总复习《第11讲 函数的图象》
2023届高考数学一轮复习讲义:第11讲 指数与指数函数
第11讲 指数与指数函数1.根式 (1)根式的概念①若 ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.式子na 叫做根式,这里 叫做根指数, 叫做被开方数.②a 的n 次方根的表示:x n=a ⇒⎩⎨⎧x =n a ,当n 为奇数且n ∈N *,n >1时,x =±n a ,当n 为偶数且n ∈N *时.(2)根式的性质①(na )n =a (n ∈N *,且n >1). ②na n=⎩⎨⎧a ,n 为奇数,|a |=⎩⎨⎧a ,a ≥0,-a ,a <0,n 为偶数.2.有理数指数幂(1)幂的有关概念①正分数指数幂:a mn =na m (a >0,m ,n ∈N *,且n >1); ②负分数指数幂:a -mn =1a m n=1na m (a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于 ,0的负分数指数幂 . (2)有理数指数幂的运算性质 ①a r a s =a r +s (a >0,r ,s ∈Q ); ②a r a s =a r -s(a >0,r ,s ∈Q ); ③(a r )s =a rs (a >0,r ,s ∈Q ); ④(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.指数函数的图象与性质 y =a x (a >0且 a ≠1)a >10<a <1图象定义域 值域性质过定点当x >0时,y >1; 当x <0时,0<y <1 当x >0时,0<y <1; 当x <0时,y >1 在R 上是增函数在R 上是减函数➢考点1 指数幂的运算[名师点睛]1.对于指数幂的运算,首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意:(1)必须是同底数幂相乘,指数才能相加; (2)运算的先后顺序.2.当底数是负数时,先确定符号,再把底数化为正数.3.运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数. 1.(2022·全国·高三专题练习)(1)计算120.75013110.027()81()369-----++-;(2)若11226x x -+22x x -+的值.2.(2022·全国·高三专题练习)化简下列各式(其中各字母均为正数).(1)()211302270.00210528π---⎛⎫-+-+ ⎪⎝⎭; (2323211113342a b ab a b a b -⎛⎫ ⎪⎝⎭(3)22.53105330.06438π-⎡⎤⎛⎫⎢⎥ ⎪⎢⎥⎝⎭⎣⎦; (4)12112133265a b a b a b ---⎛⎫⋅⋅⋅ ⎪⎝⎭⋅.[举一反三]1.(2022·全国·高三专题练习)计算:100.256361.5()87-⨯-+2.(2022·全国·高三专题练习)(1)计算:1111200.253473(0.0081)3()81(3)88------⨯⨯⎡⎤⎡⎤⎢⎣+⎥⎢⎥⎣⎦⎦;(2211113322a b ---3.(2022·全国·高三专题练习)已知11223a a -+=,求下列各式的值.(1)11a a -+;(2)22a a -+;(3)22111a a a a --++++.4.(2022·全国·高三专题练习)已知11223x x -+=,求22332223x x x x--+-+-的值.5.(2022·全国·高三专题练习)分别计算下列数值: (1)()110340.06416π----+ (2)已知16x x -+=,()01x <<,求221122x x x x---+.6.(2022·全国·高三专题练习)化简: (1)126016(2018)449-⎛⎫+--⨯ ⎪⎝⎭(2111332ab a b -⎫⎪⎭a >0,b >0). (3)312211122211111a a aa a a a a -+--++++-.➢考点2 指数函数的图象及应用[名师点睛]1.对于有关指数型函数的图像问题,一般是从最基本的指数函数的图像入手,通过平移、伸缩、对称变换得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.2.有关指数方程、不等式问题的求解,往往利用相应的指数型函数图像,数形结合求解. [典例]1.(2022·浙江·宁波诺丁汉附中模拟预测)函数()x x kf x a-=(0a >且1a ≠)的图象如图所示,则( )A .1,1k a >>B .1,1k a ><C .01,1k a <<<D .01,1k a <<>2.(2022·北京·高三专题练习)若函数()11x f x a -=-(0a >且1a ≠)的图像经过定点P ,则点P 的坐标是( ) A .(1,1)- B .(1,0) C .(0,0) D .(0,1)-[举一反三]1.(2022·全国·高三专题练习)已知函数()25x f x a -=-(0a >且1a ≠)的图象过定点(),m n ,则不等式210x mx n +++<的解集为( ) A .()1,3B .()3,1--C .()(),31,-∞-⋃+∞D .()3,1-2.(多选)(2022·全国·高三专题练习)已知函数()()()f x x a x b =--的图象如图所示,则()x g x a b =-的图象可能是( )A .B .C .D .➢考点3 指数函数的性质及其应用[名师点睛]1.比较指数式的大小的方法:(1)能化成同底数的先化成同底数幂,再利用单调性比较大小;(2)不能化成同底数的,一般引入“1”等中间量比较大小.2.指数方程(不等式)的求解主要利用指数函数的单调性进行转化.3.涉及指数函数的综合问题,首先要掌握指数函数的相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断. 1.(2022·天津河西·一模)设0.3log 0.2a =,0.30.2b =,log b c a =,则a ,b ,c 的大小关系为( ). A .a b c << B .b a c << C .c a b <<D .c b a <<2.(多选)(2022·全国·高三专题练习)若指数函数x y a =在区间[1,1]-上的最大值和最小值的和为103,则a 的值可能是( ) A .12B .13C .3D .23.(2022·辽宁·建平县实验中学模拟预测)已知函数()221010,231,2x x x f x x x --⎧-≤⎪=⎨-->⎪⎩,则不等式()()10f x f x +-<的解集为___________.4.(2022·北京·高三专题练习)设()f x 是定义在R 上的偶函数,且当0x ≤时,()2xf x -=,若对任意的[],1x m m ∈+,不等式()()2f x f x m -≥恒成立,则正数m 的取值范围为( )A .m 1≥B .1mC .01m <<D .01m <≤5.(2022·重庆市朝阳中学高三开学考试)已知函数4()2x x ag x -=是奇函数,()()lg 101x f x bx =++是偶函数.(1)求a 和b 的值; (2)设1()()2h x f x x =+,若存在[0,1]x ∈,使不等式()[lg(109)]g x h m >+成立,求实数m 的取值范围.[举一反三]1.(2022·天津·一模)设3ln 2a =,0.80.5b =,0.50.8-=c ,则,,a b c 的大小关系为( )A .c b a <<B .b a c <<C .a b c <<D .c a b <<2.(2022·山西吕梁·二模)已知343344333,,444⎛⎫ ⎪⎝⎭⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭a b c ,则( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<3.(2022·全国·高三专题练习)已知函数212,022()3,02x a a a x x f x a x +⎧-+-≥⎪⎪=⎨⎪<⎪⎩在()000x x >处取得最小值,且()03-<f x a ,则实数a 的取值范围( ) A .[2,3)B .[1,3)C .[1,2)D .(1,3)4.(2022·上海市进才中学高三期中)设函数()2xf x =,若存在[]0,4x ∈使不等式()()22f a x f x +-≥成立,则实数a 的取值范围为______.5.(2022·全国·高三专题练习)设函数()322x x f x x -=-+,则使得不等式()()2130f x f -+<成立的实数x 的取值范围是________6.(2022·全国·高三专题练习)已知函数()936=-⋅++x x f x m m ,若方程()()0f x f x 有解,则实数m 的取值范围是_________.7.(2022·全国·高三专题练习)已知函数()x x f x a ka -=+(0a >且1a ≠)是定义在R 上的偶函数,且17(1)4f =. (1)求()f x 的解析式;(2)若函数()()22xxmg x f x m =-⋅+在[0,)+∞上的最小值是1,求m 的值.8.(2022·全国·高三专题练习)已知函数4()1(0,1)2x f x a a a a=->≠+且(0)0f =.(1)求a 的值;(2)若函数()(21)()x g x f x k =++有零点,求实数k 的取值范围. (3)当(0,1)x ∈时,()22x f x m >-恒成立,求实数m 的取值范围.9.(2022·北京·高三专题练习)定义在D 上的函数()f x ,如果满足:对任意,x D ∈存在常数0,M >都有()M f x M -≤≤成立,则称()f x 是D 上的有界函数,其中M 称为函数()f x 的上界.已知()422x xf x a =+⋅-.(1)当2a =-时,求函数()f x 在()0,∞+上的值域,并判断函数()f x 在()0,∞+上是否为有界函数﹐请说明理由﹔ (2)若函数()f x 在(),0-∞上是以2为上界的有界函数,求实数a 的取值范围第12讲 指数与指数函数1.根式 (1)根式的概念①若x n =a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *.式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数.②a 的n 次方根的表示:x n=a ⇒⎩⎨⎧x =n a ,当n 为奇数且n ∈N *,n >1时,x =±n a ,当n 为偶数且n ∈N *时.(2)根式的性质①(na )n =a (n ∈N *,且n >1). ②na n=⎩⎨⎧a ,n 为奇数,|a |=⎩⎨⎧a ,a ≥0,-a ,a <0,n 为偶数.2.有理数指数幂(1)幂的有关概念①正分数指数幂:a mn =na m (a >0,m ,n ∈N *,且n >1); ②负分数指数幂:a -mn =1a m n=1na m (a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的运算性质 ①a r a s =a r +s (a >0,r ,s ∈Q ); ②a r a s =a r -s(a >0,r ,s ∈Q ); ③(a r )s =a rs (a >0,r ,s ∈Q ); ④(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.指数函数的图象与性质 y =a x (a >0且 a ≠1)a >10<a <1图象定义域 R 值域(0,+∞) 性质过定点(0,1)当x >0时,y >1; 当x <0时,0<y <1 当x >0时,0<y <1; 当x <0时,y >1 在R 上是增函数在R 上是减函数➢考点1 指数幂的运算[名师点睛]1.对于指数幂的运算,首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应注意:(1)必须是同底数幂相乘,指数才能相加; (2)运算的先后顺序.2.当底数是负数时,先确定符号,再把底数化为正数.3.运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数. 1.(2022·全国·高三专题练习)(1)计算120.75013110.027()81()369-----++-;(2)若11226x x -+22x x -+的值. 【解】(1)120.75013110.027()81()369-----++-=0.3﹣1﹣36+33+111033-=-36+27+113-=-5.(2)若11226x x -+∴x 1x ++2=6,x 1x+=4,∴x 2+x ﹣2+2=16,∴x 2+x ﹣2=14.2.(2022·全国·高三专题练习)化简下列各式(其中各字母均为正数).(1)()211302270.00210528π---⎛⎫-+-+ ⎪⎝⎭; (2323211113342a b ab a b a b -⎛⎫ ⎪⎝⎭(3)22.53105330.06438π-⎡⎤⎛⎫⎢⎥ ⎪⎢⎥⎝⎭⎣⎦; (4)12112133265a b a b a b ---⎛⎫⋅⋅⋅ ⎪⎝⎭⋅. 【解】(1)原式()()21210523500125252-⎛⎫=-+ ⎪⎝⎭-+416710*********=++=-;(2)原式11223233311111122633311233a b a b a a b b ab a b +-++---⎛⎫ ⎪⎝⎭===; (3)原式253112536427110008-⎧⎫⎡⎤⎪⎪⎪⎪⎛⎫⎛⎫⎢⎥=--⎨⎬ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎪⎪⎣⎦⎪⎪⎩⎭1521335233435311010222⎛⎫⨯-⨯ ⎪⎝⎭⎡⎤⎡⎤⎛⎫⎛⎫=--=--=⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦;(4)原式111111111533223262361566a b a baba b-----+-⋅==⋅1a=. [举一反三]1.(2022·全国·高三专题练习)计算:100.256361.5()87-⨯-+【解】100.256361.5()87-⨯-+1111323334432()1(2)223()23-=⨯+⨯+⨯-, 113322()2427()33=++⨯-, 110=.2.(2022·全国·高三专题练习)(1)计算:1111200.253473(0.0081)3()81(3)88------⨯⨯⎡⎤⎡⎤⎢⎣+⎥⎢⎥⎣⎦⎦;(2211113322a b ---【解】(1)原式111123()4()4(0.25)34231310112101()[3()]31032333333-⨯-⨯--⨯-⎛⎫=-⨯+=-⨯+=-= ⎪⎝⎭; (2)原式11111111153322132623615661a b aba ba aa b-----+--⋅⋅==⋅==⋅. 3.(2022·全国·高三专题练习)已知11223a a -+=,求下列各式的值.(1)11a a -+;(2)22a a -+;(3)22111a a a a --++++. 【解】(1)将11223a a -+=两边平方得1129a a -++=,所以117a a -+=.(2)将117a a -+=两边平方得22249a a -++=,所以2247a a -+=. (3)由(1)(2)可得22114716.171a a a a --+++==+++ 4.(2022·全国·高三专题练习)已知11223x x -+=,求22332223x x x x--+-+-的值.【解】设12x t =,则121x t-=,所以13t t +=,于是,333222321111x xt t t t t t -⎛⎫⎛⎫+=+=++- ⎪⎪⎝⎭⎝⎭,而2224242112x x t t t t -⎛⎫+=+=+- ⎪⎝⎭,将13t t+=平方得22129t t ++=,于是2217t t +=,所以原式()2222221272471137131513t t t t t t ⎛⎫+- ⎪-⎝⎭===--⎛⎫⎛⎫++-- ⎪⎪⎝⎭⎝⎭. 5.(2022·全国·高三专题练习)分别计算下列数值: (1)()110340.06416π----+ (2)已知16x x -+=,()01x <<,求221122x x x x---+.【解】(1)原式()()()11034340.423ππ--=--++-,()110.4123π--=-++-, 1π=-,(2)∵()()()221116x x x xx x x x -----=+-=-, ∴()()2211432,x x x x ---=+-=∵01x <<, ∴1x x --=-∴()2216x x x x ---=-=-又∵21112228x x x x --⎛⎫+=++= ⎪⎝⎭,∵01x <<,∴1122x x -+= ∴221122x x x x---+=12-.6.(2022·全国·高三专题练习)化简: (1)126016(2018)449-⎛⎫+--⨯ ⎪⎝⎭(2111332ab a b -⎫⎪⎭a >0,b >0). (3)312211122211111a a aa a a a a -+--++++-.【解】(1)原式6614342717399πππ=⨯+--=⨯+-+-=+ (2)原式=11121082232333354331127272333333a b a b a b a b a b ab a b a b a b -⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭===.(3)原式1122313122221211111a a a a a a a a a a a a a ⎛⎫⎛⎫-⋅++ ⎪ ⎪-+--+-+⎝⎭⎝⎭=--++1122111a a a a -=--=-.➢考点2 指数函数的图象及应用1.(2022·浙江·宁波诺丁汉附中模拟预测)函数()x x kf x a-=(0a >且1a ≠)的图象如图所示,则( )A .1,1k a >>B .1,1k a ><C .01,1k a <<<D .01,1k a <<>【答案】D 【解析】因为(0)f k =-,由图得10k -<-<, 所以01k <<,所以排除AB ,因为由图象可知当x →+∞时,()0f x →, 所以1a >,所以排除C , 故选:D2.(2022·北京·高三专题练习)若函数()11x f x a -=-(0a >且1a ≠)的图像经过定点P ,则点P 的坐标是( ) A .(1,1)- B .(1,0) C .(0,0) D .(0,1)-【答案】B 【解析】因为01a =,所以当10x -=,即1x =时,函数值为定值0,所以点P 坐标为(1,0).另解:因为()11x f x a -=-可以由x y a =向右平移一个单位长度后,再向下平移1个单位长度得到,由x y a =过定点(0,1),所以()11x f x a -=-过定点(1,0).故选:B[举一反三]1.(2022·全国·高三专题练习)已知函数()25x f x a -=-(0a >且1a ≠)的图象过定点(),m n ,则不等式210x mx n +++<的解集为( ) A .()1,3 B .()3,1-- C .()(),31,-∞-⋃+∞ D .()3,1-【答案】D 【解析】当2x =时,()220255154f aa -=-=-=-=-,故2,4m n ==-,所以不等式为2230x x +-<,解得31x -<<,所以不等式的解集为()3,1-. 故选:D2.(多选)(2022·全国·高三专题练习)已知函数()()()f x x a x b =--的图象如图所示,则()x g x a b =-的图象可能是( )A .B .C .D .【答案】AC【解析】解:令()()()0f x x a x b =--=,解得1x a =、2x b =,根据二次函数图形可知,a 、b 两个数一个大于1,一个大于0且小于1,①当1a >,01b <<时,则()x g x a b =-在定义域上单调递增,且()001g a b b =-=-,即()001g <<,所以满足条件的函数图形为C ;②当1b >,01a <<时,则()x g x a b =-在定义域上单调递减,且()0010g a b b =-=-<,所以满足条件的函数图形为A ; 故选:AC➢考点3 指数函数的性质及其应用1.(2022·天津河西·一模)设0.3log 0.2a =,0.30.2b =,log b c a =,则a ,b ,c 的大小关系为( ). A .a b c << B .b a c << C .c a b << D .c b a <<【答案】D【解析】由指数函数的性质,可得...030002021<<=,所以01b <<, 根据对数的运算性质,可得0.30.3log 0.2log 0.31a =>=,所以1a >, 由01b <<,1a >,所以log log 10b b c a =<=,即0c <, 所以c b a <<. 故选:D2.(多选)(2022·全国·高三专题练习)若指数函数x y a =在区间[1,1]-上的最大值和最小值的和为103,则a 的值可能是( )A .12B .13C .3D .2【答案】BC【解析】当1a >时,函数x y a =在区间[1,1]-上为单调递增函数,当1x =时,max y a =,当1x =-时,1min y a -=,所以1103a a -+=,即231030a a -+=,解得3a =或13a =, 因为1a >,所以3a =;当01a <<时,函数x y a =在区间[1,1]-上为单调递减函数,当1x =时,min y a =,当1x =-时,1max y a -=,所以1103a a -+=,即231030a a -+=,解得3a =或13a =, 因为01a <<,所以13a =.综上可得,实数a 的值为3或13.故选:BC3.(2022·辽宁·建平县实验中学模拟预测)已知函数()221010,231,2x x x f x x x --⎧-≤⎪=⎨-->⎪⎩,则不等式()()10f x f x +-<的解集为___________.【答案】9,2⎛⎫-∞ ⎪⎝⎭【解析】①当2x ≤时,11x -≤,()221010x x f x --=-在(],2-∞上单调递增,()()20f x f ∴≤=,又()()()1120f x f f -≤<=, ()()10f x f x ∴+-<恒成立;②当23x <≤时,112x <-≤,()3120f x x x =--=-<, 又()()120f x f -≤=,()()10f x f x ∴+-<恒成立;③当34x <≤时,213x <-≤,()314f x x x =--=-,()1413f x x x -=--=-;()()110f x f x ∴+-=-<恒成立;④当4x >时,13x ->,()314f x x x =--=-,()1415f x x x -=--=-,()()1290f x f x x ∴+-=-<,解得:92x <,942x ∴<<; 综上所述:不等式()()10f x f x +-<的解集为9,2⎛⎫-∞ ⎪⎝⎭.故答案为:9,2⎛⎫-∞ ⎪⎝⎭.4.(2022·北京·高三专题练习)设()f x 是定义在R 上的偶函数,且当0x ≤时,()2xf x -=,若对任意的[],1x m m ∈+,不等式()()2f x f x m -≥恒成立,则正数m 的取值范围为( )A .m 1≥B .1mC .01m <<D .01m <≤【答案】A【解析】因为函数()f x 是定义在R 上的偶函数,且当0x ≤时,()2xf x -=,则当0x ≥时,0x -≤,()()2xf x f x =-=,故对任意的R x ∈,()2x f x =, 对任意的[],1x m m ∈+,不等式()()2f x f x m -≥恒成立,即222x x m -≥,即2x x m ≥-对任意的[],1x m m ∈+恒成立,且m 为正数,则()2x x m ≥-,可得2x m ≤,所以,12m m +≤,可得m 1≥. 故选:A.5.(2022·重庆市朝阳中学高三开学考试)已知函数4()2x x ag x -=是奇函数,()()lg 101x f x bx =++是偶函数.(1)求a 和b 的值; (2)设1()()2h x f x x =+,若存在[0,1]x ∈,使不等式()[lg(109)]g x h m >+成立,求实数m 的取值范围.【解】解:(1)因为函数4()2x x ag x -=是奇函数,所以(0)0g =得1a =,则41()2x x g x -=,经检验()g x 是奇函数.又()()lg 101xf x bx =++是偶函数,所以(1)(1)f f -=得12b =-,则()1()lg 1012xf x x =+-,经检验()f x 是偶函数,∴112a b ==-,.(2)()()lg 101x h x =+,lg(109)(lg(109))lg[101lg(1010)m h m m +⎤+=+=+⎦,则由已知得,存在(]0,1x ∈,使不等式lg(1010)()m g x >+成立,因为411()222x x x x g x -==-,易知()g x 单调递增,∴max 3()(1)2g x g ==,∴323lg(1010)lg102m +<==∴1010m +<所以1m <,又109010100m m +>⎧⎨+>⎩,解得910m >-,所以9110m -<<.[举一反三]1.(2022·天津·一模)设3ln 2a =,0.80.5b =,0.50.8-=c ,则,,a b c 的大小关系为( )A .c b a <<B .b a c <<C .a b c <<D .c a b <<【答案】C 【解析】3ln ln e 12<=,0.800.50.51<=,0.500.80.81->=,c a ∴>,c b >;31ln22==,0.8110.50.52>=,b a ∴>;a b c ∴<<.故选:C.2.(2022·山西吕梁·二模)已知343344333,,444⎛⎫ ⎪⎝⎭⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭a b c ,则( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<【答案】B【解析】因为函数34xy ⎛⎫= ⎪⎝⎭单调递减,故3143344⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭a b . 因为3433344433334444⎛⎫ ⎪⎝⎭⎛⎫⎛⎫⎛⎫<⇒> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以c b <.又34331443331444⎛⎫ ⎪⎝⎭⎛⎫⎛⎫⎛⎫<⇒< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以a c <.综上a c b <<, 故选B.3.(2022·全国·高三专题练习)已知函数212,022()3,02x a a a x x f x a x +⎧-+-≥⎪⎪=⎨⎪<⎪⎩在()000x x >处取得最小值,且()03-<f x a ,则实数a 的取值范围( ) A .[2,3) B .[1,3) C .[1,2) D .(1,3)【答案】C【解析】由函数()f x 在0(0,)x ∈+∞处取得最小值得()()0f x f x ≥,则0a >且002x a=> 当0x <时1233()2x a a f x +=>,又()20222a a f x f ⎛⎫==- ⎪⎝⎭,所以203222a a a >⎧⎪⎨-≤⎪⎩,得1a ≥.又()03-<f x a ,所以32af a ⎛⎫-< ⎪⎝⎭,即12332a a a -+<,整理得1221a -+>,102a -+>,解得2a <. 综上,12a ≤<. 故选:C .4.(2022·上海市进才中学高三期中)设函数()2xf x =,若存在[]0,4x ∈使不等式()()22f a x f x +-≥成立,则实数a 的取值范围为______.【答案】3,2⎡⎫+∞⎪⎢⎣⎭【解析】解:由()()22f a x f x +-≥,得2222a x x +-≥,两边同除2x , 即2222a x x -≥+⨯,又222x x -+⨯≥222x x -=⨯, 即12x =[]0,4∈时取等号,所以3222a ≥=,所以32a ≥.故答案为:3,2⎡⎫+∞⎪⎢⎣⎭5.(2022·全国·高三专题练习)设函数()322x x f x x -=-+,则使得不等式()()2130f x f -+<成立的实数x 的取值范围是________ 【答案】(),1-∞-【解析】函数的定义域为R ,()()322x x f x x f x --=--=-,所以函数()f x 是奇函数,并由解析式可知函数()f x 是增函数,原不等式可化为()()213f x f -<-,所以213x -<-,解得1x <-,故x 的取值范围是(),1-∞-. 故答案为:(),1-∞-6.(2022·全国·高三专题练习)已知函数()936=-⋅++x x f x m m ,若方程()()0f x f x 有解,则实数m 的取值范围是_________.【答案】4,)+∞【解析】由题意得:99(33)2120x x x x m m --+-+++=有解 令233(2),992x x x x t t t --+=≥+=-则22100t mt m ∴-++=有解,即2(2)10m t t -=+有解,显然2t =无意义2,2(0)t t y y ∴>-=>令2(2)101444y m y y y ++∴==++≥,当且仅当14y y =,即y4,)m ∴∈+∞故答案为:)4,∞⎡+⎣.7.(2022·全国·高三专题练习)已知函数()x xf x a ka -=+(0a >且1a ≠)是定义在R 上的偶函数,且17(1)4f =. (1)求()f x 的解析式;(2)若函数()()22xxmg x f x m =-⋅+在[0,)+∞上的最小值是1,求m 的值. 【解】(1)因为函数()f x 是定义在R 上的偶函数, 所以()()x x x x f x a ka f x a ka ---=+==+,整理得()()10x xk a a ---=,所以1k =,又因为17(1)4f =,可得117(1)4f a a =+=,所以4a =或14a =, 所以()44x xf x -=+.(2)由(1)可知()4422x x xm g x m x-=+-⋅+211(2)(2)222x x x xm =---+ 令122xx u =-,则2()2h u u mu =-+. 因为函数122xxu =-在[0,)+∞上是增函数,所以0u ≥, 因为函数()()2[0,)2xxmg x f x m =-⋅++∞上的最小值是1, 所以函数()h u 在[0,)+∞上的最小值是1. 当0m ≥时,2min()()2124m m h u h ==-+=,解得2m =或2m =-(舍去);当0m <时,min ()(0)21h u h ==≠,不合题意,舍去. 综上,2m =.8.(2022·全国·高三专题练习)已知函数4()1(0,1)2x f x a a a a=->≠+且(0)0f =.(1)求a 的值;(2)若函数()(21)()x g x f x k =++有零点,求实数k 的取值范围. (3)当(0,1)x ∈时,()22x f x m >-恒成立,求实数m 的取值范围. 【解】解:(1)对于函数4()1(0,1)2x f x a a a a=->≠+,由4(0)102f a =-=+, 解得2a =,故42()1122221xxf x =-=-++. (2)若函数()(21)()21221x x x g x f x k k k =++=+-+=-+ 有零点, 则函数2x y =的图象和直线1y k =-有交点,10k ∴->,解得1k <. (3)当(0,1)x ∈时,()22x f x m >-恒成立,即212221x xm ->-+恒成立. 令2x t =,则(1,2)t ∈,且323112(1)(1)1t m t t t t t t t +<-==++++.由于121t t ++ 在(1,2)上单调递减,∴1212712216t t +>+=++,76m ∴.即7,6m ⎛⎤∈-∞ ⎥⎝⎦ 9.(2022·北京·高三专题练习)定义在D 上的函数()f x ,如果满足:对任意,x D ∈存在常数0,M >都有()M f x M -≤≤成立,则称()f x 是D 上的有界函数,其中M 称为函数()f x 的上界.已知()422x xf x a =+⋅-.(1)当2a =-时,求函数()f x 在()0,∞+上的值域,并判断函数()f x 在()0,∞+上是否为有界函数﹐请说明理由﹔(2)若函数()f x 在(),0-∞上是以2为上界的有界函数,求实数a 的取值范围.【解】(1)当2a =-时,()24222(213)x x x f x =-⨯-=--,令2,x t =由(0,)x ∈+∞, 可得(1,)t ∈+∞,令()2)1(3g t t =--,有()3g t >-,可得函数()f x 的值域为(3,)-+∞ 故函数()f x 在(),0-∞上不是有界函数;(2)由题意有,当(),0x ∈-∞时,24222,x x a -≤+⋅-≤ 可化为0424x x a ≤+⋅≤ 必有20x a +≥且422x x a ≤-, 令2x k =,由(),0x ∈-∞,可得()0,1k ∈, 由20x a +≥恒成立,可得0a ≥, 令()()401h t t t t=-<<, 可知函数()h t 为减函数,有()413h t >-=, 由422x x a ≤-恒成立, 可得3,a ≤故若函数()f x 在(,0)-∞上是以2为上界的有界函数, 则实数a 的取值范围为[]0,3。
中考数学总复习 第三单元 函数及其图像 第11课时 一次函数的图像与性质课件
y=-x+2
.
图 11-1
2021/12/9
第十一页,共三十二页。
y= x
,图②
课前双基巩固
5. [八上 P164 探索改编] 已知一次函数 y=2x+4.
图 11-2
(1)在如图 11-2 所示的平面直角坐标系中,画出函数的图像;
(2)图像与 x 轴的交点 A 的坐标是 (-2,0) ,与 y 轴的交点 B 的坐标是 (0,4)
与 x 轴交点坐标
令 y=0,求出对应的 x 值
两直线的
与 y 轴交点坐标
令 x=0,求出对应的 y 值
交点坐标
与其他函数图
像的交点坐标
一条直线与坐标轴围
成的三角形的面积
2021/12/9
解由两个函数表达式组成的二元一次方程组,方程组的解即两函数
图像的交点坐标
1
2
直线 y=kx+b(k≠0)与 x 轴的交点为 - ,0 ,与 y 轴的交点为(0,b),三角形面积为 S△= - ×|b|(用
a2+a2=
直线 y=2x+1 向右、向上平移 3 个单位后的解析式是 y=2x-2.
2021/12/9
第二十二页,共三十二页。
2
3 2 ,解得 a=3.
高频考向探究
[方法模型] 直线 y=kx+b(k≠0)在平移过程中 k 值不变.平移的规律是:若上下平移,则直接在常数 b 后加上或减
去平移的单位长度数;若向左(或向右)平移 m 个单位长度,则直线 y=kx+b(k≠0)变为 y=k(x±m)+b,其口诀是上加
中考一轮复习--第11讲 反比例函数及其应用
1
∴a=2,∴直线 OB 的函数表达式为 y=2x.
(2)如图,作 CD⊥OA 于点 D,∵C(1,2),
∴OC= 12 + 22 = 5.
在平行四边形 OABC 中,
CB=OA=3,AB=OC= 5,
∴四边形 OABC 的周长为 3+3+ 5 + 5
=6+2 5,
即四边形 OABC 的周长为 6+2 5.
动程序.若在水温为30 ℃时接通电源,水温y(℃)与时间x(min)的关
系如图所示.
(1)分别写出水温上升和下降阶段y与x之间的函数关系式;
(2)怡萱同学想喝高于50 ℃的水,请问她最多需要等待多长时间?
考法1
考法2
考法3
考法4
分析:(1)根据函数图象和题意可以求得y关于x的函数关系式,注意
函数图象是循环出现的;(2)根据(1)中的函数解析式可以解答本题.
(1)求k的值及直线OB的函数表达式;
(2)求四边形OABC的周长.
考法1
考法2
考法3
考法4
解:(1)依题意有:点 C(1,2)在反比例函数 y= (k≠0)的图象上,
∴k=xy=2.
∵A(3,0),∴CB=OA=3.又 CB∥x 轴,∴B(4,2).设直线 OB 的函数表达
式为 y=ax,∴2=4a,
考法1
考法2
考法3
考法4
反比例函数的图象和性质
例2(2019·江苏镇江)已知点A(-2,y1),B(-1,y2)都在反比例函数y=- 2
的图象上,则y1
y2.(填“>”或“<”)
答案:<
2
第11讲 函数专题2 (教师)
第11讲 函数复习专题2.函数图象与零点(教师)一、教学目标:1.会运用函数图象理解和研究函数的性质.2.结合二次函数的图象,了解函数的零点与方程根的关系,判断一元二次方程根的存在性及根的个数.3.根据具体函数的图象,能够用二分法求相应方程的近似解二、重点难点:1.函数图像及运用2.函数零点与方程关系三、教学方法:“一学二记三应用” 四、知识梳理:(1)描点法作函数图象,应注意在定义域内依据函数的性质,选取关键的一部分点连接而成.(2)图象变换法,包括有平移变换、伸缩变换、对称翻折变换.的图像的画法:先画时,再将其关于对称,得轴左侧的图像. 的图像画法:先画的图象,然后位于轴上方的图象不变,位于轴下方的图象关于 轴翻折上去. 的图象关于对称;的图象关于点对称.的图象关于轴对称的函数图象解析式为;关于轴对称的函数解析式为;关于原点对称的函数解析式为.(3)熟记基本初等函数的图象,以及形如的图象五.课前评估:1.[2022·重庆六校联考]函数f (x )=sin πxx2的大致图象为( )0(0(()()a a a a f x f x a ><−−−−−−−→+向左平移个单位)向右平移个单位)0(0(()()+k k k f x f x k ><−−−−−−−→向上平移k 个单位)向下平移个单位)11(101(()()(0,1)f x f x w ωωωωωω><<−−−−−−−−−−−−−−−−→>≠图像上所有点的纵坐标不会,横坐标缩短为原来的)图像上所有点的纵坐标不会,横坐标伸长为原来的)1(01(()()(0,1)A A A f x Af x A A ><<−−−−−−−−−−−−−−−−→>≠图像上所有点的横坐标不会,纵坐标伸长为原来的)图像上所有点的横坐标不会,纵坐标缩短为原来的A )()f x 0x ≥()y f x =y y ()f x()y f x =x x x ()()f a x f a x +=-()y f x =x =a ()()f a x f a x +=--()y f x =(a,0)()y f x =x (y f x =-)y (-y f x =)-(-y f x =)1y x x=+xyf x () = x +1x–1–2–3–41234–1–2–3–41234O答案:D 解析:易知函数f (x )=sinπxx 2为奇函数且定义域为{x |x ≠0},只有选项D 满足, 2.[2022·福州质检]若函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )的解析式为( )A .f (x )=e x +1B .f (x )=e x -1C .f (x )=e -x +1D .f (x )=e -x -1答案:D 解析:与y =e x 的图象关于y 轴对称的图象对应的函数为y =e -x .依题意,f (x )的图象向右平移1个单位长度,得y =e -x 的图象,∴f (x )的图象是由y =e -x 的图象向左平移1个单位长度得到的,∴f (x )=e -(x +1)=e -x -1.3.[2022·全国卷Ⅱ]函数f (x )=e x -e -xx 2的图象大致为( )A BCD答案:B 解析:∵ y =e x -e -x是奇函数,y =x 2是偶函数,∴ f (x )=e x -e -xx 2是奇函数,图象关于原点对称,排除A 选项.当x =1时,f (1)=e -e -11=e -1e>0,排除D 选项.又e>2,∴ 1e <12,∴ e -1e>1,排除C 选项.故选B.题型一 识图与辨图例1(1)(2022年高考浙江卷)在同一直角坐标系中,函数y =1x a ,y =log a (x +12)(a >0,且a ≠1)的图象可能是答:D(2)在同一直角坐标系中,函数()2f x ax =-, ()()log 2a g x x =+(0a >,且1a ≠)的图象大致为( )A. B. C. D.(3)(2022年高考全国3卷)函数3222x xxy -=+在[]6,6-的图像大致为 A . B .C .D .答:B(4)(2022年高考全国1卷)函数f (x )=在[,]-ππ的图像大致为A .B .C .D .答:D课堂练习1:(1)(内江市高中2022届第一次模拟考试题)函数()()21=ln 2x f x x e -+-的图象大致是( )2sin cos ++x xx xA. B C. D.答:C (2).(2022届吉林省五地六校联考高三考前适应卷)已知函数()(22)ln ||x x f x x -=+的图象大致为( )A .B .C .D .【答案】B 【详解】()f x 定义域为{}0x x ≠,()()()()22ln 22ln x x x x f x x x f x ---=+-=+=()f x ∴为偶函数,关于y 轴对称,排除D ;当()0,1x ∈时,220x x -+>,ln 0x <,可知()0f x <,排除,A C .题型二 图象初等变换例2 (1)(江西省红色七校2022届高三第一次联考理科数学科试题)设,则函数的图象的大致形状是( )答:B(2)已知图①中的图象对应的函数为y =f (x ),则在下列给出的四个选项中,图②中的图象对应的函数只可能是( )A .y =f (|x |)B .y =|f (x )|C .y =f (-|x |)D .y =-f (|x |)答案:C 解析:由图②知,图象关于y 轴对称,对应的函数是偶函数.对于A ,当x >00a >()y x x a =-时,y=f(|x|)=f(x),其图象在y轴右侧与图①的相同,不符合,故错误;对于B,当x>0时,对应的函数是y=f(x),显然B错误;对于D,当x<0时,y=-f(-x),其图象在y轴左侧与图①的不相同,不符合,故错误;所以C选项是正确的.(3)已知函数,则函数的大致图象是()A. B. C. D.解析】,函数在处图象有跳跃点,选项AC错误;当(4).若函数y=f(x)的图象如图所示,则函数y=-f(x+1)的图象大致为()答案:C解析:要想由y=f(x)的图象得到y=-f(x+1)的图象,需要先将y=f(x)的图象关于x轴对称得到y=-f(x)的图象,然后向左平移1个单位长度得到y=-f(x+1)的图象,根据上述步骤可知C正确.(5)[2022·咸宁模拟]已知a>0,且a≠1,函数y=a x与y=log a(-x)的图象可能是图中的()答案:B解析:通解因为y=a x与y=log a x互为反函数,而y=log a x与y=log a(-x)的图象关于y轴对称,根据图象特征可知选B.优解首先,曲线y=a x只可能在x轴上方,曲线y=log a(-x)只可能在y轴左边,从而排除A,C;其次,y=a x与y=log a(-x)的增减性正好相反,排除D,选B.(6)(提高)函数的部分图象大致为()A. B. C. D.【解析】分析:分析函数的奇偶性,以及是函数值的符号,利用排除法即可得到答案.解:由题意,函数满足,所以函数为奇函数,图象关于轴对称,排除B 、D ;又由当时,函数,排除C ,故选A.[规律方法] 识图常用方法:(1)定性分析法:通过对问题进行定性的分析,从而得出图像的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图像特征,联想相关函数模型,利用这一函数模型来分析解决问题. 课堂练习2.(1).函数的图象大致为( )A. B. C. D. 【解析】根据函数表达式得到,故函数是奇函数,排除D 选项,当x 趋向于正无穷时,函数值趋向于0,并且大于0,排除B ;当x 从左侧趋向于1时,函数值趋向于负无穷,故排除 C.故答案为:A. (2) 函数的图象可能是( )A. B. C. D. 【解析】试题分析:化简函数的解析式,判断函数的对称性,利用函数的值判断即可. 详解:函数f (x )==,可知函数的图象关于(2,0)对称,排除A ,B .当x <0时,ln (x ﹣2)2>0,(x ﹣2)3<0,函数的图象在x 轴下方,排除D ,故选:C .题型三 零点判断与运用例3 (1)[2022·南昌调研]函数f (x )=2x +ln 1的零点所在的大致区间是( ) A .(1,2) B .(2,3) C .(3,4) D .(4,5)答案:B 解析:易知f (x )=2x +ln 1x -1=2x-ln(x -1)在(1,+∞)上单调递减且连续,当1<x <2时,ln(x -1)<0,2x>0,所以f (x )>0,故函数f (x )在(1,2)上没有零点.f (2)=1-ln1=1,f (3)=23-ln2=2-3ln23=2-ln83,8=22≈2.828>e ,所以8>e 2,即ln8>2,所以f (3)<0.所以f (x )的零点所在的大致区间是(2,3),故选B.(2).[2022·山东枣庄模拟]函数f (x )=x 12-⎝⎛⎭⎫12x的零点个数为( )A .0B .1C .2D .3 答案:B解析:在同一直角坐标系中作出函数y =x 12与y =⎝⎛⎭⎫12x的图象,如图所示.由图知,两个函数图象只有一个交点,所以函数f (x )的零点只有1个.故选B. a c 若()2019()()f x x a x b =---的零点为c ,d ,则下列不等式正确的是( ) A . a c b d >>> B .a b c d >>> C.c d a b >>> D .c a b d >>>答:由()2019()()f x x a x b =---,又()()2019f a f b ==,c ,d ,为函数()f x 的零点,且a b >,c d >,所以可在平面直角坐标系中作出函数()f x 的大致图像,如图所示,由图可知c a b d >>>,故选D.(4) [2022·河南省实验中学模拟]已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))-1的图象与x 轴的交点个数为( )A .3 B .2 C .0 D .4答案: A 解析:y =f (f (x ))-1=0,即f (f (x ))=1.当f (x )≤0时,得f (x )+1=1,f (x )=0. 所以log 2x =0,得x =1;由x +1=0,得x =-1.当f (x )>0时,得log 2f (x )=1, 所以f (x )=2.由x +1=2,得x =1(舍去);由log 2x =2,得x =4. 综上所述,函数y =f (f (x ))-1的图象与x 轴的交点个数为3.故选A. (5) (提高)已知函数,则函数的零点个数是( )A. 7 B. 6 C. 5 D. 4 【解析】分析:令 函数的零点个数问题的根的个数问题.结合图象可得的根,方程有1解,有3解,有3解.从而得到函数的零点个数详解:令函数的零点个数问题的根的个数问题.即 的图象如图,结合图象可得的根方程 有1解,有3解,有3解.综上,函数的零点个数是7.故选A.(6)(提高) 定义在实数集上的函数满足,当时,,则函数的零点个数为__________.【解析】分析:先根据函数的奇偶性与周期性画出函数的图象,以及的图象,根据的图象在上单调递增函数,当时,,当时,的图象与函数无交点,结合图象可知有个交点.详解:定义在上的函数,满足,上的偶函数,因为满足,函数为周期为的周期函数,且为上的偶函数,因为时,,所以,在上递增,且值域为,根据周期性及奇偶性画出函数的图象和的图象,如图,根据的图象在上单调递增函数,当时,,当时,的图象与函数无交点,结合图象可知有个交点,故答案为.课堂练习3:(1)已知函数f (x )=1x -a为奇函数,g (x )=ln x -2f (x ),则函数g (x )的零点所在区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)解:由函数f (x )=1x -a为奇函数,可得a =0,则g (x )=ln x -2f (x )=ln x -2x ,所以g (2)=ln2-1<0,g (3)=ln3-23>0,所以g (2)·g (3)<0,可知函数的零点在(2,3)之间。
中考数学复习讲义课件 第3单元 第11讲 一次函数
第11讲 一次函数
1 知识梳理素养形成 2 考法聚焦素养提升
知识梳理素养 形成
考法聚焦素养 提升
一次函数的图象与性质(10 年 6 考) 例 1 已知关于 x 的一次函数 y=(2m+1)x+m-1. (1)若该函数的值 y 随自变量 x 的增大而增大,则 m 的取值范围为
(3)每月制作 A 类微课多少个时,该团队月利润 w 最大,最大利润是多少元?
解:由(2)知,w=50a+16500. ∵50>0,∴w 随 a 的增大而增大. ∴当 a=9 时,w 有最大值,w 最大=50×9+16500=16950(元).
答:每月制作 A 类微课 9 个时,该团队月利润 w 最大,最大利润是 16950 元.
7.(2021·衡阳)如图是一种单肩包,其背带由双层部分、单层部分和调节扣 构成.小文购买时,售货员演示通过调节扣加长或缩短单层部分的长度, 可以使背带的长度(单层部分与双层部分长度的和,其中调节扣所占长度忽 略不计)加长或缩短,设双层部分的长度为 xcm,单层部分的长度为 ycm. 经测量,得到表中数据. 双层部分长度 x/cm 2 8 14 20 单层部分长度 y/cm 148 136 124 112
品种 A B 原来的运费 45 25 现在的运费 30 20
(1)求每次运输的农产品中 A,B 产品各有多少件; [解答] 解:设每次运输的农产品中 A 产品有 x 件,B 产品有 y 件.根据题 意,得 4350xx++2250yy==11220000,-300.解得yx==3100., 答:每次运输的农产品中 A 产品有 10 件,B 产品有 30 件.
10.(2021·乐山)如图,已知直线 l1:y=-2x+4 与坐标轴分别交于 A,B 两 点,那么过原点 O 且将△AOB 的面积平分的直线 l2 的解析式为( D )
高考数学一轮总复习第二章函数概念与基本初等函数第11讲函数模型及其应用课件文
【解析】 (1)由图象可求得一次函数的解析式为 y=30x-570,令 30x-570 =0,解得 x=19. (2)设每个售价定为 x 元,则利润 y=(x-80)·[400-(x-90)·20]=-20[(x- 95)2-225]. 所以当 x=95 时,y 最大. 【答案】 (1)19 (2)95
利用函数图象刻画实际问题
(师生共研)
(2020·高考北京卷)为满足人民对美好
生活的向往,环保部门要求相关企业加强污
水治理,排放未达标的企业要限期整改.设
企业的污水排放量 W 与时间 t 的系为 W=f(t),用-f(b)b- -fa(a)的大小评价在a,b这段时间内企业污水治理能
力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图
【解析】 (1)设老师上课时声音强度,一般两人小声交谈时声音强度分别 为 x1 W/m2,x2 W/m2, 根据题意得 d(x1)=9lg1×x110-13=63, 解得 x1=10-6, d(x2)=9lg1×x120-13=54, 解得 x2=10-7,所以xx12=10, 所以老师上课时声音强度约为一般两人小声交谈时声音强度的 10 倍,故选 B.
√A.10 %
C.50 %
B.30 % D.100 %
解析:将信噪比NS从 1000 提升至 2000,C 大约增加了
Wlog2(1+2 000)-Wlog2(1+1 000) Wlog2(1+1 000)
=log22
001-log21 log21 001
001≈10.9697.9-679.967≈10%,故选
A.2 023 年
B.2 024 年
√C.2 025 年
D.2 026 年
【解析】 根据题意,知每年投入的研发资金增长的百分率相同,所以, 从 2 021 年起,每年投入的研发资金组成一个等比数列{an},其中,首项 a1 =130,公比 q=1+12%=1.12,所以 an=130×1.12n-1.由 130×1.12n-1>200, 两边同时取对数,得 n-1>lg l2g-1l.1g21.3,又lg l2g-1l.1g21.3≈0.300-.050.11=3.8, 则 n>4.8,即 a5 开始超过 200,所以 2 025 年投入的研发资金开始超过 200 万元,故选 C.
2015年河北省地区中考数学总复习课件 第11讲 一次函数及其图象
3.正比例函数y=kx的性质 (1)当k>0时,__y随x的增大而增大__; (2)当k<0时,__y随x的增大而减小__. 4.一次函数y=kx+b的图象
5.一次函数 y=kx+ b 的性质 b 过__(0,b),(- ,0)__的一条直线. k (1)__当 k>0 时 , y 随 x 的增大而增大__; (2)__当 k<0 时 , y 随 x 的增大而减小__.
【点评】 (1)一次函数y=kx+b,当k>0时,y随x的 增大而增大,当k<0时,y随x的增大而减小.(2)一次 函数y=kx+b(k,b为常数,k≠0)是一条直线,当k>0 ,图象经过第一、三象限,y随x的增大而增大;当k< 0,图象经过第二、四象限,y随x的增大而减小;图象 与y轴的交点坐标为(0,b).
交于点D.直线l2经过点A,B,直线l1,l2交于点C.
(1)求点D的坐标; (2)求直线l2的解析式; (3)求△ADC的面积; (4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等 ,请直接写出点P的坐标.
( 1 ) D( 1 , y= x- 2 (4)P(6,3)
4.(2014·河北)某种正方形合金板材的成本y(元)与它的面积成 正比,设边长为x厘米,当x=3时,y=18,那么当成本为72元 时,边长为( A ) A.6厘米 B.12厘米 C.24厘米 D.36厘米
5 .(2008·河北 )如图, 直线 l1 的解析表达式为 y=-3x +3, 且l1与x 轴
2.(2013·河北)如图,A(0,1),M(3 ,2) , N(4,4) .动点P从点 A出发, 沿 y 轴以每秒 1 个单位长的速度向上 移动 , 且过点 P 的直线 l : y =- x + b 也随之移动,设移动时间为t秒. (1)当t=3时,求l的解析式; (2)若点M,N位于l的异侧,确定t的 取值范围; (1)直线y=-x+b交y轴于点P(0,b),由题意得b>0,t≥0, b=1+t,当t=3时,b=4,∴y=-x+4 (2)当直线y=-x +b过M(3,2)时,2=-3+b,解得b=5,5=1+t,∴t=4 ,当直线y=-x+b过N(4,4)时,4=-4+b,解得b=8,8 =1+t,∴t=7,∴4<t<7
第11讲 一次函数的图象与性质
【拓展】 一次函数图象与坐标轴围成的图形面积的计算(如图) (1)S△AOB=12AO·BO=12|yA|·|xB|; (2)S△AOC=12AO·CP=12|yA|·|xC|; (3)S△BOC=12BO·CQ=12|xB|·|yC|.
4.如图,已知直线 y=kx+b 经过点 A(5,0),B(1,4). (1)方程 kx+b=0 的解是 x=5 , 不等式 kx+b<0 的解集是 x>5 ; (2)kx+b>4 的解集是 x<1 ;
3.一次函数与一元一次不等式的关系: (1)从“数”上看:kx+b>0 的解集⇔y=kx+b 中,y>0 时 x 的取 值范围; kx+b<0 的解集⇔y=kx+b 中,y<0 时 x 的取值范围. (2)从“形”上看:kx+b>0 的解集⇔函数 y=kx+b 的图象位于 x 轴上方部分对应的点的横坐标的取值范围; kx+b<0 的解集⇔函数 y=kx+b 的图象位于 x 轴下方部分对应的 点的横坐标的取值范围.
直 线 y = kx + b ―向―上―平―移――m(――m― >―0)―个―单――位―长―度→ 直 线 y = kx+b+m ; 直 线 y = kx + b ―向―下―平―移――m(――m― >―0)―个―单――位―长―度→ 直 线 y = kx+b-m .
简记为“左加右减,上加下减”,左右平移只给 x 加减,上下平 移给整体加减.
1.已知函数 y=(m-1)xm2+3 是关于 x 的一次函数,则 m 的值 为 -1 .
一次函数的图象与性质 1. 一次函数的图象特征:一次函数 y=kx+b(k≠0)的图象是经过
点(0,④ b )和(⑤ -bk ,0)的一条⑥ 直线 .特别地,正比例函数 y =kx(k≠0)的图象是经过点(0,⑦ 0 )和(1,⑧ k )的一条⑨ 直线 .
2014中考复习备战策略_数学PPT第11讲_函数及其图象
2x+ 1 例 3 (2013· 内江 )函数 y= 中,自变量 x 的取 x-1 值范围是 ___________.
【点拨】∵二次根式的被开方数是非负数,分式的 1 x≥-2, 2x+1≥ 0, 分母不等于 0, ∴可得 解得 x-1≠0, x≠1, 1 ∴ x≥- 且 x≠1. 2 1 【答案】 x≥- 且 x≠ 1 2
(1) 关于 x 轴对称的两点,横坐标相同,纵坐标 互为相反数. (2)关于 y 轴对称的两点,横坐标互为相反数,纵 坐标相同. (3) 关于原点对称的两点,横、纵坐标均 互为相 反数.
考点三
确定物体的位置
1.平面内点的位置可以用两个量来确定. 2.方法 (1)平面直角坐标法; (2)方向角和距离定位法. 用方向角和距离定位法确定平面内点的位置时, 要注意中心点的位置,若ቤተ መጻሕፍቲ ባይዱ心点变化了,则方向角与 距离也随之变化.
方法总结 当解析式为复合式时, 自变量的取值要同时满足多 个条件 .
考点四
函数的图象及应用
例 4 (2013· 重庆 )2013 年“中国好声音”全国巡演 重庆站在奥体中心举行.童童从家出发前往观看,先匀 速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体 中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车 顺利到家.其中 x 表示童童从家出发后所用时间,y 表 示童童离家的距离. 下图能反映 y 与 x 的函数关系式的 大致图象是 ( )
4. 当自变量出现在 0 次幂或负整数指数幂的底数 中时,它的取值范围是使底数不为 0 的数; 5.在一个函数关系式中,同时有几种代数式,函 数自变量的取值范围应是各种代数式中自变量取值范 围的公共部分.
考点一 坐标系中点的坐标的特征 例 1 (2013· 淄博)如果 m 是任意实数,则点(m-4, m+1)一定不在( A.第一象限 C.第三象限 ) B.第二象限 D.第四象限
2025年中考数学总复习 第十一讲 函数的表达式++++课件+
对角线AC,BD相交于点E,反比例函数y= (x>0)的图象经过点A.
(1)求这个反比例函数的表达式.
(2)请先描出这个反比例函数图象上不同于点A的三个
格点,再画出反比例函数的图象.
(3)将矩形ABCD向左平移,当点E落在这个反比例函
数的图象上时,平移的距离为_________.
19
【自主解答】(1)∵反比例函数y= (x>0)的图象经过点A(3,2),
已知抛物线上三点的坐标
选用表达式的形式
y=ax2+bx+c(a,b,c为常数,a≠0)
已知抛物线顶点坐标或对称轴与最 y=a(x-h)2+k(a≠0),(h,k)为二次函数的顶点
大(小)值
坐标
已知抛物线与x轴的两个交点的横坐 y=a(x-x1)(x-x2)(a≠0),x1,x2为抛物线与x轴
标
交点的横坐标
_________________.
高频考点·释疑难
考点1
10
确定一次函数表达式
【例1】(2024·广州中考)一个人的脚印信息往往对应着这个人某些方面的基本特
征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和
分析,发现身高y和脚长x之间近似存在一个函数关系,部分数据如表:
脚长x(cm)
第十一讲
函数的表达式
必备知识·夯根基
高频考点·释疑难
山东3年真题
必备知识·夯根基
知识要点
1.一次函数表达式
(1)确定正比例函数表达式:将正比例函数图象上原点外的一点坐标(m,n)代入
x
y=kx,可得k=_____,则y=______.
2025年中考数学总复习第一部分考点梳理第11课时一次函数的图象和性质
考点1
考点2
考点3
考点4
考点5
考点6
(2)若点C的坐标为(1,1),求证:A,B,C三点共线. 证明:∵当x=1时,y=2×1-1=1,∴点C在该一次函数的图 象上, 又∵该一次函数的图象过点A,B,∴A,B,C三点共线.
考点1
考点2
考点3
考点4
考点3 一次函数图象的平移 例5:如图,已知A(1,0)、B(3,0)、M(4,3), 动点P从点A出发,沿x轴以每秒2个单位长度 的速度向右移动,且过点P的直线l:y=-x+b 也随之平移,设移动的时间为t秒,若直线l与线段BM有公共 点,则t的取值范围为_1_≤__t_≤__3_.[2024厦门外国语学校模拟4分]
(一)
(二)
(三)
(四)
(5)方程组ቊyy12==x-+24x,-2的解是_൜yx_==__2-__2__,___;
(6)不等式x+4>-2x-2的解集是_x_>__-__2__.
(一)
(二)
(三)
(四)
考点1 一次函数的概念、图象与性质[8年1考]
例1:已知一次函数y=(k-3)x+1,函数值y随自变量x的增大
(一)
(二)
(三)
(四)
2.一次函数y=kx+b(k≠0)的图象与性质:
k>0
k<0
y随x的增大而增大
y随x的增大而减小
(一)
(二)
(三)
(四)
k决定直线的倾斜方向和倾斜程度,b决定直线与y轴的交点情况.
(一)
(二)
(三)
(四)
3.解析式与图象: y=kx(k≠0),图象是经过原点的一条直线.
而减小,则k的取值范围是( D )[2024泉州一检4分]
(沪科版)中考数学总复习课件【第11讲】一次函数及其应用
图11-11 第11讲┃一次函数及其应用
第11讲┃一次函数及其应用
经典示例
例5 [2013·淮北五校联考一模 ] 某水产经销商从养殖
场批发购进草鱼和乌鱼(俗称黑鱼),共75千克,且乌鱼的进货
量不低于20千克.已知草鱼的批发价为8元/千克,乌鱼的批发 价与进货量的函数关系如图11-10所示.
(1)请写出批发购进乌鱼所需的总金额y(元)与进货量x(千
第11讲┃一次函数及其应用
[解析] 根据题意得 整理得
25x (0≤x≤20), y = 25× 20+0.8×25(x-20)(x>20).
25x (0≤x≤20), y= 20x +100(x>20).
第11讲┃一次函数及其应用
13.[2013·随州] 甲、乙两地相距50千米.星期天上午8:
y=-x+b,把点(-1,2)的坐标代入y=-x+b,2=-(-1)
+b,b=1,所以y=-x+1.
第11讲┃一次函数及其应用
核心考点三
相关知识
一次函数与一次方程、一次不等式
一次函数与一 一次函数y=kx+b(k≠0)的值为0时,相应的自变量的值 次方程 一次函数与一 元一次不等式 为方程kx+b=0的根 一次函数y=kx+b(k≠0)的函数值大于(或小于)0,相应 的自变量的值为不等式kx+b>0(或kx+b<0)的解集
集就是函数y=kx+b的图象在直线y=m下方的部分对应的自变
2022最新中考数学一轮复习《第11讲:反比例函数》精练(含答案)
第11讲反比例函数A组基础题组一、选择题1.已知点A(-1,1)是反比例函数y=m+1x的图象上一点,则m的值为()A.-1B.-2C.0D.12.(2022最新四川自贡)一次函数y1=k1x+b和反比例函数y2=k2x(k1·k2≠0)的图象如图所示,若y1>y2,则x的取值范围是()A.-2<x<0或x>1B.-2<x<1C.x<-2或x>1D.x<-2或0<x<13.(2022最新日照)反比例函数y=kbx的图象如图所示,则一次函数y=kx+b的大致图象是()4.一次函数y=kx+b与反比例函数y=2x 的图象如图所示,则方程kx+b=2x的解为()A.x1=1,x2=2B.x1=-2,x2=-1C.x1=1,x2=-2D.x1=2,x2=-15.若反比例函数y=kx(k<0)的图象上有两点P1(2,y1)和P2(3,y2),那么()A.y1<y2<0B.y1>y2>0C.y2<y1<0D.y2>y1>06.若式子√-k 有意义,则函数y=kx+1和y=k2-1x的图象可能是()7.(2022最新云南)如图,A,B两点在反比例函数y=k1x的图象上,C,D两点在反比例函数y=k2x的图象上,AC⊥y轴于点E,BD⊥y轴于点F,AC=2,BD=1,EF=3,则k1-k2的值是()A.6B.4C.3D.28.(2022最新广东)如图所示,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线y=k2x(k2≠0)相交于点A,B两点,已知点A的坐标为(1,2),则点B的坐标是()A.(-1,-2)B.(-2,-1)C.(-1,-1)D.(-2,-2)二、填空题9.(2022最新东营)如图,B(3,-3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为.(k是常数,k≠0)的图象经过10.(2022最新上海)如果反比例函数y=kx点(2,3),那么这个函数图象在的每个象限内,y的值随x的值的增大而.(填“增大”或“减小”)11.(2022最新湖南长沙)如图,点M是函数y=√3x与y=k的图象在第一x象限内的交点,OM=4,则k的值为.12.(2022最新福建)已知矩形ABCD的四个顶点均在反比例函数y=1的x 图象上,且点A的横坐标是2,则矩形ABCD的面积为.三、解答题13.(2022最新菏泽)如图,已知点D在反比例函数y=a(a≠0)的图象上,x过点D作DB⊥y轴,垂足为B(0,3),直线y=kx+b(k≠0)经过点A(5,0),与y轴交于点C,且BD=OC,OC OA=2 5.和一次函数y=kx+b的表达式;(1)求反比例函数y=ax(2)直接写出关于x的不等式a>kx+b的解集.x的图象14.(2022最新湖北武汉)如图,直线y=2x+4与反比例函数y=kx交于A(-3,a)和B两点.(1)求k的值;的图象交于(2)直线y=m(m>0)与直线AB交于点M,与反比例函数y=kx点N,若MN=4,求m的值;>x的解集.(3)直接写出不等式6x-5B组提升题组一、选择题1.函数y=kx与y=-kx2+k(k≠0)在同一平面直角坐标系中的图象可能是()2.(2022最新临沂)如图,正比例函数y1=k1x与反比例函数y2=k2x的图象相交于A、B两点,其中点A的横坐标为1.当y1<y2时,x的取值范围是()A.x<-1或x>1B.-1<x<0或x>1C.-1<x<0或0<x<1D.x<-1或0<x<13.(2022最新东平模拟)如图,双曲线y=kx 与直线y=-12x交于A、B两点,且A(-2,m),则点B的坐标是()A.(2,-1)B.(1,-2)C.(12,-1) D.(-1,12)二、填空题4.(2022最新江苏南京)函数y1=x与y2=4x的图象如图所示,下列关于函数y=y1+y2的结论:①函数的图象关于原点中心对称;②当x<2时,y随x的增大而减小;③当x>0时,函数图象的最低点的坐标是(2,4).其中正确结论的序号是.三、解答题5.(2022最新聊城)如图,已知反比例函数y=k1x(x>0)的图象与反比例函数y=k2x (x<0)的图象关于y轴对称,A(1,4),B(4,m)是函数y=k1x(x>0)图象上的两点,连接AB,点C(-2,n)是函数y=k2x(x<0)图象上的一点,连接AC,BC.(1)求m,n的值;(2)求AB所在直线的表达式;(3)求△ABC的面积.反比例函数与一次函数综合问题培优训练一、选择题1.如图,一次函数y=ax+b(a≠0)的图象与反比例函数y=kx(k≠0)的图象交于A(-3,2),B(2,n)两点,则不等式ax+b<kx的解集为()A.-3<x<2B.-3<x<0或x>2C.x>-3D.x<22.在同一直角坐标平面内,如果直线y=k1x与双曲线y=k2x没有交点,那么k1和k2的关系一定是()A.k1+k2=0B.k1·k2<0C.k1·k2>0D.k1=k23.如图,在直角坐标系中,直线y1=2x-2与坐标轴交于A、B两点,与双曲线y2=kx(x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,连接BD,则以下结论:①S△ADB =S△ADC;②当0<x<3时,y1<y2;;③当x=3时,EF=83④当x>0时,y1随x的增大而增大,y2随x的增大而减小.其中正确结论的个数是()A.1B.2C.3D.4与直线y=kx+b交于点M、N,并且点M的坐标为4.如图,双曲线y=mx=kx+b的解为(1,3),点N的纵坐标为-1.根据图象可得关于x的方程mx()A.-3,1B.-3,3C.-1,1D.-1,35.如图,正比例函数y1的图象与反比例函数y2的图象相交于点E(-1,2),若y1>y2>0,则x的取值范围在数轴上表示正确的是()的图象上,直角边BC在x轴6.如图,Rt△ABC的顶点A在双曲线y=kx上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是()A.4√3B.-4√3C.2√3D.-2√37.如图,若点M是x轴正半轴上任意一点,过点M作PQ∥y轴,分别交函数y=k1x (x>0)和y=k2x(x>0)的图象于点P和Q,连接OP和OQ.则下列结论正确的是()A.∠POQ不可能等于90°B.PMQM =k1 k2C.这两个函数的图象一定关于x轴对称D.△POQ的面积是12(|k1|+|k2|)8.如图所示,已知A(12,y1),B(2,y2)为反比例函数y=1x图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(12,0) B.(1,0)C.(32,0) D.(52,0)9.如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=kx(x>0)经过D点,交BC的延长线于E点,且OB·AC=160,有下列四个结论:①双曲线的解析式为y=20(x>0);②Ex;④AC+OB=12√5.其中正确的结论有点的坐标是(4,8);③sin∠COA=45()A.1个B.2个C.3个D.4个二、填空题的图象有两个交点,其中一个交点的横坐标10.已知函数y=ax和y=4-ax为1,则两个函数图象的交点坐标是.(x>0)的图象交于点A, 11.如图,一次函数y=kx+2与反比例函数y=4x与y轴交于点M,与x轴交于点N,且AM MN=1 2,则k=.三、解答题12.如图,直线l1的方程为y=-x+1,直线l2的方程为y=x+5,且两直线与直线l1的另一交点为Q(3,a).相交于点P,过点P的双曲线y=kx(1)求双曲线的解析式;(2)根据图象直接写出不等式k>-x+1的解集;x(3)若l2与x轴的交点为M,求△PQM的面积.(x>0)的图象交于13.如图,一次函数y=kx+b的图象与反比例函数y=mx点P(n,2),与x轴交于点A,与y轴交于点C,PB⊥x轴于点B,且AC=BC,S△PBC=4.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.14.如图,反比例函数y=kx的图象与过两点A(0,-2),B(-1,0)的一次函数的图象在第二象限内相交于点M(m,4).(1)求反比例函数与一次函数的表达式;(2)在双曲线(x<0)上是否存在点N,使MN⊥MB,若存在,请求出N点坐标,若不存在,说明理由.15.已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位长度,向上平移2个单位长度得到点Q,点Q 也在该函数y=kx+b的图象上.(1)求k的值;(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=-4x的图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若S1S2=7 9 ,求b的值.16.如图1,▱OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=kx(x>0)的图象经过点B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,将线段OA延长交y=kx(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点.①求直线BD的解析式;②求线段ED的长度.第11讲反比例函数A组基础题组一、选择题1.B2.D3.D4.C5.A6.B 因为式子√-k有意义,所以k<0,所以一次函数y=kx+1的图象过第一、二、四象限,故选B.7.D 设点A(m,k1m )、点B(n,k1n),则点C(k2mk1,k1m)、点D(k2nk1,k1n),∵AC=2,BD=1,EF=3,∴{ m -k 2mk 1=2,k 2nk 1-n =1,k 1m -k 1n=3, 解得k 1-k 2=2.8.A 由题可知,A 、B 两点关于原点对称,∵A 的坐标是(1,2),∴B 的坐标是(-1,-2). 二、填空题 9.答案 y=6x解析 B(3,-3),C(5,0),O(0,0),四边形OABC 为平行四边形,则点B 可以看成点C 经过平移得到的,点A 可以看成点O 经过平移得到的,∴点A(-2,-3),代入求解得y=6x .10.答案 减小解析 ∵反比例函数y=kx (k≠0)的图象过点(2,3),∴k=2×3=6>0,∴这个函数图象在的每个象限内,y 的值随x 的值的增大而减小. 11.答案 4√3解析 过点M 作MN⊥x 轴于点N,由已知设M 的坐标为(x,√3x)(x>0),则ON=x,MN=√3x,在Rt△OMN 中,ON 2+MN 2=OM 2,即x 2+(√3x)2=42,解得x=2(舍负),故M(2,2√3),将M 的坐标代入y=kx 中,可得k=4√3.12.答案152解析 ∵点A 在反比例函数y=1x的图象上,且点A 的横坐标是2,∴y=12,即点A 的坐标为(2,12).如图,∵双曲线y=1x 和矩形ABCD 都是轴对称图形和中心对称图形,∴点A 、B 关于直线y=x 对称,∴B (12,2),同理,C (-2,-12),D (-12,-2). ∴AB=√(2-12)2+(12-2)2=3√22. AD=√(2+12)2+(12+2)2=5√22.∴S 矩形ABCD =AB·AD=152.三、解答题13.解析 (1)∵BD=OC,OC OA=2 5,点A(5,0),点B(0,3), ∴OA=5,OC=BD=2,OB=3,又∵点C 在y 轴的负半轴,点D 在第二象限, ∴点C 的坐标为(0,-2),点D 的坐标为(-2,3). ∵点D(-2,3)在反比例函数y=ax 的图象上,∴a=-2×3=-6,∴反比例函数的表达式为y=-6x .将A(5,0)、C(0,-2)代入y=kx+b, 则{5k +b =0,b =-2,解得{k =25,b =-2,∴一次函数的表达式为y=25x-2.(2)x<0.将y=25x-2代入y=-6x,整理得25x 2-2x+6=0,∵Δ=(-2)2-4×25×6=-285<0,∴一次函数图象与反比例函数图象无交点.观察图形,可知:当x<0时,反比例函数图象在一次函数图象上方, ∴不等式ax >kx+b 的解集为x<0.14.解析 (1)∵点A(-3,a)在直线y=2x+4上, ∴a=2×(-3)+4=-2.∵点A(-3,-2)在y=kx 的图象上,∴k=6.(2)∵点M 是直线y=m 与直线AB 的交点, ∴M (m -42,m).∵点N 是直线y=m 与反比例函数y=6x的图象的交点, ∴N (6m ,m).∴MN=x N -x M =6m -m -42=4或MN=x M -x N =m -42-6m=4,解得m=2或m=-6或m=6±4√3, ∵m>0,∴m=2或m=6+4√3. (3)x<-1或5<x<6.B 组 提升题组一、选择题1.B 易知抛物线y=-kx 2+k 的对称轴为x=0.若k>0,则反比例函数的图象过第一、三象限,二次函数的图象的开口向下,与y 轴相交于正半轴;若k<0,则反比例函数的图象过第二、四象限,二次函数的图象的开口向上,与y 轴相交于负半轴,故选B.2.D∵正比例函数y 1=k 1x 与反比例函数y 2=k2x 的图象相交于A 、B 两点,其中点A 的横坐标为1. ∴B 点的横坐标为-1,故当y 1<y 2时,x 的取值范围是x<-1或0<x<1.故选D. 3.A 解法一:当x=-2时, y=-12×(-2)=1,即A(-2,1).将A 点坐标(-2,1)代入y=kx,得k=-2×1=-2,所以反比例函数的解析式为y=-2x ,联立得{y =-2x,y =-12x ,解得{x 1=-2,y 1=1,{x 2=2,y 2=-1, 所以B(2,-1). 故选A.解法二:因为反比例函数的图象和正比例函数的图象都是中心对称图形,所以它们的交点坐标关于原点对称,故选A.二、填空题4.答案①③解析①∵y=y1+y2,∴y=x+4x.若点(a,b)在函数y=x+4x的图象上,则b=a+4a.∵当x=-a时,y=-a-4a =-(a+4a)=-b.∴点(-a,-b)在函数y=x+4x的图象上.∴函数y=x+4x的图象关于原点中心对称,故①正确.②当0<x<2时,随着x的增大,y1增大,y2减小,∴y的变化不能确定;当x<0时,随着x的增大,y1增大,y2减小,∴y的变化不能确定;当x=0时,y无意义.故②错误.③当x>0时,y=x+4x=(√x-√4x )2+2·√x·√4x=(√x-√4x )2+4,当√x=√4x,即x=2时,y取得最小值,y min=4. ∴函数图象的最低点的坐标是(2,4).故③正确. 三、解答题5.解析 (1)∵A(1,4),B(4,m)是函数y=k 1x (x>0)图象上的两点,∴4=k 11,k 1=4.∴y=4x (x>0),∴m=44=1.∵y=k2x(x<0)的图象与y=k1x(x>0)的图象关于y 轴对称,∴点A(1,4)关于y 轴的对称点A 1(-1,4)在y=k2x(x<0)的图象上,∴4=k 2-1,k 2=-4.∴y=-4x(x<0).又∵点C(-2,n)是函数y=-4x(x<0)图象上的一点,∴n=-4(-2)=2.(2)设AB 所在直线的表达式为y=kx+b(k≠0), 将A(1,4),B(4,1)分别代入y=kx+b 得{4=k +b ,1=4k +b ,解这个二元一次方程组,得{k =-1,b =5.∴AB 所在直线的表达式为y=-x+5.(3)自A,B,C 三点分别向x 轴作垂线,垂足分别为A',B',C'.CC'=2,AA'=4,BB'=1,C'A'=3,A'B'=3,C'B'=6. ∴S △ABC =S 梯形CC'A'A +S 梯形AA'B'B -S 梯形CC'B'B=12×(2+4)×3+12×(1+4)×3-12×(2+1)×6=152.反比例函数与一次函数综合问题培优训练一、选择题1.B2.B∵直线y=k1x与双曲线y=k2x没有交点,∴k1x=k2x无解,∴x2=k2k1无解,∴k2k1<0,即k1·k2<0.故选B.3.C 对于直线y1=2x-2,令x=0,得到y=-2;令y=0,得到x=1,∴A(1,0),B(0,-2),即OA=1,OB=2.在△OBA和△DCA中,{∠AOB=∠ADC=90°, OA=DA,∠OAB=∠DAC,∴△OBA≌△DCA(ASA),∴OB=CD=2,OA=AD=1,∴S△ADB =S△ADC(同底等高的三角形面积相等),故①正确;由①知CD=2,OD=OA+AD=2,∴C(2,2),把C点坐标代入反比例函数解析式得k=4,即y2=4x, 由函数图象得,当0<x<2时,y1<y2,故②错误;当x=3时,y 1=4,y 2=43,即EF=4-43=83,故③正确;当x>0时,y 1随x 的增大而增大,y 2随x 的增大而减小,故④正确.故选C.4.A∵M(1,3)在反比例函数图象上, ∴m=1×3=3,∴反比例函数解析式为y=3x ,∵点N 也在反比例函数图象上,点N 的纵坐标为-1. ∴x N =-3, ∴N(-3,-1),∴关于x 的方程mx =kx+b 的解为x=-3或x=1.故选A.5.A∵正比例函数的图象与反比例函数的图象相交于点E(-1,2), ∴根据图象可知当y 1>y 2>0时x 的取值范围是x<-1, ∴在数轴上表示为,故选A.6.B∵∠ACB=30°,∠AOB=60°, ∴∠OAC=∠AOB -∠ACB=30°, ∴∠OAC=∠ACO, ∴OA=OC=4.在△AOB 中,∠ABC=90°,∴∠OAB=30°, ∴OB=12OA=2,∴AB=√3OB=2√3, ∴A(-2,2√3),把A(-2,2√3)代入y=kx 得k=-2×2√3=-4√3.故选B.7.DA.∵P 点坐标未知,∴当PM=MQ=OM 时,∠POQ 等于90°,故此选项错误;B.由题图知k 1>0,k 2<0,而PM,QM 为线段长度,一定为正值,故PM QM=|k1k 2|,故此选项错误;C.根据k 1,k 2的值不确定,得出这两个函数的图象不一定关于x 轴对称,故此选项错误;D.∵|k 1|=PM·MO,|k 2|=MQ·MO,△POQ 的面积=12MO·PQ=12MO(PM+MQ)=12MO·PM+12MO·MQ,∴△POQ 的面积是12(|k 1|+|k 2|),故此选项正确.故选D.8.D 把A (12,y 1),B(2,y 2)代入反比例函数y=1x得y 1=2,y 2=12,∴A (12,2),B (2,12),∵在△ABP 中,|AP-BP|<AB,∴延长AB 交x 轴于点P',当点P 在P'点位置时,PA-PB=AB, 此时线段AP 与线段BP 之差达到最大. 设直线AB 的解析式是y=kx+b(k≠0),把A 、B 的坐标代入得{2=12k +b ,12=2k +b ,解得k=-1,b=52,∴直线AB 的解析式是y=-x+52,当y=0时,x=52,即P'(52,0),故选D.9.C 过点C 作CF⊥x 轴于点F, ∵OB·AC=160,A 点的坐标为(10,0), ∴菱形OABC 的边长为10, ∴OA·CF=12OB·AC=12×160=80,∴CF=80OA =8010=8,在Rt△OCF 中, ∵OC=10,CF=8,∴OF=√OC 2-CF 2=√102-82=6, ∴C(6,8),易知点D 是线段AC 的中点, ∴D 点坐标为(10+62,82),即(8,4), ∵双曲线y=k x (x>0)经过D 点, ∴4=k8,即k=32,∴双曲线的解析式为y=32x(x>0),故①错误;易知直线CB 的解析式为y=8, ∴{y =32x ,y =8,解得{x =4,y =8,∴E 点坐标为(4,8),故②正确; sin∠COA=CFOC =810=45,故③正确;易知AC=√(10-6)2+(0-8)2=4√5,又∵OB·AC=160, ∴OB=160AC =4√5=8√5,∴AC+OB=4√5+8√5=12√5,故④正确. 故选C.二、填空题10.答案 (1,2)和(-1,-2) 解析 依题意有y=a,y=4-a, 解得a=2.代入原函数有{y =2x ,y =2x,解此方程组得{x 1=1,y 1=2和{x 2=-1,y 2=-2.所以两函数图象的交点坐标为(1,2)和(-1,-2). 11.答案 34解析 过点A 作AD⊥x 轴,由题意可得MO∥AD, 则△NOM∽△NDA, ∵AM MN=1 2, ∴NM AN =MO AD =23,∵一次函数y=kx+2与y 轴的交点为(0,2), ∴MO=2, ∴AD=3, ∴当y=3时,3=4x ,解得x=43,∴A (43,3),将A 点代入y=kx+2得3=43k+2,解得k=34.三、解答题12.解析 (1)解方程组{y =-x +1,y =x +5,得{x =-2,y =3,则P(-2,3),把P(-2,3)代入y=kx 得k=-2×3=-6,∴双曲线的解析式为y=-6x.(2)当x=3时,y=-3+1=-2, 则Q(3,-2),所以不等式kx >-x+1的解集为-2<x<0或x>3.(3)当y=0时,x+5=0,解得x=-5,则M(-5,0),设l 1与x 轴的交点为N,则N(1,0). ∴S △PQM =S △PMN +S △QMN =12×(5+1)×(3+2)=15.13.解析 (1)∵AC=BC,CO⊥AB, ∴O 为AB 的中点,即OA=OB, ∵S △PBC =4,即12OB×PB=4,P(n,2),即PB=2, ∴OA=OB=4,∴P(4,2),B(4,0),A(-4,0). 将A(-4,0)与P(4,2)代入y=kx+b 得{-4k +b =0,4k +b =2,解得{k =14,b =1.∴一次函数的解析式为y=14x+1.将P(4,2)代入反比例函数解析式得2=m 4,解得m=8, ∴反比例函数的解析式为y=8x .(2)假设存在这样的D 点,使四边形BCPD 为菱形.过点C 作x 轴的平行线与双曲线交于点D,连接PD 、BD 、CD,如图所示.令一次函数y=14x+1中x=0,则有y=1,∴点C 的坐标为(0,1), ∵CD∥x 轴,∴设点D 的坐标为(x,1).将点D(x,1)代入反比例函数解析式y=8x中,得1=8x,解得x=8,∴点D 的坐标为(8,1),即CD=8. ∵P 点横坐标为4, ∴BP 与CD 互相垂直平分, ∴四边形BCPD 为菱形.故反比例函数图象上存在点D,使四边形BCPD 为菱形,此时点D 的坐标为(8,1).14.解析 (1)设直线AB 的表达式为y=ax+b(a≠0), 将点A(0,-2),B(-1,0)代入y=ax+b,得 {b =-2,-a +b =0,解得{a =-2,b =-2, ∴一次函数的表达式为y=-2x-2. 当y=-2x-2=4时,x=-3, ∴点M 的坐标为(-3,4),将点M(-3,4)代入y=kx,得4=k-3,解得k=-12,∴反比例函数的表达式为y=-12x.(2)假设存在这样的点N.过点M 作MC⊥x 轴于C,过点N 作ND⊥MC 于D,如图所示. ∵∠MND+∠NMD=90°, ∠BMC+∠NMD=90°, ∴∠MND=∠BMC, 又∵∠MDN=∠BCM=90°, ∴△MDN∽△BCM,∴MD BC =ND MC.设N (n ,-12n ),则有4+12n2=-3-n 4,解得n=-8或n=-3(不合题意,舍去), 经检验,n=-8是原分式方程的解且符合题意, ∴点N 的坐标为(-8,32),∴在双曲线(x<0)上存在点N (-8,32),使MN⊥MB.15.解析 (1)设点P 的坐标为(m,n), 则点Q 的坐标为(m-1,n+2), 依题意得{n =km +b ,n +2=k (m -1)+b ,解得k=-2. (2)根据题意得S △OABS △AEC =916=OB 2CE 2,∴OB CE =34.设点C 的坐标为(a,-2a+b), 则OB=b,CE=-2a+b,∴{b-2a+b =34,-2a +b =-4a,解得b=3√2或b=-3√2(舍去).16.解析 (1)如图1,过点A 作AP⊥x 轴于点P,则AP=1,OP=2.又∵四边形OABC 是平行四边形, ∴AB=OC=3, ∴B(2,4).∵反比例函数y=kx (x>0)的图象经过点B,∴4=k2.∴k=8.∴反比例函数的关系式为y=8x .(2)①设直线BD 的解析式为y=kx+b(k≠0),直线OA 的解析式为y=k 1x(k 1≠0), ∵A(2,1),∴直线OA 的解析式为y=12x.∵点D 是反比例函数y=8x的图象与直线OA 的交点,解方程组{y =12x ,y =8x,得{x =4,y =2或{x =-4,y =-2. ∵点D 在第一象限内, ∴D(4,2).将B 、D 两点代入y=kx+b, ∴直线BD 的解析式为y=-x+6.②把y=0代入y=-x+6,解得x=6.∴E(6,0),过点D作DH⊥x轴于H,如图2,图2∴DH=2,OH=4,∴HE=6-4=2,由勾股定理可得ED=√DH2+HE2=2√2.。
第11讲 一次函数的图象与性质(讲练)(解析版)
2021年中考数学一轮复习讲练测专题11一次函数的图像与性质1、知道一次函数与正比例函数的意义.2、结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式.3、会画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k≠0)探索并理解其性质(k>0或k<0时,图象的变化情况).1.(2020·北京中考真题)有一个装有水的容器,如图所示.容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是()A.正比例函数关系B.一次函数关系C.二次函数关系D.反比例函数关系【答案】B【分析】hcm注水时间为t分钟,根据题意写出h与t的函数关系式,从而可得答案.设水面高度为,【详解】解:设水面高度为,hcm 注水时间为t 分钟,则由题意得:0.210,h t =+所以容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系,故选B .【点睛】本题考查的是列函数关系式,判断两个变量之间的函数关系,掌握以上知识是解题的关键.2.(2020·广西中考真题)直线y =kx +2过点(﹣1,4),则k 的值是( )A .﹣2B .﹣1C .1D .2【答案】A【分析】由直线y =kx +2过点(﹣1,4),利用一次函数图象上点的坐标特征可得出关于k 的一元一次方程,解之即可得出k 值.【详解】解:∵直线y =kx +2过点(﹣1,4),∴4=﹣k +2,∴k =﹣2.故选:A .【点睛】本题考查的是一次函数图像上点的坐标特点,以及利用待定系数法求解一次函数的解析式,掌握一次函数图像上的点满足函数解析式是解题的关键.3.(2020·安徽中考真题)已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()1,2-B .()1,2-C .()2,3D .()3,4 【答案】B【分析】先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可.【详解】∵一次函数3y kx =+的函数值y 随x 的增大而减小,∴k ﹤0,A .当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C .当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意, 故选:B .【点睛】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键.4.(2020·江苏泰州市·中考真题)点(),P a b 在函数32y x =+的图像上,则代数式621a b -+的值等于( )A .5B .3C .3-D .1-【答案】C【分析】把(),P a b 代入函数解析式得32=+b a ,化简得32-=-a b ,化简所求代数式即可得到结果;【详解】把(),P a b 代入函数解析式32y x =+得:32=+b a ,化简得到:32-=-a b ,∴()()621=231=221=-3-+-+⨯-+a b a b .故选:C .【点睛】本题主要考查了通过函数解析式与已知点的坐标得到式子的值,求未知式子的值,准确化简式子是解题的关键.5.(2020·浙江嘉兴市·中考真题)一次函数21y x =--的图象大致是( )A .B .C .D .【答案】D【分析】根据一次函数的图象与系数的关系选出正确选项.【详解】解:根据函数解析式21y x =--,∵k 0<,∴直线斜向下,∵0b <,∴直线经过y 轴负半轴,图象经过二、三、四象限.故选:D .【点睛】本题考查一次函数的图象,解题的关键是能够根据解析式系数的正负判断图象的形状. 6.(2020·山东济南市·中考真题)若m <﹣2,则一次函数()11y m x m =++-的图象可能是( )A .B .C .D .【答案】D【分析】由m <﹣2得出m +1<0,1﹣m >0,进而利用一次函数的性质解答即可.【详解】解:∵m <﹣2,∴m +1<0,1﹣m >0,所以一次函数()11y m x m =++-的图象经过一,二,四象限,故选:D .【点睛】本题考查的是一次函数的图像与性质,不等式的基本性质,掌握一次函数y kx b =+中的,k b 对函数图像的影响是解题的关键 .7.(2020·四川凉山彝族自治州·中考真题)已知一次函数y =(2m +1)x +m -3的图像不经过第二象限,则m 的取值范围( )A .m>-12B .m<3C .-12<m<3D .-12<m≤3 【答案】D【分析】一次函数的图象不经过第二象限,即可能经过第一,三,四象限,或第一,三象限,所以要分两种情况.【详解】当函数图象经过第一,三,四象限时,21030m m ⎧⎨-⎩+><,解得:-12<m <3. 当函数图象经过第一,三象限时,21030m m +>=⎧⎨-⎩,解得m =3. ∴-12<m≤3. 故选D.【点睛】一次函数的图象所在的象限由k ,b 的符号确定:①当k >0,b >0时,函数y =kx +b 的图象经过第一,二,三象限;②当k >0,b <0时,函数y =kx +b 的图象经过第一,三,四象限;③当k <0,b >0时,函数y =kx +b 的图象经过第一,二,四象限;④当k <0,b <0时,函数y =kx +b 的图象经过第二,三,四象限.注意当b =0的特殊情况.8.(2020·西藏中考真题)如图,一个弹簧不挂重物时长6cm ,挂上重物后,在弹性限度内弹簧伸长的长度与所挂重物的质量成正比.弹簧总长y (单位:cm )关于所挂物体质量x(单位:kg )的函数图象如图所示,则图中a 的值是( )A .3B .4C .5D .6【答案】A【分析】 根据题目中的函数解析式,可以求得y 与x 的函数关系式,然后令y =7.5,求出x 的值,即此时x 的值就是a 的值,本题得以解决.【详解】解:设y 与x 的函数关系式为y =kx+b ,6910.5b k b =⎧⎨+=⎩, 解得,k 0.5b 6=⎧⎨=⎩, 即y 与x 的函数关系式是y =0.5x+6,当y =7.5时,7.5=0.5x+6,得x =3,即a 的值为3,故选:A .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.9.(2019·浙江杭州市·中考真题)某函数满足当自变量1x =时,函数值0y =;当自变量0x =时,函数值1y =,写出一个满足条件的函数表达式_____.【答案】1y x =-+或21y x =-+或1y x =-等.【分析】由于题中没有指定是什么具体的函数,可以从一次函数,二次函数等方面考虑,只要符合题中的两个条件即可.【详解】符合题意的函数解析式可以是1y x =-+或21y x =-+或1y x =-等,(本题答案不唯一) 故答案为如1y x =-+或21y x =-+或1y x =-等.【点睛】本题考查一次函数、二次函数的解析式,解题的关键是知道一次函数、二次函数的定义. 10.(2020·贵州黔东南苗族侗族自治州·中考真题)把直线y =2x ﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为_____.【答案】y =2x +3【分析】直接利用一次函数的平移规律进而得出答案.【详解】解:把直线y =2x ﹣1向左平移1个单位长度,得到y =2(x +1)﹣1=2x +1,再向上平移2个单位长度,得到y =2x +3.故答案为:y =2x +3.【点睛】本题考查了一次函数的平移,熟练掌握是解题的关键.11.(2020·天津中考真题)将直线2y x =-向上平移1个单位长度,平移后直线的解析式为________.【答案】21y x =-+【分析】根据直线的平移规律是上加下减的原则进行解答即可.【详解】解:∵直线的平移规律是“上加下减”,∴将直线2y x =-向上平移1个单位长度所得到的的直线的解析式为:21y x =-+; 故答案为:21y x =-+.【点睛】本题考查的是一次函数的图像与几何变换,熟知“上加下减”的原则是解决本题目的关键. 12.(2020·山东临沂市·中考真题)点1,2m ⎛⎫-⎪⎝⎭和点(2,)n 在直线2y x b =+上,则m 与n 的大小关系是_________.【答案】m <n【分析】先根据直线的解析式判断出函数的增减性,再根据两点的横坐标大小即可得出结论.【详解】解:∵直线2y x b =+中,k=2>0,∴此函数y 随着x 的增大而增大, ∵12-<2, ∴m <n .故答案为:m <n .【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性是解答此题的关键. 13.(2020·四川成都市·中考真题)一次函数(21)2y m x =-+的值随x 值的增大而增大,则常数m 的取值范围为_________. 【答案】12m >【分析】根据一次函数的性质得2m-1>0,然后解不等式即可.【详解】解:因为一次函数(21)2y m x =-+的值随x 值的增大而增大,所以2m-1>0. 解得12m >. 故答案为:12m >. 【点睛】本题考查了一次函数的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.14.(2020·辽宁丹东市·中考真题)一次函数2y x b =-+,且0b >,则它的图象不经过第_________象限.【答案】三【分析】根据一次函数的性质,即可得到答案.【详解】解:在一次函数2y x b =-+中,∵20-<,0b >,∴它的图象经过第一、二、四象限,不经过第三象限;故答案为:三【点睛】本题考查了一次函数的性质,熟练掌握0k <,0b >,经过第一、二、四象限是解题的关键.15.(2020·江苏宿迁市·中考真题)已知一次函数y =2x ﹣1的图象经过A (x 1,1),B (x 2,3)两点,则x 1_____x 2(填“>”“<”或“=”).【答案】<【分析】由k =2>0,可得出y 随x 的增大而增大,结合1<3,即可得出x 1<x 2.【详解】解:∵k =2>0,∴y 随x 的增大而增大.又∵1<3,∴x 1<x 2.故答案为:<.【点睛】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记“当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小”.16.(2020·江苏南京市·中考真题)将一次函数24y x =-+的图象绕原点O 逆时针旋转90,所得到的图像对应的函数表达式是__________.【答案】122y x =+ 【分析】 根据原一次函数与x,y 轴的交点坐标,并求出旋转后这两点对应的坐标,再由待定系数法求解一次方程的表达式即可.【详解】∵一次函数的解析式为24y x =-+,∴设与x 轴、y 轴的交点坐标为()2,0A 、()0,4B ,∵一次函数24y x =-+的图象绕原点O 逆时针旋转90,∴旋转后得到的图象与原图象垂直,旋转后的点为()10,2A 、()1-4,0B , 令y ax b =+,代入点得12a =,2b =, ∴旋转后一次函数解析式为122y x =+. 故答案为122y x =+. 【点睛】本题主要考查了一次函数图像与几何变换,正确把握互相垂直的两直线的位置关系是解题的关键.17.(2020·湖南中考真题)已知一次函数y =kx +b (k ≠0)的图象经过A (3,18)和B (﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y =kx +b (k ≠0)的图象与反比例函数y =m x (m ≠0)的图象只有一个交点,求交点坐标.【答案】(1)一次函数的解析式为y =2x +12;(2)(﹣3,6).【分析】(1)直接把(3,18),(﹣2,8)代入一次函数y =kx +b 中可得关于k 、b 的方程组,再解方程组可得k 、b 的值,进而求出一次函数的解析式;(2)联立一次函数解析式和反比例函数解析式可得2x 2+12x ﹣m =0,再根据题意得到△=0时,两函数图像只有一个交点,解方程即可得到结论.【详解】解:(1)把(3,18),(﹣2,8)代入一次函数y =kx +b (k ≠0),得31828k b k b +=⎧⎨-+=⎩, 解得212k b =⎧⎨=⎩,∴一次函数的解析式为y =2x +12;(2)∵一次函数y =kx +b (k ≠0)的图象与反比例函数y =mx(m ≠0)的图象只有一个交点,∴212y x my x =+⎧⎪⎨=⎪⎩只有一组解, 即2x 2+12x ﹣m =0有两个相等的实数根, ∴△=122﹣4×2×(﹣m )=0, ∴m =-18.把m =-18代入求得该方程的解为:x =-3, 把x =-3代入y =2x +12得:y =6, 即所求的交点坐标为(-3,6). 【点睛】本题主要考查了用待定系数法确定一次函数的解析式,运用判别式△求两个不同函数的交点坐标;特别地,小题(2)联立一次函数解析式和反比例函数解析式,运用只有一个交点时△=0的知识点,是解答本小题关键所在.18.(2020·北京中考真题)在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数y x =的图象平移得到,且经过点(1,2). (1)求这个一次函数的解析式;(2)当1x >时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,直接写出m 的取值范围. 【答案】(1)1y x =+;(2)2m ≥ 【分析】(1)根据一次函数(0)y kx b k =+≠由y x =平移得到可得出k 值,然后将点(1,2)代入y x b =+可得b 值即可求出解析式;(2)由题意可得临界值为当1x =时,两条直线都过点(1,2),即可得出当12x m >>,时,(0)y mx m =≠都大于1y x =+,根据1x >,可得m 可取值2,可得出m 的取值范围.【详解】(1)∵一次函数(0)y kx b k =+≠由y x =平移得到, ∴1k =,将点(1,2)代入y x b =+可得1b =, ∴一次函数的解析式为1y x =+;(2)当1x >时,函数(0)y mx m =≠的函数值都大于1y x =+,即图象在1y x =+上方,由下图可知:临界值为当1x =时,两条直线都过点(1,2), ∴当12x m >>,时,(0)y mx m =≠都大于1y x =+, 又∵1x >,∴m 可取值2,即2m =, ∴m 的取值范围为2m ≥. 【点睛】本题考查了求一次函数解析式,函数图像的平移,一次函数的图像,找出临界点是解题关键.考点一一次函数图像与系数的关系例1.(2020·明光市明湖学校八年级月考)若一次函数y=kx+b的图象经过第一、二、四象限,则一次函数y=bx+k的图象大致是()A. B. C. D.【答案】D【分析】根据一次函数y=kx+b图象在坐标平面内的位置关系先确定k,b的取值范围,再根据k,b 的取值范围确定一次函数y=bx+k图象在坐标平面内的位置关系,从而求解.【详解】解:∵一次函数y=kx+b过一、二、四象限,∴则函数值y随x的增大而减小,图象与y轴的正半轴相交∴k<0,b>0,∴一次函数y=bx+k的图象y随x的增大而增大,与y轴负半轴相交,∴一次函数y=bx+k的图象经过一三四象限.故选:D.【点睛】本题考查了一次函数的性质.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0;一次函数y=kx+b图象与y轴的正半轴相交⇔b>0,一次函数y=kx+b图象与y轴的负半轴相交⇔b<0,一次函数y=kx+b图象过原点⇔b=0.【变式训练】=+的图象如图所示,则下列结论正确的1.(2020·湖南益阳市·中考真题)一次函数y kx b是()A .0k <B .1b =-C .y 随x 的增大而减小D .当2x >时,0kx b +<【答案】B 【分析】根据一次函数的图象与性质判断即可. 【详解】由图象知,k ﹥0,且y 随x 的增大而增大,故A 、C 选项错误; 图象与y 轴负半轴的交点坐标为(0,-1),所以b=﹣1,B 选项正确; 当x ﹥2时,图象位于x 轴的上方,则有y ﹥0即+kx b ﹥0,D 选项错误, 故选:B . 【点睛】本题考查一次函数的图象与性质,利用数形结合法熟练掌握一次函数的图象与性质是解答本题的关键.2.(2020·江苏镇江市·中考真题)一次函数y =kx +3(k ≠0)的函数值y 随x 的增大而增大,它的图象不经过的象限是( ) A .第一 B .第二C .第三D .第四【答案】D 【分析】根据一次函数y =kx +3(k ≠0)的函数值y 随x 的增大而增大,可以得到k >0,与y 轴的交点为(0,3),然后根据一次函数的性质,即可得到该函数图象经过哪几个象限,不经过哪个象限,从而可以解答本题. 【详解】解:∵一次函数y =kx +3(k ≠0)的函数值y 随x 的增大而增大, ∴k >0,该函数过点(0,3),∴该函数的图象经过第一、二、三象限,不经过第四象限, 故选:D . 【点睛】本题考查了一次函数的性质及一次函数的图象.解答本题的关键是明确题意,利用一次函数的性质解答.考点二 一次函数的性质例2. (2020·湖北省直辖县级行政单位·中考真题)对于一次函数2y x =+,下列说法不正确的是( ) A .图象经过点()1,3 B .图象与x 轴交于点()2,0- C .图象不经过第四象限 D .当2x >时,4y <【答案】D 【分析】根据一次函数的图像与性质即可求解. 【详解】A.图象经过点()1,3,正确;B.图象与x 轴交于点()2,0-,正确C.图象经过第一、二、三象限,故错误;D.当2x >时,y >4,故错误; 故选D . 【点睛】此题主要考查一次函数的图像与性质,解题的关键是熟知一次函数的性质特点. 【变式训练】1.(2020·广东广州市·中考真题)一次函数31y x =-+的图象过点()11,x y ,()121,x y +,()132,x y +,则( )A .123y y y <<B .321y y y <<C .213y y y <<D .312y y y <<【答案】B 【分析】根据一次函数的图象分析增减性即可. 【详解】因为一次函数的一次项系数小于0,所以y 随x 增减而减小. 故选B . 【点睛】本题考查一次函数图象的增减性,关键在于分析一次项系数与零的关系.2.(2020·辽宁丹东市·中考真题)一次函数2y x b =-+,且0b >,则它的图象不经过第_________象限. 【答案】三 【分析】根据一次函数的性质,即可得到答案. 【详解】解:在一次函数2y x b =-+中, ∵20-<,0b >,∴它的图象经过第一、二、四象限,不经过第三象限; 故答案为:三 【点睛】本题考查了一次函数的性质,熟练掌握0k <,0b >,经过第一、二、四象限是解题的关键.考点三 求一次函数的解析式例3(2020·湖南郴州市·中考真题)小红在练习仰卧起坐,本月1日至4日的成绩与日期具有如下关系:小红的仰卧起坐成绩y 与日期x 之间近似为一次函数关系,则该函数表达式为__________. 【答案】y=3x+37. 【分析】利用待定系数法即可求出该函数表达式.【详解】解:设该函数表达式为y=kx+b ,根据题意得:40243k b k b +⎧⎨+⎩==, 解得337k b ⎧⎨⎩==,∴该函数表达式为y=3x+37. 故答案为:y=3x+37. 【点睛】本题考查了一次函数的应用,会利用待定系数法求出一次函数的解析式是解题的关键. 【变式训练】1.(2020·江西中考真题)在平面直角坐标系中,点O 为坐标原点,抛物线223y x x =--与y 轴交于点A ,与x 轴正半轴交于点B ,连接AB ,将Rt OAB 向右上方平移,得到Rt O A B '''△,且点O ',A '落在抛物线的对称轴上,点B '落在抛物线上,则直线A B ''的表达式为( ) A .y x = B .1y x =+C .12y x =+D .2y x =+【答案】B 【分析】先求出A 、B 两点的坐标和对称轴,先确定三角形向右平移了1个单位长度,求得B′的坐标,再确定三角形向上平移5个单位,求得点A′的坐标,用待定系数法即可求解. 【详解】解:当y=0时,2230x x --=,解得x 1=-1,x 2=3, 当x=0时,y=-3, ∴A (0,-3),B (3,0), 对称轴为直线12bx a=-=, 经过平移,A '落在抛物线的对称轴上,点B '落在抛物线上, ∴三角形Rt OAB 向右平移1个单位,即B′的横坐标为3+1=4, 当x=4时,y=42-2×4-3=5,∴B′(4,5),三角形Rt OAB 向上平移5个单位, 此时A′(0+1,-3+5),∴A′(1,2), 设直线A B ''的表达式为y=kx+b , 代入A′(1,2),B′(4,5),可得254k bk b =+⎧⎨=+⎩ 解得:11k b =⎧⎨=⎩,故直线A B ''的表达式为1y x =+, 故选:B . 【点睛】本题考查二次函数的图象和与坐标轴的交点坐标、图形的平移和待定系数法求一次函数表达式等知识点,解题的关键是熟练掌握二次函数的图形和性质.2.(2020·贵州黔西南布依族苗族自治州·中考真题)如图,正比例函数的图象与一次函数y =-x +1的图象相交于点P ,点P 到x 轴的距离是2,则这个正比例函数的解析式是________.【答案】y =-2x 【分析】首先将点P 的纵坐标代入一次函数的解析式求得其横坐标,然后代入正比例函数的解析式即可求解. 【详解】∵点P 到x 轴的距离为2, ∴点P 的纵坐标为2,∵点P 在一次函数y =-x +1上, ∴2=-x +1,解得x =-1, ∴点P 的坐标为(-1,2). 设正比例函数解析式为y =kx ,把P (-1,2)代入得2=-k ,解得k =-2, ∴正比例函数解析式为y =-2x , 故答案为:y =-2x . 【点睛】本题考查了用待定系数法求正比例函数解析式,及两函数交点问题的处理能力,熟练的进行点与线之间的转化计算是解题的关键.考点四 一次函数式图像的平移变换例4. (2020·山东日照市·中考真题)将函数y =2x 的图象向上平移3个单位,则平移后的函数解析式是( ) A .y =2x +3 B .y =2x ﹣3C .y =2(x +3)D .y =2(x ﹣3)【答案】A 【分析】直接利用一次函数“上加下减”的平移规律即可得出答案. 【详解】解:∵将函数y =2x 的图象向上平移3个单位, ∴所得图象的函数表达式为:y =2x +3. 故选:A . 【点睛】本题考查一次函数图象与几何变换,正确记忆“左加右减,上加下减”的平移规律是解题关键. 【变式训练】1.(2020·四川内江市·中考真题)将直线21y x =--向上平移两个单位,平移后的直线所对应的函数关系式为( ) A .25y x =-- B .23y x =--C .21y x =-+D .23y x =-+【答案】C【分析】向上平移时,k的值不变,只有b发生变化.【详解】解:原直线的k=-2,b=-1;向上平移两个单位得到了新直线,那么新直线的k=-2,b=-1+2=1.∴新直线的解析式为y=-2x+1.故选:C.【点睛】本题主要考查了一次函数图象的变换,求直线平移后的解析式时要注意平移时k和b的值发生变化.2.(2020·四川广安市·中考真题)一次函数y=2x+b的图象过点(0,2),将函数y=2x+b 的图象向上平移5个单位长度,所得函数的解析式为________.【答案】y=2x+7【分析】将点(0,2)代入一次函数解析式中,即可求出原一次函数解析式,然后根据平移方式即可求出结论.【详解】解:将点(0,2)代入y=2x+b中,得2=b∴原一次函数解析式为y=2x+2将函数y=2x+2的图象向上平移5个单位长度,所得函数的解析式为y=2x+2+5=2x+7 故答案为:y=2x+7.【点睛】此题考查的是求一次函数解析式和图象的平移,掌握利用待定系数法求一次函数解析式和一次函数的平移规律是解题关键.。
2013届中考数学考前热点冲刺《第11讲 一次函数的图象与性质》课件 新人教版
教材母题
人教版八上 P120T8
一个函数的图象是经过原点的直线 , 并且这条直线过第 四象限及点 (2,-3a)与点(a,-6),求这个函数的解析式.
第11讲┃ 回归教材
解:根据题目条件,可设这个函数的解析式为
2k=-3a, ak=-6, a=2, 解得 k=-3, a=-2, 或 k=3.
一、二、三象限 ________________
y随x增 大而增大
________________ 一、三、四象限
y=kx+ b(k≠0)
一、二、四象限 _______________
y随x增 大而减小
二、三、四象限 _______________
第11讲┃ 考点聚焦 考点3 两条直线的位置关系
直线l1:y=k1x+b1和l2: y=k2x+b2的位置关系
第11讲┃ 考点聚焦
(2)正比例函数与一次函数的性质 函数 字母取值 图象 经过的象限 k>0 y=kx (k≠0)
一、三象限 _______
函数性质 y随x增 大而增大 y随x增 大而减小
k<0
二、四象限 _______
第11讲┃ 考点聚焦
k>0 b>0 k>0 b<0 k<0 b>0 k<0 b<0
第11讲┃ 回归教材
中考变式
[2012· 聊城] A(1,0), 与 y 轴交于点 B(0,-2). (1)求直线 AB 的关系式; (2)若直线 AB 上的点 C 在第一象限,且 S△ BOC=2,求点 C 的坐标.
图 11-4
第11讲┃ 回归教材
b =a k+b, 1 1 b2=a2k+b,
中考总复习数学11- 第一部分 第11讲一次函数的图象和性质(精练册)
11.(2022·江苏泰州)一次函数y=ax+2的图象经过点(1,0).当y>0时,x的取值
范围是 x<1
.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
第11讲
一次函数的图象和性质
挑战高分
基础全练
中考创新练
12.(2022·辽宁盘锦)点A(x1,y1),B(x2,y2)在一次函数y=(a-2)x+1的图象上,当
x1>x2时,y1<y2,则a的取值范围是
a<2
.
13.(2022·江苏扬州)如图,函数y=kx+b(k<0)的图
象经过点P,则关于x的不等式kx+b>3的解集
为
x<-1 .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
第11讲
一次函数的图象和性质
挑战高分
基础全练
中考创新练
14.(2022·陕西)如图,是一个“函数求值机”的示意图,其中y是x的函数.下
所在象限为( B )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
9.(2022·湖南永州)已知一次函数y=x+1的图象经过点(m,2),则m=
1
2
3
4
5
6
7
8
9
10
11
1
12
.
13
14
第11讲
第11讲 一次函数的图象和性质
5.(2016·温州)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段 AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周 长为10,则该直线的函数表达式是( C) A.y=x+5 B.y=x+10
C.y=-x+5
D.y=-x+10
D 【例1】 (1)(2016·玉林)关于直线l:y=kx+k(k≠0),下列说法不正确的是( ) A.点(0,k)在l上 B.l经过定点(-1,0) C.当k>0时,y随x的增大而增大 D.l经过第一、二、三象限 (2)(2016·贵阳)已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点 ,则a与b的大小关系是____. a>b 【点评】 一次函数y=kx+b(k,b为常数,k≠0)是一条直线,当k>0时,图象 经过第一、三象限,y随x的增大而增大;当k<0时,图象经过第二、四象限,y随x 的增大而减小;图象与y轴的交点坐标为(0,b).
解:①对于直线 y= 3x+ 3,令 x=0,则 y= 3,令 y=0, 则 x=-1, 故点 A 的坐标为(0, 3), 点 B 的坐标为(-1, 0), 则 AO= 3, AO BO=1,在 Rt△ABO 中,∵tan∠ABO=BO = 3,∴∠ABO=60°; ②在△ABC 中,∵AB=AC,AO⊥BC,∴AO 为 BC 的中垂线, 即 BO=CO,则 C 点的坐标为(1,0),设直线 l 的解析式为 y=kx+b(k, k=- 3, 3=b, b 为常数),则 解得 即函数解析式为 y=- 3x+ 3. 0=k+b, b= 3,
(2)在平面直角坐标系中,已知点 A(27 ,3),B(4,7),直线 y=kx-k(k≠0) ≤k≤3 与线段 AB 有交点,则 k 的取值范围为 3 .
中考数学复习 第一部分 知识梳理 第三章 函数 第11讲 反比例函数数学课件
设A1D=a,则OD=2+a,P2D=3a. ∴P2(2+a,3a).
答图1-11-2
∵P2(2+a,3a)在反比例函数的图象(tú xiànɡ)上,
∴代入y= ,得(2+a)·3a=3.
化简,得a2+2a-1=0.解得a=-1±2.
∵a>0,∴a=-1+2.∴A1A2=-2+22.
∴OA122/9=/2O021A1+A1A2=22,所以点A2的坐标为(22,0).
13. (2017枣庄)如图1-11-11,反比例函数y=2x的图象经过矩 形OABC的边AB的中点(zhōnɡ diǎn)D,则矩形OABC的面积为 ___4_____.
14. (2018宜宾)如图1-11-12,已知反比例函数= (m≠0)
的图象经过点(1,4),一次函数y=-x+b的图象经过反比例 函数图象上的点Q(-4,n). (1)求反比例函数与一次函数的表达式; (2)一次函数的图象分别(fēnbié)与x轴,y轴交于A,B两点, 与反比例函数图象的另一个交点为点P,连接OP,OQ, 求△OPQ的面积.
第十八页,共二十四页。
基础训练
9. (2018衡阳)对于反比例函数y=- ,下列说法(shuōfǎ)不正确 的是( ) D
A.图象分布在第二、四象限
B.当x>0时,y随x的增大而增大 C.图象经过点(1,-2) D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则 y1<y2
10. (2018无锡)已知点P(a,m),Q(b,n)都在反比
12/9/2021
第二十二页,共二十四页。
解:(1)∵反比例函数(hánshù)y= (m≠0)的图象经过点Q(1, 4),
【中考复习方案】2015中考数学总复习 第11课时 一次函数的图象及性质课件(考点聚焦+京考探究+热考京讲)
例 1 对于一次函数 y=-2x+4, 下列结论错误的 是( D ) A.函数值随自变量的增大而减小 B.函数的图象不经过第三象限 C. 函数的图象向下平移 4 个单位长度得 y=-2x 的图象 D.函数的图象与 x 轴的交点坐标是(0,4)
考点聚焦
京考探究
第11课时┃一次函数的图像及性质
[解析] ∵一次函数 y=-2x+4 中 k=-2<0, ∴函数 值 y 随 x 的增大而减小,故 A 正确;∵一次函数 y=-2x +4 中 k=-2<0,b=4>0,∴此函数的图象经过第一、 二、 四象限, 不经过第三象限, 故 B 正确; 由“上加下减” 的原则可知,函数的图象向下平移 4 个单位长度得 y=- 2x 的图象,故 C 正确;∵令 y=0,则 x=2,∴函数的图 象与 x 轴的交点坐标是(2,0),故 D 错误.故选 D.
考点聚焦
京考探究
第11课时┃一次函数的图像及性质
方法点析
一般来说,使用待定系数法求函数解析式有“四部曲”: (1)设——按照所求函数类型,设出解析式,其系数是待定的; (2)列——把题目中提供的坐标代入所设解析式中,列出关于待定系 数的方程或方程组; (3)解——解这个方程或方程组,得到待定系数的值; (4)代——将第(3)步中求出的结果,代入第(1)步所设的解析式中,从 而得到完整的函数解析式. 通常情况下,有几个待定的系数,就要列几个方程,也就需要几个 点的坐标.
考点2 一次函数的图象和性质
第一、三象限
第二、四象限
考点聚焦
京考探究
第11课时┃一次函数的图像及性质
第一、二、三象限
第一、三、四象限
第一、二、四象限
第二、三、四象限
考点聚焦
京考探究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
会作图 会识图
会用图
范例1
变式1
变式2
题目:函数
y=x|x| 的图象大致是 ( A )
总结: 1.定义域[左右位置] 4.奇偶性[图像对称] 2.值 域[上下位置 5.周期性[循环往复] ] 6.特殊点[必经之路]
范例1
变式1
变式2
题目:函数 y=2x-x2 的图象大致是 ( A )
1.定义域[左右位置] 4.奇偶性[图像对称] 2.值 域[上下位置 5.周期性[循环往复] ] 6.特殊点[必经之路]
范例1
变式1
3
变式2
x 题目:函数 y x 的大致图象是 C . 3 1
◇◇图见P32例题2
范例2
变式1
变式2
题目:函数
f(x)=x|4-x| , (x∈R).
(1)作出函数f(x)的图象; (2) 求f(x)的单调递减区间;
谢 谢 大 家!
2.转化:y1 log 1 x
2
x
1 y2 2
x
3.作图:略
范例2
变式1
x
变式2
题目:方程 2 log 1 x 1 0 的根的个数是
2
.
总结: 1.解不等式转化为函数的高低问题.
[数的大小]↔ [图象的高低]
2.解方程转化为函数图象相交问题.
[根的个数]↔ [图象交点个数]
(3)求不等式 f(x)>0的解集;
(4)若方程 f(x)-a=0有三根. 求a的取值范围;
范例2
变式1
x
变式2
题目:方程
2 1 0 的根的个数是
.
范例2
变式1
x
变式2
题目:方程 2 log 1 x 1 0 的根的个数是
2
.
1 1.变形:log 1 x 2 2