第六章__气体的一维流动

合集下载

第六章 粘性流体的一维定常流动

第六章 粘性流体的一维定常流动
列截面1-1和2-2的伯努利方程
p V p V z 1 1 1 1 z 2 2 2 2 hf g 2g g 2g
(b)
(c)
4
排水 进水
a.
b.
v 0 vc
层流=>过渡状态 紊流
v vc
v vc vc
c. d.
vc vc
紊流=>过渡状态
v vc
层流
层流——紊流的临界速度——上临界流速 紊流——层流的临界速度——下临界流速
v c ——上临界速度 v c ——下临界速度
p 1、 z g gdqV qV
的积分(势能)
有效截面1和有效截面2处的流动都是缓变流动
z1 p1 C1 g
z2 p2 C2 g
C1
C2 是两个不同的常数
p z gdqV g qV
不可压缩流体
2 V1 p 1 z2 2 2 g dqV g qV qV
V2 1 2 g dqV qV qV
2
h dq
w qV
V
p z g
1 qV

qV
V
V2 dqV 2g 2g
2
hW
1 qV
h dq
紊流流动:
2 2
1.0
42 H hw h2 h1 13 0.7 9 5.52 (m) 2g 2 9.806
【例6-1】 有一文丘里管如图6-3所示,若水银差压计的指示为 360mmHg,并设从截面A流到截面B的水头损失为0.2 mH2O, dA =300mm, dB=150mm,试求此时通过文丘里管的流量是多 少?

工程流体力学课件-气体一维高速流动

工程流体力学课件-气体一维高速流动
特性
由于气体一维流动中,气体参数 不随位置变化,因此流动是线性 的,可以应用一维流动方程进行 描述。
气体一维流动的分类
等熵流动
气体在流动过程中,熵值保持不变的 流动。等熵流动中,气体压力和密度 随速度增加而减小。
等温流动
气体在流动过程中,温度保持不变的 流动。等温流动中,气体压力和密度 随速度增加而增加。
火箭发动机喷管中的气体一维流动特性研究
总结词
火箭发动机喷管中的气体一维流动特性研究对于喷管 设计和火箭性能优化至关重要。
详细描述
火箭发动机喷管中的气体流动具有极高的速度和压力变 化,直接模拟三维流场非常困难且计算量大。因此,采 用一维流动模型进行研究和分析是常用的方法。一维流 动模型可以模拟喷管中气体的流动、加速和膨胀过程, 分析喷管的性能和特性。通过研究喷管中气体的流动特 性,可以优化喷管设计,提高火箭发动机的推力和效率 ,为火箭设计和发射提供重要的理论支持和技术保障。
动量守恒方程
表示动量在流动过程中的 变化,即动量在流场中不 增加也不减少。
能量守恒方程
表示能量在流动过程中的 变化,即能量在流场中不 增加也不减少。
初始条件和边界条件
初始条件
表示流动开始时流场中各物理量的值 。
边界条件
表示流场边界上各物理量的值或其变 化规律。
控制方程的离散化
有限差分法
将控制方程中的偏导数用差分近似代替 ,将连续的物理量离散为离散的数值。
有限差分法的优点是简单直观,易于编程实现,适用于各种类型的偏微分方程,特别是对波动问题和 稳定性问题有较好的处理能力。
有限元法
有限元法是一种将连续的物理量离散化为有限个单元,并在 每个单元上设置节点,通过节点上的等效源代替单元内的源 ,从而将偏微分方程离散化为线性方程组的方法。这种方法 在气体一维流动数值模拟中也有应用。

气体的一维定常流动复习-文档资料

气体的一维定常流动复习-文档资料
连续性方程 一维定常流的连续 性方程式
A C
取对数后微分得
d dv dA 0 v A
能量方程
由热力学,单位质量气体的焓可以表示为:
c c p p pp p h c T p R c c 1 p V
对于气体的一维定常绝热流动,质量力 可以忽略,所以有
第六章 气体的一维定常流动
本章的任务是讨论完全气体一维定常流动, 另外还讨论一维定常等截面摩擦管流和等截面 换热管流。
第一节 气体一维流动的基本概念
一、气体的状态方程
T 热力学温度 E 流体的内能 S
p p ( V ,T )
E E ( V ,T )

SS ( V ,T )
上述方程为热状态方程,或简称为状态方程。
p2
2
T2
c dv

p1
1
T1
活塞以微小的速度dv向右 运动,产生一道微弱压缩波, 流动是非定常的
选用与微弱扰动波一起运动的相 对坐标系作为参考坐标系,流动转 化成定常的了
由连续方程
d c d A v cA 0 1 1
(1)
1 1
dv 略去二阶微量 cd 1
c
p
完全气体状态方程

RT
v2 RT h 0 -1 2

等熵指数。
第四节 气流的三种状态和速度系数
气体在运动过程中有速度为零和以声速运动的 状态,为了计算分析问题起见,还假定一种热力 学温度为零的极限状态。 在这三种状态下,可推导出一些极具应用价值 的公式;本节建立气体在三种状态下的有关计算 公式,并介绍与此相关的速度系数。
当Ma=1时, 90°,达到马赫锥的极限位 置,即图(c)中AOB公切面,所以也称它为 马赫锥。当Ma<1时,微弱扰动波的传播已无 界,不存在马赫锥。

第六章气体的一维定常流动知识讲解

第六章气体的一维定常流动知识讲解
工程流体力学
第六章 气体的一维定常流动
第一节 气体一维流动的基本概念
气体的状态方程
T 热力学温度 E 流体的内能 S熵
pp(V,T)
EE(V,T) SS(V,T)
比定容热容和比定压热容
cV 比定容热容 c p 比定压热容 两者的关系 cp cV
热力学过程
等温过程 p2 V1 p1 V2
绝热过程 dQ0
v
A
p dp 2 A dA
p dp
整理并略去二阶以上的无穷小量有
dF
v dv
vAdA v ddpF
dx
vdvdpdF0
A
单位质量流体的损失可以表示为
dF dx v2 A d 2
第七节 实际气体在管道中的定常流动
粘性气体的绝热流动微分关系式可表示为
vdvdpdxv2 0 d2
联立可导出
ddvdA0 v A
能量方程 由热力学
hcpTcR ppcpc pcVp1p
代入 得
v2
h 2 h0
声速公式
p v2 -1 2
h0
c2 v2 -1 2
h0
c
p
RT
完全气体状态方程
RTv2 -1 2
h0
第四节 气流的三种状态和速度系数
滞止状态 : 气流速度等熵地滞止到零这时的参数称为滞止参数
d 2
0 .025
q m cv c rr 4 2 .86 35 .3 2 3 3 14 1 .80 ks g 76
第六节 喷管流动的计算和分析
缩放喷管
流量
1
qm,crAt212-1 p00
由连续方程求得
A A crccr At Acr v

第六章 气体的一维定常流动(材料12)

第六章  气体的一维定常流动(材料12)


A 0.0071 m2
(2) pcr 0.5283 p0
5 5 pcr 0.5283 P 0 . 5283 5 . 8836 10 3 . 1083 10 Pa 0
因为 pb pcr ,不能影响喷管内的流量保持最大流量
缩放喷管
质量流量
2 qmcr At 1
得 据
v
2 p0 p 0 1 1 0 p0
p p0 0

p0 T0 v0 =0 p T v
0
p

const
1 1 2 p0 p 2 p 1 v 1 RT 0 1 0 p0 1 p0
v2 RT h0 -1 2
6-4 气流的三种状态和速度系数
滞止状态
22 vv h h0T0 T 2c p 2
cp
2
R 1
v2 Ma 2 c
c 2 RT

2 2 T v T c -1 0 0 1 0 2 1 2 Ma 2 T T c 2c pTcR 2
pamb p0 pcr p0
MaM * 1
出口
qm qm,max 1
喷管流动的计算和分析


5 T0 288 K, 已知:设贮气罐中空气的滞止参数为p0 5.8836 10 Pa , 为保证收缩管内达到最大流量qm,max 10 kg s 求:(1)试设计喷管出口截面积;
dT dv 1Ma 2 T v
dA dv Ma 2 1 A v
d

气体的一维定常流动

气体的一维定常流动
1 1

1 2 1 M* 0 1
1 1
0 1 2 1 Ma 2
§6-4 气体流动的三种状态和速度系数
第六章 气体的一维定常流动
第五节 气流参数与通道截面 之间的关系
变截面一维定常等熵流动模型
§6-1 气体一维流动的基本概念
气体的比热容
比热容:单位质量物质温度升高 1K 或 1 ℃ 时所 吸收的热量。 单位质量气体升高 1K 或 1 ℃ 时所吸收的热量与 热力学过程有关,故气体的比热容不唯一。 定容比热容cV:容积不变条件下的比热容。 定压比热容cp:压强不变条件下的比热容。 比热比γ:定压比热与定容比热的比值。
v h h0 2
c v h0 1 2
2 2
2
v h0 1 2 v RT h0 1 2

p
2

2
cp p cp p p h R cp cV 1
§6-3 气体一维定常流动的基本方程
第六章 气体的一维定常流动
第四节 气体流动的三种状态 和速度系数
v M* ccr
§6-4 气体流动的三种状态和速度系数
速度系数
速度系数的优点在于: 临界声速是常数,故速度系数与流动速度成 线性正比关系; 速度存在极限速度,故速度系数的极限是有 限值。
vmax 1 M *max ccr 1
v M* ccr
§6-4 气体流动的三种状态和速度系数
滞止状态
气流速度减到零时的状态称为滞止状态,对应 的流动参数称为滞止参数或总参数。 能量方程可以写为
1 v2 v2 T T T0 R 2 2cp
c

气体的一维流动43页PPT

气体的一维流动43页PPT
6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃

气体的一维定常流动

气体的一维定常流动

6-3 气体一维定常流动的基本方程
连续性方程
ρvA = 常数

dv dA + + =0 v A ρ
能量方程
cp p p κ p = = cp = h = c pT Rρ c p − cV ρ κ − 1 ρ
代入
v h+ = h0 得 2
2
κ p v2 + = h0 κ -1 ρ 2
κp c= = κRT ρ
c = κRT
⇒ c = 20.05 T
1 声速的大小与流动介质的压缩性大小有关,流体越容易 声速的大小与流动介质的压缩性大小有关, 压缩,其中的声速越小, 压缩,其中的声速越小,反之就越大 2 声速随流体参数而变化,通常我们说的声速是指特定点 声速随流体参数而变化, 上的声速, 上的声速,称为当地声速

c2 v2 + = h0 κ -1 2
v2 κ RT + = h0 κ -1 2
6-4 气流的三种状态和速度系数
滞止状态
2 vv 2 h + = h0 T0 T+ = 2c p
cp =
2
κR κ −1
v2 Ma = 2 c
c 2 = κRT
}
T00 c0 v 2 κ − 1 T = 1 +2 κ= 2 = 1 + 2 Ma 2 T T c 2c pTc κR 2

vmax =
2κR T0 κ −1
α = arcsin
1 = arcsin 1.5 = 41.8 Ma
设飞机在观察站上方时,马赫波与地面交点离观察站距 设飞机在观察站上方时 马赫波与地面交点离观察站距 离为l, 时间t后到达观察站 离为 时间 后到达观察站 l =Vt = Hctgα

第六章气体的一维定常流动

第六章气体的一维定常流动
0

2 p p 0 0 v 1 p 1 0 0
1 1 p 2 p 2 p 0 v 1 RT 01 1 p 1 p 0 0 0
v RT 1 . 4 297 248 . 32 321 . 33 m s cr cr
2

d 0 . 05 q v 2 . 8653 321 . 33 1 . 8076 kg s
2 m cr cr
4
4
第六节 喷管流动的计算和分析
缩放喷管
流量
2 q A m , cr t 1
由(1)、(2)得 流体的体积模量
K
c
d dp
s
声速公式
c= K
V dp dp dV d
代入声速公式得
d 1 dp p RT
由等熵过程关系式以及状态方程可得
代入声速公式得
c
p

RT
第一节 气体一维Βιβλιοθήκη 动的基本概念空气 1.4
1 2 1
p 0 0
根据环境压强的变化对收缩喷管的工况作以下分析
( 1 ) p p p p 时,沿喷管各截面的气 流速度都是亚声速, 出口处 Ma 1 ,p p ; amb 0 cr 0 amb
当 p 降低时,速度和流量都 增大,气体在喷管内得 以完全膨胀。 amb ( 2 ) p p p 时,喷管内为亚声速流 ,出口截面的气流 界状态, Ma 1 , amb 0 crp 0
R 287 . 1 J kg K
c 20 . 05T

第六章粘性流体的一维定常流动

第六章粘性流体的一维定常流动
能z符 合pg这 个常要数求?。这只有在有效截面附近处有缓变流动时才
2019/11/24
工程流体力学
由于流线几乎是平行直线,则各有效截面上相应点的 流速几乎不变,成为均匀流,由于速度的变化很小即可将 惯性力忽略不计,又由于流线的曲率半径很大,故向心力 加速度很小,以致可将离心力忽略。于是缓变流中的流体 微团只受重力和压强的作用,故缓变流的有效截面上各点 的压强分布与静压强分布规律一样,即在同一有效截面上 各点的 z p 常数。当然在不同的有效截面上有不同的 常数值。 g
pA g

pB g

0.76 0.36 0.36
Hg g g

0.40

0.36
133400 9806

5.(3 mmH2
O)
(c)
将式(b)和式(c)代入(a)中
解得
5.3
VB2 2g
1


dB dA
4

0.96
2g(5.3 0.96) 29.806 (5.3 0.96)

z2

p2
g

V2 2 2g
hw
(6-1)
式(6-1)的几何解释如图6-1所示,实际总水头线沿微元流
束下降,而静水头线则随流束的形状上升或下降。
2019/11/24
工程流体力学
2019/11/24
图6-1 伯努利方程的几何解释
工程流体力学
二、黏性流体总流的伯努利方程
流体的实际流动都是由无数微元流束所组成的有效截面为 有限值的总流流动,例如流体在管道中和渠道中的流动等。
hg
133000 0.45 V22
g

第六章气体的一维流动

第六章气体的一维流动
第六章气体的一维流动
汇报人:XX
目录
• 气体一维流动基本概念 • 等熵流动过程分析 • 喷管设计与性能分析 • 气体一维流动中的激波现象 • 膨胀波与压缩波在气体一维流动中应用 • 总结与展望
01
气体一维流动基本概念
Chapter
一维流动定义及特点
01
02
一维流动定义:气体流 动时,若其流动参数( 如速度、密度、压力等 )仅在一个方向上发生 变化,而在其他两个方 向上保持均匀一致,则 称这种流动为一维流动 。
气体一维流动的精确测量对实验设备 和测量技术提出了较高要求。目前, 尚需进一步提高测量精度和效率,以 满足日益增长的工程需求。
03
多场耦合分析
在气体一维流动过程中,流动、传热 、化学反应等多场耦合作用显著。如 何进行多场耦合分析,揭示各场之间 的相互作用机制,是当前研究的难点 之一。
未来发展趋势和前景
02
等熵流动过程分析
Chapter
等熵流动条件及特点
条件
流动过程中没有热交换,即熵值保持 不变。
特点
流动过程中,气体的密度、压力和速 度等参数发生变化,但熵值保持不变 。
亚声速等熵流动过程
亚声速等熵流动特 点
气流速度减小时, 压力和密度增加。
亚声速流动定义: 气流速度小于当地 声速的流动。
气流速度增加时, 压力和密度减小。
要点三
智能化技术应用
人工智能、大数据等智能化技术的发 展将为气体一维流动研究提供新的思 路和方法。通过智能化技术可以对大 量实验数据进行深度挖掘和分析,发 现新的规律和现象,推动气体一维流 动研究的创新发展。
THANKS
感谢观看
采用新材料和制造
工艺

流体力学第6章气体的一维定常流动

流体力学第6章气体的一维定常流动

声速时, 产生激波,使出口截面为临界截面。
2021/4/10
21
已知:空气从 T0=30的0贮K 气罐进入一根直径为d=10mm的绝热光滑管入
口处 T1=298.3K,p1 9经8k过P有a(摩ab擦);的流动到达截面2时,
Ma2=0.4
求:(1)入口处 Ma1; (2)截面2处 T2 , p2 , 2 ,V2;(3)入口处到截面2的长度L .
由一维定常绝热流的能量方程
h v2 2
hT
常数
可得: T
c2 2c p
TT
对应于滞止 温度,有一 滞止声速:
cT (RTT )1/ 2
2021/4/10
10
当比热容这定值,并利用定压热容与气体常数、绝热指数之 间的关系,以及定熵过程的过程方程,可得
TT T
cT2 c2
1 1 Ma2
2
2021/4/10
7
由于微弱扰动波的传播过程进行得很迅速,与外界来 不及进行热交换,而且其中的压强、密度和温度变化极为 微小,所以这个传播过程可以近似地认为是一个可逆的绝 热过程,即等熵过程。
假定气体是热力学中的完全气体,则根据等熵过程关系式可

dp p RT d
为热力学
c p RT
( p2
/
p1
1)(2 2 / 1
/
1
1) 1/ 2
c1
激波行进速度总是大于当地声速
激波后的熵增加
2021/4/10
18
6.4 等截面摩擦管流
一、范诺线
基本方程:
一维等截面连续性方程 v qm / A 常数
完全气体一维定常绝热方程
T
v2 2c p

气体的一维定常流动

气体的一维定常流动

速度系数
马赫数与速度系数的关系
2 2 M* 1 Ma 2 1 2 1 M* 1
M* < 1 M* = 1 M* > 1
1 1
亚声速流动 声速流动 超声速流动
M*
1
M*
2
1
1
2
2
Ma 2 Ma
2
1
Ma 1 §6-4 气体流动的三种状态和速度系数
0
§6-1 气体一维流动的基本概念
声速
取虚线所围控制体。 连续方程:
d c dvA cA
动量方程:
cd dv
cAc dv c p p dp A
p+dp ρ+dρ T+dT
cdv dp
p ρ T
§6-1 气体一维流动的基本概念
§6-2 微弱扰动在气体中的传播
气体静止不动
v0 Ma 0
扰动波是球形波,向所有方向传遍全部空间。
§6-2 微弱扰动在气体中的传播
气流亚声速流动
vc Ma 1
扰动波可以逆流传播,向所有方向传遍全部空 间。
§6-2 微弱扰动在气体中的传播
气流以声速流动
vc Ma 1
扰动波不能逆流传播,传播限制在下游半个空 间。
§6-2 微弱扰动在气体中的传播
气流超声速流动
扰动面为一系列 与圆锥面相切的 马赫锥 球面,该圆锥称 马赫角 为马赫锥(弱扰 动锥),圆锥面 称为马赫波。
ct c 1 sin vt v Ma
马赫波
vc Ma 1
扰动波不能逆流传播,传播限制在马赫锥空间 内。
§6-2 微弱扰动在气体中的传播

第六章 气体与蒸汽的流动(绝热节流过程)

第六章 气体与蒸汽的流动(绝热节流过程)

p1h1c1 1
p2h2c2 2
绝热节流过程前后的焓相等, 但整个过程绝不是定焓过程。
h
在缩孔附近,流速 ,焓
c
绝热流动的能量方程式
q
h wt
h2
h1
1 2
(c22
c12 )
g(z2
z1) ws
h2
h1
1 2
(c22
c12 )
通常情况下,节流前后流速差别不大,即c2 = c1 h2 h1
M=1 dA=0 临界截面
M>1 dA>0 渐扩
M<1 M>1 dA<0 dA>0 渐缩渐扩
注:扩压管dc<0,故不同音速下的形状与喷管相反
喷管和扩压管流速变化与截面变化的关系
流动状态
M<1
管道种类
渐缩渐扩扩喷管 M<1转M>1
M>1 渐缩渐扩扩压管
M>1转M<1
喷管 dc>0 dp<0
1
2
dA 0 A
(1)绝热节流后蒸汽的温度; (2)节流过程的熵变; (3)节流的有效能损失,并将其表示在T-S图上; (4)由于节流使技术功减少了多少?
例题
4、理想气体从初态1(p1,t1)进行不同过程到相同终压p2,一过程为经过喷 管的不可逆绝热膨胀过程,另一过程为经过节流阀的绝热节流过程。若 p1>p2>p0,T1>T0(p0、T0为环境压力与温度),试在T-s图上表示此两 过程,并根据图比较两过程作功能力损失的大小。
证明:理想气体微分节流系数μJ =0.
pv RT
v RT p
( v T
)p
R p
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

喷管的质 量流量:
qm
A11v1
A10 (
p1 p0
1
)
v1
qm A10
2
p0
[(
p1
2
)
(
p1
1
) ]
1 0 p0
p0
A1
2
p02
[(
p1
2
)
(
p1
)
1
]
1 RT0 p0
p0
变截面管流
▪ 正激波 ▪ 斜激波 ▪ 曲激波
正激波
➢ 激波——正激波
▪ 正激波 波面与气流方向相垂直的平面激波。
Ma1>1
v1
v2
正激波
正激波
➢ 激波——斜激波
▪ 斜激波 波面与气流方向不垂直的平面激波。
Ma1>1
2< 2 max
斜激波
正激波
➢ 激波——曲激波
▪ 曲激波 波面与气流方向不垂直的曲面激波。
p2 2
T2
12
物理意义——普朗特激波公式建立了正激波前后气流速度之间 的关系,即正激波前、后速度系数的乘积等于1。 正激波前来流的速度为超声速,正激波后的气流 永远为亚声速流。
12
正激波
p1 v1
1 T1
v2 p2
2 T2
12
➢ 正激波前后气流参数的关系
v2 v1
1
M
2 *1
2 ( 1)Ma12 ( 1)Ma12
➢ 气流的特定状态——极限状态
▪ 极限状态
假定气体的分子无规则运动的动能(即气 流的静温和静压均降到零)全部转换成宏观运 动动能的状态称为极限状态。
vmax
2R 1T0
1 c2 1
1 2
v2
1 1
c02
1 2
vm2ax
vmax ——气流所能达到的最大速度
气流的特定状态 参考速度 速度系数
➢ 气流的特定状态——临界状态
2 1
M
2 *1
( 1)Ma12 2 ( 1)Ma12
p2 p1
( (
1)M
2 *1
(
1)
1) ( 1)M*21
2
1
Ma12
1 1
p1
1
正激波
T1
➢ 正激波前后气流参数的关系
T2 T1
1
M
2 *1
( (
1)
M
2 *1
(
1)
1)
(
1)M
2 *1
2 ( 1)Ma12 ( 1)Ma12
( 2
变截面管流
➢ 气流速度与通道截面的关系
▪ 喷管
3. 拉瓦尔喷管 气流由亚声速加速到超声速的喷管。
Ma 1
Ma 1
缩放喷管
dA (Ma2 1) dv
A
v
dp Ma2 dv
p
v
d Ma2 dv
v
dT ( 1)Ma2 dv
T
v
变截面管流
➢ 气流速度与通道截面的关系
▪ 扩压管
通过减速增压使高速气流的动能转 换为气体压强势能和内能的管道。 1. 气流参数的变化趋向
Ma 1 Ma 1 Ma 1
亚声速流 声速流 超声速流
气流的特定状态 参考速度 速度系数
➢ 气流的特定状态
▪ 滞止状态 ▪ 极限状态 ▪ 临界状态
气流的特定状态 参考速度 速度系数
➢ 气流的特定状态——滞止状态
▪ 滞止状态
假定气体的流动速度等熵地滞止到零时的 状态称为滞止状态。滞止状态用下标0表示。
➢ 正激波的形成和厚度
▪ 正激波的厚度
(1)激波是有厚度的, (2)激波厚度随马赫数的增大二迅速减小, (3)激波的厚度非常小,通常忽略不计, (4)实际计算中将激波作为间断面来处理。
正激波
➢ 正激波的传播速度
vs
x t
连续性方程:
(2
1)
t
Ax
(2
Avg
)
0
动量方程:
Axvg
t
(2 Avg2 ) ( p1
➢ 声速
▪ 流体中的声速是状态参数的函数。 ▪ 在相同温度下,不同介质中有不同的声速。
流体可压缩性大,声速低; 流体可压缩性小,声速高。
▪ 在同一气体中,声速随着气体温度的升高而增高,并 与气体热力学温度的平方根成比例。
微弱扰动的一维传播 声速 马赫数
➢ 马赫数
气体在某点的流速与当地声速之比。
Ma v c
气流的特定状态 参考速度 速度系数
➢ 速度系数
▪ 用M*表示的静总参数比
T T0
c2 c02
1
1 1
M
2 *
p p0
(1
1 1
M
2 *
)
1
0
(1
1 1
M
2 *
)
1 1
正激波
➢ 激波
当超声速气流流过大的障碍物时,气流在障碍物 前将受到急剧压缩,其压强、温度和密度都将突跃地 升高,而速度突跃地降低,这种使流动参数发生突跃 变化的强压缩波叫做激波。
能量方程:
h1
1 2
v12
h0
C pT1
1 2
v12
C pT0
出口气 流速度:
v1 2(h0 h1) 2C p (T0 T1)
2 1
RT0[1
(
p1 p0
)
1
]
2
p0
[1
(
p1
1
)
]
1 0
p0
2 1
RT0
(1
T1 T0
)
变截面管流
➢ 喷管——收缩喷管
▪ 收缩喷管
1) 出口的流速和流量
dv 0 v
dp 0 p
d 0
dT 0 T
dA (Ma2 1) dv
A
v
dp Ma2 dv
p
vT ( 1)Ma2 dv
T
v
变截面管流
➢ 气流速度与通道截面的关系
▪ 扩压管
2. 扩压管截面积的相对变化趋向
dA (Ma2 1) dv
A
v
dp Ma2 dv
p
v
d Ma2 dv
h
1 2
v2
h0
▪ 滞止参数
滞 止 焓: h0 滞止压强: p0
滞止密度: 0
滞止温度: T0
气流的特定状态 参考速度 速度系数
➢ 气流的特定状态——滞止状态
▪ 滞止参数与静参数的关系
p0
(1
1
Ma
2
)
1
p
2
0
(1
1
Ma
2
)
1 1
2
T0 1 1 Ma2
T
2
气流的特定状态 参考速度 速度系数
▪ 临界状态 气流速度恰好等于当地临界速度时的状态
称为临界状态。临界状态用下标cr表示。
vcr ccr
▪ 临界参数
临界压强: pcr
临界密度: cr
临界温度: Tcr
气流的特定状态 参考速度 速度系数
➢ 气流的特定状态——临界状态
▪ 滞止参数与静参数的关系
Tcr T0
cc2r c02
2
1
pcr (
变截面管流
➢ 气流速度与通道截面的关系
▪ 喷管
使高温高压气体的热能经降压加速 转换为高速气流动能的管道。 1. 气流参数的变化趋向
dv 0 v
dp 0 p
d 0
dT 0 T
dA (Ma2 1) dv
A
v
dp Ma2 dv
p
v
d Ma2 dv
v
dT ( 1)Ma2 dv
T
v
变截面管流
p2 ) A
21
vg
p2, 2,T2
vs
p1, 1,T1
21
x
vs ——激波的传播速度
vg ——波后气流的速度
p2, 2,T2 ——激波经过后的气体参数 p1, 1,T1 ——激波经过前的气体参数
正激波
➢ 正激波的传播速度
vs
2 p2 p1 1 2 1
c1 2 p2 / p1 1 y 1 2 / 1 1
气体的一维流动
微弱扰动的一维传播 声速 马赫数
➢ 微弱扰动的一维传播
微弱扰动的一维传播 声速 马赫数
➢ 声速
声音传播的速度,即微弱扰动波传播的速度。
c
(
dp
d
)s
流体:
c K
K ——流体的体积模量
完全气体: c p RT ——气体绝热指数
空气:
c 20.05 T
微弱扰动的一维传播 声速 马赫数
1
Ma12
1) 1
12
v1
v2 p2
2
T2
12
Ma22
2 ( 1)Ma12 2Ma12 ( 1)
p02 p01
(M
2 *1
)
1
[
( (
1) (
1)M
2 *1
1)
(
M
2 *1
1)
]
1 1
[
2
( (
1)Ma12 1)Ma12
1
]
( 2
1
M
a12
1)
1
1
正激波
➢ 正激波的波阻
Ma1>1
2< 2 max
曲激波
0B
A
正激波
相关文档
最新文档