以及它们之间的距离。
解: 设两孔间距为d ,小孔至屏幕的距离为D ,光波波长为λ,则有=100d λ. (1)第1级和第3级亮条纹在屏上的位置分别为-5150==510m 100D x d λ=⋅⨯ -42503==1.510m 100D x d λ=⋅⨯ (2)两干涉条纹的间距为-42=1.010m D x dλ∆=⋅⨯ 1-2 在杨氏双缝干涉实验中,用06328A =λ的氦氖激光束垂直照射两小孔,两小孔的间距为1.14mm ,小孔至屏幕的垂直距离为1.5m 。
求在下列两种情况下屏幕上干涉条纹的间距。
(1)整个装置放在空气中; (2)整个装置放在n=1.33的水中。
解: 设两孔间距为d ,小孔至屏幕的距离为D ,装置所处介质的折射率为n ,则两小孔出射的光到屏幕的光程差为21()x n r r ndDδ=-= 所以相邻干涉条纹的间距为D x d n λ∆=⋅ (1)在空气中时,n =1。
于是条纹间距为9431.5632.8108.3210(m)1.1410D x d λ---∆==⨯⨯=⨯⨯ (2)在水中时,n =1.33。
条纹间距为9431.5632.810 6.2610(m)1.1410 1.33D x d n λ---⨯⨯∆=⋅==⨯⨯⨯1-3 如图所示,1S 、2S 是两个相干光源,它们到P 点的距离分别为1r 和2r 。
路径1S P 垂直穿过一块厚度为1t 、折射率为1n 的介质板,路径2S P 垂直穿过厚度为2t ,折射率为2n 的另一块介质板,其余部分可看做真空。
这两条路径的光程差是多少?解:光程差为 222111[r (n 1)t ][r (n 1)t ]+--+-1-4 如图所示为一种利用干涉现象测定气体折射率的原理性结构,在1S 孔后面放置一长度为l 的透明容器,当待测气体注入容器而将空气排出的过程中幕上的干涉条纹就会移动。
大学物理_物理光学(二)
大学物理_物理光学(二)引言概述:物理光学是大学物理课程中的一门重要分支,研究光的传播、干涉、衍射、偏振等现象,深入探讨光的波动性质。
本文将从五个大点出发,分别阐述物理光学的相关理论和实践应用。
1. 光的干涉现象:- 介绍光的干涉现象,包括两束光的干涉、干涉条纹的形成等。
- 讨论干涉的条件和原理,如杨氏双缝实验、牛顿环实验等。
- 解析干涉的应用,例如干涉仪的工作原理和干涉测量技术。
2. 光的衍射现象:- 解释光的衍射现象,包括单缝衍射、双缝衍射等。
- 探讨衍射的内容和原理,如惠更斯-菲涅尔原理等。
- 探索衍射的应用,例如衍射光栅的工作原理和衍射光谱仪的使用方法等。
3. 光和波的偏振:- 介绍光和波的偏振现象,以及光的偏振方式。
- 阐述偏振光的性质和产生机制,如马吕斯定律等。
- 探讨偏振光的应用,例如偏振片的使用和偏光显微镜的工作原理等。
4. 光的相干性和激光:- 讲解光的相干性,如相干长度和相干时间等概念。
- 探讨激光,包括激光的产生原理和特性,如激光的单色性和定向性等。
- 分析激光的应用,例如激光器的工作原理和激光在通信和医学领域的应用等。
5. 光的散射和色散:- 介绍光的散射现象,如瑞利散射和弗伦耳散射等。
- 阐述色散现象,包括光的色散和物质的色散。
- 探讨散射和色散的应用,例如大气散射对天空颜色的影响和光谱分析等。
总结:物理光学是探究光波动性质的重要学科,它涉及光的干涉、衍射、偏振、相干性、激光、散射和色散等多个方面。
本文通过概述以上五个大点,详细介绍了物理光学的相关理论和实践应用,希望能够对读者对物理光学理解有所助益。
大学物理第十七章波动光学(二)双缝干涉
的极限宽度:
b B
d
d B
b
光场的空间相干性:
*描述光源线宽度对干涉条纹的影响。 *反映扩展光源不同部分发光的独立性。
光源沿y轴方向扩展时,各点光源的各套干涉纹 发生非相干性叠加,条纹更加明亮,所以用狭 缝线光源
(c)光的非单色性对条纹可见度的影响
实际光源都发出非严格单色波,
I
条纹的移动 x D
d
(1)d,D一定时,若λ变化,则Δx将怎样变化?
(2) λ,D一定时,条纹间距Δx与d的关系如何?
(3)白光照射双缝: 零级明纹:白色 其余明纹:彩色光谱
高级次重叠。 S*
零级
一级
二级 三级
(4)光源S的移动对条纹的影响
S沿x轴平移,条纹整体沿相反方向上下移动, 其余不变
I0
I0/2
L
P
可度以证有明关波系L列:长度2L与波长波宽列通过谱PO线点宽持度续时间 t
L c
干涉条纹可见度 V 1 Δ L
定义相干长度为能产生干涉条纹的最大光程差
V 1 Δ L
相干长度和相干时间越长, 光源的相干性越好,条纹 可见度越高。
相干长度: L 2
高等教育大学教学课件 大学物理
同学们好!
§17-2 双缝干涉
一、杨氏双缝实验
Thomas Young 1773--1829
英国医生、科学家托马斯.杨1801年 用双缝干涉实验证明了光的波动性, 并首先测出太阳光的平均波长:
杨氏 570 nm
现代 555 nm
该实验对光的波动说的复苏起到关键 作用,在物理学史上占重要地位。
S沿y轴平移,条纹不动
思考: (1)条纹的定域
大学物理-第十四章-波动光学
一部分反射回原介质即光线a1, 另一部分折入另一介质,其中一 部分又在C点反射到B点然后又 折回原介质,即光线a2。因a1,a2是
从同一光线S1A分出的两束,故
满足相干条件。
S
S1
a
a1
iD
e
A
B
C
a2
n1
n2
n1
31
2 薄膜干涉的光程差
n2 n1
CDAD
sin i n2
跃迁 基态
自发辐射
原子能级及发光跃迁
E h
普通光源发光特 点: 原子发光是断续
的,每次发光形成一
长度有限的波列, 各 原子各次发光相互独
立,各波列互不相干.
10
3.相干光的获得:
①原则:将同一光源同一点发出的光波列,即某个原子某次 发出的光波列分成两束,使其经历不同的路程之后相遇叠加。
S2
r2
P
20
为计算方便,引入光程和光程差的概念。
2、光程
光在真空中的速度 光在介质中的速度
c 1 00
u 1
u1 cn
介质的 折射率
真空
u n c
介质中的波长
n
n
n n
21
介质中的波长
n
n
s1 *
r1
P
波程差 r r2 r1
k 0,1,2,
x
d
'
d
(2k
1)
k 0,1,2,
暗纹
d
2
k=0,谓之中央明纹,其它各级明(暗)纹相对0点对称分布
大学物理波动光学知识点总结.doc
大学物理波动光学知识点总结.doc波动光学是物理学中的重要分支,涉及到光的反射、折射、干涉、衍射等现象。
作为大学物理中的一门必修课程,波动光学是大学物理知识体系重要的组成部分。
以下是相关的知识点总结:1. 光的波动性光可以被看作是一种电磁波。
根据电磁波的性质,光具有波动性,即能够表现出干涉、衍射等现象。
光的波长决定了其在物质中能否传播和被发现。
2. 光的反射光在与物体接触时会发生反射。
根据反射定律,发射角等于入射角。
反射给人们带来很多视觉上的感受和体验,如反光镜、镜子等。
当光从一种介质向另一种介质传播时,光的速度和方向都会发生改变,这个现象称为折射。
光在空气、玻璃、水等介质中的折射现象被广泛应用到光学、通信等领域中。
4. 光的干涉当两束光相遇时,它们会相互干涉,产生干涉条纹。
这是因为两束光的干涉条件不同,它们之间产生了相位差,导致干涉现象。
干涉可以分为光程干涉和振幅干涉。
光经过狭缝或小孔时,其波动性会导致光将会分散成多个波阵面。
这种现象称为衍射。
衍射可以改变光的方向和能量分布,被广泛应用于成像和光谱分析等领域。
6. 偏振偏振是光波沿着一个方向振动的现象,产生偏振的方式可以通过折射、反射、散射等途径实现。
光的偏振性质在光学通信、材料研究等领域有着广泛的应用。
总结波动光学是大学物理学知识体系不可或缺的一部分,它涉及到光的波动性、光的反射、折射、干涉、衍射等现象。
对于工程、光学、材料等领域的学生和研究者来说,深入了解波动光学的基本原理和理论,都有助于提高知识和技术水平。
大学物理波动光学练习题(二)
1在双缝干涉实验中,若单色光源S到两缝S1、S2距离相等,则观察屏上中央明纹位于O处,现将光源S向下移动到S′位置,则[ ]•A、中央明纹向上移动,且条纹间距增大•B、中央明纹向上移动,且条纹间距不变•C、中央明纹向下移动,且条纹间距增大•D、中央明纹向下移动,且条纹间距不变正确答案:B2在杨氏双缝干涉实验中,设双缝之间的距离为d = 0.2 mm,屏与双缝间的距离D=1.00 m。
(1)当波长λ = 589.0 nm的单色光垂直入射时,求10 条干涉条纹之间的距离;(2)若以白光入射,将出现彩色条纹,求第二级光谱的宽度。
正确答案:解(1)在杨氏双缝干涉的图样中,其干涉条纹为等距分布的明暗相间的直条纹。
相邻条纹之间的距离为10 条干涉条纹之间有9 个间距,所以10 条干涉条纹之间的距离为(2)第二级彩色条纹光谱宽度是指第二级紫光明纹中心位置到第二级红光明纹中心位置之间的距离。
杨氏双缝干涉明纹的位置为所以第二级光谱的宽度为在双缝干涉实验中,用波长λ=546.1nm的单色光照射,双缝与屏的距离300mm。
测得中央明纹两侧的两个第五级明条纹的间距为12.2mm,求双缝间的距离。
正确答案:解:条纹间距,考虑到中央明纹,两个第五级明条纹间有11条条纹,共有10个条纹间距,因此12.2/10 = 1.22mm,利用公式,代入数据,得双缝间的距离。
4在双缝干涉实验中,两缝间距为0.3mm,用单色光垂直照射双缝,在离缝1.20m的屏上测得中央明纹一侧第5条暗纹与另一侧第5条暗纹间的距离为22.78mm。
问所用光的波长为多少,是什么颜色的光?正确答案:解:双缝干涉暗纹位置,第5条暗纹,k = 4,中央明纹一侧第5条暗纹与另一侧第5条暗纹间的距离为22.78mm,即2x = 22.78mm,得x = 11.39 mm,因此λ=632.8nm,是红光。
5在相同的时间内,一束波长为的单色光在空气中和在玻璃中( )A、传播的路程相等,走过的光程相等.B、传播的路程相等,走过的光程不相等.C、传播的路程不相等,走过的光程相等.D、传播的路程不相等,走过的光程不相等.正确答案:C在真空中波长为的单色光,在折射率为n的透明介质中从A沿某路径传播到B,若A、B两点相位差为,则此路径AB的光程为( )•A、•B、•C、•D、•正确答案: A•7在相同的时间内,一束波长为的单色光在空气中和在水中,走过的光程相等。
大学物理 第十二章 波动光学2
2 又,明纹所在处x满足: x tg 1.5 0.003 , f 500
2 0.5 1.5 3 104 2ax / f 107 m A λ (2k 1) 500 2k 1 2k 1
白光波长范围4000—7000Å,满足上式的波长值即为所求:
• • • •
例题:已知单缝宽a=0.5mm,透镜焦距f=50cm,今以白光垂直照 射狭缝,在观察屏上x=1.5mm处看到明纹极大,求: (1)入射光的波长及衍射级数; (2)单缝所在处的波阵面被分成的波带数目。
[解]: (1)由明纹条件: a sin (2k 1)
x 很小 。 sin ≈ tg f
sin
中央极大值对应的明条纹称 中央明纹。 中央极大值两侧的其他明条纹称次极大。
2、明暗纹中心位置坐标
(1)中央明纹中心位置 x=0
xk t g k f
tgk sin k
x xk
k
中 O 央 明 纹
k2
k 1
(1)
(2)
f
(2)暗纹中心位置坐标
由 a sin k k 及式(1)、(2) 得
二、光学仪器的分辨本领
1.22 1 D
D
瑞 利 判 据
定义
分辨本领
D R 1.22
1
刚可分辨
非相干叠加
不可分辨
瑞利判据 : 对于两个等光强的非相
干物点,若其中一点的象斑中心恰好落 在另一点的象斑的边缘(第一暗纹处), 则此两物点被认为是刚刚可以分辨。
当 再 , =3/2时,可将缝分成三个“半波带”,
B a A θ a B θ
大学物理光学与波动
大学物理光学与波动在大学物理课程中,光学与波动是一个重要的研究领域。
光学研究光的传播、反射、折射、干涉、衍射和偏振等现象,而波动研究波的特性和传播规律。
本文将从不同角度探讨大学物理中的光学与波动。
一、光的传播与光速度光的传播是指光在真空和介质中的传播过程。
根据光的波动理论,光是一种经典电磁波,具有特定的波长和频率。
光的传播速度通常用光速来表示,即299,792,458米每秒。
光速的确定为物理学提供了一个重要的基准,也被用来定义其他基本物理量(如电磁学中的电磁波速度)。
二、光的反射和折射光的反射是指光从一个介质界面上的入射角等于反射角的现象。
根据斯涅尔定律,光在两个介质交界处发生折射时,入射角、折射角和两个介质的折射率之间存在一个数学关系。
这个关系可以用来解释光在水中折射时出现的折射现象。
三、光的干涉和衍射光的干涉是指两束或多束光波相互叠加形成明暗相间的干涉条纹的现象。
光的干涉现象可以通过杨氏实验来观察和解释。
光的干涉现象在光学中具有重要应用,如干涉仪、薄膜干涉等。
光的衍射则是指光通过一个或多个小孔或尺寸比光的波长大得多的孔径时,光波发生弯曲和重新扩散的现象。
衍射现象可以用夫琅禾费衍射公式来计算和描述。
四、光的偏振与波片偏振光是指只在一个特定方向上振动的光。
偏振光的特点是具有固定的振动方向,可以通过使用波片(如偏振片)来实现对光的偏振处理。
波片是一种光学元件,可以选择性地使特定方向的光通过,而阻止其他方向的光通过。
五、声波与光波除了电磁波中的光波之外,波动学还研究其他类型的波,比如声波。
声波是一种机械波,是由物体的振动引起的压力变化在介质中传播而成的。
与光波不同,声波需要介质提供承载的媒介来传播。
总结:光学与波动作为大学物理的重要内容,涵盖了光的传播、反射、折射、干涉、衍射和偏振等现象以及其他类型的波动现象。
通过研究光学与波动,我们可以更好地理解光的性质、波的传播规律和光与物质之间的相互作用。
在应用方面,光学与波动在激光技术、光纤通信、光学显微镜等领域都有广泛的应用。
大学物理(波动光学知识点总结)
2)若浸入 水中,lf 且n1.33
na l2 1 5 .3 8 3 1 1 9 3 0 1 0 0 0 0 .88 17 3 0 m
[例5]在单缝夫琅和费衍射实验中,垂直入射的光有两种波长, λ1 = 4000 Å,λ2 = 7600Å。单缝缝宽a = 1.0×10-2cm。 透镜焦距f = 50 cm,求1)两种光第一级衍射明纹中心之间 的距离。2)若用d = 1.0×10-3 cm的光栅替换单缝,其他条 件和上一问相同。求两种光第一级主极大之间的距离。
厚度。2)此时零级明条纹的位置。
E
解:1)入射光到达双缝时已有光程差:
1dsin 30
S
30
1
1
o
经双缝后,又产生附加光程差:
2(n1)e
S2
D
两束光在点O处相聚时的光程差为:
2 1 ( n 1 ) e d s3 in 0
由题意知:点O处为第8 级明条纹,即:
(n 1 )e d s3 i n 0 8
解:1)由单缝衍射明条纹公式知:
f
xk (2k1)2a
xk1
(21)
f1
2a
xk2
(21)
f2
2a
x3f(21)
2a
5 0 3 (764 00 0 ) 0 1 8 0
2 1 2 0
0 .2c7m
2)光栅方程: dsin k
ds in 1k1 ds in 2k2 (k 1)
因为 1、2很小。则s有 i ntg
N 1 ab
7、在单缝的夫琅和费衍射示意图中所画的各条正入射光线间距
相等,那么光线1 和 3 在屏上P点相遇时的相位差为 2 ,
P点应为 暗 点。
大学物理(波动光学知识点总结)
01
圆孔、屏幕和光源。
实验现象
02
在屏幕上观察到明暗相间的圆环,中心为亮斑。
结论
03
圆孔衍射同样体现了光的波动性,中心亮斑是光线汇聚的结果。
光栅衍射实验
实验装置
光栅、屏幕和光源。
实验现象
在屏幕上观察到多条明暗相间的条纹,每条条纹都有自己的位置 和宽度。
结论
光栅衍射是由于光在光栅上发生反射和折射后相互干涉的结果, 形成多条明暗相间的条纹。
02
光的干涉
干涉现象与干涉条件
干涉现象
当两束或多束相干光波在空间某一点 叠加时,光波的振幅会发生变化,产 生明暗相间的干涉条纹。
干涉条件
要产生干涉现象,光波必须具有相同 的频率、相同的振动方向、相位差恒 定以及有稳定的能量分布。
干涉原理
光的波动性
光波在传播过程中,遇到障碍物或孔洞时,会产生衍射现象。衍射光波在空间 相遇时,会因相位差而产生干涉现象。
利用光纤的干涉、折射等光学效应,检测温度、压力、位移等物理量。
表面等离子体共振传感器
利用表面等离子体的共振效应,检测生物分子、化学物质等。
光学信息处理
全息成像
利用干涉和衍射原理,记录并再现物 体的三维信息。
光计算
利用光学器件实现高速并行计算,具 有速度快、功耗低等优点。
THANKS
感谢观看
大学物理(波动光学知识 点总结)
• 波动光学概述 • 光的干涉 • 光的衍射 • 光的偏振 • 波动光学的应用实例
01
波动光学概述
光的波动性质
01
02
03
光的干涉
当两束或多束相干光波相 遇时,它们会相互叠加, 形成明暗相间的干涉条纹。
15大学物理波动光学2(劈尖、牛顿环、干涉仪)
干涉条件为:
2nd 2nd
2
k (k 1,2,) (2k 1)
相长
2
2
(k 0,1,2,) 相消
2.等厚干涉 厚度相同的地方光程差相同,形成同一 条纹。 劈尖的干涉条纹是一系列平行于劈尖棱 边的明暗相间的直条纹。
(1)棱边处 ,为 2 k=0级暗条纹(与实 际一致)
2nD
k 7
2
(2k 1)
2
k 0 k 7
k D 2065 nm 2.07 m 2n
细丝膨胀,条纹向左移动
练习1.如图所示,利用空气劈尖测细丝直径, L 已知 589 .3nm , 2.888102 m,测得30条 4.295103 m,求细丝直径d。 条纹的总宽度为
I min 0
I
Imax Imin
I min 0
I
4I1
对比度差 (V < 1)
对比度好 (V = 1)
二、时间相干性 1.光的非单色性 理想的单色光
实际光束:波列、准单色光 I I
0
I0 2
波列长L= c
0
0
2.光源的非单色性对干涉条纹的影响 通常单色光源包含一定的波长范围 , 在这一范围内每一波长的光各自形成一组 干涉条纹。各组干涉条纹只有零级条纹完 全重合,其他各级不再重合,其非相干叠 加会降低条纹的可见度。
n 1.22
例2.如图所示为测量油膜折射率的实验装臵, 在平面玻璃片G上放一油滴,并展开成球冠状
油膜。在波长 600 nm的单色光垂直照射 下,从反射光中可观察到油膜所形成的干 涉条纹。已知玻璃的折射率为 n1 1.5 ,油 膜的折射率为 n2 1.2 ,问:当油膜中心最 高点与玻璃片的上表面 相距h 800 nm 时,干 L 涉条纹是如何分布的? S 可看到几条明纹?明 纹所在处的油膜厚度 n2 h 为多少? n1 G
大学物理波动光学
大学物理波动光学摘要:波动光学是大学物理课程中重要的组成部分,主要研究光的波动性质及其在介质中的传播规律。
本文主要介绍了波动光学的基本概念、波动方程、干涉现象、衍射现象、偏振现象以及光学仪器等,旨在为读者提供系统的波动光学知识,为进一步学习和研究打下基础。
一、引言波动光学是研究光波在传播过程中所表现出的波动性质的科学。
光波是一种电磁波,具有波动性、粒子性和量子性。
波动光学主要关注光的波动性质,研究光波在介质中的传播、反射、折射、干涉、衍射、偏振等现象。
波动光学在科学技术、工程应用、日常生活等领域具有广泛的应用,如光纤通信、激光技术、光学仪器等。
二、波动方程波动方程是描述波动现象的基本方程。
光波在真空中的传播速度为c,介质中的传播速度为v。
波动方程可以表示为:∇^2E(1/c^2)∂^2E/∂t^2=0其中,E表示电场强度,∇^2表示拉普拉斯算子,t表示时间。
该方程描述了光波在空间和时间上的传播规律。
三、干涉现象1.极化干涉:当两束相干光波在空间某点相遇时,它们的电场矢量方向相同,相互加强,形成明条纹;当电场矢量方向相反,相互抵消,形成暗条纹。
2.非极化干涉:当两束相干光波在空间某点相遇时,它们的电场矢量方向垂直,相互叠加,形成干涉条纹。
四、衍射现象衍射现象是光波传播过程中遇到障碍物或通过狭缝时产生的现象。
衍射现象的本质是光波的传播方向发生改变,使得光波在空间中形成干涉图样。
衍射现象可以分为菲涅耳衍射和夫琅禾费衍射两种:1.菲涅耳衍射:当光波通过狭缝或障碍物时,光波在衍射角较小的情况下发生的衍射现象。
菲涅耳衍射的衍射图样与狭缝或障碍物的形状、大小以及光波的波长有关。
2.夫琅禾费衍射:当光波通过狭缝或障碍物时,光波在衍射角较大的情况下发生的衍射现象。
夫琅禾费衍射的衍射图样与狭缝或障碍物的形状、大小以及光波的波长有关。
五、偏振现象偏振现象是光波在传播过程中,电场矢量在空间某一方向上振动的现象。
偏振光具有方向性,其电场矢量只在一个特定方向上振动。
大学物理波动光学总结
大学物理波动光学总结光学是物理学中的一个重要分支,涉及到光的传播和相互作用。
其中,波动光学是光学中的一块重要内容。
波动光学研究的是光的波动性质,探究光的传播和现象。
1. 光的波动性质光既可以被看作粒子,也可以被看作波动。
然而,在波动光学中,我们主要探究的是光的波动性质。
光的波动包括波长、频率、振幅等方面。
波长是指光波的一个周期所对应的距离。
频率则代表了单位时间内光波的周期数。
振幅是指光波振动的最大值。
2. 光的干涉现象光的干涉是波动光学研究领域中的重要内容。
干涉是指两个或多个光波叠加形成干涉图样的现象。
干涉现象可以分为两种类型:建立在同一光源上的相干光干涉和来自不同光源的非相干光干涉。
在干涉实验中,我们通常会使用干涉仪来观察干涉现象,如杨氏双缝实验、劈尖实验等。
3. 杨氏双缝实验杨氏双缝实验是波动光学中著名的实验之一,用于研究光的干涉现象。
实验中,一束单色光射在一块挡板上,挡板上有两条细缝。
通过这两条细缝,光波通过后形成干涉图样。
干涉图样具有一系列亮纹和暗纹,亮纹表示光的干涉增强区域,暗纹则表示光的干涉减弱或完全抵消的区域。
4. 劈尖实验劈尖实验也是一个常见的波动光学实验,用于研究光的干涉现象。
该实验中,一束单色光通过一个小孔射到屏幕上,形成一个波前。
在波前上放置一个劈尖,劈尖上有一只细缝。
细缝缝宽约为光的波长数量级,从而使光通过细缝后发生衍射,形成一系列干涉图样。
通过这些干涉图样,我们可以研究光的波动性质。
5. 衍射现象衍射是波动光学中的重要现象之一。
通过衍射实验,可以观察到光波通过细缝等物体后,逐渐分散出来,形成一系列交替的明暗区域。
这些明暗区域就是衍射图样。
衍射图样的形态取决于光的波长、衍射物体的大小和形状。
6. 光的偏振现象在波动光学中,我们还需要了解光的偏振。
光的偏振是指光波中的电矢量在空间中的偏振方向。
常见的光偏振现象有线偏振光和圆偏振光。
线偏振光是指光波中的电矢量在空间中只沿一个方向振动;而圆偏振光则是指电矢量在空间中以圆周方式振动。
大学物理b2习题集(含规范标准答案)
大学物理B2习题(一、电磁学部分1、如图所示,真空中一长为L的均匀带电细直杆,总电荷为q,试求在直杆延长线上距杆的一端距离为d的P点的电场强度和电势.2、一半径为R的均匀带电半圆环,电荷线密度为 ,求换新处O点的电场强度和电势。
3、实验证明,地球表面上方电场不为0,晴天大气电场的平均场强约为120V/m,方向向下,这意味着地球表面上有多少过剩电荷?试以每平方厘米的额外电子数表示。
(526.6410/cm ⨯个)解 设想地球表面为一均匀带电球面,总面积为S ,则它所总电量为00d Sq E S ES εε=⋅=⎰⎰单位面积带电量为 E Sq0εσ==单位面积上的额外电子数为19120106.11201085.8--⨯⨯⨯===e Ee n εσ92526.6410/m 6.6410/cm =⨯=⨯4、地球表面上方电场方向向下,大小可能随高度变化,设在地面上方100m 高处场强为150N/C ,300m 高处场强为100N/C ,试由高斯定理求在这两个高度之间的平均体电荷密度,以多余的或缺少的电子数密度表示。
(缺少,721.3810/m ⨯个)5、如图所示,电量1q 均匀分布在半径为1R 的球面上,电量2q 均匀分布在同心的半径为2R 的球面上,2R >1R 。
(1)利用高斯定理求出r <1R ,1R <r <2R ,r >2R 区域的电场强度 (2)若r >2R 区域的电场强度为零,则?1=qq ,1q 与2q 同号还是异号?6、二个无限长同轴圆筒半径分别为1R 和2R ,单位长度带电量分别为λ+和λ-。
求内筒的内部、两筒间及外筒外部的电场分布。
解 由对称性分析可知,E分布具有轴对称性,即与圆柱轴线距离相等的同轴圆柱面上各点场强大小相等,方向均沿径向。
如解用图,作半径为r ,高度为h 、与两圆柱面同轴的圆柱形高斯面,则穿过圆柱面上下底的电通量为零,穿过整个高斯面的电通量等于穿过圆柱形侧面的电通量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
薄膜干涉
第8章
波动光学
《大学物理简明教程》
第8章 波动光学
薄膜干涉
波动光学 (2)
主要内容:
薄膜干涉 平行平面膜的光干涉、劈尖干涉 牛顿环、干涉仪
《大学物理简明教程》
第8章 波动光学
薄膜干涉
§8.2 薄膜干涉(分振幅法的光干涉)
8.2.1 平行平面膜的光干涉
P
入射光线经薄膜上下表面反射的光
8.2.2 劈尖干涉
薄膜干涉
空气中一劈尖形透明媒质薄片,
折射率为n,夹角θ很小,波长
为λ的单色光垂直入射。
1 2
媒质层上、下表面反射的光在
n
上表面相遇产生干涉。这是分
振幅法获得的光干涉。
在媒质厚度为e 处,上、下表面反射的光1和2在相遇点的光 程差为
2ne
2
(2k
k
1)
2
明 暗
k 1, 2, 3, k 0, 1, 2,
对某种色光的反射光产生相消干涉,其结果是减少了该光的反 射,增加了它的透射。
照相机镜头
眼镜
《大学物理简明教程》
第8章 波动光学
薄膜干涉
实际中,一般在玻璃上镀 MgF2 ( n = 1.38 ) 如图, 反射光干涉相消的条件为
因上下表面反射的光都有半波损失,故半 波损失抵消,总光程差
MgF2 n
e
玻璃 n 1.5
想一想:为什么?
测出两条纹之间的距离b,条纹凸起的高度a,由几何关系可以 求得凹陷的深度 h ,详见教材例8-6.
《大学物理简明教程》
第8章 波动光学
薄膜干涉
8.2.3 牛顿环
在平板玻璃上放一半径为R的平凸
透镜就构成牛顿环装置。
单色平行光垂直照射时, 在透镜的
射光,因缺少黄绿色光而表面呈蓝紫色。
《大学物理简明教程》
(2)增反膜
第8章 波动光学
薄膜干涉
利用薄膜干涉原理,使薄膜上、下表面对某种色光的反射光发 生相长干涉,其结果是增加了该光的反射,减少了它的透射。
激光器谐振腔
宇航服
《大学物理简明教程》
第8章 波动光学
薄膜干涉
例如,氦氖激光器中的谐振腔反射镜,
到30%以上,如要进一步提高反射率,可采取多层镀膜,即 在玻璃表面上交替镀上高折射率的ZnS膜和低折射率的MgF2
膜多层。每层薄膜的光学厚度为 e / 4
镀膜的层数一般取15 ~ 17层,反射率可达95%以上。
问题:是否镀膜的层数越多,反射率就越高?
《大学物理简明教程》
第8章 波动光学
薄膜干涉
例1. 空气中厚度为 0.32 m 的肥皂膜(n = 1.33),若白光垂
直入射,问肥皂膜呈现什么颜色?
解:反射光干涉加强的条件:
2ne k
n
e
2
k 1, 2, 3,
k 1 1700 nm
红外
k 2 567 nm
绿色
k 3 341 nm
紫外
《大学物理简明教程》
第8章 波动光学
2
2
cos r 1 sin 2 r
《大学物理简明教程》
第8章 波动光学
薄膜干涉
2e n2 sin2 i
1
iD
2
2
即:光程差决定于倾角i,焦平面上同一
n
AC
r
e
干涉条纹(亮纹或暗纹)对应相同的入射
B
角 —— 等倾干涉
干涉条纹形状为一组同心圆环。
为简单起见,只讨论垂直入射的情况,
即 i 00
则当: 2ne
2
等倾干涉环
k
k 1, 2, 明纹
(2k 1) 2 k 1, 2, 3, 暗纹
《大学物理简明教程》
第8章 波动光学
薄膜干涉
增透膜和增反膜 —— 薄膜干涉的应用
(1)增透膜(antireflection film)
在透镜表面镀一层厚度均匀的透明介质膜,使其上、下表面
常用方法是:将薄膜的一部分磨成劈形膜,通过观察垂直入射 光在其上面产生的干涉条纹,计算出二氧化硅薄膜的厚度。
《大学物理简明教程》
第8章 波动光学
(2)光学表面检查
利用等厚干涉条纹可以检查精 密加工工件表面的平整情况.
薄膜干涉
e
e
● 工件表面平整,条纹平行等 距
● 若观察到条纹向劈棱处凸起, 说明工件表面在条纹凸起处有 微小凹陷。
l e sin 2n sin 2n
小,l大,条纹分得开,干涉显著。
《大学物理简明教程》
第8章 波动光学
◎ 劈尖干涉的应用 (1)测量薄膜端部的厚度或细丝的直径 d
薄膜干涉
d e 2n
Ll l
dL N L
2nl
l
N为条纹数
薄膜厚度: d N
2n
l
nd
L
在半导体元件生产中,测定硅片上的二氧化硅薄膜厚度的
《大学物理简明教程》
第8章 波动光学
薄膜干涉
2ne
2
(2k
k
1)
2
明 暗
k 1, 2, 3, k 0, 1, 2,
上式表明:
一定,k e ,媒质厚度
相同的地方,上下表面反射的
光其光程差相同,干涉形成同
一级条纹 —— 等厚干涉。
1
2
n
e
劈尖干涉的条纹形状是一组平行 棱边的直线。
讨论
2ne (2k 1) k 0,1, 2,
2
薄膜的最小厚度对应 k 0 ,所以
emin
4n
在镀膜工艺中,常把 ne 称为薄膜的光学厚度,镀膜时控
制厚度e,使膜的光学厚度等于入射光波长的1/4。
注意 一定的膜厚只对应一定波长的单色光,照相机镜头常取
黄绿光 550 nm 来计算镀膜的厚度。在白光下观看此薄膜的反
线1和2构成相干光, 这是分振幅法
获得的相干光。
观察光线1、2的干涉结果要用透镜
i1
空气
D
2
1、2两相干光到P 点的光程差:
n(AB BC) AD
2
n
A
r
C
e
空气
B
AB BC e , AD AC sin i 2e t r
2ne cos r 2e n2 sin2 i
要求对波长 632.8 nm 的单色光的反
射率达99%以上。
由图可以看出,如果把低折射率的膜改 成同样光学厚度的高折射率的膜,则薄
ZnS n
e
玻璃 n 1.5
膜上下表面的两反射光将是干涉加强,这就使反射光增强了,
而透射光就将减弱,这样的薄膜就是增反膜。
在玻璃表面上镀一层 / 4的ZnS ( n = 2.35 )膜,反射率可提高
(1)在劈棱处, e 0, 2 ,劈棱处为0级暗纹。
条纹级次沿薄膜厚度增加的方向递增。
《大学物理简明教程》
第8章 波动光学
薄膜干涉
(2)相邻两明或两暗纹对应劈尖媒质的高度差 e
2nek
2
(2k
1)
2
2nek 1
2
(2k
3)
2
e
ek 1
ek
2n
e
l
n
ek ek 1
(3)相邻两明或两暗纹的间距