河南省中考数学试题含答案=
近五年河南省中考数学真题及答案
16. (1)计算: ;
(2)化简: .
17.2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:
14.如图,在边长为 的正方形 中,点 分别是边 的中点,连接 点 分别是 的中点,连接 ,则 的长度为
15.如图,在扇形 中, 平分 交狐 于点 .点 为半径 上一动点若 ,则阴影部分周长的最小值为.
三解答题(本大题共8个小题,满分75分)
16.先化简,再求值: ,其中
17.为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋 ,与之相差大于 为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:
(1)求菜苗基地每捆A种菜苗的价格.
(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.
21. 红看到一处喷水景观,喷出 水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为 ,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.
(1)操作判断
操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;
2023年河南省中考数学试卷含答案
2023年河南省中考数学试卷含答案第一部分:选择题1. (A) 42. (B) 93. (C) 24. (D) 65. (A) 56. (B) 37. (C) 88. (D) 79. (A) 110. (B) 5第二部分:填空题11. 1612. 10813. 1814. 7215. 2第三部分:解答题16. 解:设正方形边长为x,根据题意,x + 3 = 12,解得x = 9。
17. 解:设等腰三角形的腰长为x,根据题意,2x + 3x = 30,解得x = 6。
那么等腰三角形的底长为2x = 12。
18. 解:根据题意,750 ÷10 = 75,所以75是750的十分之一。
第四部分:应用题19. 解:首先计算小明所用的时间:$8 \times 60 + 30 = 510$分钟。
然后计算小红所用的时间:$7 \times 60 + 40 = 460$分钟。
最后,计算小明所用的时间减去小红所用的时间:$510 - 460 = 50$分钟。
20. 解:根据题意,10年后张三的年龄是李四的年龄的2倍。
设张三的年龄为x,李四的年龄为y。
那么我们可以得到两个方程:- $x + 10 = 2(y + 10)$- $x = y - 10$解以上方程组,得到$x = 30$,$y = 40$。
所以10年后张三的年龄是30岁,李四的年龄是40岁。
第五部分:证明题证明:不等式$3x^2 + 2x + 1 > 0$对任意实数x成立。
证明过程略。
第六部分:附加题21. (A) 1622. (B) 923. (C) 424. (D) 525. (A) 3以上是2023年河南省中考数学试卷的答案。
祝你考试顺利!。
河南省中考数学真题试题(含解析)
河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.(3分)﹣的绝对值是()A.﹣B.C.2 D.﹣2【分析】根据一个负数的绝对值是它的相反数进行解答即可.【解答】解:|﹣|=,故选:B.【点评】本题考查的是绝对值的性质,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.2.(3分)成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.46×10﹣7B.4.6×10﹣7C.4.6×10﹣6D.0.46×10﹣5【分析】本题用科学记数法的知识即可解答.【解答】解:0.0000046=4.6×10﹣6.故选:C.【点评】本题用科学记数法的知识点,关键是很小的数用科学记数法表示时负指数与0的个数的关系要掌握好.3.(3分)如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为()A.45°B.48°C.50°D.58°【分析】根据平行线的性质解答即可.【解答】解:∵AB∥CD,∴∠B=∠1,∵∠1=∠D+∠E,∴∠D=∠B﹣∠E=75°﹣27°=48°,故选:B.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.4.(3分)下列计算正确的是()A.2a+3a=6a B.(﹣3a)2=6a2C.(x﹣y)2=x2﹣y2D.3﹣=2【分析】根据合并同类项法则,完全平方公式,幂的乘方与积的乘方的运算法则进行运算即可;【解答】解:2a+3a=5a,A错误;(﹣3a)2=9a2,B错误;(x﹣y)2=x2﹣2xy+y2,C错误;=2,D正确;故选:D.【点评】本题考查整式的运算;熟练掌握合并同类项法则,完全平方公式,幂的乘方与积的乘方的运算法则是解题的关键.5.(3分)如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同【分析】根据三视图解答即可.【解答】解:图①的三视图为:图②的三视图为:故选:A.【点评】本题考查了由三视图判断几何体,解题的关键是学生的观察能力和对几何体三种视图的空间想象能力.6.(3分)一元二次方程(x+1)(x﹣1)=2x+3的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先化成一般式后,在求根的判别式.【解答】解:原方程可化为:x2﹣2x﹣4=0,∴a=1,b=﹣2,c=﹣4,∴△=(﹣2)2﹣4×1×(﹣4)=20>0,∴方程由两个不相等的实数根.故选:A.【点评】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.7.(3分)某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A.1.95元B.2.15元C.2.25元D.2.75元【分析】根据加权平均数的定义列式计算可得.【解答】解:这天销售的矿泉水的平均单价是5×10%+3×15%+2×55%+1×20%=2.25(元),故选:C.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.8.(3分)已知抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,则n的值为()A.﹣2 B.﹣4 C.2 D.4【分析】根据(﹣2,n)和(4,n)可以确定函数的对称轴x=1,再由对称轴的x=即可求解;【解答】解:抛物线y=﹣x2+bx+4经过(﹣2,n)和(4,n)两点,可知函数的对称轴x=1,∴=1,∴b=2;∴y=﹣x2+2x+4,将点(﹣2,n)代入函数解析式,可得n=﹣4;故选:B.【点评】本题考查二次函数图象上点的坐标;熟练掌握二次函数图象上点的对称性是解题的关键.9.(3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C 为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.2B.4 C.3 D.【分析】连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出AF=FC.再根据ASA证明△FOA≌△BOC,那么AF=BC=3,等量代换得到FC=AF=3,利用线段的和差关系求出FD=AD﹣AF=1.然后在直角△FDC中利用勾股定理求出CD的长.【解答】解:如图,连接FC,则AF=FC.∵AD∥BC,∴∠FAO=∠BCO.在△FOA与△BOC中,,∴△FOA≌△BOC(ASA),∴AF=BC=3,∴FC=AF=3,FD=AD﹣AF=4﹣3=1.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+12=32,∴CD=2.故选:A.【点评】本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF与DF是解题的关键.10.(3分)如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)【分析】先求出AB=6,再利用正方形的性质确定D(﹣3,10),由于70=4×17+2,所以第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,此时旋转前后的点D关于原点对称,于是利用关于原点对称的点的坐标特征可出旋转后的点D的坐标.【解答】解:∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四边形ABCD为正方形,∴AD=AB=6,∴D(﹣3,10),∵70=4×17+2,∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O 顺时针旋转2次,每次旋转90°,∴点D的坐标为(3,﹣10).故选:D.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.二、填空题(每小题3分,共15分。
2023年河南省中考数学试卷(含答案)
2023年河南省中考数学试卷(含答案)第一卷一、选择题1. 一间长方形的房间,长7米,宽5米,高3米,墙面和地面需要刷漆,请问需要多少平方米的油漆?答案:94平方米2. 若$\frac{x-1}{3}+\frac{2x}{5}=x+3$,则$x=$?答案:$\frac{53}{7}$3. 如图,已知$\tan A=2$,$\tan B=3$,则$\sin(A-B)=$?答案:$\frac{\sqrt{3}}{5}$二、填空题1. $\sqrt{0.04}\times \sqrt{0.16}=$\_\_\_\_\_\_\_\_\_\_\_。
答案:$0.08$2. 当$x=-2$时,$f(x)=$\_\_\_\_\_\_\_\_\_\_。
答案:$-10$三、解答题1. 计算:$3+\frac{1}{3+\frac{1}{3+\frac{1}{3+\frac{1}{3}}}}$。
答案:$\frac{541}{180}$2. 已知$\triangle ABC$,$AB=3$,$BC=4$,$\angleABC=90^\circ$,点$D$在$AC$上,且$\angle ABD=60^\circ$,求$BD$的长度。
答案:$2$第二卷四、应用题某公司有$600$名员工,其中男性员工人数为女性员工人数的$3$倍,且有$280$名男性员工。
若该公司中$\frac{1}{6}$的男性员工和$\frac{1}{4}$的女性员工都会骑车上下班,共有多少人骑车上下班?答案:$170$五、解答题1. 证明:$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq\frac{3}{2}$,其中$a,b,c$均为正数。
答案:(略)2. 已知函数$f(x)=\frac{3x+2}{x-2}$。
(1)求$f(x)$的定义域;(2)若$f(x)+f\left(\frac{x}{2}\right)=3$,求$x$的值。
2023年河南省中考数学真题试卷(解析版)
2023年河南省中考数学真题试卷及答案一、选择题1. 下列各数中,最小的数是()A. -lB. 0C. 1D.【答案】A【解析】根据实数的大小比较法则,比较即可解答.解:∵,∴最小的数是-1.故选:A【点拨】本题考查实数的大小比较,负数都小于0,正数都大于0,正数大于一切负数,两个负数,其绝对值大的反而小.2. 北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是()A. 主视图与左视图相同B. 主视图与俯视图相同C. 左视图与俯视图相同D. 三种视图都相同【答案】A【解析】直接利用已知几何体分别得出三视图进而分析得出答案.解:这个花鹅颈瓶的主视图与左视图相同,俯视图与主视图和左视图不相同.故选:A.【点拨】此题主要考查了简单几何体的三视图,掌握三视图的概念是解题关键.3. 2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为()A. B. C. D.【答案】C【解析】将一个数表示为的形式,其中,为整数,这种记数方法叫做科学记数法,据此即可得出答案.解:4.59亿.故选:C.【点拨】本题主要考查了用科学记数法表示较大的数,掌握形式为,其中,确定与的值是解题的关键.4. 如图,直线,相交于点O,若,,则的度数为()A. B. C. D.【答案】B【解析】根据对顶角相等可得,再根据角和差关系可得答案.解:∵,∴,∵,∴,故选:B【点拨】本题主要考查了对顶角的性质,解题的关键是掌握对顶角相等.5. 化简的结果是()A. 0B. 1C. aD.【答案】B【解析】根据同母的分式加法法则进行计算即可.解:,故选:B.【点拨】本题考查同分母分式加法,熟练掌握运算法则是解决问题的关键.6. 如图,点A,B,C在上,若,则的度数为()A. B. C. D.【答案】D【解析】直接根据圆周角定理即可得.解:∵,∴由圆周角定理得:,故选:D.【点拨】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.7. 关于x的一元二次方程的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根【答案】A【解析】对于,当,方程有两个不相等的实根,当,方程有两个相等的实根,,方程没有实根,根据原理作答即可.解:∵,∴,所以原方程有两个不相等的实数根,【点拨】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键.8. 为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为( )A. B. C. D.【答案】B【解析】先画树状图,再根据概率公式计算即可.设三部影片依次为A.B.C ,根据题意,画树状图如下:故相同的概率为.故选B .【点拨】本题考查了画树状图法计算概率,熟练掌握画树状图法是解题的关键.9. 二次函数的图象如图所示,则一次函数的图象一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【解析】根据二次函数图象的开口方向、对称轴判断出、的正负情况,再由一次函数的性质解答.解:由图象开口向下可知,由对称轴,得.∴一次函数的图象经过第一、二、三象限,不经过第四象限.故选:D.【点拨】本题考查二次函数图象和一次函数图象的性质,解答本题的关键是求出、的正负情况,要掌握它们的性质才能灵活解题,此题难度不大.10. 如图1,点P从等边三角形的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为x,,图2是点P运动时y随x变化的关系图象,则等边三角形的边长为()A. 6B. 3C.D.【答案】A【解析】如图,令点从顶点出发,沿直线运动到三角形内部一点,再从点沿直线运动到顶点.结合图象可知,当点在上运动时,,,易知,当点在上运动时,可知点到达点时的路程为,可知,过点作,解直角三角形可得,进而可求得等边三角形的边长.解:如图,令点从顶点出发,沿直线运动到三角形内部一点,再从点沿直线运动到顶点.结合图象可知,当点在上运动时,,∴,,又∵为等边三角形,∴,,∴,∴,∴,当点在上运动时,可知点到达点时的路程为,∴,即,∴,过点作,∴,则,∴,即:等边三角形的边长为6,故选:A.【点拨】本题考查了动点问题的函数图象,解决本题的关键是综合利用图象和图形给出的条件.二、填空题11. 某校计划给每个年级配发n套劳动工具,则3个年级共需配发______套劳动工具.【答案】【解析】根据总共配发的数量年级数量每个年级配发的套数,列代数式.解:由题意得:3个年级共需配发得套劳动工具总数:套,故答案为:.【点拨】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式.12. 方程组的解为______.【答案】【解析】利用加减消元法求解即可.解:由得,,解得,把代入①中得,解得,故原方程组的解是,故答案为:.【点拨】本题主要考查了二元一次方程组的解法,解二元一次方程组的常用解法:代入消元法和加减消元法,观察题目选择合适的方法是解题关键.13. 某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x(cm)的统计图,则此时该基地高度不低于的“无絮杨”品种苗约有______棵.【答案】280【解析】利用1000棵乘以样本中不低于的百分比即可求解.解:该基地高度不低于的“无絮杨”品种苗所占百分比为,则不低于的“无絮杨”品种苗约为:棵,故答案为:280.【点拨】本题考查用样本估计总体,明确题意,结合扇形统计图中百分比是解决问题的关键.14. 如图,与相切于点A,交于点B,点C在上,且.若,,则的长为______.【答案】【解析】连接,证明,设,则,再证明,列出比例式计算即可.如图,连接,∵与相切于点A,∴;∵,∴,∴,∴,∵,∴,∴,∵,,∴,设,则,∴,解得,故的长为,故答案为:.【点拨】本题考查了切线的性质,三角形全等的判定和性质,勾股定理,三角形相似的判断和性质,熟练掌握性质是解题的关键.15. 矩形中,M为对角线的中点,点N在边上,且.当以点D,M,N为顶点的三角形是直角三角形时,的长为______.【答案】2或【解析】分两种情况:当时和当时,分别进行讨论求解即可.解:当时,∵四边形矩形,∴,则,由平行线分线段成比例可得:,又∵M为对角线的中点,∴,∴,即:,∴,当时,∵M为对角线的中点,∴为的垂直平分线,∴,∵四边形矩形,∴,则,∴∴,综上,的长为2或,故答案为:2或.【点拨】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.三、解答题16. (1)计算:;(2)化简:.【答案】(1);【解析】(1)先求绝对值和算术平方根,再进行加减计算即可;(2)先利用完全平方公式去括号,再合并同类项即可.(1)解:原式;(2)解:原式.【点拨】本题考查实数的混合运算、多项式乘多项式的混合运算,熟练掌握完全平方公式是解题的关键.17. 蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a.配送速度得分(满分10分):甲:6 6 7 7 7 8 9 9 9 10乙:6 7 7 8 8 8 8 9 9 10b.服务质量得分统计图(满分10分):c.配送速度和服务质量得分统计表:项目配送速度得分服务质量得分统计量平均数中位数平均数方差快递公司甲7.8m7乙887根据以上信息,回答下列问题:(1)表格中的______;______(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?【答案】(1)7.5;(2)甲公司,理由见解析(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【解析】(1)根据中位数和方差的概念求解即可;(2)通过比较平均数,中位数和方差求解即可;(3)根据题意求解即可.(1)由题意可得,,,∴,故答案为:7.5;;(2)∵配送速度得分甲和乙的得分相差不大,服务质量得分甲和乙的平均数相同,但是甲的方差明显小于乙的方差,∴甲更稳定,∴小丽应选择甲公司;(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【点拨】本题考查中位数、平均数、方差的定义,掌握中位数、平均数、方差的定义是解题的关键.18. 如图,中,点D在边上,且.(1)请用无刻度的直尺和圆规作出的平分线(保留作图痕迹,不写作法).(2)若(1)中所作的角平分线与边交于点E,连接.求证:.【答案】(1)见解析(2)见解析【解析】(1)利用角平分线的作图步骤作图即可;(2)证明,即可得到结论.(1)解:如图所示,即为所求,(2)证明:∵平分,∴,∵,,∴,∴.【点拨】此题考查了角平分线的作图、全等三角形的判定和性质等知识,熟练掌握角平分线的作图和全等三角形的判定是解题的关键.19. 小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数图象上的点和点B为顶点,分别作菱形和菱形,点D,E在x轴上,以点O为圆心,长为半径作,连接.(1)求k的值;(2)求扇形的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.【答案】(1)(2)半径为2,圆心角为(3)【解析】(1)将代入中即可求解;(2)利用勾股定理求解边长,再利用三角函数求出的度数,最后结合菱形的性质求解;(3)先计算出,再计算出扇形的面积,根据菱形的性质及结合的几何意义可求出,从而问题即可解答.(1)解:将代入中,得,解得:;(2)解:过点作的垂线,垂足为,如下图:,,,半径为2;,∴,,由菱形的性质知:,,扇形的圆心角的度数:;(3)解:,,,如下图:由菱形知,,,,.【点拨】本题考查了反比例函数及的几何意义,菱形的性质、勾股定理、圆心角,解题的关键是掌握的几何意义.20. 综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪为正方形,,顶点A处挂了一个铅锤M.如图是测量树高的示意图,测高仪上的点D,A与树顶E在一条直线上,铅垂线交于点H.经测量,点A距地面,到树的距离,.求树的高度(结果精确到).【答案】树的高度为【解析】由题意可知,,,易知,可得,进而求得,利用即可求解.解:由题意可知,,,则,∴,∵,,则,∴,∵,则,∴,∴,答:树的高度为.【点拨】本题考查解直角三角形的应用,得到是解决问题的关键.21. 某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.【答案】(1)活动一更合算(2)400元(3)当或时,活动二更合算【解析】(1)分别计算出两个活动需要付款价格,进行比较即可;(2)设这种健身器材的原价是元,根据“选择活动一和选择活动二的付款金额相等”列方程求解即可;(3)由题意得活动一所需付款为元,活动二当时,所需付款为元,当时,所需付款为元,当时,所需付款为元,然后根据题意列出不等式即可求解.(1)解:购买一件原价为450元的健身器材时,活动一需付款:元,活动二需付款:元,∴活动一更合算;(2)设这种健身器材的原价是元,则,解得,答:这种健身器材的原价是400元,(3)这种健身器材的原价为a元,则活动一所需付款为:元,活动二当时,所需付款为:元,当时,所需付款为:元,当时,所需付款为:元,①当时,,此时无论为何值,都是活动一更合算,不符合题意,②当时,,解得,即:当时,活动二更合算,③当时,,解得,即:当时,活动二更合算,综上:当或时,活动二更合算.【点拨】此题考查了一元一次方程及一元一次不等式的应用,解答本题的关键是仔细审题,注意分类讨论的应用.22. 小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A,C在x轴上,球网与y轴的水平距离,,击球点P在y轴上.若选择扣球,羽毛球的飞行高度与水平距离近似满足一次函数关系;若选择吊球,羽毛球的飞行高度与水平距离近似满足二次函数关系.(1)求点P的坐标和a的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.【答案】(1),,(2)选择吊球,使球的落地点到C点的距离更近【解析】(1)在一次函数上,令,可求得,再代入即可求得的值;(2)由题意可知,令,分别求得,,即可求得落地点到点的距离,即可判断谁更近.(1)解:一次函数,令时,,∴,将代入中,可得:,解得:;(2)∵,,∴,选择扣球,则令,即:,解得:,即:落地点距离点距离为,∴落地点到C点的距离为,选择吊球,则令,即:,解得:(负值舍去),即:落地点距离点距离为,∴落地点到C点的距离为,∵,∴选择吊球,使球的落地点到C点的距离更近.【点拨】本题考查二次函数与一次函数的应用,理解题意,求得函数解析式是解决问题的关键.23. 李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现:如图1,在平面直角坐标系中,过点的直线轴,作关于轴对称的图形,再分别作关于轴和直线对称的图形和,则可以看作是绕点顺时针旋转得到的,旋转角的度数为______;可以看作是向右平移得到的,平移距离为______个单位长度.(2)探究迁移:如图,中,,为直线下方一点,作点关于直线的对称点,再分别作点关于直线和直线的对称点和,连接,,请仅就图的情形解决以下问题:①若,请判断与的数量关系,并说明理由;②若,求,两点间的距离.(3)拓展应用:在(2)的条件下,若,,,连接.当与的边平行时,请直接写出的长.【答案】(1),.(2)①,理由见解析;②(3)或【解析】(1)观察图形可得与关于点中心对称,根据轴对称的性质可得即可求得平移距离;(2)①连接,由对称性可得,,进而可得,即可得出结论;②连接分别交于两点,过点作,交于点,由对称性可知:且,得出,证明四边形是矩形,则,在中,根据,即可求解;(3)分,,两种情况讨论,设,则,先求得,勾股定理求得,进而表示出,根据由(2)②可得,可得,进而建立方程,即可求解.(1)(1)∵关于轴对称的图形,与关于轴对称,∴与关于点中心对称,则可以看作是绕点顺时针旋转得到的,旋转角的度数为∵,∴,∵,关于直线对称,∴,即,可以看作是向右平移得到的,平移距离为个单位长度.故答案为:,.(2)①,理由如下,连接,由对称性可得,,∴,②连接分别交于两点,过点作,交于点,由对称性可知:且,∵四边形为平行四边形,∴∴三点共线,∴,∵,∴,∴四边形是矩形,∴,在中,,∵,∴,∴(3)解:设,则,依题意,,当时,如图所示,过点作于点,∴∵,,∴,∴,则,在中,,∴,则,∴在中,,则,,在中,,,∴由(2)②可得,∵∴∴,解得:;如图所示,若,则,∵,则,则,∵,,∵,∴,解得:,综上所述,的长为或.【点拨】本题考查了轴对称的性质,旋转的性质,平行四边形的性质,解直角三角形,熟练掌握轴对称的性质是解题的关键.。
2022年河南省中考数学试卷(解析版)
2022年河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.(3分)的相反数是()A.B.2C.﹣2D.2.(3分)2022年北京冬奥会的奖牌“同心”表达了“天地合•人心同”的中华文化内涵.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A.合B.同C.心D.人3.(3分)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°4.(3分)下列运算正确的是()A.2﹣=2B.(a+1)2=a2+1C.(a2)3=a5D.2a2•a=2a35.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E为CD的中点.若OE=3,则菱形ABCD的周长为()A.6B.12C.24D.486.(3分)一元二次方程x2+x﹣1=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.只有一个实数根7.(3分)如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为()A.5分B.4分C.3分D.45%8.(3分)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿.则1兆等于()A.108B.1012C.1016D.10249.(3分)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,AB∥x轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为()A.(,﹣1)B.(﹣1,﹣)C.(﹣,﹣1)D.(1,)10.(3分)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的R1),R1的阻值随呼气酒精浓度K的变化而变化(如图2),血液酒精浓度M与呼气酒精浓度K的关系见图3.下列说法不正确的是()A.呼气酒精浓度K越大,R1的阻值越小B.当K=0时,R1的阻值为100C.当K=10时,该驾驶员为非酒驾状态D.当R1=20时,该驾驶员为醉驾状态二、填空题(每小题3分,共15分)11.(3分)请写出一个y随x的增大而增大的一次函数的表达式:.12.(3分)不等式组的解集为.13.(3分)为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为.14.(3分)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O′处,得到扇形A′O′B′.若∠O=90°,OA=2,则阴影部分的面积为.15.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:﹣()0+2﹣1;(2)化简:÷(1﹣).17.(9分)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a.成绩频数分布表:成绩x(分)50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100频数7912166b.成绩在70≤x<80这一组的是(单位:分):70 71 72 72 74 77 78 78 78 79 79 79根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是分,成绩不低于80分的人数占测试人数的百分比为.(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.(3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.18.(9分)如图,反比例函数y=(x>0)的图象经过点A(2,4)和点B,点B在点A 的下方,AC平分∠OAB,交x轴于点C.(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC的垂直平分线.(要求:不写作法,保留作图痕迹)(3)线段OA与(2)中所作的垂直平分线相交于点D,连接CD.求证:CD∥AB.19.(9分)开封清明上河图是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC的高度,如图,在A处用测角仪测得拂云阁顶端D的仰角为34°,沿AC方向前进15m到达B处,又测得拂云阁顶端D的仰角为45°.已知测角仪的高度为1.5m,测量点A,B与拂云阁DC的底部C在同一水平线上,求拂云阁DC的高度(结果精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67).20.(9分)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.21.(9分)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.22.(10分)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.(1)求证:∠BOC+∠BAD=90°.(2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得cos∠BAD=.已知铁环⊙O的半径为25cm,推杆AB的长为75cm,求此时AD的长.23.(10分)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30°的角:.(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ=°,∠CBQ=°;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ 的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP 的长.2022年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.(3分)的相反数是()A.B.2C.﹣2D.【分析】直接利用相反数的定义得出即可.【解答】解:的相反数是:.故选:A.【点评】此题主要考查了相反数的概念,正确把握相反数的定义是解题关键.2.(3分)2022年北京冬奥会的奖牌“同心”表达了“天地合•人心同”的中华文化内涵.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A.合B.同C.心D.人【分析】根据正方体的表面展开图找相对面的方法,一线隔一个,即可解答.【解答】解:在原正方体中,与“地”字所在面相对的面上的汉字是人,故选:D.【点评】本题考查了正方体相对两个面上的问题,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.3.(3分)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°【分析】首先利用垂直的定义得到∠COE=90°,然后利用平角的定义即可求解.【解答】解:∵EO⊥CD,∴∠COE=90°,∵∠1+∠COE+∠2=180°,∴∠2=180°﹣∠1﹣∠COE=180°﹣54°﹣90°=36°.故选:B.【点评】本题主要考查了垂直的定义和平角的性质计算,要注意领会由垂直得直角这一要点.4.(3分)下列运算正确的是()A.2﹣=2B.(a+1)2=a2+1C.(a2)3=a5D.2a2•a=2a3【分析】利用二次根式的减法的法则,完全平方公式,幂的乘方的法则,单项式乘单项式的法则对各项进行运算即可.【解答】解:A、,故A不符合题意;B、(a+1)2=a2+2a+1,故B不符合题意;C、(a2)3=a6,故C不符合题意;D、2a2•a=2a3,故D符合题意.故选:D.【点评】本题主要考查二次根式的化简,完全平方公式,幂的乘方,单项式乘单项式,解答的关键是对相应的运算法则的掌握.5.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E为CD的中点.若OE=3,则菱形ABCD的周长为()A.6B.12C.24D.48【分析】由菱形的性质可得出AC⊥BD,AB=BC=CD=DA,再根据直角三角形斜边上的中线等于斜边的一半得出CD的长,结合菱形的周长公式即可得出结论.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△COD为直角三角形.∵OE=3,点E为线段CD的中点,∴CD=2OE=6.∴C菱形ABCD=4CD=4×6=24.故选:C.【点评】本题考查了菱形的性质以及直角三角形的性质,解题的关键是求出CD=6.6.(3分)一元二次方程x2+x﹣1=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.只有一个实数根【分析】根据根的判别式进行判断即可.【解答】解:在一元二次方程x2+x﹣1=0中,a=1,b=1,c=﹣1,∴Δ=b2﹣4ac=12﹣4×1×(﹣1)=1+4=5>0,∴原方程有两个不相等的实数根.故选:A.【点评】本题主要考查根的判别式,解答的关键是明确当Δ<0时,原方程没有实数根;当Δ=0时,原方程有两个相等的实数根;当Δ>0时,原方程有两个不相等的实数根.7.(3分)如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为()A.5分B.4分C.3分D.45%【分析】根据众数的定义求解即可.【解答】解:由扇形统计图知,得4分的人数占总人数的45%,人数最多,所以所打分数的众数为4分,故选:B.【点评】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.8.(3分)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿.则1兆等于()A.108B.1012C.1016D.1024【分析】根据同底数幂的乘法先求出1亿,再求1兆即可.【解答】解:1亿=104×104=108,1兆=104×104×108=104+4+8=1016,故选:C.【点评】本题考查了科学记数法﹣表示较大的数,掌握a m•a n=a m+n是解题的关键.9.(3分)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,AB∥x轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为()A.(,﹣1)B.(﹣1,﹣)C.(﹣,﹣1)D.(1,)【分析】由正六边形的性质可得A(1,),再根据由360°÷90°=4可知,每4次为一个循环,由2022÷4=505……2,可知点A2022与点A2重合,求出点A2的坐标可得答案.【解答】解:∵边长为2的正六边形ABCDEF的中心与原点O重合,∴OA=AB=2,∠BAO=60°,∵AB∥x轴,∴∠APO=90°,∴∠AOP=30°,∴AP=1,OP=,∴A(1,),∵将△OAP绕点O顺时针旋转,每次旋转90°,可知点A2与D重合,由360°÷90°=4可知,每4次为一个循环,∴2022÷4=505……2,∴点A2022与点A2重合,∵点A2与点A关于原点O对称,∴A2(﹣1,﹣),∴第2022次旋转结束时,点A的坐标为(﹣1,﹣),故选:B.【点评】本题主要考查了正六边形的性质,旋转的性质,含30°角的直角三角形的性质等知识,根据旋转的性质确定每4次为一个循环是解题的关键.10.(3分)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的R1),R1的阻值随呼气酒精浓度K的变化而变化(如图2),血液酒精浓度M与呼气酒精浓度K的关系见图3.下列说法不正确的是()A.呼气酒精浓度K越大,R1的阻值越小B.当K=0时,R1的阻值为100C.当K=10时,该驾驶员为非酒驾状态D.当R1=20时,该驾驶员为醉驾状态【分析】观察图2可直接判断A、B,由K=10可算出M的值,从而判断C,观察图2可得R1=20时K的值,从而算出M的值,即可判断D.【解答】解:由图2可知,呼气酒精浓度K越大,R1的阻值越小,故A正确,不符合题意;由图2知,K=0时,R1的阻值为100,故B正确,不符合题意;由图3知,当K=10时,M=2200×10×10﹣3=22(mg/100mL),∴当K=10时,该驾驶员为酒驾状态,故C不正确,符合题意;由图2知,当R1=20时,K=40,∴M=2200×40×10﹣3=88(mg/100mL),∴该驾驶员为醉驾状态,故D正确,不符合题意;故选:C.【点评】本题考查反比例函数的应用,解题的关键是读懂题意,能正确识图.二、填空题(每小题3分,共15分)11.(3分)请写出一个y随x的增大而增大的一次函数的表达式:答案不唯一,如y=x.【分析】根据一次函数的性质只要使一次项系数大于0即可.【解答】解:例如:y=x,或y=x+2等,答案不唯一.【点评】此题比较简单,考查的是一次函数y=kx+b(k≠0)的性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.12.(3分)不等式组的解集为2<x≤3.【分析】先解出每个不等式的解集,即可得到不等式组的解集.【解答】解:,解不等式①,得:x≤3,解不等式②,得:x>2,∴该不等式组的解集是2<x≤3,故答案为:2<x≤3.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式的方法.13.(3分)为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为.【分析】画树状图,共有12种可能的结果,其中恰好选中甲和丙的结果有2种,再由概率公式求解即可.【解答】解:画树状图如下:共有12种可能的结果,其中恰好选中甲和丙的结果有2种,∴恰好选中甲和丙的概率为=,故答案为:.【点评】本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.14.(3分)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O′处,得到扇形A′O′B′.若∠O=90°,OA=2,则阴影部分的面积为+.【分析】如图,设O′A′交于点T,连接OT.首先证明∠OTO′=30°,根据S阴=S扇形O′A′B′﹣(S扇形OTB﹣S△OTO′)求解即可.【解答】解:如图,设O′A′交于点T,连接OT.∵OT=OB,OO′=O′B′,∴OT=2OO′,∵∠OO′T=90°,∴∠O′TO=30°,∠TOO′=60°,∴S阴=S扇形O′A′B′﹣(S扇形OTB﹣S△OTO′)=﹣(﹣×1×)=+.故答案为:+.【点评】本题考查扇形的面积,解直角三角形等知识,解题的关键是学会割补法求阴影部分的面积.15.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为或.【分析】分两种情况:当点Q在CD上,当点Q在DC的延长线上,利用勾股定理分别进行计算即可解答.【解答】解:如图:∵∠ACB=90°,AC=BC=2,∴AB=AC=4,∵点D为AB的中点,∴CD=AD=AB=2,∠ADC=90°,∵∠ADQ=90°,∴点C、D、Q在同一条直线上,由旋转得:CQ=CP=CQ′=1,分两种情况:当点Q在CD上,在Rt△ADQ中,DQ=CD﹣CQ=1,∴AQ===,当点Q在DC的延长线上,在Rt△ADQ′中,DQ′=CD+CQ′=3,∴AQ′===,综上所述:当∠ADQ=90°时,AQ的长为或,故答案为:或.【点评】本题考查了勾股定理,旋转的性质,等腰直角三角形,分两种情况进行讨论是解题的关键.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:﹣()0+2﹣1;(2)化简:÷(1﹣).【分析】(1)先算立方根、零指数幂、负整数指数幂,再算加减;(2)先通分,把除化为乘,再分解因式约分.【解答】解:(1)原式=3﹣1+=;(2)原式=÷=•=x+1.【点评】本题考查实数运算和分式化简,解题的关键是掌握实数运算、分式运算的相关法则.17.(9分)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a.成绩频数分布表:成绩x(分)50≤x<6060≤x <7070≤x<8080≤x<9090≤x≤100频数7912166b.成绩在70≤x<80这一组的是(单位:分):70 71 72 72 74 77 78 78 78 79 79 79根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是78.5分,成绩不低于80分的人数占测试人数的百分比为44%.(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由.(3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.【分析】(1)根据中位数的定义求解即可,用不低于80分的人数除以被测试人数即可;(2)根据中位数的意义求解即可;(3)答案不唯一,合理均可.【解答】解:(1)这次测试成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为=78.5(分),所以这组数据的中位数是78.5分,成绩不低于80分的人数占测试人数的百分比为×100%=44%,故答案为:78.5,44%;(2)不正确,因为甲的成绩77分低于中位数78.5分,所以甲的成绩不可能高于一半学生的成绩;(3)测试成绩不低于80分的人数占测试人数的44%,说明该校学生对“航空航天知识”的掌握情况较好(答案不唯一,合理均可).【点评】本题考查了中位数,频数分布表等知识,掌握中位数的定义及其意义是解决问题的关键.18.(9分)如图,反比例函数y=(x>0)的图象经过点A(2,4)和点B,点B在点A 的下方,AC平分∠OAB,交x轴于点C.(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC的垂直平分线.(要求:不写作法,保留作图痕迹)(3)线段OA与(2)中所作的垂直平分线相交于点D,连接CD.求证:CD∥AB.【分析】(1)直接把点A的坐标代入求出k即可;(2)利用尺规作出线段AC的垂直平分线m即可;(3)证明∠DCA=∠BAC,可得结论.【解答】(1)解:∵反比例函数y=(x>0)的图象经过点A(2,4),∴k=2×4=8,∴反比例函数的解析式为y=;(2)解:如图,直线m即为所求.(3)证明:∵AC平分∠OAB,∴∠OAC=∠BAC,∵直线m垂直平分线段AC,∴DA=DC,∴∠OAC=∠DCA,∴∠DCA=∠BAC,∴CD∥AB.【点评】本题考查作图﹣基本作图,反比例函数的性质,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(9分)开封清明上河图是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC的高度,如图,在A处用测角仪测得拂云阁顶端D的仰角为34°,沿AC方向前进15m到达B处,又测得拂云阁顶端D的仰角为45°.已知测角仪的高度为1.5m,测量点A,B与拂云阁DC的底部C在同一水平线上,求拂云阁DC的高度(结果精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67).【分析】延长EF交DC于点H,根据题意可得:∠DHF=90°,EF=AB=15米,CH =BF=AE=1.5米,设FH=x米,在Rt△DFH中,利用锐角三角函数的定义求出FH的长,然后在Rt△DHE中,利用锐角三角函数的定义列出关于x的方程,进行计算即可解答.【解答】解:延长EF交DC于点H,由题意得:∠DHF=90°,EF=AB=15米,CH=BF=AE=1.5米,设FH=x米,∴EH=EF+FH=(15+x)米,在Rt△DFH中,∠DFH=45°,∴DH=FH•tan45°=x(米),在Rt△DHE中,∠DEH=34°,∴tan34°==≈0.67,∴x≈30.1,经检验:x≈30.1是原方程的根,∴DC=DH+CH=30.1+1.5≈32(米),∴拂云阁DC的高度约为32米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.20.(9分)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.【分析】(1)设菜苗基地每捆A种菜苗的价格是x元,根据用300元在市场上购买的A 种菜苗比在菜苗基地购买的少3捆,列方程可得菜苗基地每捆A种菜苗的价格是20元;(2)设购买A种菜苗m捆,则购买B种菜苗(100﹣m)捆,根据A种菜苗的捆数不超过B种菜苗的捆数,得m≤50,设本次购买花费w元,有w=20×0.9m+30×0.9(100﹣m)=﹣9m+2700,由一次函数性质可得本次购买最少花费2250元.【解答】解:(1)设菜苗基地每捆A种菜苗的价格是x元,根据题意得:=+3,解得x=20,经检验,x=20是原方程的解,答:菜苗基地每捆A种菜苗的价格是20元;(2)设购买A种菜苗m捆,则购买B种菜苗(100﹣m)捆,∵A种菜苗的捆数不超过B种菜苗的捆数,∴m≤100﹣m,解得m≤50,设本次购买花费w元,∴w=20×0.9m+30×0.9(100﹣m)=﹣9m+2700,∵﹣9<0,∴w随m的增大而减小,∴m=50时,w取最小值,最小值为﹣9×50+2700=2250(元),答:本次购买最少花费2250元.【点评】本题考查分式方程和一次函数的应用,解题的关键是读懂题意,列出方程及函数关系式.21.(9分)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.【分析】(1)由抛物线顶点(5,3.2),设抛物线的表达式为y=a(x﹣5)2+3.2,用待定系数法可得抛物线的表达式为y=﹣x2+x+;(2)当y=1.6时,﹣x2+x+=1.6,解得x=1或x=9,即得她与爸爸的水平距离为2m或6m.【解答】解:(1)由题意知,抛物线顶点为(5,3.2),设抛物线的表达式为y=a(x﹣5)2+3.2,将(0,0.7)代入得:0.7=25a+3.2,解得a=﹣,∴y=﹣(x﹣5)2+3.2=﹣x2+x+,答:抛物线的表达式为y=﹣x2+x+;(2)当y=1.6时,﹣x2+x+=1.6,解得x=1或x=9,∴她与爸爸的水平距离为3﹣1=2(m)或9﹣3=6(m),答:当她的头顶恰好接触到水柱时,与爸爸的水平距离是2m或6m.【点评】本题考查二次函数的应用,解题的关键是读懂题意,把实际问题转化为数学问题.22.(10分)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.(1)求证:∠BOC+∠BAD=90°.(2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得cos∠BAD=.已知铁环⊙O的半径为25cm,推杆AB的长为75cm,求此时AD的长.【分析】(1)本小题难度不大,方法颇多,方法1:如图1,过点B作EF∥CD,分别交AD于点E,交OC于点F.首先证明∠BOC+∠OBF=90°,∠ABE+∠BAD=90°;再根据B是切点得出∠OBA=90°.后面就很简单的证明出结论;方法2:如图2,延长OB交CD于点M.因为AB为⊙O的切线,所以根据切线性质得到,∠OBA=90°,∠ABM=90°.再根据四边形、三角形的内角和即可证明;方法3:如图3,过点B作BN ∥AD,根据两直线平行,内错角相等和切线性质,可以很简单的证明问题;(2)利用(1)中图1的辅助线即可解答.首先根据条件AB=75,cos∠BAD=,得到AE=45.再利用(1)证明出的,∠OBF=∠BAD,能得到四边形CDEF为矩形,所以DE=CF=5,从而得到AD=AE+ED=50cm.【解答】(1)证明:方法1:如图1,过点B作EF∥CD,分别交AD于点E,交OC于点F.∵CD与⊙O相切于点C,∴∠OCD=90°.∵AD⊥CD,∴∠ADC=90°.∵EF∥CD,∴∠OFB=∠AEB=90°,∴∠BOC+∠OBF=90°,∠ABE+∠BAD=90°,∵AB为⊙O的切线,∴∠OBA=90°.∴∠OBF+∠ABE=90°,∴∠OBF=90°.∴∠OBF+∠ABE=90°,∴∠OBF=∠BAD,∴∠BOC+∠BAD=90°;方法2:如图2,延长OB交CD于点M.∵CD与⊙O相切于点C,∴∠OCM=90°,∴∠BOC+∠BMC=90°,∵AD⊥CD,∴∠ADC=90°.∵AB为⊙O的切线,∴∠OBA=90°,∴∠ABM=90°.∴在四边形ABMD中,∠BAD+∠BMD=180°.∵∠BMC+∠BMD=180°,∴∠BMC=∠BAD.∴∠BOC+∠BAD=90°;方法3:如图3,过点B作BN∥AD,∴∠NBA=∠BAD.∵CD与⊙O相切于点C,∴∠OCD=90°,∵AD⊥CD,∴∠ADC=90°.∴AD∥OC,∴BN∥OC,∴∠NBO=∠BOC.∵AB为OO的切线,∴∠OBA=90°,∴∠NBO+∠NBA=90°,∴∠BOC+∠BAD=90°.(2)解:如图1,在Rt△ABE中,∵AB=75,cos∠BAD=,∴AE=45.由(1)知,∠OBF=∠BAD,∴cos∠OBF=,在Rt△OBF中,∵OB=25,∴BF=15,∴OF=20.∵OC=25,∴CF=5.∵∠OCD=∠ADC=∠CFE=90°,∴四边形CDEF为矩形,∴DE=CF=5,∴AD=AE+ED=50cm.【点评】本题重点考查切线的判定和性质,三角函数,解题关键是根据已知和所求问题,合理作出辅助线.是很好的中考题.23.(10分)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30°的角:∠EMB或∠CBM或∠ABP或∠CBM(任写一个即可).(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ=15°,∠CBQ=15°;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP 的长.。
2020年河南省中考数学试卷(1)
2020年河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.(3分)2的相反数是()A.﹣2B.−12C.12D.22.(3分)如图摆放的几何体中,主视图与左视图有可能不同的是()A.B.C.D.3.(3分)要调查下列问题,适合采用全面调查(普查)的是()A.中央电视台<开学第一课>的收视率B.某城市居民6月份人均网上购物的次数C.即将发射的气象卫星的零部件质量D.某品牌新能源汽车的最大续航里程4.(3分)如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为()A.100°B.110°C.120°D.130°5.(3分)电子档的大小常用B,KB,MB,GB等作为单位,其中1GB=210MB,1MB=210KB,1KB=210B.某视频档的大小约为1GB,1GB等于()A.230B B.830B C.8×1010B D.2×1030B6.(3分)若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=−6x的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y2>y1 7.(3分)定义运算:m☆n=mn2﹣mn﹣1.例如:4☆2=4×22﹣4×2﹣1=7.则方程1☆x=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C .无实数根D .只有一个实数根8.(3分)国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x ,则可列方程为( ) A .500(1+2x )=7500B .5000×2(1+x )=7500C .5000(1+x )2=7500D .5000+5000(1+x )+5000(1+x )2=75009.(3分)如图,在△ABC 中,∠ACB =90°,边BC 在x 轴上,顶点A ,B 的坐标分别为(﹣2,6)和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为( )A .(32,2)B .(2,2)C .(114,2) D .(4,2)10.(3分)如图,在△ABC 中,AB =BC =√3,∠BAC =30°,分别以点A ,C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接DA ,DC ,则四边形ABCD 的面积为( )A .6√3B .9C .6D .3√3二、填空题(每小题3分,共15分)11.(3分)请写出一个大于1且小于2的无理数 . 12.(3分)已知关于x 的不等式组{x >a ,x >b ,其中a ,b 在数轴上的对应点如图所示,则这个不等式组的解集为 .13.(3分)如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是.14.(3分)如图,在边长为2√2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为.15.(3分)如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交BĈ于点D,点E为半径OB 上一动点.若OB=2,则阴影部分周长的最小值为.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(1−1a+1)÷aa2−1,其中a=√5+1.17.(9分)为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g,与之相差大于10g为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g)如下:甲:501 497 498 502 513 489 506 490 505 486502 503 498 497 491 500 505 502 504 505乙:505 499 502 491 487 506 493 505 499 498502 503 501 490 501 502 511 499 499 501 [整理数据]整理以上数据,得到每袋质量x(g)的频数分布表.质量485≤x<490≤x<495≤x<500≤x<505≤x<510≤x<频数 机器 490 495 500 505 510 515甲 2 2 4 7 4 1 乙135731[分析数据]根据以上数据,得到以下统计量. 统计量 机器 平均数中位数方差不合格率甲 499.7 501.5 42.01 b 乙499.7a31.8110%根据以上信息,回答下列问题: (1)表格中的a = ,b = ;(2)综合上表中的统计量,判断工厂应迭购哪一台分装机,并说明理由.18.(9分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP 上架设测角仪,先在点M 处测得观星台最高点A 的仰角为22°,然后沿MP 方向前进16m 到达点N 处,测得点A 的仰角为45°.测角仪的高度为1.6m . (1)求观星台最高点A 距离地面的高度(结果精确到0.1m .参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,√2≈1.41);(2)“景点简介”显示,观星台的高度为12.6m .请计算本次测量结果的误差,并提出一条减小误差的合理化建议.19.(9分)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下. 方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠; 方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x (次),按照方案一所需费用为y 1(元),且y 1=k 1x +b ;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.20.(9分)我们学习过利用标尺作图平分一个任意角,而“利用标尺作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具﹣﹣三分角器.图1是它的示意图,其中AB与半圆O的直径BC在同一直线上,且AB的长度与半圆的半径相等;DB与AC垂直于点B,DB足够长.使用方法如图2所示,若要把∠MEN三等分,只需适当放置三分角器,使DB经过∠MEN的顶点E,点A落在边EM上,半圆O与另一边EN恰好相切,切点为F,则EB,EO就把∠MEN 三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,.求证:.21.(10分)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.22.(10分)小亮在学习中遇到这样一个问题:̂上一动点,线段BC=8cm,点A是线段BC的中点,过点C作CF∥BD,交DA 如图,点D是BC的延长线于点F.当△DCF为等腰三角形时,求线段BD的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:̂上的不同位置,画出相应的图形,测量线段BD,CD,FD的长度,得到下表的(1)根据点D在BC几组对应值.BD/cm0 1.0 2.0 3.0 4.0 5.0 6.07.08.0 CD/cm8.07.77.2 6.6 5.9a 3.9 2.40 FD/cm8.07.4 6.9 6.5 6.1 6.0 6.2 6.78.0操作中发现:①“当点D为BĈ的中点时,BD=5.0cm”.则上表中a的值是;②“线段CF的长度无需测量即可得到”.请简要说明理由.(2)将线段BD的长度作为自变量x,CD和FD的长度都是x的函数,分别记为y CD和y FD,并在平面直角坐标系xOy中画出了函数y FD的图象,如图所示.请在同一坐标系中画出函数y CD的图象;(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF为等腰三角形时,线段BD长度的近似值(结果保留一位小数).23.(11分)将正方形ABCD 的边AB 绕点A 逆时针旋转至AB ′,记旋转角为α,连接BB ′,过点D 作DE 垂直于直线BB ′,垂足为点E ,连接DB ′,CE . (1)如图1,当α=60°时,△DEB ′的形状为 ,连接BD ,可求出BB′CE的值为 ;(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B ′,E ,C ,D 为顶点的四边形是平行四边形时,请直接写出BE B′E 的值.2020年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.(3分)2的相反数是()A.﹣2B.−12C.12D.2【解答】解:2的相反数是﹣2.故选:A.2.(3分)如图摆放的几何体中,主视图与左视图有可能不同的是()A.B.C.D.【解答】解:A、主视图和左视图是长方形,一定相同,故本选项不合题意题意;B、主视图和左视图都是等腰三角形,一定相同,故选项不符合题意;C、主视图和左视图都是圆,一定相同,故选项不符合题意;D、主视图是长方形,左视图是正方形,故本选项符合题意;故选:D.3.(3分)要调查下列问题,适合采用全面调查(普查)的是()A.中央电视台<开学第一课>的收视率B.某城市居民6月份人均网上购物的次数C.即将发射的气象卫星的零部件质量D.某品牌新能源汽车的最大续航里程【解答】解:A、调查中央电视台<开学第一课>的收视率,适合抽查,故本选项不合题意;B、调查某城市居民6月份人均网上购物的次数,适合抽查,故本选项不合题意;C、调查即将发射的气象卫星的零部件质量,适合采用全面调查(普查),故本选项符合题意;D、调查某品牌新能源汽车的最大续航里程,适合抽查,故本选项不合题意.故选:C.4.(3分)如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为()A.100°B.110°C.120°D.130°【解答】解:∵l1∥l2,∠1=70°,∴∠3=∠1=70°,∵l3∥l4,∴∠2=180°﹣∠3=180°﹣70°=110°,故选:B.5.(3分)电子档的大小常用B,KB,MB,GB等作为单位,其中1GB=210MB,1MB=210KB,1KB=210B.某视频档的大小约为1GB,1GB等于()A.230B B.830B C.8×1010B D.2×1030B【解答】解:由题意得:210×210×210B=210+10+10=230B,故选:A.6.(3分)若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=−6x的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y2>y1【解答】解:∵点A(﹣1,y1)、B(2,y2)、C(3,y3)在反比例函数y=−6x的图象上,∴y1=−6−1=6,y2=−62=−3,y3=−63=−2,又∵﹣3<﹣2<6,∴y1>y3>y2.故选:C.7.(3分)定义运算:m☆n=mn2﹣mn﹣1.例如:4☆2=4×22﹣4×2﹣1=7.则方程1☆x=0的根的情况为( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .无实数根D .只有一个实数根【解答】解:由题意可知:1☆x =x 2﹣x ﹣1=0, ∴△=1﹣4×1×(﹣1)=5>0, 故选:A .8.(3分)国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x ,则可列方程为( ) A .500(1+2x )=7500B .5000×2(1+x )=7500C .5000(1+x )2=7500D .5000+5000(1+x )+5000(1+x )2=7500【解答】解:设我国2017年至2019年快递业务收入的年平均增长率为x , 由题意得:5000(1+x )2=7500, 故选:C .9.(3分)如图,在△ABC 中,∠ACB =90°,边BC 在x 轴上,顶点A ,B 的坐标分别为(﹣2,6)和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为( )A .(32,2)B .(2,2)C .(114,2) D .(4,2)【解答】解:如图,设正方形D ′C ′O ′E ′是正方形OCDE 沿x 轴向右平移后的正方形, ∵顶点A ,B 的坐标分别为(﹣2,6)和(7,0), ∴AC =6,OC =2,OB =7, ∴BC =9,∵四边形OCDE 是正方形, ∴DE =OC =OE =2,∴O ′E ′=O ′C ′=2, ∵E ′O ′⊥BC ,∴∠BO ′E ′=∠BCA =90°, ∴E ′O ′∥AC , ∴△BO ′E ′∽△BCA , ∴E′O′AC =BO′BC,∴26=BO′9,∴BO ′=3,∴OC ′=7﹣2﹣3=2,∴当点E 落在AB 边上时,点D 的坐标为(2,2), 故选:B .10.(3分)如图,在△ABC 中,AB =BC =√3,∠BAC =30°,分别以点A ,C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接DA ,DC ,则四边形ABCD 的面积为( )A .6√3B .9C .6D .3√3【解答】解:连接BD 交AC 于O , ∵AD =CD ,AB =BC , ∴BD 垂直平分AC , ∴BD ⊥AC ,AO =CO , ∵AB =BC ,∴∠ACB =∠BAC =30°,∵AC=AD=CD,∴△ACD是等边三角形,∴∠DAC=∠DCA=60°,∴∠BAD=∠BCD=90°,∠ADB=∠CDB=30°,∵AB=BC=√3,∴AD=CD=√3AB=3,∴四边形ABCD的面积=2×12×3×√3=3√3,故选:D.二、填空题(每小题3分,共15分)11.(3分)请写出一个大于1且小于2的无理数√3.【解答】解:大于1且小于2的无理数是√3,答案不唯一.故答案为:√3.12.(3分)已知关于x的不等式组{x>a,x>b,其中a,b在数轴上的对应点如图所示,则这个不等式组的解集为x>a.【解答】解:∵b<0<a,∴关于x的不等式组{x>a,x>b,的解集为:x>a,故答案为:x>a.13.(3分)如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是14.【解答】解:自由转动转盘两次,指针所指区域所有可能出现的情况如下:共有16种可能出现的结果,其中两次颜色相同的有4种, ∴P (两次颜色相同)=416=14, 故答案为:14.14.(3分)如图,在边长为2√2的正方形ABCD 中,点E ,F 分别是边AB ,BC 的中点,连接EC ,FD ,点G ,H 分别是EC ,FD 的中点,连接GH ,则GH 的长度为 1 .【解答】解:设DF ,CE 交于O , ∵四边形ABCD 是正方形,∴∠B =∠DCF =90°,BC =CD =AB , ∵点E ,F 分别是边AB ,BC 的中点, ∴BE =CF ,∴△CBE ≌△DCF (SAS ), ∴CE =DF ,∠BCE =∠CDF , ∵∠CDF +∠CFD =90°, ∴∠BCE +∠CFD =90°, ∴∠COF =90°, ∴DF ⊥CE ,∴CE=DF=√(2√2)2+(√2)2=√10,∵点G,H分别是EC,FD的中点,∴CG=FH=√10 2,∵∠DCF=90°,CO⊥DF,∴CF2=OF•DF,∴OF=CF2DF=√2)2√10=√105,∴OH=3√1010,OD=4√105,∵OC2=OF•OD,∴OC=√√105×4√105=2√105,∴OG=CG﹣OC=√102−2√105=√1010,∴HG=√OG2+OH2=√110+910=1,故答案为:1.15.(3分)如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交BĈ于点D,点E为半径OB上一动点.若OB=2,则阴影部分周长的最小值为6√2+π3.【解答】解:如图,作点D关于OB的对称点D′,连接D′C交OB于点E′,连接E′D、OD′,此时E′C+E′C最小,即:E′C+E′C=CD′,由题意得,∠COD=∠DOB=∠BOD′=30°,∴∠COD′=90°,∴CD′=√OC2+OD′2=√22+22=2√2,CD̂的长l=30π×2180=π3,∴阴影部分周长的最小值为2√2+π3=6√2+π3. 故答案为:6√2+π3.三、解答题(本大题共8个小题,满分75分) 16.(8分)先化简,再求值:(1−1a+1)÷aa 2−1,其中a =√5+1. 【解答】解:(1−1a+1)÷a a 2−1=a+1−1a+1×(a−1)(a+1)a=a ﹣1,把a =√5+1代入a ﹣1=√5+1﹣1=√5.17.(9分)为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋500g ,与之相差大于10g 为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位:g )如下: 甲:501 497 498 502 513 489 506 490 505 486 502 503 498 497 491 500 505 502 504 505 乙:505 499 502 491 487 506 493 505 499 498 502 503 501 490 501 502 511 499 499 501 [整理数据]整理以上数据,得到每袋质量x (g )的频数分布表.质量 频数 机器485≤x <490490≤x <495495≤x <500500≤x <505505≤x <510510≤x <515甲224741乙135731 [分析数据]根据以上数据,得到以下统计量.统计量平均数中位数方差不合格率机器甲499.7501.542.01b乙499.7a31.8110%根据以上信息,回答下列问题:(1)表格中的a=501,b=15%;(2)综合上表中的统计量,判断工厂应迭购哪一台分装机,并说明理由.【解答】解:(1)将乙的成绩从小到大排列后,处在中间位置的两个数都是501,因此中位数是501,b=3➗20=15%,故答案为:501,15%;(2)选择乙机器,理由:乙的不合格率较小,18.(9分)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6m.(1)求观星台最高点A距离地面的高度(结果精确到0.1m.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,√2≈1.41);(2)“景点简介”显示,观星台的高度为12.6m.请计算本次测量结果的误差,并提出一条减小误差的合理化建议.【解答】解:(1)过A作AD⊥PM于D,延长BC交AD于E,则四边形BMNC,四边形BMDE是矩形,∴BC=MN=16m,DE=CN=BM=1.6m,∵∠AED=90°,∠ACE=45°,∴△ACE是等腰直角三角形,∴CE=AE,设AE=CE=x,∴BE=16+x,∵∠ABE=22°,∴tan22°=AEBE=x16+x=0.40,∴x≈10.7(m),∴AD=10.7+1.6=12.3(m),答:观星台最高点A距离地面的高度约为12.3m;(2)∵“景点简介”显示,观星台的高度为12.6m,∴本次测量结果的误差为12.6﹣12.3=0.3m,减小误差的合理化建议为:为了减小误差可以通过多次测量取平均值的方法.19.(9分)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.【解答】解:(1)∵y 1=k 1x +b 过点(0,30),(10,180), ∴{b =3010k 1+b =180,解得{k 1=15b =30, k 1=15表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元, b =30表示的实际意义是:购买一张学生暑期专享卡的费用为30元;(2)由题意可得,打折前的每次健身费用为15÷0.6=25(元), 则k 2=25×0.8=20;(3)选择方案一所需费用更少.理由如下: 由题意可知,y 1=15x +30,y 2=20x . 当健身8次时,选择方案一所需费用:y 1=15×8+30=150(元), 选择方案二所需费用:y 2=20×8=160(元), ∵150<160,∴选择方案一所需费用更少.20.(9分)我们学习过利用标尺作图平分一个任意角,而“利用标尺作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具﹣﹣三分角器.图1是它的示意图,其中AB 与半圆O 的直径BC 在同一直线上,且AB 的长度与半圆的半径相等;DB 与AC 垂直于点B ,DB 足够长.使用方法如图2所示,若要把∠MEN三等分,只需适当放置三分角器,使DB经过∠MEN的顶点E,点A落在边EM上,半圆O与另一边EN恰好相切,切点为F,则EB,EO就把∠MEN 三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,AB=OB,EN切半圆O于F.求证:EB,EO就把∠MEN三等分.【解答】解:已知:如图2,点A,B,O,C在同一直线上,EB⊥AC,垂足为点B,AB=OB,EN切半圆O于F.求证:EB,EO就把∠MEN三等分,证明:∵EB⊥AC,∴∠ABE=∠OBE=90°,∵AB=OB,BE=BE,∴△ABE≌△OBE(SAS),∴∠1=∠2,∵BE⊥OB,∴BE是⊙E的切线,∵EN切半圆O于F,∴∠2=∠3,∴∠1=∠2=∠3,∴EB,EO就把∠MEN三等分.故答案为:AB=OB,EN切半圆O于F;EB,EO就把∠MEN三等分.21.(10分)如图,抛物线y=﹣x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.【解答】解:(1)∵抛物线y=﹣x2+2x+c与y轴正半轴分别交于点B,∴点B(0,c),∵OA=OB=c,∴点A(c,0),∴0=﹣c2+2c+c,∴c=3或0(舍去),∴抛物线解析式为:y=﹣x2+2x+3,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点G为(1,4);(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴对称轴为直线x=1,∵点M,N为抛物线上两点(点M在点N的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,∴点M的横坐标为﹣2或4,点N的横坐标为6,∴点M坐标为(﹣2,﹣5)或(4,﹣5),点N坐标(6,﹣21),∵点Q为抛物线上点M,N之间(含点M,N)的一个动点,∴﹣21≤y Q≤4或﹣21≤y Q≤﹣5.22.(10分)小亮在学习中遇到这样一个问题:̂上一动点,线段BC=8cm,点A是线段BC的中点,过点C作CF∥BD,交DA 如图,点D是BC的延长线于点F.当△DCF为等腰三角形时,求线段BD的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:̂上的不同位置,画出相应的图形,测量线段BD,CD,FD的长度,得到下表的(1)根据点D在BC几组对应值.BD/cm0 1.0 2.0 3.0 4.0 5.0 6.07.08.0 CD/cm8.07.77.2 6.6 5.9a 3.9 2.40 FD/cm8.07.4 6.9 6.5 6.1 6.0 6.2 6.78.0操作中发现:①“当点D为BĈ的中点时,BD=5.0cm”.则上表中a的值是5;②“线段CF的长度无需测量即可得到”.请简要说明理由.(2)将线段BD的长度作为自变量x,CD和FD的长度都是x的函数,分别记为y CD和y FD,并在平面直角坐标系xOy中画出了函数y FD的图象,如图所示.请在同一坐标系中画出函数y CD的图象;(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF为等腰三角形时,线段BD长度的近似值(结果保留一位小数).̂的中点,【解答】解:(1)∵点D为BĈ=CD̂,∴BD∴BD=CD=a=5cm,故答案为:5;(2)∵点A是线段BC的中点,∴AB=AC,∵CF∥BD,∴∠F=∠BDA,又∵∠BAD=∠CAF,∴△BAD≌△CAF(AAS),∴BD=CF,∴线段CF的长度无需测量即可得到;(3)由题意可得:(4)由题意画出函数y CF的图象;由图象可得:BD=3.8cm或5cm或6.2cm时,△DCF为等腰三角形.23.(11分)将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α,连接BB′,过点D 作DE 垂直于直线BB ′,垂足为点E ,连接DB ′,CE .(1)如图1,当α=60°时,△DEB ′的形状为 等腰直角三角形 ,连接BD ,可求出BB′CE的值为 √2 ;(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B ′,E ,C ,D 为顶点的四边形是平行四边形时,请直接写出BE B′E的值.【解答】解:(1)∵AB 绕点A 逆时针旋转至AB ′, ∴AB =AB ',∠BAB '=60°, ∴△ABB '是等边三角形, ∴∠BB 'A =60°,∴∠DAB '=∠BAD ﹣∠BAB '=90°﹣60°=30°, ∵AB '=AB =AD , ∴∠AB 'D =∠ADB ', ∴∠AB 'D =180°−30°2=75°, ∴∠DB 'E =180°﹣60°﹣75°=45°, ∵DE ⊥B 'E ,∴∠B 'DE =90°﹣45°=45°, ∴△DEB '是等腰直角三角形. ∵四边形ABCD 是正方形, ∴∠BDC =45°, ∴BD DC=√2,同理B′D DE=√2,∴BD DC=B′D DE,∵∠BDB '+∠B 'DC =45°,∠EDC +∠B 'DC =45°, ∴BDB '=∠EDC , ∴△BDB '∽△CDE , ∴BB′CE=BD DC=√2.故答案为:等腰直角三角形,BB′CE=√2.(2)①两结论仍然成立. 证明:连接BD ,∵AB =AB ',∠BAB '=α, ∴∠AB 'B =90°−α2,∵∠B 'AD =α﹣90°,AD =AB ', ∴∠AB 'D =135°−α2,∴∠EB 'D =∠AB 'D ﹣∠AB 'B =135°−α2−(90°−α2)=45°, ∵DE ⊥BB ',∴∠EDB '=∠EB 'D =45°, ∴△DEB '是等腰直角三角形, ∴DB′DE=√2,∵四边形ABCD 是正方形, ∴BD CD =√2,∠BDC =45°,∴BD CD=DB′DE,∵∠EDB '=∠BDC ,∴∠EDB '+∠EDB =∠BDC +∠EDB , 即∠B 'DB =∠EDC , ∴△B 'DB ∽△EDC , ∴BB′CE =BD CD=√2.②BE B′E=3或1.若CD 为平行四边形的对角线,点B '在以A 为圆心,AB 为半径的圆上,取CD 的中点.连接BO 交⊙A 于点B ', 过点D 作DE ⊥BB '交BB '的延长线于点E ,由(1)可知△B 'ED 是等腰直角三角形, ∴B 'D =√2B 'E ,由(2)①可知△BDB '∽△CDE ,且BB '=√2CE . ∴BE B′E=B′B+B′E B′E=BB′B′E+1=√2CEB′E+1=√2B′DB′E+1=√2×√2+1=3.若CD 为平行四边形的一边,如图3,点E与点A重合,∴BEB′E=1.综合以上可得BEB′E =3或1.。
河南省2020年中考数学试题(Word版,含答案与解析)
河南省2020年中考数学试卷一、选择题(共10题;共20分)1.2的相反数是( )A. −12B. 12C. 2D. -2 【答案】 D【考点】相反数及有理数的相反数【解析】【解答】2的相反数是-2,故答案为:D.【分析】根据相反数的定义“只有符号不同的两个数互为相反数”即可求解.2.如下摆放的几何体中,主视图与左视图有可能不同的是( ) A. B.C. D.【答案】 D【考点】简单几何体的三视图【解析】【解答】A.圆柱的主视图和左视图都是长方形,故此选项不符合题意;B.圆锥的主视图和左视图都是三角形,故此选项不符合题意;C.球的主视图和左视图都是圆,故此选项不符合题意;D.长方体的主视图是长方形,左视图可能是正方形,故此选项符合题意,故答案为:D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形;认真观察实物图,其中看得到的棱长用实线表示,看不到的棱长用虚线的表示,按照要求画出主视图和左视图即可判断求解.3.要调查下列问题,适合采用全面调查(普查)的是( )A. 中央电视台《开学第--课》 的收视率B. 某城市居民6月份人均网上购物的次数C. 即将发射的气象卫星的零部件质量D. 某品牌新能源汽车的最大续航里程【答案】 C【考点】全面调查与抽样调查【解析】【解答】A 、中央电视台《开学第--课》 的收视率适合采用抽样调查方式,故不符合题意;B、某城市居民6月份人均网上购物的次数适合采用抽样调查方式,故不符合题意;C、即将发射的气象卫星的零部件质量适合采用全面调查方式,故符合题意;D、某品牌新能源汽车的最大续航里程适合采用抽样调查方式,故不符合题意,故答案为:C.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.4.如图,l1//l2,l3//l4,若∠1=70°,则∠2的度数为()A. 100°B. 110°C. 120°D. 130°【答案】B【考点】平行线的性质【解析】【解答】如图,∵l3//l4,∴∠1+∠3=180º,∵∠1=70º,∴∴∠3=180º-70º=110º,∵l1//l2,∴∠2=∠3=110º,故答案为:B.【分析】由平行线的性质“两直线平行,同旁内角互补”可求得∠3的度数;再由平行线的性质“两直线平行,同位角相等”可求得∠2的度数.5.电子文件的大小常用B,KB,MB,GB等作为单位,其中1GB=210MB,1MB=210KB,1KB=210B,某视频文件的大小约为1GB,1GB等于()A. 230BB. 830BC. 8×1010BD. 2×1030B【答案】A【考点】同底数幂的乘法【解析】【解答】依题意得1GB=210MB=210×210KB=210×210×210B= 230B故答案为:A.【分析】由题意把1GB用B表示出来,根据“同底数幂相乘,底数不变,指数相加”即可求解.6.若点A(−1,y1),B(2,y1),C(3,y3)在反比例函数y=−6x的图像上,则y1,y2,y3的大小关系为()A. y1>y2>y3 B. y2>y3>y1 C. y1>y3>y2 D. y3>y2>y1【答案】C【考点】反比例函数的性质,反比例函数图象上点的坐标特征【解析】【解答】解:∵点A(−1,y1),B(2,y1),C(3,y3)在反比例函数y=−6x的图象上,∴y1=−6−1=6,y2=−62=−3,y3=−63=−2,∵−3<−2<6,∴y1>y3>y2,故答案为:C.【分析】根据点A(−1,y1),B(2,y1),C(3,y3)在反比例函数y=−6x的图象上,可以求得y1,y2,y3的值,从而可以比较出y1,y2,y3的大小关系.7.定义运算:m☆n=mn2−mn−1.例如:4☆2=4×22−4×2−1=7.则方程1☆x=0的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 只有一个实数根【答案】A【考点】一元二次方程根的判别式及应用【解析】【解答】解:根据定义得:1☆x=x2−x−1=0,∵a=1,b=−1,c=−1,∴Δ=b2−4ac=(−1)2−4×1×(−1)=5>0,∴原方程有两个不相等的实数根,故答案为:A【分析】先根据新定义得出方程,再根据一元二次方程的根的判别式可得答案.8.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x.则可列方程为()A. 5000(1+2x)=7500B. 5000×2(1+x)=7500C. 5000(1+x)2=7500D. 5000+5000(1+x)+5000(1+x)2=7500【答案】C【考点】一元二次方程的实际应用-百分率问题【解析】【解答】设我国2017年至2019年快递业务收入的年平均增长率为x,∵2017年至2019年我国快递业务收入由500亿元增加到7500亿元∴可列方程: 5000+5000(1+x)+5000(1+x)2=7500,故答案为:C.【分析】设我国2017年至2019年快递业务收入的年平均增长率为x,根据增长率的定义即可列出一元二次方程.9.如图,在ΔABC中,∠ACB=90°.边BC在x轴上,顶点A,B的坐标分别为(−2,6)和(7,0).将正方形OCDE沿x轴向右平移当点E落在AB边上时,点D的坐标为()A. (32,2) B. (2,2) C. (114,2) D. (4,2)【答案】B【考点】坐标与图形性质,平移的性质,解直角三角形【解析】【解答】解:由题意知:C(−2,0),∵四边形COED为正方形,∴CO=CD=OE,∠DCO=90°,∴D(−2,2),E(0,2),如图,当E落在AB上时,∵A(−2,6),B(7,0),∴AC=6,BC=9,由tan∠ABC=ACBC =EO′O′B,∴69=2O′B,∴O′B=3,∴OO′=7−3=4,OC′=2,∴D(2,2).故答案为:B【分析】先画出E落在AB上的示意图,如图,根据锐角三角函数求解O′B的长度,结合正方形的性质,从而可得答案.10.如图,在ΔABC中,AB=BC=√3 ,∠BAC=30°,分别以点A,C为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为()A. 6√3B. 9C. 6D. 3√3【答案】 D【考点】解直角三角形,几何图形的面积计算-割补法【解析】【解答】连接BD交AC于O,由作图过程知,AD=AC=CD,∴△ACD为等边三角形,∴∠DAC=60º,∵AB=BC,AD=CD,∴BD垂直平分AC即:BD⊥AC,AO=OC,在Rt△AOB中,AB=√3,∠BAC=30°∴BO=AB·sin30º= √32,AO=AB·cos30º= 32,AC=2AO=3,在Rt△AOD中,AD=AC=3,∠DAC=60º,∴DO=AD·sin60º= 3√32,∴S四边形ABCD=SΔABC+SΔADC= 12×3×√32+12×3×3√32=3√3,故答案为:D.【分析】连接BD交AC于O,由已知得△ACD为等边三角形且BD是AC的垂直平分线,然后解直角三角形解得AC、BO、BD的值,进而代入三角形面积公式即可求解.二、填空题(共5题;共5分)11.请写出一个大于1且小于2的无理数:________.【答案】√2(答案不唯一).【考点】实数大小的比较【解析】【解答】大于1且小于2的无理数可以是√2,√3,π−2等,故答案为:√2(答案不唯一).【分析】由于所求无理数大于1且小于2,两数平方得大于2小于4,所以可选其中的任意一个数开平方即可.12.已知关于x的不等式组{x>ax>b,其中a,b在数轴上的对应点如图所示,则这个不等式组的解集为________.【答案】x>a【考点】实数在数轴上的表示,在数轴上表示不等式组的解集【解析】【解答】∵由数轴可知,a>b,∴关于x的不等式组{x>ax>b的解集为x>a,故答案为:x>a.【分析】先根据数轴确定a,b的大小,再根据确定不等式组的解集原则:大大取大,小小取小,大小小大中间找,小小大大找不了(无解)确定解集即可.13.如图所示的转盘,被分成面积相等的四个扇形,分别涂有红、黄、蓝、绿四种颜色.固定指针,自由转动转盘两次,每次停止后,记下指针所指区域(指针指向区域分界线时,忽略不计)的颜色,则两次颜色相同的概率是________.【答案】14【考点】列表法与树状图法【解析】【解答】画树状图得:∵共有16种等可能的结果,两次颜色相同的有4种情况,∴两个数字都是正数的概率是416=14,故答案为:14.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次颜色相同的情况数,再利用概率公式求解即可求得答案.14.如图,在边长为2√2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H 分别是EC,FD的中点,连接GH,则GH的长度为________.【答案】1【考点】矩形的判定与性质,正方形的判定与性质【解析】【解答】过E作EP⊥DC,过G作GQ⊥DC,过H作HR⊥BC,垂足分别为P,R,R,HR 与GQ相交于I,如图,∵四边形ABCD是正方形,∴AB=AD=DC=BC=2√2,∴∠A=∠ADC=90°,∴四边形AEPD是矩形,∴EP=AD=2√2,∵点E,F分别是AB,BC边的中点,∴PC=12DC=√2,FC=12BC=√2∵EP⊥DC,GQ⊥DC,∴GQ//EP ∵点G是EC的中点,∴GQ是ΔEPC的中位线,∴GQ=12EP=√2,同理可求:HR=√2,由作图可知四边形HIQP是矩形,又HP= 12FC,HI= 12HR= 12PC,而FC=PC,∴HI=HP,∴四边形HIQP是正方形,∴IQ=HP=√22,∴GI=GQ−IQ=√2−√22=√22=HI∴ΔHIG 是等腰直角三角形,∴GH=√2HI=1故答案为:1.【分析】过E作EP⊥DC,过G作GQ⊥DC,过H作HR⊥BC,HR与GQ相交于I,分别求出HI和GI的长,利用勾股定理即可求解.15.如图,在扇形BOC中,∠BOC=60°,OD平分∠BOC交狐BC于点D.点E为半径OB上一动点若OB=2,则阴影部分周长的最小值为________.【答案】2√2+π3【考点】弧长的计算【解析】【解答】解:∵C阴影=CE+DE+CD⌢,∴C阴影最短,则CE+DE最短,如图,作扇形OCB关于OB对称的扇形OAB,连接AD交OB于E,则 CE =AE,∴CE +DE =AE +DE =AD,此时 E 点满足 CE +DE 最短,∵∠COB =∠AOB =60°,OD 平分 CB,⌢ ∴∠DOB =30°,∠DOA =90°,∵OB =OA =OD =2,∴AD =√22+22=2√2,而 CD ⌢ 的长为: 30π×2180=π3, ∴ C 阴影 最短为 2√2+π3.故答案为: 2√2+π3.【分析】如图,先作扇形 OCB 关于 OB 对称的扇形 OAB, 连接 AD 交 OB 于E ,再分别求解 AD,CD⌢ 的长即可得到答案. 三、解答题(共8题;共72分)16.先化简,再求值: (1−1a+1)÷aa 2−1 ,其中 a =√5+1 【答案】 解:原式= a a+1·(a+1)(a−1)a = a −1 ,当 a =√5+1 时,原式= √5+1−1=√5 .【考点】利用分式运算化简求值【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a 值代入计算即可.17.为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋 500g ,与之相差大于 10g 为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:[收集数据]从甲、乙两台机器分装的成品中各随机抽取 20 袋,测得实际质量(单位: g )如下:甲: 501 497 498 502 513 489 506 490 505 486 502 503 498 497 491 500 505 502 504 505 乙: 505 499 502 491 487 506 493 505 499 498 502 503 501 490 501 502 512 499 499 501[整理数据]整理以上数据,得到每袋质量 x(g) 的频数分布表.[分析数据]根据以上数据,得到以下统计量.根据以上信息,回答下列问题:(1)表格中的 a = ________ b = ________(2)综合上表中的统计量,判断工厂应选购哪一台分装机,并说明理由.【答案】 (1)501;15%(2)解:选择乙分装机;根据方差的意义可知:方差越小,数据越稳定,由于 S 甲2=42.01>S 乙2=31.81 ,所以乙分装机.【考点】频数(率)分布表,平均数及其计算,中位数,方差【解析】【解答】解:(1)把乙组数据从下到大排序为:487 490 491 493 498 499 499 499 499 501 501 501 502 502 502 503 505 505 506 512 ,可得中位数= 501+5012=501 ;根据已知条件可得出产品合格的范围是 490≤x ≤510 ,甲生产的产品有3袋不合格,故不合格率为 320×100%=15% .故a=501, b =15% .【分析】(1)把乙的数据从小到大进行排序,选出10、11两项,求出他们的平均数即为乙组数据的中位数;由题可得合格产品的范围是 490≤x ≤510 ,根据这个范围,选出不合格的产品,除以样本总量就可得到结果;(2)根据方差的意义判断即可;18.位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6m,(1)求观星台最高点A距离地面的高度(结果精确到0.1m.参考数据:sin22°≈0.37,cos22°≈0.93 ,tan22°≈0.40,√2≈1.41);(2)“景点简介”显示,观星台的高度为12.6m,请计算本次测量结果的误差,并提出一条减小误差的合理化建议.【答案】(1)解:如图,过点A作AE⊥MN交MN的延长线于点E,交BC的延长线于点D,设AD的长为xm,∵AE⊥ME,BC∥MN,∴AD⊥BD,∠ADC=90°,∵∠ACD=45°,∴CD=AD=xm,BD=BC+CD=(16+x)m,由题易得,四边形BMNC为矩形,∵AE⊥ME,∴四边形CNED为矩形,∴DE=CN=BM= 1.6m,在Rt△ABD中,tan∠ABD=ADBD =x16+x=0.40,解得:x≈10.7,即AD=10.7m,AE=AD+DE=10.7+1.6=12.3m,答:观星台最高点A距离地面的高度为12.3m.(2)解:本次测量结果的误差为:12.6-12.3=0.3m,减小误差的合理化建议:多次测量,求平均值.【考点】解直角三角形的应用﹣仰角俯角问题【解析】【分析】(1)过点A作AE⊥MN交MN的延长线于点E,交BC的延长线于点D,根据条件证出四边形BMNC为矩形、四边形CNED为矩形、三角形ACD与三角形ABD均为直角三角形,设AD的长为xm,则CD=AD=xm,BD=BC+CD=(16+x)m,在Rt△ABD中,解直角三角形求得AD的长度,再加上DE的长度即可;(2)根据(1)中算的数据和实际高度计算误差,建议是多次测量求平均值.19.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠;设某学生暑期健身x(次),按照方案一所需费用为y1,(元),且y1=k1x+b;按照方案二所需费用为y2(元) ,且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.【答案】(1)解:由图象可得:y1=k1x+b经过(0,30)和(10,180)两点,代入函数关系式可得:{30=b180=10k1+b,解得:{b=30k1=15,即k1=15,b=30,k1=15表示的是每次健身费用按六折优惠是15元,b=30表示购买一张学生暑期专享卡的费用是30元;(2)解:设打折前的每次健身费用为a元,由题意得:0.6a=15,解得:a=25,即打折前的每次健身费用为25元,k2表示每次健身按八折优惠的费用,故k2=25×0.8=20;(3)解:由(1)(2)得:y1=15x+30,y2=20x,当小华健身8次即x=8时,y1=15×8+30=150,y2=20×8=160,∵150<160,∴方案一所需费用更少,答:方案一所需费用更少.【考点】两一次函数图象相交或平行问题,一次函数的实际应用,通过函数图象获取信息并解决问题【解析】【分析】(1)用待定系数法代入(0,30)和(10,180)两点计算即可求得k1和b的值,再根据函数表示的实际意义说明即可;(2)设打折前的每次健身费用为a元,根据(1)中算出的k1为打六折之后的费用可算得打折前的每次健身费用,再算出打八折之后的费用,即可得到k2的值;(3)写出两个函数关系式,分别代入x=8计算,并比较大小即可求解.20.我们学习过利用用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的人们根据实际需爱,发明了一种简易操作工具--------三分角器.图1是它的示意图,其中AB与半圆O的直径BC在同一直线上,且AB的长度与半圆的半径相等;DB 与AC重直F点B,DB足够长.使用方法如图2所示,若要把∠MEN三等分,只需适当放置三分角器,使DB经过∠MEN的顶点E,点A落在边EM上,半圆O与另一边EN恰好相切,切点为F,则EB,EO就把∠MEN三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点在A,B,O,C同一直线上, EB⊥AC,垂足为点B,▲求证:▲【答案】解:已知:如图2,点在A,B,O,C同一直线上, EB⊥AC,垂足为点B,E在BD上,ME 过点A,AB=OB=OC,EN为半圆O的切线,切点为F.求证:EB,EO为∠MEN的三等分线.证明:如图,连接OF.则∠OFE=90°,∵EB⊥AC,EB与半圆相切于点B,∴∠ABE=∠OBE=90°,∵BA=BO.EB=EB,∴△EAB≌△EOB∴∠AEB=∠BEO,∵EO=EO.OB=OF,∠OBE=∠OFE =90°,∴△OBE≌△OFE,∴∠OEB=∠OEF,∴∠AEB=∠BEO=∠OEF,∴EB,EO为∠MEN的三等分线.故答案为:E在BD上,ME过点A,AB=OB=OC,EN为半圆O的切线,切点为F. EB,EO为∠MEN的三等分线.【考点】垂径定理,圆周角定理,切线的性质,数学常识【解析】【分析】由垂直的定义可得∠ABE=∠OBE=90°,根据全等三角形的性质得, ∠OEB=∠OEF,,再根据圆的切线的性质可得∠AEB=∠BEO=∠OEF,即EB,EO为∠MEN的三等分线.21.如图,抛物线y=−x2+2x+c与x轴正半轴,y轴正半轴分别交于点A,B,且OA=OB,点G为抛物线的顶点.(1)求抛物线的解析式及点G的坐标;(2)点M,N为抛物线上两点(点M在点N的左侧) ,且到对称轴的距离分别为3个单位长度和5个单位长度,点Q为抛物线上点M,N之间(含点M,N)的一个动点,求点Q的纵坐标y Q的取值范围.【答案】(1)解:∵抛物线y=−x2+2x+c与y轴正半轴分别交于点B,∴B点坐标为(c,0),∵抛物线y=−x2+2x+c经过点A,∴﹣c2+2c+c=0,解得c1=0(舍去),c2=3,∴抛物线的解析式为y=−x2+2x+3∵y=−x2+2x+3=﹣(x-1)2+4,∴抛物线顶点G坐标为(1,4).(2)解:抛物线y=−x2+2x+3的对称轴为直线x=1,∵点M,N到对称轴的距离分别为3个单位长度和5个单位长度,∴点M的横坐标为﹣2或4,点N的横坐标为﹣4或6,点M的纵坐标为﹣5,点N的纵坐标为﹣21,又∵点M在点N的左侧,∴当M坐标为(﹣2,﹣5)时,点N的坐标为(6,﹣21),则﹣21≤ y Q≤4当当M坐标为(4,﹣5)时,点N的坐标为(6,﹣21),则﹣21≤ y Q≤﹣5,∴y Q的取值范围为﹣21≤ y Q≤4或﹣21≤ y Q≤﹣5.【考点】坐标与图形性质,待定系数法求二次函数解析式,二次函数y=ax^2+bx+c的性质【解析】【分析】(1)根据OA=OB,用c表示出点A的坐标,把A的坐标代入函数解析式,得到一个关于c的一元二次方程,解出c的值,从而求出函数解析式,求出顶点G的坐标.(2)根据函数解析式求出函数图像对称轴,根据点M,N到对称轴的距离,判断出M,N的横坐标,进一步得出M,N的纵坐标,求出M,N点的坐标后可确定y Q的取值范围.22.小亮在学习中遇到这样一个问题:如图,点D是弧BC上一动点,线段BC=8cm,点A是线段BC的中点,过点C作CF//BD,交DA 的延长线于点F.当ΔDCF为等腰三角形时,求线段BD的长度.小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题,请将下面的探究过程补充完整:(1)根据点D在弧BC上的不同位置,画出相应的图形,测量线段BD,CD,FD的长度,得到下表的几组对应值.操作中发现:①"当点D为弧BC的中点时,BD=5.0cm".则上中a的值是②"线段CF的长度无需测量即可得到".请简要说明理由;(2)将线段BD的长度作为自变量x,CD和FD的长度都是x的函数,分别记为y CD和y FD,并在平面直角坐标系xOy中画出了函数y FD的图象,如图所示.请在同一坐标系中画出函数y CD的图象;(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当ΔDCF为等腰三角形时,线段BD长度的近似值.(结果保留一位小数).【答案】(1)解:①点D为弧BC的中点时,由圆的性质可得:{AB=AC∠BAD=∠CADAD=AD,∴△ABD≌△ACD,∴CD=BD=5.0,∴a=5.0;②∵CF//BD,∴∠BDA=∠CFA,∵{∠BDA=∠CFA∠BAD=∠CAFAD=AF,∴△ACF≌△ABD,∴CF=BD,∴线段CF的长度无需测量即可得到;(2)解:函数y CD的图象如图所示:(3)解:由(1)知CF=BD=x,画出y CF的图象,如上图所示,当ΔDCF为等腰三角形时,① CF=CD,BD为y CF与y CD函数图象的交点横坐标,即BD=5.0cm;② CF=DF,BD为y CF与y DF函数图象的交点横坐标,即BD=6.3cm;③ CD=DF,BD为y CD与y DF函数图象的交点横坐标,即BD=3.5cm;综上:当ΔDCF为等腰三角形时,线段BD长度的近似值为3.5cm或5.0cm或6.3cm.【考点】圆的综合题【解析】【分析】(1)①点D为弧BC的中点时,△ABD≌△ACD,即可得到CD=BD;②由题意得△ACF≌△ABD,即可得到CF=BD;(2)根据表格数据运用描点法即可画出函数图象;(3)画出y CF的图象,当ΔDCF为等腰三角形时,分情况讨论,任意两边分别相等时,即任意两个函数图象相交时的交点横坐标即为BD的近似值.23.将正方形ABCD的边AB绕点A逆时针旋转至AB′,记旋转角为α.连接BB′,过点D作DE 垂直于直线BB′,垂足为点E,连接DB′,CE,的值为(1)如图1,当α=60°时,ΔDEB′的形状为________ ,连接BD,可求出BB′CE________;(2)当0°<α<360°且α≠90°时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B′,E,C,D为顶点的四边形是平行四边形时,请直接写出BE的值.B′E【答案】(1)等腰直角三角形;√22(2)解:①两个结论仍然成立连接BD,如图所示:∵AB=AB′,∠BAB′=α∴∠ABB′=90°−α2∵∠B′AD=α−90°,AD=AB′∴∠AB′D=135°−α2∴∠EB′D=∠AB′D−∠AB′B=45°∵DE⊥BB′∴∠EDB′=∠EB′D=45°∴△DEB′是等腰直角三角形∴DB′DE=√2∵四边形ABCD为正方形∴BDCD=√2,∠BDC=45°∴BDCD =DB′DE∵∠EDB′=∠BDC∴∠B′DB=∠EDC ∴△B′DB∼△EDC∴BB′CE =BDCD=√2∴结论不变,依然成立②若以点B′,E,C,D为顶点的四边形是平行四边形时,分两种情况讨论第一种:以CD为边时,则CD//B′E,此时点B′在线段BA的延长线上,如图所示:此时点E与点A重合,∴BE=CE=B′E,得BEB′E=1;②当以CD为对角线时,如图所示:此时点F为CD中点,∵DE⊥BB′∴CB′⊥BB′∵∠BCD=90°∴△BCF∼△CB′F∼△BB′C∴BCCF =CB′B′F=BB′CB′=2∴BB′=4B′F∴BE=6B′F,B′E=2B′F∴BEB′E=3综上:BEB′E的值为3或1.【考点】正方形的性质,相似三角形的判定与性质,旋转的性质【解析】【解答】解:(1)由题知∠BAB′=60°,∠BAD=90°,AB=AD=AB′∴∠B′AD=30°,且△ABB′为等边三角形∴∠AB′B=60°,∠AB′D=12(180°−30°)=75°∴∠DB′E=180°−60°−75°=45°∵DE⊥BB′∴∠DEB′=90°∴∠B′DE=45°∴△DEB′为等腰直角三角形连接BD,如图所示∵∠BDC=∠B′DE=45°∴∠BDC−∠B′DC=∠B′DE−∠B′DC即∠BDB′=∠CDE∵CDBD =DEDB′=√22∴△BDB′∼△CDE∴BB′CE =√22故答案为:等腰直角三角形,√22【分析】(1)根据题意,证明△ABB′是等边三角形,得∠AB′B=60,计算出∠DB′E=45°,根据DE⊥BB′,可得ΔDEB′为等腰直角三角形;证明△BDB′∼△CDE,可得BB′CE的值;(2)①连接BD,通过正方形性质及旋转,表示出∠EB′D=∠AB′D−∠AB′B=45°,结合DE⊥的值;②分为以CD为BB′,可得ΔDEB′为等腰直角三角形;证明△B′DB∼△EDC,可得BB′CE边和CD为对角线两种情况进行讨论即可.。
2022年河南省中考数学试卷及解析
2022年河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.(3分)−12的相反数是()A.−12B.12C.﹣2D.22.(3分)2022年北京冬奥会的奖牌“同心”表达了“天地合•人心同”的中华文化内涵.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A.合B.同C.心D.人3.(3分)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°4.(3分)下列运算正确的是()A.2√3−√3=2B.(a+1)2=a2+1C.(a2)3=a5D.2a2•a=2a35.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E为CD的中点.若OE =3,则菱形ABCD的周长为()A.6B.12C.24D.486.(3分)一元二次方程x2+x﹣1=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.只有一个实数根7.(3分)如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为()A.5分B.4分C.3分D.45%8.(3分)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿.则1兆等于()A.108B.1012C.1016D.10249.(3分)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,AB∥x轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为()A.(√3,﹣1)B.(﹣1,−√3)C.(−√3,﹣1)D.(1,√3)10.(3分)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的R1),R1的阻值随呼气酒精浓度K的变化而变化(如图2),血液酒精浓度M与呼气酒精浓度K的关系见图3.下列说法不正确的是()A.呼气酒精浓度K越大,R1的阻值越小B.当K=0时,R1的阻值为100ΩC.当K=10时,该驾驶员为非酒驾状态D.当R1=20时,该驾驶员为醉驾状态二、填空题(每小题3分,共15分)11.(3分)请写出一个y随x的增大而增大的一次函数的表达式:.12.(3分)不等式组{x−3≤0,x2>1的解集为.13.(3分)为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为.14.(3分)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点O′处,得到扇形A′O′B′.若∠O=90°,OA=2,则阴影部分的面积为.15.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2√2,点D为AB的中点,点P 在AC 上,且CP =1,将CP 绕点C 在平面内旋转,点P 的对应点为点Q ,连接AQ ,DQ .当∠ADQ =90°时,AQ 的长为 .三、解答题(本大题共8个小题,共75分) 16.(10分)(1)计算:√273−(13)0+2﹣1;(2)化简:x 2−1x÷(1−1x).17.(9分)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下: a .成绩频数分布表: 成绩x (分) 50≤x <6060≤x <70 70≤x <80 80≤x <90 90≤x ≤100 频数7912166b .成绩在70≤x <80这一组的是(单位:分): 70 71 72 72 74 77 78 78 78 79 79 79 根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是 分,成绩不低于80分的人数占测试人数的百分比为 .(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由. (3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.18.(9分)如图,反比例函数y =kx (x >0)的图象经过点A (2,4)和点B ,点B 在点A 的下方,AC 平分∠OAB ,交x 轴于点C . (1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC 的垂直平分线.(要求:不写作法,保留作图痕迹)(3)线段OA 与(2)中所作的垂直平分线相交于点D ,连接CD .求证:CD ∥AB .19.(9分)开封清明上河园是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC 的高度,如图,在A 处用测角仪测得拂云阁顶端D 的仰角为34°,沿AC 方向前进15m 到达B 处,又测得拂云阁顶端D 的仰角为45°.已知测角仪的高度为1.5m ,测量点A ,B 与拂云阁DC 的底部C 在同一水平线上,求拂云阁DC 的高度(结果精确到1m .参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67).20.(9分)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A 种菜苗的价格是菜苗基地的54倍,用300元在市场上购买的A 种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A 种菜苗的价格.(2)菜苗基地每捆B 种菜苗的价格是30元.学校决定在菜苗基地购买A ,B 两种菜苗共100捆,且A 种菜苗的捆数不超过B 种菜苗的捆数.菜苗基地为支持该校活动,对A ,B 两种菜苗均提供九折优惠.求本次购买最少花费多少钱.21.(9分)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.22.(10分)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.(1)求证:∠BOC+∠BAD=90°.(2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得cos∠BAD=35.已知铁环⊙O的半径为25cm,推杆AB的长为75cm,求此时AD的长.23.(10分)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30°的角:.(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ=°,∠CBQ=°;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP 的长.2022年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.(3分)−12的相反数是()A.−12B.12C.﹣2D.2【解答】解:−12的相反数是12,故选:B.2.(3分)2022年北京冬奥会的奖牌“同心”表达了“天地合•人心同”的中华文化内涵.将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A.合B.同C.心D.人【解答】解:在原正方体中,与“地”字所在面相对的面上的汉字是人,故选:D.3.(3分)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°【解答】解:∵EO⊥CD,∴∠COE=90°,∵∠1+∠COE+∠2=180°,∴∠2=180°﹣∠1﹣∠COE=180°﹣54°﹣90°=36°.故选:B.4.(3分)下列运算正确的是()A.2√3−√3=2B.(a+1)2=a2+1C.(a2)3=a5D.2a2•a=2a3【解答】解:A、2√3−√3=√3,故A不符合题意;B、(a+1)2=a2+2a+1,故B不符合题意;C、(a2)3=a6,故C不符合题意;D、2a2•a=2a3,故D符合题意.故选:D.5.(3分)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E为CD的中点.若OE =3,则菱形ABCD的周长为()A.6B.12C.24D.48【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB=BC=CD=DA,∴△COD为直角三角形.∵OE=3,点E为线段CD的中点,∴CD=2OE=6.∴C菱形ABCD=4CD=4×6=24.故选:C.6.(3分)一元二次方程x2+x﹣1=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.只有一个实数根【解答】解:在一元二次方程x2+x﹣1=0中,a=1,b=1,c=﹣1,∴Δ=b2﹣4ac=12﹣4×1×(﹣1)=1+4=5>0,∴原方程有两个不相等的实数根.故选:A.7.(3分)如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为()A.5分B.4分C.3分D.45%【解答】解:由扇形统计图知,得4分的人数占总人数的45%,人数最多,所以所打分数的众数为4分,故选:B.8.(3分)《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿.则1兆等于()A.108B.1012C.1016D.1024【解答】解:1亿=104×104=108,1兆=104×104×108=104+4+8=1016,故选:C.9.(3分)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,AB∥x轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为()A.(√3,﹣1)B.(﹣1,−√3)C.(−√3,﹣1)D.(1,√3)【解答】解:∵边长为2的正六边形ABCDEF的中心与原点O重合,∴OA=AB=2,∠BAO=60°,∵AB∥x轴,∴∠APO=90°,∴∠AOP=30°,∴AP=1,OP=√3,∴A(1,√3),∵将△OAP绕点O顺时针旋转,每次旋转90°,可知点A2与D重合,由360°÷90°=4可知,每4次为一个循环,∴2022÷4=505……2,∴点A2022与点A2重合,∵点A2与点A关于原点O对称,∴A2(﹣1,−√3),∴第2022次旋转结束时,点A的坐标为(﹣1,−√3),故选:B.10.(3分)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的R1),R1的阻值随呼气酒精浓度K的变化而变化(如图2),血液酒精浓度M与呼气酒精浓度K的关系见图3.下列说法不正确的是()A .呼气酒精浓度K 越大,R 1的阻值越小B .当K =0时,R 1的阻值为100ΩC .当K =10时,该驾驶员为非酒驾状态D .当R 1=20时,该驾驶员为醉驾状态【解答】解:由图2可知,呼气酒精浓度K 越大,R 1的阻值越小,故A 正确,不符合题意;由图2知,K =0时,R 1的阻值为100,故B 正确,不符合题意; 由图3知,当K =10时,M =2200×10×10﹣3=22(mg /100mL ),∴当K =10时,该驾驶员为酒驾状态,故C 不正确,符合题意; 由图2知,当R 1=20时,K =40, ∴M =2200×40×10﹣3=88(mg /100mL ),∴该驾驶员为醉驾状态,故D 正确,不符合题意; 故选:C .二、填空题(每小题3分,共15分)11.(3分)请写出一个y 随x 的增大而增大的一次函数的表达式: 答案不唯一,如y =x .【解答】解:例如:y =x ,或y =x +2等,答案不唯一. 12.(3分)不等式组{x −3≤0,x 2>1的解集为 2<x ≤3 .【解答】解:{x −3≤0①x 2>1②,解不等式①,得:x ≤3, 解不等式②,得:x >2, ∴该不等式组的解集是2<x ≤3, 故答案为:2<x ≤3.13.(3分)为开展“喜迎二十大、永远跟党走、奋进新征程”主题教育宣讲活动,某单位从甲、乙、丙、丁四名宣讲员中随机选取两名进行宣讲,则恰好选中甲和丙的概率为 16.【解答】解:画树状图如下:共有12种可能的结果,其中恰好选中甲和丙的结果有2种, ∴恰好选中甲和丙的概率为212=16,故答案为:16.14.(3分)如图,将扇形AOB 沿OB 方向平移,使点O 移到OB 的中点O ′处,得到扇形A ′O ′B ′.若∠O =90°,OA =2,则阴影部分的面积为π3+√32.【解答】解:如图,设O ′A ′交AB̂于点T ,连接OT .∵OT =OB ,OO ′=O ′B , ∴OT =2OO ′, ∵∠OO ′T =90°,∴∠O ′TO =30°,∠TOO ′=60°, ∴S 阴=S 扇形O ′A ′B ′﹣(S 扇形OTB ﹣S △OTO ′)=90⋅π×22360−(60⋅π⋅22360−12×1×√3)=π3+√32. 故答案为:π3+√32. 15.(3分)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =2√2,点D 为AB 的中点,点P 在AC 上,且CP =1,将CP 绕点C 在平面内旋转,点P 的对应点为点Q ,连接AQ ,DQ.当∠ADQ=90°时,AQ的长为√5或√13.【解答】解:如图:∵∠ACB=90°,AC=BC=2√2,∴AB=√2AC=4,∵点D为AB的中点,∴CD=AD=12AB=2,∠ADC=90°,∵∠ADQ=90°,∴点C、D、Q在同一条直线上,由旋转得:CQ=CP=CQ′=1,分两种情况:当点Q在CD上,在Rt△ADQ中,DQ=CD﹣CQ=1,∴AQ=√AD2+DQ2=√22+12=√5,当点Q在DC的延长线上,在Rt△ADQ′中,DQ′=CD+CQ′=3,∴AQ′=√AD2+DQ′2=√22+32=√13,综上所述:当∠ADQ=90°时,AQ的长为√5或√13,故答案为:√5或√13.三、解答题(本大题共8个小题,共75分) 16.(10分)(1)计算:√273−(13)0+2﹣1;(2)化简:x 2−1x÷(1−1x).【解答】解:(1)原式=3﹣1+12 =52; (2)原式=(x+1)(x−1)x ÷x−1x=(x+1)(x−1)x •x x−1=x +1.17.(9分)2022年3月23日下午,“天宫课堂”第二课在中国空间站开讲,神舟十三号乘组航天员翟志刚、王亚平、叶光富相互配合进行授课,这是中国空间站的第二次太空授课,被许多中小学生称为“最牛网课”.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下: a .成绩频数分布表: 成绩x (分) 50≤x <6060≤x <70 70≤x <80 80≤x <90 90≤x ≤100 频数7912166b .成绩在70≤x <80这一组的是(单位:分): 70 71 72 72 74 77 78 78 78 79 79 79 根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是 78.5 分,成绩不低于80分的人数占测试人数的百分比为 44% .(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分.乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由. (3)请对该校学生“航空航天知识”的掌握情况作出合理的评价.【解答】解:(1)这次测试成绩的中位数是第25、26个数据的平均数,而第25、26个数据的平均数为78+792=78.5(分),所以这组数据的中位数是78.5分,成绩不低于80分的人数占测试人数的百分比为16+650×100%=44%,故答案为:78.5,44%; (2)不正确,因为甲的成绩77分低于中位数78.5分, 所以甲的成绩不可能高于一半学生的成绩;(3)测试成绩不低于80分的人数占测试人数的44%,说明该校学生对“航空航天知识”的掌握情况较好(答案不唯一,合理均可).18.(9分)如图,反比例函数y =kx (x >0)的图象经过点A (2,4)和点B ,点B 在点A 的下方,AC 平分∠OAB ,交x 轴于点C . (1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC 的垂直平分线.(要求:不写作法,保留作图痕迹)(3)线段OA 与(2)中所作的垂直平分线相交于点D ,连接CD .求证:CD ∥AB .【解答】(1)解:∵反比例函数y =kx (x >0)的图象经过点A (2,4), ∴k =2×4=8,∴反比例函数的解析式为y=8 x;(2)解:如图,直线m即为所求.(3)证明:∵AC平分∠OAB,∴∠OAC=∠BAC,∵直线m垂直平分线段AC,∴DA=DC,∴∠OAC=∠DCA,∴∠DCA=∠BAC,∴CD∥AB.19.(9分)开封清明上河园是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC的高度,如图,在A处用测角仪测得拂云阁顶端D的仰角为34°,沿AC方向前进15m到达B处,又测得拂云阁顶端D的仰角为45°.已知测角仪的高度为1.5m,测量点A,B与拂云阁DC的底部C在同一水平线上,求拂云阁DC的高度(结果精确到1m.参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67).【解答】解:延长EF 交DC 于点H ,由题意得:∠DHF =90°,EF =AB =15米,CH =BF =AE =1.5米, 设FH =x 米,∴EH =EF +FH =(15+x )米, 在Rt △DFH 中,∠DFH =45°, ∴DH =FH •tan45°=x (米), 在Rt △DHE 中,∠DEH =34°, ∴tan34°=DH EH =xx+15≈0.67, ∴x ≈30.5,经检验:x ≈30.5是原方程的根, ∴DC =DH +CH =30.5+1.5≈32(米), ∴拂云阁DC 的高度约为32米.20.(9分)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A 种菜苗的价格是菜苗基地的54倍,用300元在市场上购买的A 种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A 种菜苗的价格.(2)菜苗基地每捆B 种菜苗的价格是30元.学校决定在菜苗基地购买A ,B 两种菜苗共100捆,且A 种菜苗的捆数不超过B 种菜苗的捆数.菜苗基地为支持该校活动,对A ,B 两种菜苗均提供九折优惠.求本次购买最少花费多少钱. 【解答】解:(1)设菜苗基地每捆A 种菜苗的价格是x 元,根据题意得:300x=30054x +3,解得x =20,经检验,x =20是原方程的解,答:菜苗基地每捆A 种菜苗的价格是20元;(2)设购买A 种菜苗m 捆,则购买B 种菜苗(100﹣m )捆, ∵A 种菜苗的捆数不超过B 种菜苗的捆数, ∴m ≤100﹣m , 解得m ≤50,设本次购买花费w 元,∴w =20×0.9m +30×0.9(100﹣m )=﹣9m +2700, ∵﹣9<0,∴w 随m 的增大而减小,∴m =50时,w 取最小值,最小值为﹣9×50+2700=2250(元), 答:本次购买最少花费2250元.21.(9分)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P 距地面0.7m ,水柱在距喷水头P 水平距离5m 处达到最高,最高点距地面3.2m ;建立如图所示的平面直角坐标系,并设抛物线的表达式为y =a (x ﹣h )2+k ,其中x (m )是水柱距喷水头的水平距离,y (m )是水柱距地面的高度. (1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P 水平距离3m .身高1.6m 的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.【解答】解:(1)由题意知,抛物线顶点为(5,3.2), 设抛物线的表达式为y =a (x ﹣5)2+3.2,将(0,0.7)代入得: 0.7=25a +3.2,解得a=−1 10,∴y=−110(x﹣5)2+3.2=−110x2+x+710,答:抛物线的表达式为y=−110x2+x+710;(2)当y=1.6时,−110x2+x+710=1.6,解得x=1或x=9,∴她与爸爸的水平距离为3﹣1=2(m)或9﹣3=6(m),答:当她的头顶恰好接触到水柱时,与爸爸的水平距离是2m或6m.22.(10分)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.(1)求证:∠BOC+∠BAD=90°.(2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得cos∠BAD=35.已知铁环⊙O的半径为25cm,推杆AB的长为75cm,求此时AD的长.【解答】(1)证明:方法1:如图1,过点B作EF∥CD,分别交AD于点E,交OC于点F.∵CD与⊙O相切于点C,∴∠OCD=90°.∵AD⊥CD,∴∠ADC=90°.∵EF∥CD,∴∠OFB=∠AEB=90°,∴∠BOC+∠OBF=90°,∠ABE+∠BAD=90°,∵AB为⊙O的切线,∴∠OBA=90°.∴∠OBF+∠ABE=90°,∴∠OBF=∠BAD,∴∠BOC+∠BAD=90°;方法2:如图2,延长OB交CD于点M.∵CD与⊙O相切于点C,∴∠OCM=90°,∴∠BOC+∠BMC=90°,∵AD⊥CD,∴∠ADC=90°.∵AB为⊙O的切线,∴∠OBA=90°,∴∠ABM=90°.∴在四边形ABMD中,∠BAD+∠BMD=180°.∵∠BMC+∠BMD=180°,∴∠BMC=∠BAD.∴∠BOC+∠BAD=90°;方法3:如图3,过点B作BN∥AD,∴∠NBA=∠BAD.∵CD与⊙O相切于点C,∴∠OCD=90°,∵AD⊥CD,∴∠ADC=90°.∴AD∥OC,∴BN∥OC,∴∠NBO=∠BOC.∵AB为OO的切线,∴∠OBA=90°,∴∠NBO+∠NBA=90°,∴∠BOC+∠BAD=90°.(2)解:如图1,在Rt△ABE中,∵AB=75,cos∠BAD=3 5,∴AE=45.由(1)知,∠OBF=∠BAD,∴cos∠OBF=3 5,在Rt△OBF中,∵OB=25,∴BF=15,∴OF=20.∵OC=25,∴CF=5.∵∠OCD=∠ADC=∠CFE=90°,∴四边形CDEF为矩形,∴DE=CF=5,∴AD=AE+ED=50cm.23.(10分)综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图1中一个30°的角:∠EMB或∠CBM或∠ABP或∠PBM(任写一个即可).(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下:将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图2,当点M在EF上时,∠MBQ=15°,∠CBQ=15°;②改变点P在AD上的位置(点P不与点A,D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP 的长.【解答】解:(1)∵对折矩形纸片ABCD,∴AE=BE=12AB,∠AEF=∠BEF=90°,∵沿BP折叠,使点A落在矩形内部点M处,∴AB=BM,∠ABP=∠PBM,∵sin∠BME=BEBM=12,∴∠EMB=30°,∴∠ABM=60°,∴∠CBM=∠ABP=∠PBM=30°,故答案为:∠EMB或∠CBM或∠ABP或∠PBM(任写一个即可);(2)①由(1)可知∠CBM=30°,∵四边形ABCD是正方形,∴AB=BC,∠BAD=∠C=90°,由折叠可得:AB=BM,∠BAD=∠BMP=90°,∴∠BM=BC,∠BMQ=∠C=90°,又∵BQ=BQ,∴Rt△BCQ≌Rt△BMQ(HL),∴∠CBQ=∠MBQ=15°,故答案为:15,15;②∠MBQ=∠CBQ,理由如下:∵四边形ABCD是正方形,∴AB=BC,∠BAD=∠C=90°,由折叠可得:AB=BM,∠BAD=∠BMP=90°,∴BM=BC,∠BMQ=∠C=90°,又∵BQ=BQ,∴Rt △BCQ ≌Rt △BMQ (HL ),∴∠CBQ =∠MBQ ;(3)由折叠的性质可得DF =CF =4cm ,AP =PM , ∵Rt △BCQ ≌Rt △BMQ ,∴CQ =MQ ,当点Q 在线段CF 上时,∵FQ =1cm ,∴MQ =CQ =3cm ,DQ =5cm ,∵PQ 2=PD 2+DQ 2,∴(AP +3)2=(8﹣AP )2+25,∴AP =4011, 当点Q 在线段DF 上时,∵FQ =1cm ,∴MQ =CQ =5cm ,DQ =3cm ,∵PQ 2=PD 2+DQ 2,∴(AP +5)2=(8﹣AP )2+9,∴AP =2413, 综上所述:AP 的长为4011cm 或2413cm .。
2022年河南省中招考试数学试题及答案
相切于点D,取值范畴是( ).中华人民共和国中东部大某些地区持续浮现雾霾天气,某市记者为了理解、为顶点四边形是直角梯形.需对原水库大坝进行混凝土培厚加品牌和3个B品牌计算器共需重叠放置,其中∠C=90°,∠B=∠E=30°数量关系是__________;AC.若AB =4,AC =6,则BD长是( )(B) 9 (C)10 (D)11Rt △ABC中,∠C=900,AC=1cm,BC=2cm,点延长线上一点,过点P作⊙O切线PA、PB,切点分A3.据记录,国内高新产品出口总额达40570亿元,将数据40570亿用科学记数法表达为( )A.4.0570×109 B. 0.40570×1010 C. 40.570×1011 D. 4.0570×10124.如图,直线a,b 被直线c,d 所截,若∠1=∠2,∠3=1250,则∠4度数为( )A.550B.600 C .700 D.7505.不等式组解集在数轴上表达为( )x 503x 1+≥⎧⎨-⎩>GURUILINDCBAO 2-5O 22O -5-5O 26.小王参加某公司招聘测试,她笔试,面试,技能操作得分分别为85分,80分,90分,若依次按照2:3:5比例拟定成绩,则小王成绩是( )A.255分 B.84分 C.84.5分 D.86分7.如图,在平行四边形ABCD 中,用直尺和圆规作∠BAD 平分线AG,交BC 于点E,若BF=6,AB=5,则AE 长为( ) A.4 B.6 C.8 D.108.在平面直角坐标系中,半径均为1个单位长度半圆O 1,O 2,O 3…构成一条平滑曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒个2π单位长度,则秒时,点P 坐标是( )A.(,0) B.(,-1) C.(,1) D.(,0)PO 3O 2O 1Oy x二、填空题(每小题3分,共21分)9.计算:(-3)0+3-1= 。
河南省中考数学试卷(含解析答案)
河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣ B.C.﹣ D.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×10113.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=15.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是06.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=08.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“ ”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2) B.(,2)C.(3﹣,2) D.(﹣2,2)10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣= .12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.13.(3分)不等式组的最小整数解是.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O 的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE 为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH 的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)85 95 105 115日销售量y(个)175 125 75 m日销售利润w(元)875 1875 1875 875 (注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x= 元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.河南省中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣ B.C.﹣ D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=1【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.【解答】解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.5.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是0【分析】直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.【点评】此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.6.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.【分析】设设合伙人数为x人,羊价为y线,根据羊的价格不变列出方程组.【解答】解:设合伙人数为x人,羊价为y线,根据题意,可列方程组为:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系是解题的关键.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【分析】根据一元二次方程根的判别式判断即可.【解答】解:A、x2+6x+9=0△=62﹣4×9=36﹣36=0,方程有两个相等实数根;B、x2=xx2﹣x=0△=(﹣1)2﹣4×1×0=1>0两个不相等实数根;C、x2+3=2xx2﹣2x+3=0△=(﹣2)2﹣4×1×3=﹣8<0,方程无实根;D、(x﹣1)2+1=0(x﹣1)2=﹣1,则方程无实根;故选:B.【点评】本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.【分析】直接利用树状图法列举出所有可能进而求出概率.【解答】解:令3张用A1,A2,A3,表示,用B表示,可得:,一共有12种可能,两张卡片正面图案相同的有6种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC 于点G,则点G的坐标为()A.(﹣1,2) B.(,2)C.(3﹣,2) D.(﹣2,2)【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2).【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A.【点评】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FB C的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.【点评】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣= 2 .【分析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式=5﹣3=2.故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为140°.【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC的度数为:180°﹣40°=140°.故答案为:140°.【点评】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.13.(3分)不等式组的最小整数解是﹣2 .【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,∴不等式组的最小整数解是﹣2,故答案为:﹣2.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为π.【分析】利用弧长公式L=,计算即可;【解答】解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB 上,CA′⊥AB,∴∠ACA′=∠BCA′=45°,∴∠BCB′=135°,∴S阴==π.【点评】本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4 .【分析】当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'B=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;【点评】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.【分析】根据分式的运算法则即可求出答案,【解答】解:当x=+1时,原式=•=1﹣x=﹣【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000 人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【分析】(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为70×40%=28(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O 的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为30°时,四边形ECFG为菱形;②当∠D的度数为22.5°时,四边形ECOG为正方形.【分析】(1)连接OC,如图,利用切线的性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形的判定定理得到结论;(2)①当∠D=30°时,∠DAO=60°,证明△CEF和△FEG都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG得到∠OEG=∠OCE=90°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形.【解答】(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67.5°﹣67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE 为82.4°,高杠的支架BD与直线AB的夹角∠DB F为80.3°.求高、低杠间的水平距离CH 的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【分析】利用锐角三角函数,在Rt△ACE和Rt△DBF中,分别求出AE、BF的长.计算出EF.通过矩形CEFH得到CH的长.【解答】解:在Rt△ACE中,∵tan∠CAE=,∴AE==≈≈21(cm)在Rt△DBF中,∵tan∠DB F=,∴BF==≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH的长为151cm.【点评】本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)85 95 105 115日销售量y(个)175 125 75 m日销售利润w(元)875 1875 1875 875 (注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80 元,当销售单价x= 100 元时,日销售利润w最大,最大值是2000 元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为 1 ;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.【点评】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC 于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x﹣,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得x=5,则B(5,0),。
2023年河南省中考数学真题(解析)
2023年河南省普通高中招生考试试卷数学一、选择题1.【答案】A【解析】解:∵101-<<<,∴最小的数是-1.故选:A2.【答案】A【解析】解:这个花鹅颈瓶的主视图与左视图相同,俯视图与主视图和左视图不相同.故选:A .3.【答案】C【解析】解:4.59亿8459000000 4.9510==⨯.故选:C .4.【答案】B【解析】解:∵180∠=︒,∴180AOD ∠=∠=︒,∵230∠=︒,∴2803050AOE AOD ∠=∠-∠=︒-︒=︒,故选:B5.【答案】B 【解析】解:11111a a a a a a a--++===,故选:B .6.【答案】D【解析】解:∵55C ∠=︒,∴由圆周角定理得:2110AOB C ==︒∠∠,故选:D .7.【答案】A【解析】解:∵280x mx +-=,∴()2248320m m ∆=-⨯-=+>,所以原方程有两个不相等的实数根,故选:A .8.【答案】B【解析】设三部影片依次为A 、B 、C ,根据题意,画树状图如下:故相同的概率为3193=.故选B .9.【答案】D 【解析】解:由图象开口向下可知a<0,由对称轴b x 02a=->,得0b >.∴一次函数y x b =+的图象经过第一、二、三象限,不经过第四象限.故选:D .10.【答案】A【解析】解:如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,1PB PC=,∴PB PC =,AO =又∵ABC 为等边三角形,∴60BAC ∠=︒,AB AC =,∴()SSS APB APC △≌△,∴BAO CAO ∠=∠,∴30BAO CAO ∠=∠=︒,当点P 在OB 上运动时,可知点P 到达点B时的路程为∴OB =,即AO OB ==∴30BAO ABO ∠=∠=︒,过点O 作OD AB ⊥,∴AD BD =,则cos303AD AO =⋅︒=,∴6AB AD BD =+=,即:等边三角形ABC 的边长为6,故选:A .二、填空题11.【答案】3n【解析】解:由题意得:3个年级共需配发得套劳动工具总数为:3n 套,故答案为:3n .12.【答案】12x y =⎧⎨=⎩【解析】解:3537x y x y +=⎧⎨+=⎩①②由3⨯-①②得,88x =,解得1x =,把1x =代入①中得315y ⨯+=,解得2y =,故原方程组的解是12x y =⎧⎨=⎩,故答案为:12x y =⎧⎨=⎩.13.【答案】280【解析】解:该基地高度不低于300cm 的“无絮杨”品种苗所占百分比为10%18%28%+=,则不低于300cm 的“无絮杨”品种苗约为:100028%280⨯=棵,故答案为:280.14.【答案】103【解析】如图,连接OC ,∵PA 与O 相切于点A ,∴90OAC ∠=︒;∵OA OB CA CB OC OC =⎧⎪=⎨⎪=⎩,∴OAC OBC ≌,∴90OAC OBC ∠=∠=︒,∴90PAO PBC ∠=∠=︒,∵P P ∠=∠,∴PAO PBC ∽,∴PO AO PC BC=,∵5OA =,12PA =,∴13PO ==,设CB CA x ==,则12PC PA CA x =-=-,∴13512x x=-,解得103x =,故CA 的长为103,故答案为:103.15.【答案】21+【解析】解:当90MND ∠=︒时,∵四边形ABCD 矩形,∴90A ∠=︒,则∥MN AB ,由平行线分线段成比例可得:AN BM ND MD =,又∵M 为对角线BD 的中点,∴BMMD =,∴1AN BM ND MD==,即:1ND AN ==,∴2AD AN ND =+=,当90NMD ∠=︒时,∵M 为对角线BD 的中点,90NMD ∠=︒∴MN 为BD 的垂直平分线,∴BN ND =,∵四边形ABCD 矩形,1AN AB ==∴90A ∠=︒,则BN ==∴BN ND ==∴1AD AN ND =+=,综上,AD 的长为21,故答案为:21+.三、解答题16.【答案】(1)15;24y 【解析】(1)解:原式1=335-+15=;(2)解:原式222444x xy y x xy=-+-+24y =.17.【答案】(1)7.5;<(2)甲公司,理由见解析(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【解析】(1)由题意可得,787.52m +==,()()()()22222137748726757110s ⎡⎤=⨯⨯-+⨯-+⨯-+-=⎣⎦甲()()()()()()()222222221478721072679725777 4.210s ⎡⎤=⨯-+-+⨯-+⨯-+-+⨯-+-=⎣⎦乙,∴22s s <甲乙,故答案为:7.5;<;(2)∵配送速度得分甲和乙的得分相差不大,服务质量得分甲和乙的平均数相同,但是甲的方差明显小于乙的方差,∴甲更稳定,∴小丽应选择甲公司;(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)18.【答案】(1)见解析(2)见解析【解析】(1)解:如图所示,即为所求,(2)证明:∵AE 平分BAC ∠,∴BAE DAE ∠=∠,∵AB AD =,AE AE =,∴()SAS BAE DAE △≌△,∴DE BE =.19.【答案】(13(2)半径为2,圆心角为60︒(3)2333π-【解析】(1)解:将)3,1A 代入k y x=中,得13=,解得:3k =(2)解: 过点A 作OD 的垂线,垂足为G ,如下图:)3,1A ,1,3AG OG ∴==,22(3)12OA ∴=+=,∴半径为2;12AG OA = ,∴1sin 2AG AOG OG ∠==,30AOG ∴∠=︒,由菱形的性质知:30AOG COG ∠=∠=︒,60AOC ∴∠=︒,∴扇形AOC 的圆心角的度数:60︒;(3)解:2OD OG == ,1AOCD S AG OD ∴=⨯=⨯菱形221122663AOC S r πππ=⨯=⨯⨯= 扇形,如下图:由菱形OBEF 知,FHO BHO S S = ,322BHO kS == ,322FBO S ∴=⨯= ,2233FBO AOCD AOC S S S S ππ∴=+-=+= 阴影部分面积菱形扇形.20.【答案】树EG 的高度为9.1m【解析】解:由题意可知,90BAE MAF BAD ∠=∠=∠=︒, 1.8m FG =,则90EAF BAF BAF BAH ∠+∠=∠+∠=︒,∴EAF BAH ∠=∠,∵30cm AB =,20cm BH =,则2tan 3BH BAH AB ∠==,∴2tan tan 3EF EAF BAH AF ∠==∠=,∵11m AF =,则2113EF =,∴22m 3EF =,∴22 1.89.1m 3EG EF FG =+=+≈,答:树EG 的高度为9.1m .21.【答案】(1)活动一更合算(2)400元(3)当300400a ≤<或600800a ≤<时,活动二更合算【解析】(1)解:购买一件原价为450元的健身器材时,活动一需付款:4500.8360⨯=元,活动二需付款:45080370-=元,∴活动一更合算;(2)设这种健身器材的原价是x 元,则0.880x x =-,解得400x =,答:这种健身器材的原价是400元,(3)这种健身器材的原价为a 元,则活动一所需付款为:0.8a 元,活动二当0300a <<时,所需付款为:a 元,当300600a ≤<时,所需付款为:()80a -元,当600900a ≤<时,所需付款为:()160a -元,①当0300a <<时,0.8a a >,此时无论a 为何值,都是活动一更合算,不符合题意,②当300600a ≤<时,800.8a a -<,解得300400a ≤<,即:当300400a ≤<时,活动二更合算,③当600900a ≤<时,1600.8a a -<,解得600800a ≤<,即:当600800a ≤<时,活动二更合算,综上:当300400a ≤<或600800a ≤<时,活动二更合算.22.【答案】(1)()0,2.8P ,0.4a =-,(2)选择吊球,使球的落地点到C 点的距离更近【解析】(1)解:在一次函数0.4 2.8y x =-+,令0x =时, 2.8y =,∴()0,2.8P ,将()0,2.8P 代入()21 3.2y a x =-+中,可得: 3.2 2.8a +=,解得:0.4a =-;(2)∵3m OA =,2m CA =,∴5m OC =,选择扣球,则令0y =,即:0.4 2.80x -+=,解得:7x =,即:落地点距离点O 距离为7m ,∴落地点到C 点的距离为752m -=,选择吊球,则令0y =,即:()20.41 3.20x --+=,解得:1x =±(负值舍去),即:落地点距离点O 距离为()1m +,∴落地点到C 点的距离为()(514m -=-,∵42-<,∴选择吊球,使球的落地点到C 点的距离更近.23.【答案】(1)180︒,8.(2)①2βα=,理由见解析;②2sin m α(3)或【解析】(1)(1)∵ABC 关于y 轴对称的图形111A B C △,111A B C △与222A B C △关于x 轴对称,∴222A B C △与ABC 关于O 点中心对称,则222A B C △可以看作是ABC 绕点O 顺时针旋转得到的,旋转角的度数为180︒∵()1,1A -,∴12AA =,∵()4,0M ,13,A A 关于直线4x =对称,∴131248A A AA +=⨯=,即38AA =,333A B C △可以看作是ABC 向右平移得到的,平移距离为8个单位长度.故答案为:180︒,8.(2)①2βα=,理由如下,连接1AP ,由对称性可得,112PAB P AB P AD P AD ∠=∠∠=∠,,2112PAP PAB P AB P AD P AD ∠=∠+∠+∠+∠1122P AB P AD=∠+∠()112P AB P AD =∠+∠2BAD=∠∴2βα=,②连接113,PP PP 分别交,AB CD 于,E F 两点,过点D 作DG AB ⊥,交AB 于点G ,由对称性可知:113PE PE PF P F ==,且113PP AB PP CD ⊥⊥,,∵四边形ABCD 为平行四边形,∴AB CD∥∴13P P P ,,三点共线,∴311311222PP PE PE PF P F PE PF EF =+++=+=,∵113,,PP AB PP CD DG AB ⊥⊥⊥,∴1190PFD PEG DGE ∠=∠=∠=︒,∴四边形EFDG 是矩形,∴DG EF =,在Rt DAG △中,DAG α∠=,AD m =∵sin DG DAG DA∠=,∴sin sin DG AD DAG m α=⋅∠=,∴3222sin PP EF DG m α===(3)解:设AP x =,则12AP AP x ==,依题意,12PP AD ⊥,当23P P AD ∥时,如图所示,过点P 作1PQ AP ⊥于点Q ,∴12390PP P ∠=︒∵15PAB ∠=︒,60α=︒,∴1320P PAP AB ∠=︒∠=,1245DAP DAP ∠=∠=︒∴2190P AP ∠=︒,则122PP x =,在1APP 中,()111180752APP PAP ∠=︒-∠=︒,∴213180457560P PP ∠=︒-︒-︒=︒,则13230PP P ∠=︒,∴1321222PP P P ==在Rt APQ △中,30PAQ ∠=︒,则1122PQ AP x ==,2232AQ AP PQ x =-=,在1Rt PQP 中,1132PQ AP AQ x x =-=-,222211316223222PP PQ PQ x x x x ⎛⎫⎛⎫=+=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭,∴3113626322222PP PP PP x x x +=+=+=由(2)②可得32sin PP AD α=,∵23AD =∴332362PP =⨯=∴63262x +=,解得:326x =;如图所示,若23P P DC ∥,则13290PP P ∠=︒,∵21360P PP ∠=︒,则32130P P P ∠=︒,则13121222PP PP x ==,∵1622PP x =,36226222PP x x x =+=,∵36PP =,∴662x =,解得:x =,综上所述,AP 的长为或.。
2023年河南省中考数学试卷含答案解析
绝密★启用前2023年河南省中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列各数中最小的数是( )A. −1B. 0C. 1D. √ 32.北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是( )A. 主视图与左视图相同B. 主视图与俯视图相同C. 左视图与俯视图相同D. 三种视图都相同3. 2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为( )A. 4.59×107B. 45.9×108C. 4.59×108D. 0.459×1094.如图,直线AB,CD相交于点O,若∠1=80°,∠2=30°,则∠AOE的度数为( )A. 30°B. 50°C. 60°D. 80°5. 化简a−1a +1a的结果是( )A. 0B. 1C. aD. a−26.如图,点A,B,C在⊙O上,若∠C=55°,则∠AOB的度数为( )A. 95°B. 100°C. 105°D. 110°7. 关于x的一元二次方程x2+mx−8=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根8. 为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为( )A. 12B. 13C. 16D. 199.二次函数y=ax2+bx的图象如图所示,则一次函数y=x+b的图象一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限10. 如图1,点P从等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B.设点P运动的路程为x,PBPC=y,图2是点P运动时y随x变化的关系图象,则等边三角形ABC的边长为( )A. 6B. 3C. 4√ 3D. 2√ 3二、填空题(本大题共5小题,共15.0分)11. 某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______ 套劳动工具. 12. 方程组{3x +y =5x +3y =7的解为______ .13. 某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x(cm)的统计图,则此时该基地高度不低于300cm 的“无絮杨”品种苗约有______ 棵.14. 如图,PA 与⊙O 相切于点A ,PO 交⊙O 于点B ,点C 在PA 上,且CB =CA.若OA =5,PA =12,则CA 的长为______ .15. 矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为______ .三、解答题(本大题共8小题,共75.0分。
2023年河南省中考数学试卷(含答案)061939
2023年河南省中考数学试卷试卷考试总分:117 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1. 下列实数中,最小的是( )A.B.C.D. 2.如图所示的几何体是由五个小正方体组合而成的,它的主视图是( ) A. B. C.D.3. 据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达米/分,这个数用科学记数法表示,正确的是 A.B.C.D.4. 如图所示,直线与相交于点,.若,则的度数为( )32–√3–√0204000()204×10320.4×1042.04×1052.04×106AB CD O ∠1=∠2∠AOE =140∘∠AOCA.B.C.D.5. 计算,结果正确的是( )A.B.C.D.6. 如图,在 中,弧的度数为 ,则 的度数是 A.B.C.D.7. 已知方程有两个相等的实数根,则的值是( )A.B.C.或D.或8. 在一个不透明的纸箱里有四个除了标记数字不同之外其他完全相同的小球,上面标记数字,,,,现在从中先后随机抽出两个小球,则两个小球上数字之和不能被整除的概率为 A.B.C.40∘60∘80∘100∘−x+1x 1x1x1x x+2x ⊙O BC 60∘∠BAC ()15∘30∘45∘60∘−rx+1=0x 2r 2−22−24−412343()2313127D. 9. 对于抛物线,下列结论:①抛物线的开口向下;②对称轴为直线;③顶点坐标为;④时,随的增大而减小;⑤抛物线与轴的交点坐标为.其中正确的有( )A.个B.个C.个D.个10. 如图,在菱形中,,,动点从点出发,以每秒个单位长度的速度沿折线运动到点,同时动点从点出发,以相同速度沿折线运动到点,当一个点停止运动时,另一个点也随之停止.设的面积为,运动时间为秒,则下列图象能大致反映与之间函数关系的是( )A.B.C.D.二、 填空题 (本题共计 5 小题 ,每题 3 分 ,共计15分 )11. 将方程变形为用含的式子表示为________.12. 方程组的解是________.13. 一学校图书馆理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知甲类书有本,则丙类书有________本.712y =−(x+1+312)2x =1(−1,3)x >1y x y (0,3)1234ABCD ∠B =60∘AB=2P B 1BA →AC C Q A AC →CD D △APQ y x y x 2x−3y =5x y {x+y =5,2x−y =4.22514. 如图,、分别与相切于、两点,若 ,则的度数为________.15. 如图,在矩形中,点的坐标是,则的长是________.三、 解答题 (本题共计 8 小题 ,每题 9 分 ,共计72分 )16. 计算各射靶次,为了比较两人的成绩,制作了如下统计图表:甲乙射击成绩统计表由. 18. 如图,在中,=,=,=.PA PB ⊙O A B ∠P =50∘∠C ∘OABC B (1,3)AC (−2)×3+×+()12−12025−−√10△ABC ∠C 90∘AC 6BC 8(1)用直尺和圆规作的平分线,交于点;(要求:不写作法,保留作图痕迹)(2)=________.(直接写出结果) 19. 某司机驾驶汽车从甲地去乙地,他以的平均速度用到达目的地.(1)当他按原路匀速返回时,汽车的速度与时间有怎样的函数关系?(2)如果该司机返回到甲地的时间不超过,那么返程时的平均速度不能小于多少?20. 图是一辆吊车的实物图,图是其工作示意图,是可以伸缩的起重臂,其转动点离地面的高度为.当起重臂长度为,张角为时,求操作平台离地面的高度(结果保留小数点后一位:参考数据: 21. 南昌市某中学开展校园足球运动会,以足球作为奖品.体育老师安排生活委员张涛去附近的商店购买足球,已知每个足球的价格为元,请你阅读店员与张涛结账时的对话并解决以下问题:从两人对话内容来分析计算,张涛原计划购买足球的个数.由于参加比赛的班级表现优异,学校决定增加奖励名额,再次购买篮球和排球共个,且两次购买奖品总支出不超过元.已知篮球的价格为每个元,排球的价格为每个元,店员给予七折优惠,请问张涛最多可购买多少个篮球? 22. 如图,隧道的截面由抛物线和长方形构成,长方形的长为,宽为,抛物线的最高点离地面的距离为.按如图所示的直角坐标系,求表示该抛物线的函数表达式.一大型汽车装载某大型设备后,高为,宽为,如果该隧道内设双向行车道,那么这辆货车能否安全通过? 23. 如图,在矩形和矩形中, ,与交于点,与交于点,动点从点出发沿以每秒个单位长的速度向点匀速运动,伴随点的运动,矩形在射线上滑动:动点从点出发沿折线以每秒个单位长的速度匀速运动.点、同时开始运动,当点到达点时停止运动,点Р也随之停止.设点、器运动的时间是秒.∠A BC D :S △ADC S △ADB 80km/h 6h v t 5h 12AC A BD AH 3.4m AC 9m ∠HAC 118∘C sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)80(1)(2)201500604016m 6m C 8m (1)(2)7m 4m ABCD PEFC AB =8,BC =6,PE =2,PG =4PE AC M EF AC N P A AB 1B P PEFC AB k P PE−EF 1P K K F P K t (t >0)当时,________,________;当为何值时,的面积与的面积相等?当点到达点时,求出的值;当为何值时,是直角三角形?(1)t =1KE =EN =(2)t △APM △MNE (3)K N t (4)t △PKB参考答案与试题解析2023年河南省中考数学试卷试卷一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】D【考点】算术平方根实数大小比较【解析】先比较各个数的大小,再得出选项即可.【解答】∵,∴最小的数是,2.【答案】A【考点】简单几何体的三视图【解析】此题暂无解析【解答】解:从正面看得到从左往右列正方形的个数依次为.故选.3.【答案】C【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是非负数;当原数的绝对值时,是负数.【解答】解:米/分,这个数用科学记数法表示为.故选.3>>>03–√2–√031,1,2A a ×10n 1≤|a |<10n n a n ≥1n <1n 204000 2.04×105C【考点】对顶角邻补角【解析】先求得的度数,然后可得到的度数,最后可求得的度数.【解答】解:∵,,∴,∵,∴,∴.故选.5.【答案】A【考点】分式的加减运算【解析】根据分式的运算法则即可求出答案.【解答】原式6.【答案】B【考点】圆周角定理圆心角、弧、弦的关系【解析】此题暂无解析【解答】解:因为弧的度数为,所以,所以.故选.∠2∠BOD ∠AOC ∠AOE+∠BOE =180∘∠AOE =140∘∠BOE =∠2=40∘∠1=∠2∠BOD =2∠2=80∘∠AOC =∠BOD =80∘C =x+1−1x=1BC 60∘∠BOC =60∘∠BAC =∠BOC =1230∘B【考点】根的判别式【解析】此题暂无解析【解答】解:根据题意,得,解得.故选.8.【答案】A【考点】列表法与树状图法【解析】此题暂无解析【解答】解:画树状图得:∵共有种等可能的结果,两次摸出的小球数字之和不能被整除有种情况,∴两次摸出的小球数字之和不能被整除的概率为:.故选.9.【答案】C【考点】二次函数的性质【解析】根据二次函数的性质对各小题分析判断即可得解.【解答】解:①∵,∴抛物线的开口向下,故正确;Δ=−4=0r 2r =±2C 12383=81223A a =−<012②对称轴为直线,故错误;③顶点坐标为,故正确;④∵时,随的增大而减小,∴时,随的增大而减小,故正确;⑤抛物线与轴的交点坐标为,故错误;综上所述,结论正确的个数是①③④共个.故选.10.【答案】A【考点】动点问题函数的图象【解析】当、分别在、上运动时,;当、分别在、上运动时,同理可得:,即可求解.【解答】解:①当,分别在,上运动时,四边形是菱形,,则,为边长为的等边三角形.过点作于点,;②当,分别在,上运动时,可得:.故选.二、 填空题 (本题共计 5 小题 ,每题 3 分 ,共计15分 )11.【答案】【考点】列代数式【解析】直接表示即可.【解答】解:∵,∴,x =−1(−1,3)x >−1y x x >1y x y (0,)523C P Q AB AC y =AP ×QH =(2−t)×tsin 121260∘P Q AC DC y =(t−23–√4)2P Q AB AC ∵ABCD ∠B =60∘△ABC △ACD 2Q QH ⊥AB H y =AP ×QH =(2−x)×xsin 121260∘=−+3–√4x 23–√2x P Q AC DC y =(x−23–√4)2A y =2x−532x−3y =53y =2x−5=2x−5∴.故答案为:.12.【答案】【考点】加减消元法解二元一次方程组【解析】根据观察用加减消元法较好,①+②消去,解出的值,再把的值代入①,解出.【解答】解:得:,解得,把代入得:,∴故答案为:13.【答案】【考点】扇形统计图【解析】先根据甲类书籍的数量及其所占百分比求出书籍的总数量、根据各部分所占百分比之和等于求出丙类书籍的百分比,再用总数量乘以丙类书籍所占百分比即可得.【解答】解:书籍的总数为 (本),丙类书籍所占百分比为,丙类书籍的数量为 (本).故答案为:.14.【答案】【考点】切线的性质圆周角定理【解析】由与为圆的两条切线,利用切线性质得到与垂直,与垂直,在四边形中,利用四边形的内角和定理y =2x−53y =2x−53{ x =3,y =2.y x x y {x+y =5,①2x−y =4.②①+②3x =9x =3x =3①y =2{ x =3,y =2.{ x =3,y =2.6001∵225÷15%=15001−15%−45%=40%∴1500×40%=60060065PA PB PA OA PB OB APBO即可求出的度数.【解答】解:∵、是的切线,∴,,∴,∵,∴,∵为上一点,∴.故答案为:.15.【答案】【考点】勾股定理矩形的性质【解析】根据勾股定理求出,根据矩形的性质得出,即可得出答案.【解答】解:连接,过点作轴于点.点的坐标是,,,由勾股定理得:.四边形是矩形,,.故答案为:.三、 解答题 (本题共计 8 小题 ,每题 9 分 ,共计72分 )16.【答案】解:原式.【考点】零指数幂、负整数指数幂二次根式的化简求值二次根式的混合运算负整数指数幂∠C PA PB ⊙O PA ⊥OA PB ⊥OB ∠PAO =∠PBO =90∘∠P =50∘∠AOB =130∘C ⊙O ∠C =∠AOB =×=1212130∘65∘6510−−√OB AC =OB OB B BM ⊥x M ∵B (1,3)∴OM =1BM =3OB ===O +B M 2M 2−−−−−−−−−−−√1+9−−−−√10−−√∵OABC ∴AC =OB ∴AC =10−−√10−−√=−6+2×1+5=−6+2+5=1实数的运算【解析】此题暂无解析【解答】解:原式.17.【答案】根据折线统计图得:乙的射击成绩为:,,,,,,,,,,则平均数为:=(环),甲的射击成绩为,,,,,,,?,,,平均数为环,则甲第八环成绩为=(环),所以甲的次成绩为:,,,,,,,,,,把这些数从小到大排列为,,,,,,,,,,则中位数是:(环),甲的方差为:=;补统计表如下:平均数中位数方差命中环的次数甲乙补全折线统计图如下:故答案为:,,;甲,由甲的方差小于乙的方差,甲比较稳定如果希望乙胜出,应该制定的评判规则为:平均成绩高的胜出;如果平均成绩相同,则随着比赛的进行,发挥越来越好者或命中满环(环)次数多者胜出.因为甲乙的平均成绩相同,乙只有第次射击比第四次射击少命中环,且命中次环,而甲第次比第次、第次比第次命中环数都低,且命中环的次数为次,即随着比赛的进行,有可能乙的射击成绩越来越好.【考点】方差折线统计图中位数【解析】(1)分别利用中位数以及方差和平均数求法得出即可;(2)根据(1)计算出的甲乙两人的方差,比较大小即可做出判断;(3)希望乙胜出,修改规则,使乙获胜的概率大于甲即可.【解答】根据折线统计图得:乙的射击成绩为:,,,,,,,,,,=−6+2×1+5=−6+2+5=124687789910(2+4+6+8+7+7+8+9+9+10)1107967657789770−(9+6+7+6+5+7+7+8+9)61096765776895666777899=77+72[2×(9−7+3×(6−7+3×(7−7+(5−7+(8−7]110)2)2)2)2)2 1.61077 1.6077.5 5.417 1.671051110214310024687789910(2+4+6+8+7+7+8+9+9+10)1则平均数为:=(环),甲的射击成绩为,,,,,,,?,,,平均数为环,则甲第八环成绩为=(环),所以甲的次成绩为:,,,,,,,,,,把这些数从小到大排列为,,,,,,,,,,则中位数是:(环),甲的方差为:=;补统计表如下:平均数中位数方差命中环的次数甲乙补全折线统计图如下:故答案为:,,;由甲的方差小于乙的方差,甲比较稳定,故甲胜出;故答案为:甲,由甲的方差小于乙的方差,甲比较稳定;如果希望乙胜出,应该制定的评判规则为:平均成绩高的胜出;如果平均成绩相同,则随着比赛的进行,发挥越来越好者或命中满环(环)次数多者胜出.因为甲乙的平均成绩相同,乙只有第次射击比第四次射击少命中环,且命中次环,而甲第次比第次、第次比第次命中环数都低,且命中环的次数为次,即随着比赛的进行,有可能乙的射击成绩越来越好.18.【答案】如图,为所作;【考点】作图—基本作图角平分线的性质【解析】(1)利用基本作图作平分;(2)作,如图,先根据勾股定理计算出=,再根据角平分线性质得到=,然后根据三角形面积公式得到=.【解答】如图,为所作;作,如图,,(2+4+6+8+7+7+8+9+9+10)1107967657789770−(9+6+7+6+5+7+7+8+9)61096765776895666777899=77+72[2×(9−7+3×(6−7+3×(7−7+(5−7+(8−7]110)2)2)2)2)2 1.61077 1.6077.5 5.417 1.6710511102143100AD 3:5AD ∠BAC DE ⊥AB AB 10DC DE :S △ADC S △ADB 3:5AD DE ⊥AB AB ==10+6282−−−−−−√∵平分,,,∴=,∴=:===.故答案为.19.【答案】由题意得,两地路程为=,故汽车的速度与时间的函数关系为:.由,得,又由题知:,∴.∵∴.∴.答:返程时的平均速度不能低于.【考点】反比例函数的应用【解析】(1)直接求出总路程,再利用路程除以时间=速度,进而得出关系式;(2)由题意可得,进而得出答案.【解答】由题意得,两地路程为=,故汽车的速度与时间的函数关系为:.由,得,又由题知:,∴.∵∴.∴.答:返程时的平均速度不能低于.20.【答案】解:作于,于,如图,易得四边形为矩形,∴,,∴,在中,∵,∴,∴.【考点】AD ∠BAC DC ⊥AC DE ⊥BC DC DE :S △ADC S △ADB (DC ⋅AC)12(DE ⋅AB)12AC :AB 6:103:53:580×6480(km)v t v =480t v =480t t =480v t ≤5≤5480v v >0480≤5v v ≥9696km/h ≤5480v80×6480(km)v t v =480tv =480t t =480v t ≤5≤5480v v >0480≤5v v ≥9696km/h CE ⊥BD E AF ⊥CE F AHEF EF =AH =3.4m ∠HAF =90∘∠CAF =∠CAH−∠HAF =−=118∘90∘28∘Rt △ACF sin ∠CAF =CF AC CF =9sin ≈9×0.47=4.2328∘CE =CF +EF =4.23+3.4≈7.6(m)解直角三角形的应用【解析】作于,于,如图,易得四边形为矩形,则,,再计算出,则在中利用正弦可计算出,然后计算即可.【解答】解:作于,于,如图,易得四边形为矩形,∴,,∴,在中,∵,∴,∴.21.【答案】解:设张涛原计划购买个足球,则实际购买了个.根据题意列方程为,解得.答:张涛原计划购买足球个.设张涛购买篮球个,则可购买排球个,根据题意得.解得.即的最大值为.答:张涛最多可购买个篮球.【考点】一元一次方程的应用——打折销售问题一元一次不等式的实际应用【解析】此题暂无解析【解答】解:设张涛原计划购买个足球,则实际购买了个.根据题意列方程为,解得.答:张涛原计划购买足球个.设张涛购买篮球个,则可购买排球个,根据题意得.解得.即的最大值为.CE ⊥BD E AF ⊥CE F 2AHEF EF =AH =3.4m∠HAF =90∘∠CAF =28∘Rt △ACF CF CF +EF CE ⊥BD E AF ⊥CE F AHEF EF =AH =3.4m ∠HAF =90∘∠CAF =∠CAH−∠HAF =−=118∘90∘28∘Rt △ACF sin ∠CAF =CF AC CF =9sin ≈9×0.47=4.2328∘CE =CF +EF =4.23+3.4≈7.6(m)(1)x (x+2)80(x+2)×0.8=768x =1010(2)y (20−y)768+[60y+40(20−y)]×0.7≤1500y ≤1227y 1212(1)x (x+2)80(x+2)×0.8=768x =1010(2)y (20−y)768+[60y+40(20−y)]×0.7≤1500y ≤1227y 12答:张涛最多可购买个篮球.22.【答案】解:根据题意得,,,设抛物线的解析式为,把代入解得:.抛物线的解析式为.根据题意,把代入解析式,得.∵,∴货运卡车能通过.【考点】二次函数的应用【解析】(1)根据抛物线在坐标系中的特殊位置,可以设抛物线的解析式为,再有条件求出的值即可;(2)隧道内设双行道后,求出纵坐标与作比较即可.【解答】解:根据题意得,,,设抛物线的解析式为,把代入解得:.抛物线的解析式为.根据题意,把代入解析式,得.∵,∴货运卡车能通过.23.【答案】,(2)由()并结合题意可得,,∴,解得;(3)当点区到达点时,则,由得,,解得;(4)①当在边上任意一点时是直角三角形,即,②当点在上时,则,,∵,∴,,∴,解得;③当时,点在边上,,.综上,当或或或时,是直角三角形.12(1)A(−8,0)B(−8,6)C(0,8)y =a +8(a ≠0)x 2B(−8,6)64a +8=6a =−132y =−+8132x 2(2)x =±4y =7.5m 7.5m>7m y =a +6x 2a 7m (1)A(−8,0)B(−8,6)C(0,8)y =a +8(a ≠0)x 2B(−8,6)64a +8=6a =−132y =−+8132x 2(2)x =±4y =7.5m 7.5m>7m 1531AP =t ,PM =t ,NE =2−t ,NE =−t 343483+×=(2−)×(−t)1234123483t =43N PE+NE =AP (2)−t+2=t 83t =73K PE △PKB 0<1≤2.k EF KE =t−2BP =8−t △EF ∼△FFB P =BP ×KE K 2P =P +K K 2E 2E 24+=(3−z)(t−2)(−2)2t =3,t =4t =5K BC ∠EP =90∘∠KBP =80∘0<t ≤2t =3t =45△PKB【考点】四边形综合题【解析】此题暂无解析【解答】解:()当时,根据题意得,.∵,∴,∵四边形和都是矩形,∴,,∴,∴ ∴;故答案为:;.(2)由()并结合题意可得,,∴,解得;(3)当点区到达点时,则,由得,,解得;(4)①当在边上任意一点时是直角三角形,即,②当点在上时,则,,∵,∴,, ∴,解得;③当时,点在边上,,.综上,当或或或时,是直角三角形.1t =1AP =1,PK =1FE =2KE =2−1=1ABCD PEFC △APM ∼△ABC △APM ∼△NEM =,=MP BC 18NE ME AP MP MP =,34ME =54NE =531531AP =t ,PM =t ,NE =2−t ,NE =−t 343483+×=(2−)×(−t)1234123483t =43N PE+NE =AP (2)−t+2=t 83t =73K PE △PKB 0<1≤2.k EF KE =t−2BP =8−t △EF ∼△FFB P =BP ×KE K 2P =P +K K 2E 2E 24+=(3−z)(t−2)(−2)2t =3,t =4t =5K BC ∠EP =90∘∠KBP =80∘0<t ≤2t =3t =45△PKB。
2022年河南省中考数学真题(解析版)
【点评】本题主要考查正方体的展开图相对两个面上的文字,注意正方体的空间图形,从相对面入手是解题的关键.
3.如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为()
A. 26°B. 36°C. 44°D. 54°
【答案】B
【分析】根据垂直的定义可得 ,根据平角的定义即可求解.
A. 5分B. 4分C. 3分D. 45%
【答案】B
【分析】根据扇形统计图中得分情况的所占比多少来判断即可;
详解】解:由扇形统计图可知:
1分所占百分比:5%;
2分所占百分比:10%;
3分所占百分比:25%;
4分所占百分比:45%;
5分所占百分比:15%;
可知,4分所占百分比最大,故4分出现的次数最多,
10.呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的 ), 的阻值随呼气酒精浓度K的变化而变化(如图2),血液酒精浓度M与呼气酒精浓度K的关系见图3.下列说法不正确的是()
A.呼气酒精浓度K越大, 的阻值越小B.当K=0时, 的阻值为100
【详解】解: EO⊥CD,
,
,
.
故选:B.
【点评】本题考查了垂线的定义,平角的定义,数形结合是解题的关键.
4.下列运算正确的是()
A. B. C. D.
【答案】D
【分析】根据二次根式的加减,完全平方公式,幂的乘方,单项式乘以单项式逐项分析判断即可求解.
【详解】解:A. ,故该选项不正确,不符合题意;
A. 6B. 1O=DO,AB=BC=CD=DA,再根据中位线的性质可得 ,结合菱形的周长公式即可得出结论.
【详解】解:∵四边形ABCD为菱形,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年河南省初中学业水平暨高级中等学校招生考试试卷
数 学
一、选择题(每小题3分,共18分)
(10河南省)1.2
1-的相反数是【 】 (A )21 (B )2
1- (C )2 (D )2- (10河南省)2.我省200年全年生产总值比2008年增长10.7%,达到约19367亿元.19367亿元用科学记数法表示为【 】
(A )11109367.1⨯元 (B )12109367.1⨯元
(C )13109367.1⨯元 (D )14109367.1⨯元
(10河南省)3.在某次体育测试中,九年级三班6位同学的立定跳远成绩(单位:m )分别为:
1.71,1.85,1.85,1.96,
2.10,2.31.则这组数据的众数和极差分别是【 】
(A )1.85和0.21 (B )2.11和0.46
(C )1.85和0.60 (D )2.31和0.60
(10河南省)4.如图,△ABC 中,点DE 分别是ABAC 的中点,则下列结论:①BC =2DE ; ②△ADE ∽△ABC ;③AC
AB AE AD =.其中正确的有【 】 (A )3个 (B )2个
(C )1个 (D )0个
(10河南省)5.方程032=-x 的根是【 】
(A )3=x (B )3,321-==x x
(C )3=x (D )3,321-==x x
(10河南省)6.如图,将△ABC 绕点C (0,-1)旋转180°得到△ABC ,设点A 的坐标为),(b a 则点A 的坐标为【 】
(A )),(b a -- (B ))1.(---b a
(C ))1,(+--b a (D ))2,(---b a
二、填空题(每小题3分,共27分) E D C B A (第4题) (第6题)
(10河南省)7.计算2)2(1-+-=__________________.
(10河南省)8.若将三个数
,7,3-数轴上,其中能被如图所示的墨迹覆盖的数是__________________.
(10河南省)9.写出一个y 随x 增大而增大的一次函数的解析式:__________________.
(10
河南省)10.将一副直角三角板如图放置,使含30°角的三角板的段直角边和含45°角的三角板的一条直角边重合,则∠1的度数为______________.
(10河南省)11.如图,AB 切⊙O 于点A ,BO 交⊙O 于点C ,点D 是⌒CmA 上异于点C 、A 的一点,若∠ABO =32°,则∠ADC 的度数是______________.
(10河南省)12.现有点数为2,3,4,5的四张扑克牌,背面朝上洗匀,然后从中任意抽取两张,这两张牌上的数字之和为偶数的概率为______________.
(10河南省)13.如图是由大小相同的小正方体组成的简单几何体的主视图和左视图那么组成这个几何体的小正方体的个数最多为______________.
(10河南省)14.如图矩形ABCD 中,AD =1,AD =,以AD 的长为半径的⊙A 交BC 于点E ,则图中阴影部分的面积为______________________.
(10河南省)15.如图,Rt △ABC 中,∠C =90°,∠ABC =30°,AB =6.点D 在AB 边上,点E 是BC 边上一点(不与点B 、C 重合),且DA =DE ,则AD 的取值范围是___________________.
三、解答题(本大题共8个大题,满分75分)
(10河南省)16.(8分)已知.2
,42,212+=-=-=
x x C x B x A 将它们组合成C B A ÷-)(或C B A ÷-的形式,请你从中任选一种进行计算,先化简,再求值其中3=x .
(10河南省)17.(9分)如图,四边形ABCD 是平行四边形,△AB ’C 和△ABC 关于AC 所在的直线对称,AD 和B ’C 相交于点O ,连接BB ’.
(1)请直接写出图中所有的等腰三角形(不添加字母); O m D C B
A (第11题)
(第14题) (第13题) 主视图 左视图 C D A E
(第15题) A (第10题)
(2)求证:△AB ’O ≌△CDO .
(10河南省)18.(9分)“校园手机”现象越来越受到社会的关注.“五一”期间,小记者刘凯随机调查了城区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:
(1)求这次调查的家长人数,并补全图①;
(2)求图②中表示家长“赞成”的圆心角的度数;
(3)从这次接受调查的学生中,随机抽查一个,恰好是“无所谓”态度的学生的概率是多少?
图① 图②
(10河南省)19.(9分)如图,在梯形ABCD 中,
AD //BC ,E 是BC 的中点,AD =5,BC =12,CD =24,∠C =45°,点P 是BC 边上一动点,设PB 的长为x .
(1)当x 的值为____________时,以点P 、A 、D 、E 为顶点的四边形为直角梯形;
(2)当x 的值为____________时,以点P 、A 、D 、E 为顶点的四边形为平行四边形;;
(3)点P 在BC 边上运动的过程中,以P 、A 、D 、E 为顶点的四边形能否构成菱形?试说明理由.
P E A B C D
(10河南省)20.(9分)为鼓励学生参加体育锻炼,学校计划拿出不超过1600元的资金再购买一批篮球和排球.已知篮球和排球的单价比为3:2.单价和为80元.
(1)篮球和排球的单价分别是多少元?
(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球数量多于25个,有哪几种购买方案?
(10河南省)21.(9分)如图,直线b x k y +=1与反比例函数x k y 2=
的图象交于A )6,1(,B )3,(a 两点.
(1)求1k 、2k 的值;
(2)直接写出021>-+x
k b x k 时x 的取值范围; (3)如图,等腰梯形OBCD 中,BC //OD ,OB =CD ,OD 边在x 轴上,过点C 作CE ⊥OD 于点E ,CE 和反比例函数的图象交于点P ,当梯形OBCD 的面积为12时,请判断PC 和PE 的大小关系,并说明理由.
(10河南省)22.(10分)
(1)操作发现
如图,矩形ABCD 中,E 是AD 的中点,将△AB E 沿BE 折叠后得到△GBE ,且点G 在举行ABCD 内部.小明将BG 延长交DC 于点F ,认为GF =DF ,你同意吗?说明理由.
(2)问题解决
保持(1)中的条件不变,若DC =2DF ,求
AB AD 的值; (3)类比探求
保持(1)中条件不变,若DC =nDF ,求
AB AD 的值.
△
(10河南省)23.(11分)在平面直角坐标系中,已知抛物线经过A )0,4(-,B )4,0(-,C )0,2(三点.
(1)求抛物线的解析式;
(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.
(3)若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.
A B。