运输问题_整数规划

合集下载

运筹学运输问题个人总结(一)

运筹学运输问题个人总结(一)

运筹学运输问题个人总结(一)运筹学运输问题个人总结前言运筹学是一门应用数学学科,旨在通过数学模型和优化算法解决现实生活中的决策问题。

其中,运筹学运输问题是运筹学的基础领域之一,涉及到在给定条件下最佳化资源利用、降低成本、提高效率等方面的问题。

正文在个人学习运筹学运输问题的过程中,我总结了以下几个重要要点:1.运输网络规划:运输问题的首要任务是确定运输网络的结构和连接方式。

这包括确定供应商、仓库、需求点之间的连接关系,以及各个节点的运输容量和成本等。

通过合理规划运输网络,可以实现资源的合理分配和供需的良好匹配。

2.运输成本优化:在确定了运输网络之后,需要通过优化算法求解最佳的运输方案。

这涉及到在满足各种限制条件下,如最小化运输成本、最大化资源利用率等指标的优化问题。

常用的算法包括线性规划、整数规划、动态规划等。

3.路线优化和物流调度:针对具体的运输任务,需要进行路线优化和物流调度。

通过合理的路径规划和物流调度,可以降低运输时间和成本,提高物流效率。

常用的算法包括最短路径算法、最优传送门问题等。

4.风险管理和决策支持:在运输过程中,会存在各种不确定性和风险因素。

因此,需要通过风险管理和决策支持技术来应对不确定情况。

常见的方法包括风险评估、灵敏度分析、决策树等。

结尾通过学习和研究运筹学运输问题,我深刻认识到其在现代物流和供应链管理中的重要性。

合理的运输规划和优化能够帮助企业降低成本、提高效率,实现可持续发展。

通过不断学习和实践,我将不断提升自己在这一领域的能力,并在实践中探索更多有创新性和实用性的解决方案。

运筹学运输问题个人总结(续)路线优化和物流调度在路线优化和物流调度方面,我学到了以下几个重要的观点:•路线优化:通过使用最短路径算法、最优传送门问题等优化算法,可以找到最佳路径来减少运输时间和成本。

另外,还可以考虑交通拥堵等因素,选择避开高峰期的最佳路径。

•物流调度:对于大规模的运输网络,物流调度成为一个重要的挑战。

运筹学CH4整数规划

运筹学CH4整数规划
解决方案
使用整数规划求解器进行求解,得到最优的员工任务指派 方案。
05
整数规划软件实现
MATLAB实现整数规划
MATLAB优化工具箱
MATLAB提供了专门的优化工具箱,其中包含用于解决整 数规划问题的函数和算法。
intlinprog函数
该函数用于解决线性整数规划问题,可以处理大规模问题, 并提供多种求解选项。
CPLEX提供了多种建模方式,包括使 用API接口、编程语言(如Python、 Java)和交互式界面等。
CPLEX采用了先进的分支定界算法和启发式 算法,能够快速有效地求解大规模整数规划 问题。同时,CPLEX还提供了多种参数设置 和求解选项,以满足不同问题的需求。
06
整数规划总结与展望
整数规划研究现状
跨学科融合
整数规划与运筹学、计算机科学、数学等多个学 科密切相关,跨学科融合将为整数规划的研究和 应用带来更多机遇。
THANK YOU
感谢聆听
求解过程
在LINGO中,用户需要编写包含目标函数和约束条件的模型文件,然后调用 LINGO求解器进行求解。LINGO会自动选择合适的算法,并输出最优解和相关 信息。
CPLEX实现整数规划
CPLEX优化器
建模方式
求解算法
CPLEX是IBM提供的一款高性能数学 优化软件,支持线性规划、混合整数 规划和二次规划等多种问题类型。
在物流领域,整数规划可用于 优化运输路线和配送计划,以 减少运输时间和成本。
金融投资
在金融领域,整数规划可用于 投资组合优化,选择最佳的投 资组合以最大化收益并降低风 险。
城市规划
在城市规划中,整数规划可用 于优化城市布局和交通网络设 计,以提高城市运行效率和居 民生活质量。

运筹学第3章:运输问题-数学模型及其解法

运筹学第3章:运输问题-数学模型及其解法

整数规划模型
01
整数规划模型是线性规划模型 的扩展,它要求所有变量都是 整数。
02
整数规划模型适用于解决离散 变量问题,例如车辆路径问题 、排班问题等。
03
在运输问题中,整数规划模型 可以用于解决车辆调度、装载 等问题,以确保运输过程中的 成本和时间效益达到最优。
混合整数规划模型
混合整数规划模型是整数规划和线性规划的结合,它同时包含整数变量和 连续变量。
运筹学第3章:运输问题-数学模 型及其解法
目录
• 引言 • 运输问题的数学模型 • 运输问题的解法 • 运输问题的应用案例 • 结论
01 引言
运输问题的定义与重要性
定义
运输问题是一种线性规划问题,主要 解决如何将一定数量的资源(如货物 、人员等)从起始地点运送到目标地 点,以最小化总运输成本。
总结词
资源分配优化是运输问题在资源管理 领域的应用,主要解决如何将有限的 资源合理地分配到各个部门或项目, 以最大化整体效益。
详细描述
资源分配优化需要考虑资源的数量、 质量、成本等多个因素,通过建立运 输问题的数学模型,可以找到最优的 资源分配方案,提高资源利用效率, 最大化整体效益。
05 结论
运输问题的发展趋势与挑战
生产计划优化
总结词
生产计划优化是运输问题在生产领域的应用,主要解决如何合理安排生产计划, 满足市场需求的同时降低生产成本。
详细描述
生产计划优化需要考虑原材料的采购、产品的生产、成品的销售等多个环节,通 过建立运输问题的数学模型,可以找到最优的生产计划和调度方案,提高生产效 率,降低生产成本。
资源分配优化
发展趋势
随着物流行业的快速发展,运输问题变得越来越复杂,需要更高级的数学模型和算法来 解决。同时,随着大数据和人工智能技术的应用,运输问题的解决方案将更加智能化和

运筹学答案_第_8_章__整数规划

运筹学答案_第_8_章__整数规划

3 3
*=1,
或 x11 *=0,x1 *=1,x1 *=0,x14 *=0, x 2 3 x 34 *=0, x
41 21
*=0,x 2 *=0,x 2 *=0,x 2 *=1,x 3 *=0, 2 3 4 1 x
32
*=0, x
3 3
*=1,
*=1,x 42 *=0, x
4 3
*=0,x 44 *=0,z*=71
b.该目标函数的数学模型为: minz=100y1+300y2 +200y3 +7x1+2x2 +5x3 s.t. x1+x2 +x3 =2000, 0.5x1+1.8x2 +1.0x3 ≤ 2500, x1 ≤ 800, x2 ≤ 1200, x3 ≤ 1400, x ≤ yM,
1 1
x2 ≤ y2M, x3 ≤ y3M , x1,x2,x3 ≥ 0,且为整数,y1,y2,y3 为 0-1 变量。 目标函数最优解为 : x1*=0,x2*=625,x3*=1375,y1=0,y 2 =1,y3=1,z*=8625
1, 当 第 i 项 工 程 被 选 定 时, xi = 0,当第 i 项工程没被选定时。 根据给定条件,使三年后总收入最大的目标函数的数学模型为: maxz = 20x 1 + 40x2 + 20x3 +15x 4 + 30x 5 s.t. 5x +4x +3x +7x +8x ≤ 25,
1 2 3 4 5
max z=7x1+9x2 +3x3 -x1 +3x2 +x3 ≤ 7, 7x1+x2 +x3 ≤ 38, x1,x2,x3 ≥ 0,且 x1 为整数,x3 为 0-1 变量。

广工管理运筹学第三章运输问题

广工管理运筹学第三章运输问题

闭合回路法的优点是能够找到全局最 优解,适用于大型复杂运输问题。但 该方法的计算复杂度较高,需要较长 的计算时间。
商位法
01
商位法是一种基于商位划分的优化算法,用于解决运输问题。该方法通过将供 应点和需求点划分为不同的商位,并最小化总运输成本。
02
商位法的计算步骤包括:根据地理位置和货物需求量,将供应点和需求点划分 为不同的商位;根据商位的地理位置和货物需求量,计算总运输成本;通过比 较不同商位的总运输成本,确定最优的配送路线。
80%
线性规划法
通过建立线性规划模型,利用数 学软件求解最优解,得到最小化 总成本的运输方案。
100%
启发式算法
采用启发式规则逐步逼近最优解 ,常用的算法包括节约算法、扫 描算法等。
80%
遗传算法
基于生物进化原理的优化算法, 通过模拟自然选择和遗传机制来 寻找最优解。
02
运输问题的数学模型
变量与参数
约束条件
供需平衡
每个供应点的供应量等于对应 需求点的需求量,这是运输问 题的基本约束条件。
非负约束
运输量不能为负数,即每个供 应点对每个需求点的运输量都 应大于等于零。
其他约束条件
根据实际情况,可能还有其他 约束条件,如运输能力的限制 、运输路线的限制等。
03
运输问题的求解算法
表上作业法
总结词
直到达到最优解。这两种方法都可以通过构建线性规划模型来求解最优解。
04
运输问题的优化策略
节约法
节约法是一种基于节约里程的优化算法,用于解决 运输问题。该方法通过比较不同配送路线的距离和 货物需求量,以最小化总运输距离为目标,确定最 优的配送路线。
节约法的计算步骤包括:计算各供应点到需求点的 距离,找出最短路径;根据最短路径和货物需求量 ,计算节约里程;按照节约里程排序,确定最优配 送路线。

运筹学中整数规划问题的近似算法

运筹学中整数规划问题的近似算法

运筹学中整数规划问题的近似算法近似算法在运筹学中整数规划问题的解决中起着重要的作用。

整数规划问题是指决策变量为整数的最优化问题,它在实际问题中具有广泛的应用,如物流配送、生产调度以及网络优化等领域。

然而,由于整数规划问题的困难性,寻求精确解的方法可能需要耗费大量的时间和计算资源。

因此,近似算法成为一种有效的求解整数规划问题的方式。

一、整数规划问题的定义与特点整数规划问题可以定义为在约束条件下,目标函数为整数线性函数的最优化问题。

它与线性规划问题相比,多了一个要求决策变量为整数的限制条件。

这使得整数规划问题的解空间不连续,增加了问题的难度。

二、整数规划问题的近似算法分类在运筹学领域,有多种近似算法被提出来解决整数规划问题。

根据算法的思想和方法,这些算法可以分为以下几类:1. 分支定界算法分支定界算法是一种广泛运用于整数规划问题求解的近似算法。

该算法的基本思想是通过将整数规划问题分解为多个子问题,并对每个子问题进行线性规划求解。

通过对每个子问题的目标函数值进行判断和优化,最终得到整数规划问题的近似解。

2. 近似拉格朗日算法近似拉格朗日算法是一种基于拉格朗日乘子法的近似算法。

该算法的核心思想是通过求解相应的拉格朗日松弛问题来逼近整数规划问题的最优解。

这种方法可以有效地简化整数规划问题的复杂度,提高问题求解的效率。

3. 启发式算法启发式算法是一种利用经验或专业知识来指导求解过程的近似算法。

它不保证可以找到问题的最优解,但可以快速找到较好的解。

常见的启发式算法包括遗传算法、模拟退火算法和蚁群算法等。

三、近似算法的优缺点近似算法在解决整数规划问题中具有以下优点:1. 时间复杂度低:与精确算法相比,近似算法可以大大减少计算时间,加快问题的求解速度。

2. 解的质量较高:虽然近似算法不能保证找到问题的最优解,但通常能够找到接近最优解的较好解。

然而,近似算法也存在一些缺点:1. 解的质量不能保证:近似算法在求解整数规划问题时,无法提供问题的最优解。

整数规划与运输问题

整数规划与运输问题

式中 xj-Myj≤0 是处理 xj 与 yj 一对变量之间逻辑关系的特殊约束,M为 任意大的正数当 xj>0 时 yj=1 ,当 xj=0 时,为使 Z 最小化,有 yj=0。 此问题为混合整数规划问题。
3.1.3 整数规划问题的解
从数学模型上看整数规划似乎是线性规划的一种特殊形式,求解 只需在线性规划的基础上,通过舍入取整,寻求满足整数要求的 解即可。但实际上两者却有很大的不同,通过舍入得到的解(整 数)也不一定就是最优解,有时甚至不能保证所得到的解是整数 可行解。
举例说明。
例3.5 设整数规划问题如下
max Z x1 x2
s.t.
146xx11
9x2 3x2

51 1

x1
,
x2

0且为整数
首先不考虑整数约束,得到线性规划问题(一般称为松弛问题)。
max Z x1 x2
s.t.
146xx11
9x2 3x2

(LP)

n
aij x j
j 1
bi
(i 1, 2,
, m)

x
j

0,(
j
1, 2,
, m)
1、先不考虑整数约束,解( IP )的松弛问题( LP ),可能得到以下情况 之一:
⑴.若( LP )没有可行解,则( IP )也没有可行解,停止计算。
⑵.若( LP )有最优解,并符合( IP )的整数条件,则( LP )的最优 解即为( IP )的最优解,停止计算。
max Z 3x1 2x2
max Z 3x1 2x2
2x1 x2 9
(

《管理运筹学》02-7运输问题

《管理运筹学》02-7运输问题
在运输问题中,混合整数规划可以处理更为复 杂的约束条件和多阶段决策过程。
通过将问题分解为多个子问题,并应用分支定 界法等算法,可以找到满足所有约束条件的整 数解,实现运输资源的合理配置。
04运Leabharlann 问题的实际案例物资调拨案例
总结词
物资调拨案例是运输问题中常见的一种,主要涉及如何优化物资从供应地到需 求地的调配。
02
动态运输问题需要考虑运输过 程中的不确定性,如交通拥堵 、天气变化等,需要建立动态 优化模型来应对这些变化。
03
解决动态运输问题需要采用实 时优化算法,根据实际情况不 断调整运输计划,以实现最优 的运输效果。
多式联运问题
1
多式联运是指将不同运输方式组合起来完成一个 完整的运输任务,需要考虑不同运输方式之间的 衔接和配合。
生产计划案例
总结词
生产计划案例主要关注如何根据市场需求和生产能力制定合理的生产计划。
详细描述
生产计划案例需要考虑市场需求、产品特性、生产成本、生产周期等因素。通过 优化生产计划,可以提高生产效率、降低生产成本,并确保产品按时交付给客户 。
05
运输问题的扩展研究
动态运输问题
01
动态运输问题是指运输需求随 时间变化而变化的运输问题, 需要考虑时间因素对运输计划 的影响。
2
多式联运问题需要考虑不同运输方式的成本、时 间、能力等因素,需要建立多目标优化模型来平 衡这些因素。
3
解决多式联运问题需要采用混合整数规划或遗传 算法等算法,以实现多目标优化的效果。
逆向物流问题
1
逆向物流是指对废旧物品进行回收、处 理和再利用的物流活动,需要考虑废旧 物品的回收、分类、处理和再利用等环 节。
的情况。如果存在这些问题,就需要进行调整,直到找到最优解为止。

数学建模--运输问题

数学建模--运输问题

运输问题摘要本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo 编程求解出最终结果。

关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。

考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。

关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。

首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。

即最短路线为:1-5-7-6-3-4-8-9-10-2-1。

但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。

关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。

这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。

因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。

得到优化结果为:第一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。

关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。

运筹学 第4章 整数规划与分配问题

运筹学 第4章 整数规划与分配问题

匈牙利法思路:若能在 [Cij] 中找出 n 个位于
不同行不同列的0元素(称为独立0元素),则
令解矩阵[xij]中对应这n个独立0元素的元素
取值为 1 ,其他元素取值为 0 ,则它对应目
标函数zb=0是最小的。这就是以[Cij]为系数
矩阵分配问题的最优解,也得原问题的最
优解。
定理1 若从分配问题效率矩阵[cij]的每一行元素中分别减去 (或加上)一个常数ui(称为该行的位势),从每一列分别减去 (或加上)一个常数vj(称为该列的位势),得到一个新效率矩阵 [bij],若其中bij=cij-ui-vj,则[bij]的最优解等价于[cij]的最优解
第1步:找出效率矩阵每行的最小元素,并分别从每行
中减去。
第2步:再找出矩阵每列的最小元素,并分别从各列中 减去。
2 10 9 7 2 15 4 14 8 4 13 14 16 11 11 4 15 13 9 4
0 8 7 5 11 0 10 4 0 3 5 0 0 11 9 5
表明m个约束条件中有(m-k)个的右端项为( bi+M ),不起约 束作用,因而,只有k个约束条件起作用。 ② 约束条件的右端项可能是r个值b1 , b2 ,, br 中的某一个 即: 定义:
n
aij x j b1 或b2或或br
j 1
1 假定约束右端项为 bi yi 否则 0
现用下例来说明: max z=40x1+90x2 9x1+7x2≤56 7x1+20x2≤70 x1,x2≥0 x1,x2整数 ① ② ③ ④ ⑤
解:先不考虑条件⑤,即解相应的线性规划B,①~④(见图5-2), 得最优解x1=4.81,x2=1.82,z0=356

实验2 Lingo求解运输问题和整数规划

实验2  Lingo求解运输问题和整数规划

a=1.25,8.75,0.5,5.75,3,7.25;
b=1.25,0.75,4.75,5,6.5,7.75;
!quantities of the demand and supply(供需量);
d=3,5,4,7,6,11; e=20,20;
x,y=5,1,2,7;
enddata
init:
!initial locations for the supply(初始点);
j 1 i1
2
s.t.
cij d i , i 1,...,6
线性规划模型
j 1
6
cij e j ,
j 1,2
用例中数据计算,
最优解为
i
i 1
12 345 6
ci1( 料 场A) 3 5 0 7 0 1
ci2( 料 场B) 0 0 4 0 6 10
总吨公里数为136.2
Location(Linear)
月份型 monthM..monthN OCT..JAN
OCT, NOV, DEC, JAN
年份月份型
monthYearM..mo nthYearN
OCT2001..JAN OCT2001,
2002
NOV2001,
DEC2001,
JAN2002
运算符的优先级
三类运算符:
算术运算符 逻辑运算符 关系运算符 优先级 运算符 最高 #NOT# —(负号)
43
A5
2 3 9 57 2
65
41
A6
5 5 2 28 1
43
52
销量
35 37 22 32 41 32 43 38
a i 6 0 5 5 1 4 3 4 1 5 2 30 2 b i 3 3 5 2 7 3 2 4 2 3 1 4 2 3 3 2 88

运筹学(重点)

运筹学(重点)

两个约束条件
(1/3)x1+(1/3)x2=1
及非负条件x1,x2 0所代表的公共部分
--图中阴影区, 就是满足所有约束条件和非负
条件的点的集合, 即可行域。在这个区域中的每
一个点都对应着一个可行的生产方案。
22
5–
最优点
4–
l1 3B E
2D
(1/3)x1+(4/3)x2=3
l2 1–
0 1〡 2〡 3A 4〡 5〡 6〡 7〡 8〡 9〡C
运筹学 Operational Research
运筹帷幄,决胜千里
史记《张良传》
1
目录
绪论 第一章 线性规划 第二章 运输问题 第三章 整数规划 第四章 动态规划 第五章 目标规划 第六章 图与网络分析
2
运筹学的分支 数学规划: 线性规划、非线性规划、整数规划、 动态规划、目标规划、多目标规划 图论与网络理论 随机服务理论: 排队论 存储理论 决策理论 对策论 系统仿真: 随机模拟技术、系统动力学 可靠性理论
32
西北角
(一)西北角法
销地
产地
B1
0.3
A1
300
0.1 A2
0.7 A3
销量 300
B2
1.1
400
0.9
200
0.4
600
B3
0.3
0.2
200
1.0
300 500
B4
产量
1.0
700 ②
0.8
400 ④
0.5
600
900 ⑥
600
2000




34
Z
cij xij 0.3 300 1.1 400 0.9 200

运筹学-第三章-整数规划

运筹学-第三章-整数规划

于是,对原问题增加两个新约束条件,将原问题分为两个 子问题,即有
max z 40x1 90x2
max z 40x1 90x2
9x1 7x2 56
s.t
7 x1
20 x2
70
x1 4
x1, x2 0
(LP1)
9x1 7x2 56

s.t
7
x1
20
x2
70
(LP2)
x1 5
表 3.1
货物 体积(米 3/箱) 重量(百公斤/箱) 利润(百元/箱)

5
2
20

4
5
10
托运限制 24 米 3
13 百公斤
解: 设x1,x2 分别为甲、乙两种货物的托运箱数,则数 学模型可以表示为:
max z 20x1 10x2
5x1 4x2 24 2x1 5x2 13 x1, x2 0, x1, x2整数
其中,目标函数表示追求最大的卫星实验价值;第1,2个约
束条件表示体积和重量的限制;第3-5个约束条件表示特定的卫
星装载要求,该问题的决策变量是0-1整数变量。
3.2.3隐枚举法 从上面两个例子可以看出,此类型问题是整数规划中的特
殊情形,其中决策变量 xi 的取值只能为0或1,此时变量 xi 称 为0-1变量,这类问题被称为0-1整数规划。对于 xi 的取值的 0-1约束,可以转化成下述整数约束条件:xi 1, xi 0, xi Z
目前对于整数规划问题的求解主要有两种方法:分支 定解法和割平面法。本章仅介绍分枝定界法,该方法在上 世纪60年代由Land Doig和Dakin等人提出,其具有灵活 且便于计算机求解的优点,所以现在已成为解决整数规划 问题的重要方法。下面通过例子说明分支定界方法的算法 思想和步骤。

运筹学 第四章 整数规划与分配问题

运筹学 第四章 整数规划与分配问题

第四章 整数规划与分配问题
冯大光制作
(4)
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
第二节 分配问题与匈牙利法
在实际中经常会遇到这样的问题,有n 项不同 的任务,需要n 个人分别完成其中的一项,但由 于任务的性质和各人的专长不同,因此各人去 完成不同的任务的效率(或花费的时间或费用) 也就不同。于是产生了一个问题,应指派哪个 人去完成哪项任务,使完成 n 项任务的总效率 最高(或所需时间最少),这类问题称为指派 问题或分配问题。
种下料方式可以得到各种零件的毛坯数以及每种
零件的需要量,如表所示。问怎样安排下料方式, 使得即满足需要,所用的原材料又最少?
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
设:xj 表示用Bj (j=1.2…n) 种方式下料根数模型:
x1 … xn
零件 方 个数 式 零件
A1 b1 Am am1 amn bm
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
逻辑变量的应用
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
(3)两组条件满足其中一组
若 x1 4,则 x2 1 ;否则(即 x1 4 时) 2 3 x
列的零元素,则只要令这些零元素位置的 xij 1 ,其 n n 余的 xij 0 ,则 z aij xij 就是问题的最优解.
i 1 j 1
沈阳农业大学
第四章 整数规划与分配问题
冯大光制作
如效率 矩阵为

2.运筹学_整数规划案例

2.运筹学_整数规划案例
1. 投资问题 现有总额为b的资金可用于投资,共有n个项目可 供投资者选择,已知项目j所需投资额为aj,投资后可 得利润cj(j = 1,2,…,n),不妨设b,aj,cj 均是 整数,试问为使所得利润最大,应选取那些项目进行 投资? 1…对项目j投资 先引入0-1变量xj,令 xj= 0…否则 n
设每个月从仓库i运往地区j的产品的货物数量为xij,引入0- 1变量yi= 1表示在Ai设立仓库,否则不设。 设每个月的总花费为z,则上述问题的数学模型为 Min z=200x11+400x12+500x13+300x21+250x22+450x23 +600x31+400x32+250x33+300x41+150x42+350x43+45000y1+5000 0y2+70000y3+40000y4 s.t. x11+x12+x13≤1000y1 x21+x22+x23≤1000y2 x31+x32+x33≤1000y3 x41+x42+x43≤1000y4 x11+x21+x31+x41≥600 x12+x22+x32+x42≥700 x13+x23+x33+x43≥800 y2-y4≤0 y1+y2+y3+y4≤3
y3+y4 ≤ 1
工厂选址运输问题
设有n个需求点,有m个可供选择的厂址, 每个厂址只能建一个工厂,在i处建厂,生产 能力为Di,单位时间的固定成本为ai,需求点 j的需求量为bj,从厂址i到需求点j的单位运费 为Cij,问应如何选择厂址才能获得经济上的总 花费最小的方案。

线性规划与混合整数规划在物流运输中的应用

线性规划与混合整数规划在物流运输中的应用

线性规划与混合整数规划在物流运输中的应用随着全球贸易的发展,物流运输变得愈发重要。

物流运输是产品从生产地到消费地的流动及相关服务的总称,它涉及到产品的储存、包装、运输、信息传递等环节。

为了提升物流效率,降低成本,使物流成为一项可持续发展的产业,线性规划与混合整数规划成为了物流运输中的重要工具。

一、线性规划在物流运输中的应用线性规划是一种以线性数学为基础的最优化方法,它被广泛应用于管理、经济、工程、科学等领域。

在物流运输中,线性规划可以用来确定运输最优方案及最优物流分配。

具体应用包括以下几个方面:1. 路线优化线性规划可以通过优化运输路线,降低物流运输成本。

以一个物流企业为例,它需要将一批货物从生产地点A运往销售地点B、C、D。

在确定最佳运输方案时,需要考虑到不同的运输方式、运输时间、运输成本等诸多因素。

线性规划可以考虑这些因素,确定最佳运输路径,同时满足生产地点A、销售地点B、C、D的运输需求,从而达到降低物流成本的目的。

2. 货源分配物流企业需要根据不同地区的销售情况,合理分配货源。

线性规划可以根据历史销售数据、市场预测等因素,计算出不同地区的销售量和需求量,并将其转化为数学模型,从而确定最佳货源分配方案。

3. 装载方式优化在运输货物时,货车的装载方式需要考虑到运输量、运输距离、装卸时间、货仓容量等因素,以满足不同客户的需求。

线性规划可以通过优化货车的装载方式,节约运输成本,提高物流效率。

二、混合整数规划在物流运输中的应用混合整数规划是一种将整数变量和实数变量混合在一起的最优化计算方法,常用于物流运输问题的解决。

混合整数规划可以应用于以下几个方面:1. 路线优化与线性规划相似,混合整数规划也可以用于优化运输路线。

但与线性规划不同的是,混合整数规划可以考虑到一些离散变量如货车的数量、形状等,从而实现更加精细化的运输路径优化。

2. 车辆调度物流企业需要合理调度运输车辆,以提高车辆利用率,降低物流成本。

运筹学中的线性规划和整数规划

运筹学中的线性规划和整数规划

运筹学中的线性规划和整数规划运筹学是一门涉及决策分析、优化、模型构建和仿真等知识领域的学科,应用广泛,如供应链管理、交通规划、制造业生产、金融投资等方面。

其中,线性规划和整数规划是运筹学中最为基础和重要的优化技术,被广泛应用于各个领域。

一、线性规划线性规划是一种在一组线性约束条件下,求解线性目标函数极值问题的数学方法。

在生产、运输、选址等问题中,线性规划都有着重要的应用。

其数学模型可以表示为:$\max c^Tx$$s.t. Ax \leq b,x\geq 0$其中$c$为目标函数的向量,$x$为决策变量向量,$A$为约束矩阵,$b$为约束向量,$c^Tx$表示目标函数的值,$\leq$表示小于等于。

如果目标函数和约束都是线性的,则可以通过线性规划的求解方法来确定决策变量的最优值。

线性规划的求解方法一般分为单纯形法和内点法两种方法。

单纯性法是线性规划中最为常用的方法,通过对角线交替调整,逐步从可行解中寻找最优解,收敛速度较快,但是存在不稳定的情况。

内点法是近年来发展起来的用于求解大规模线性规划问题的数值方法,其核心思想是迭代求解一系列线性方程组,每次保持解在可行域内部,直到找到最优解为止。

这种方法对大规模问题求解能力强,使用较多。

二、整数规划整数规划是线性规划的升级版,它要求决策变量必须取整数值。

整数规划在很多实际问题中都有着重要的应用,比如很多生产过程中需要将生产数量取整数,物流路径问题需要选取整数条路径等。

与线性规划不同的是,整数规划是NP难问题,没有一种有效的算法能够完全解决所有的整数规划问题。

因此,通常需要采用分支定界、割平面等方法来求解。

分支定界是一种常用的整数规划求解方法。

它通过将整数规划问题分为多个子问题,依次求解这些子问题并优化当前最优解,以逐步逼近最优解。

割平面法则是在分支定界方法的基础上加入约束条件,使得求解过程更加严格化,最终得到更好的结果。

总的来说,运筹学中线性规划和整数规划是不可或缺的优化工具,我们可以通过理论和实践加深对它们的理解。

运筹学运输问题应用实例

运筹学运输问题应用实例

运筹学运输问题应用实例运筹学是一门研究企业决策问题的学科,包括线性规划、整数规划、网络优化、排队论、决策理论等多个分支。

运筹学可以应用于许多领域,其中之一就是运输问题。

运输问题是指在给定的供应和需求条件下,如何合理地安排物资或者人员的调度和运输,使得运输成本最小、效率最高。

以下是几个运输问题的实例,展示了运筹学在现实生活中的应用:1.货物运输问题:某物流公司需要将若干货物从不同的供应地点运送到不同的需求地点,运输成本根据不同的供应-需求对有所差异。

如何设计最优的运输方案,使得总运输成本最小?解决方法:可以使用线性规划模型来描述这个问题。

将各个供需点之间的距离、运输成本等作为变量,建立一个目标函数和一系列约束条件,并通过求解线性规划问题来得到最优的运输方案。

2.配送车辆路径问题:某公司有若干辆配送车辆,需要将货物按照一定的规则分配到不同的配送点,并且保证每个配送点都能得到及时的配送。

如何合理地安排车辆的路径,使得配送成本最小、效率最高?解决方法:可以使用网络优化模型来描述这个问题。

将配送点、车辆、交通网络等抽象成一个图,其中每个节点表示一个配送点或者车辆,边表示两个节点之间的路径。

然后通过求解网络优化问题,找到最优的车辆路径。

3.乘客调度问题:某出租车公司需要根据乘客的叫车需求,合理地调度出租车,以提高乘客的满意度,并最大化车辆的利用率。

如何在不同的时间和地点调度出租车,使得乘客的等待时间最小、出租车的行驶里程最小?解决方法:可以使用排队论模型来描述这个问题。

根据乘客到达的服从分布,建立一个排队论模型,模拟乘客叫车的过程。

然后根据这个模型,确定最佳的出租车调度策略。

4.航班调度问题:某航空公司需要合理地调度飞机的起飞和降落时间,以提高航班的准点率和乘客的满意度。

如何在不同的起降时间和航线之间进行合理的安排,并考虑飞机的机场停靠时间和维修等因素?解决方法:可以使用决策理论和整数规划模型来描述这个问题。

运筹学:第4章 整数规划与分配问题

运筹学:第4章  整数规划与分配问题

2021/4/18
17
资源 金属板(吨) 劳动力(人月) 机器设备(台月)
小号容器 2 2 1
中号容器 4 3 2
大号容器 8 4 3
解:设 x1, x2, x3 分别为小号容器、中号容器和大号容 器的生产数量。
0, 不生产j型号容器 y j 1, 生产j型号容器
建立如下的数学模型:
2021/4/18
为:
C
j
(x
j
)
K 0,
j
c
j
x
j
,
xj 0 xj 0
其中 K j 是与产量无关 的生产准备费用
n
目标函数: min z C j (x j )
j 1
定义
0 y j 1
则原问题可表示为
xj 0
xj 0
n
min z (c j x j K j y j ) j 1
s.t
0 x j Myj
y
j
0或1
2021/4/18
10
§2.2 应用举例
例1 东方大学计算机实验室聘用4名大学生(代号
1,2,3,4)和2名研究生(代号5,6)值班。已知各学生从 周一至周五每天可安排的值班时间及每人每小时报酬见下 表所示。
学生 代号
1 2 3 4 5 6
酬金 (元/h) 10.0 10.0
9.9 9.8 10.8 11.3
2021/4/18
29
(0) 8
2
5
11 (0) 5
4
2
3 (0) 0
0
11
4
5
根据上图,k=2,
周一 6 0 4 5 3 0
每天可安排的值班时间(h) 周二 周三 周四
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
9 2
+q 4
10
-q 3
7
8
3
7
1
4 10
1 -q 6 12
5
-1
5
+q
4
A3
10
3
3
6
9
6
于是q=min{3,1} =1
调整后的方案为
B1 A1 3 11
B2 3
B3 10
B4
0
A2 1 9
2
2
5
8
2
7
3
7 4
2
10
1
5
1
4
A3
9
x11 + x12 x 11 x12 x , x , 11 12
产 量 约 束 销 量 约 束
三、运输问题的分类
产销平衡问题:∑ai= ∑bj
产销不平衡问题:
供大于求:∑ai >∑bj 供不应求:∑ai <∑bj
四、运输问题的求解——表上作业法
设司机和乘务人员分别在各时间段一开始时上班,并连续工 作八小时,问该公交线路怎样安排司机和乘务人员,既能满 足工作需要,又配备最少司机和乘务人员?
解:设 xi 表示第i班次时开始上班的司机和乘务人 员数,于是LP模型为:
min z=x1 + x2 + x3 + x4 + x5 + x6
班次 时间 6:00 —— 10:00 10:00 —— 14:00 14:00 —— 18:00 18:00 —— 22:00 22:00 —— 2:00 2:00 —— 6:00 所需人数 60 70 60 50 20 30
2
1 8 2
9
1
3 6 5
7
4
10
4
3
11
解:令 x i=

1, 保留第i个消防队 0, 撤消第i个消防队
则模型为
min z= x1+x2+x3+x4

x1+x2 ≥1 x1+x2 ≥1 x1 ≥1 x1 +x3 ≥1 x3 ≥1 x1 +x3+x4≥1 x1 +x4≥1 x1+x2 +x4≥1 x1 +x4≥1 x4≥1 x3+x4≥1
解:模型为:
Max Z 7 x1 5 x2 9 x3 6 x4 3 x5
54 x1 35 x2 57 x3 46 x4 19 x5 115 s.t. x 0 或 1 (i 1,,5) i
4. 消防队问题
某城市的消防总部将全市划分为11个防火区,设有4个消防救火站。 下图表示各防火区域与消防站的位置,其中①~④表示消防站,1~11表 示防火区域,图中连线表示各地区由哪个消防站负责(没有直线相连, 就表示不负责)。问题:可否减少消防站的数目,仍能同样负责各地区 的防火任务?如果可以,应关闭哪个消防站?
3 0
0
0
4 0
3 0
用闭回路法进行最优性检验
1、找空格的闭回路:以某空格为起点,用水平线或 垂直线向前划,只能在碰到某一数字格时才能转弯,按照这 一规则继续前进,直到回到起始的空格为止。
B1 A1 3 11 B2 3 B3 10 B4
4
A2 1 9 2 8
3
7
3
A3 7 4 10
1
5
4
6
3 6 5

1, 物品i被选中 0,物品i没被选中
m
Max z ci xi
ai xi b s.t. i 1 xi 0 或 1

m
i 1
例:一个徒步旅行者要在背包中选择一些最有价值的物品携 带。他最多能带115kg的物品,现有5件物品,分别重54、35、 57、46、19kg,其价值依次为7、5、9、6、3。问携带哪些 物品可使总价值最大?
i 1
10
i i
0, Si没被选中
s.t.
x x 1 xx xx 11 x x 1 x x x x 2 x 0
i 1
1
x
7
i
5
8
8
3
5
4
5
5
6
7
8
i
或 1,i=1, … ,10
课堂练习2: 某篮球队有8名队员,其身高和专长如下表,现要选 拔5名球员上场参赛,要求: (1)中锋只有1人上场 (2)后卫至少有一人上场 (3)只有2号上场,6号才上场 要求平均身高最高,应如何选拔队员?
x14+ x24+ x34+ x44= 1 ( R任务只能一人干)
xij = 0 或 1,i,j = 1,2,3,4
课堂练习:P57例2.23
3. 背包问题 问题描述 已知:一个背包最大容量为b公斤;有m件物品供选择,每 件物品重ai公斤,价值为ci(i=1,…,m)。 问题:携带哪些物品可使总价值最大? 一般模型 xi=
E 2 10 9 7 J 15 4 14 8 G 13 14 16 11 R 4 15 13 9
甲 乙 丙 丁
解:令
xij= min

1, 指派第i人去完成第j项任务
0, 不指派第i人去完成第j项任务 z=2x11+15x12+13x13+4x14+10x21+4x22+14x23+15x24
1
1 9
2
2
4
8
3
A2
3
7 4
1
10
1
5
-1
A3
10
3
6
6
12
5
3
6
9
对现有方案进行调整
在负的检验数中选择绝对值最大的空格,在方案表中从该空 格出发,沿着其闭回路依次标上“+q”、 “-q”,
其中q表示最大调整量,它的取值为标“-q”的数字中最小的数值。
B1 A1 3 11
B2 3
B3
B4
1
A2 1
3
6
9
2、根据闭回路计算空格的检验数: 检验数 = 奇数顶点的单位运价之和 – 偶数顶点的单位运价之和
结论:若所有检验数都大于等于0,则当前方案最优
B1 A1 3 11 B2 3 B3 10 B4
检验数的 经济含义: 当由产地 Ai往销地Bj 增运一个 7 单位货物 时所引起 的总运输 4 成本的变 化数
§5
运输问题
一、运输问题的提出
生产某种产品, m个产地:A1,…,Am,产量:a1,…,am n个销地:B1,…,Bn,销量:b1,…,bn 已知:Ai至Bj的运输单价为cij 问题:确定Ai运往Bj的数量xij,使总运费最低?
二、运输问题的表示
网络图
运输表
线性规划模型
运输问题网络图
供应地 a1=7 供 应 量 A1
xi=0或 1,i=1, … ,4
课堂练习: 某市为方便学生上学,拟在新建的居民小区增设 若干所小学。已知备选校址代号及其能覆盖的居民 小区编号如表所示,问为覆盖所有小区至少应建多 少所小学?
备选校址代号
A B C D E F
覆盖的居民小区编号
1、5、7 1、2、5 1、3、5 2、4、5 3、6 4、6
3 11 3 10 1 9 2 8 7 4 10 5
运价
需求地 B1 b1=3
B2 b2=6
B3 b3=5
a2=4 a3=9
A2 A3
需 求 量
B4
b4=6
运输问题的表格表示
B1 A1 3 11 B2 3 B3 10 B4 7
x11
A2 1 9
x12
2
x13
8
x14
4
x21
A3 7 4
x22
10
x23
§4 整数规划
Integer Programming(简称IP)
一、 整数规划的一般模型
IP: max z=CX
AX=b X≥0
LP: max z=CX
AX=b X≥0 X为整数
整数规划的解法:分枝定界法或割平面法
基本思想是把一个整数规划问题化为一 系列的线性规划问题来求解
解:令 x i=

1, 队员i被选中 0,队员i没被选中
1 8 max z= ci xi 5 i 1
s.t.
x
i 1
8
i
5
x1 x2 1
x6 x7 x8 1
x6 x2
xi 0 或 1,i=1, … ,8
2. 指派问题 问题描述:n项任务可由n个人完成,由于专长不同,各人 完成各任务的时间也不同,求最优安排。 要求:每人只能完成一项任务,每项任务只能由一人完成。 例: 有一份中文说明书,需译成英、日、德、俄四种文字, 分别记作任务E、J、G、R,现有甲、乙、丙、丁四人,他们 将中文说明书翻译成不同语种说明书所需的时间如下表所示, 问应指派何人去完成何项任务,使所需总时间最少?
队员 身高 专长 1 1.92 中锋 2 1.90 中锋 3 1.88 前锋 4 1.86 前锋 5 1.85 前锋 6 1.83 后卫 7 1.80 后卫 8 1.78 后卫
某篮球队有8名队员,其身高和专长如下表,现要选 拔5名球员上场参赛,要求: (1)中锋只有1人上场 (2)后卫至少有一人上场 (3)只有2号上场,6号才上场 要求平均身高最高,应如何选拔队员?
5
x24 x34
6 9
x31
相关文档
最新文档