原子吸收光谱法的定量分析方法和测定条件的选择课件

合集下载

原子吸收光谱分析ppt

原子吸收光谱分析ppt
无火焰原子化法
利用电热或激光加热将待测元素转化为原子状态,具有较低的背景干扰和较高的灵敏度。
光谱干扰及其消除方法
光谱干扰
在原子吸收光谱分析中,待测元素可能会受到其他元素的干扰,影响分析结果的准确性。
干扰消除方法
采用物理或化学方法消除干扰元素的影响,如使用分离剂、化学掩蔽等。
04 原子吸收光谱分析的仪器 与设备
原理
当特定频率的光通过待测物质时,原子中的外层电子会吸收 特定波长的光,导致原子能级发生跃迁。吸收程度与待测物 质的浓度呈正比关系,通过测量光强衰减程度可以计算出物 质的含量。
历史与发展
历史
原子吸收光谱分析起源于20世纪50年代,随着科技的不断进步,该技术经历了 从经典方法到现代方法的发展历程。
发展
浓度。
原子吸收光谱仪的主ຫໍສະໝຸດ 部件光源发射特定波长的光源,通常为 空心阴极灯或无极放电灯。
原子化器
将样品转化为可吸收光能的原 子,有火焰、石墨炉和氢化物 原子化器等类型。
单色器和检测器
单色器用于分离入射光中的不 同波长,检测器则用于检测被 吸收的光能量。
数据处理系统
用于处理和记录检测到的数据 ,并计算元素的浓度。
05 原子吸收光谱分析的应用 实例
环境样品中的重金属检测
重金属检测
原子吸收光谱法可以用于检测环境样品中的重金属元素,如铅、汞、镉等。通过测量样品 中特定元素的原子对光的吸收程度,可以确定该元素的浓度。这种方法在环境监测和污染 控制方面具有广泛应用。
准确度高
原子吸收光谱法具有较高的准确度,能够提供较为精确的元素浓度测量结果,有助于评估 环境质量状况和污染程度。
解决实际应用中的问题与挑战
复杂基体干扰

原子吸收光谱法的定量分析方法和测定条件的选择

原子吸收光谱法的定量分析方法和测定条件的选择

Ax c 当A=0时, k
cx
A kc Ax
A—c曲线
方法
特点
适用范围
注意事项
横 向 比 较
标准 曲线 法
简便、快 速、可扣 除空白值
1.所用标准溶液系列浓度应在 A-C曲线的线性范围内 2.标准溶液与试样溶液要用相 组成简单、 同的试剂处理。 大量试样 3.扣除空白值。 的快速分 4.测定过程中,操作条件不变。 析 5.标准试样的组成应尽量与待 测溶液相同。
火焰的氧化性随火焰高度 的变化而变化
Mg Ag
Cr
原则:使测量光束从自由 原子浓度最大的火焰区通 过,保证最大的吸收灵敏 度。
相对吸收值 自由原子在火焰中的分布
5.狭缝宽度的选择
单色器分辨能力大,或光源辐射弱或共振线吸收 小,应选择较宽的狭缝宽度。 单色器分辨能力小,火焰的背景发射强,或吸收 线附近有干扰时,应选择较窄的狭缝宽度。 合适的狭缝宽度应通过实验确定 原则:能将吸收线与邻近的干扰线分开
一、AAS的定量分析方法
定量依据 标准曲线法
标准加入法
定量依据
强度为 I0 的某一波长的辐射通过均匀的原 子蒸气时,根据吸收定律,有 I I 0 exp( K 0l )
I0 和I分别为入射光和透射光的强度,K0为峰值吸收系数, l为原子蒸气层厚度
当在原子吸收线中心频率附近一定频率范围 Δv测量,则 v I 0 Ivdv
E K S lg ai
二、测定条件的选择
分析线 的选择 放大倍 数的选 择
狭缝宽 度
火焰原 子化法 仪器工 作条件
燃烧器 高度
空心阴 极灯电 流
火焰
1.分析线的选择
(1)一般选择最灵敏线(主共振线) (2)最灵敏线受干扰较大或测定高含量元素时,选 择次灵敏线或其它谱线 最适宜的分析线应视具体情况通过实验决定,其 原则是选用干扰小的谱线作为分析线。

原子吸收光谱法ppt课件

原子吸收光谱法ppt课件
7
定量分析的依据
基态原子对共振线的吸收程度 与蒸气中基态原子的数目和原子蒸气 厚度的关系,在一定的条件下,服从 朗伯-比耳定律:
8
定量分析的依据
由于原子化过程中激发态原子数目和离子 数很少,因此蒸气中的基态原子数目实际上接近 于被测元素的总原子数目,而总原子数目与溶液 中被测元素的浓度c成正比。在L一定条件下:
9
原子吸收分光度计
10
原子吸收分光度计
光源 原子化器 单色器 检测系统
思考:光学系统(单色器)为什么在原子化器和检 测系统之间?
11
➢光 源
提供待测元素的特征光谱。获得较 高的灵敏度和准确度。
光源应满足如下要求; 1 能发射待测元素的共振线; 2 能发射锐线; 3 辐射光强度大,稳定性好。
12
注意:在高浓度时,标准曲线易发生弯曲。 27
➢标准加入法
计算法:
设容量瓶A,待测元素浓度Cx,吸光度Ax; 容量瓶B,待测元素浓度为(Cx+Cs),吸光 度为Ax+s,可求得被测试液元素的浓度为:
28
➢标准加入法
作图法:
设同体积容量瓶编号 A B C D
试液+标准溶液浓度 cx cx+ cs cx+ 2cs cx+ 4cs
原子化过程分为干燥、灰化(去除基体)、 原子化、净化( 去除残渣)四个阶段,待测元 素在高温下生成基态原子。
21
石墨炉原子化装置
优点:原子化程度高,试样用量少(1100μL),可测固体及粘稠试样,灵敏度 高,检测极限10-12 g/L。
缺点:精密度差,测定速度慢,操 作不够简便,装置复杂。
22
➢单色器
质和内充惰性气体的光谱; 14

原子吸收光谱仪实验课ppt课件

原子吸收光谱仪实验课ppt课件
22
2.2.7 样品分析
23
2.2.8 关机
24
2.3 原子吸收的干扰及抑制
1. 物 理 干 扰(基体效应) 如:通过标准加入法来抑制 3. 光 谱 干 扰 如:通过氘灯进行校正 2. 化 学 干 扰 如:石墨炉法测铅加入加入磷酸二氢铵 (NH4H2PO4)
25
化学干扰
产生:待测元素与共存组分发生了化学反应,生成了难挥发或难 解离的化合物,使基态原子数目减少所产生的干扰。
24小时,并清洗干净
• 矩管及与发生器的连接管使用前保持清洁
、干燥
• 测砷时使用到碘化钾,因此应及时用酸清
洗整个系统4小时以上,再用蒸馏水清洗, 以免碘化钾吸收汞蒸气影响汞的测定。
44
思考题
• 原子吸收光谱仪为何要做维护保养? • 测试时如何选择定量分析方法? • 原子吸收光谱用于定量分析的理论依据是
什么?
45
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
46
气 液 分 离 器
蠕动泵管
42
3.7 氢化物发生器使用注意事项
当仪器调试好后,确认光路是最优化状态 时,测定发现无信号,相对偏差太大,应 考虑以下几点:
蠕动泵管是否正常运作 矩管及与发生器的连接管是否清洁、干燥 气液分离器是否干净无污
43
3.7.1 氢化物发生器的维护保养
• 蠕动泵管用后及时清洗,防止堵塞 • 气液分离器污染后,必要时拆下用硝酸泡
特点:原子吸收分析的主要干扰来源,具有选择性。 如:石墨炉法加入加入磷酸二氢铵(NH4H2PO4)
26
3 仪器的维护与保养
• 仪器缺乏保养可能出现的问题 • 仪器的维护保养内容 • 仪器的使用注意事项与保养

第四篇 原子光谱分析法 原子吸收光谱法 ppt课件

第四篇 原子光谱分析法 原子吸收光谱法 ppt课件

3000 K
3 . 84 10 3 5 . 83 10 4 5 . 19 10 4 3 . 55 10 5 1 . 31 10 6 8 . 99 10 7 6 . 65 10 7 1 . 50 10 7 5 . 50 10 10
【谱线的轮廓】
0
Kv
K0
K0/ 2
相同点: 1)都是依据样品对入射光的吸收进行测量的。 2)两种方法都遵循朗伯-比耳定律。 3)就设备而言,均由四大部分组成,即光源、单色器、吸收池(或原子化 器)、检测器。 不同点: 1)吸收物质的状态不同。 紫外可见光谱:溶液中分子、离子,宽带分子光谱,可以使用连续光源。 原子吸收光谱:基态原子,窄带原子光谱,必须使用锐线光源。 2)单色器与吸收池的位置不同。 紫外可见:光源→单色器→比色皿。 原子吸收:光源→原子化器→单色器。
二、原子吸收分光光度计 1、仪器构造
锐线光源
原子化器
分光系统
检测系统
发射光谱
吸收
外光路系统
分光
光电转换
放大
光源
单色器
信号处理
检测器
原子化系统 分光系统
检测系统
单光束型 双光束型
【光源】
作用:提供待测元素的特征光谱。 种类: 空心阴极灯、无极放电灯、蒸气放电灯
空心阴极灯
1)结构:
空心阴极:钨棒/镍棒中熔入被测元素
光源空心阴极灯发射的共振线被灯内同种基态原子所吸收产生自吸现象 。灯电流越大,自吸现象越严重。 (5)场致变宽: 外界电场、带电粒子、离子形成的电场及磁场的作用引起 能级的分裂,使谱线变宽的现象;影响较小;
在一般分析条件下ΔVo为主。
元素
Na Ba Sr V Ca Fe Co Ag

第八章原子吸收光谱分析PPT课件

第八章原子吸收光谱分析PPT课件
2020/11/3
三、谱线轮廓与谱线变宽
AAS是基于基态原子对其共振线的吸收而建立的分 析方法。从理论上讲,原子的吸收线是绝对单色的,但实 际上原子吸收线并非是单色的几何线,而是有宽度的,大 约10-3nm,即有一定轮廓。
Iv I0ekvl
2020/11/3
由于外界条件及本身的影响,造成对原子吸收的微 扰,使其吸收不可能仅仅对应于一条细线,即原子吸收线 并不是一条严格的几何线,而是具有一定的宽度、轮廓, 即透射光的强度表现为一个相似于图示, 若用原子吸收系 数Kν随ν变化的关系作图得到吸收系数轮廓图:
2020/11/3
(3) 具有较高的精密度和准确度:因吸收线强度受原子化器 温度的影响比发射线小。试样处理简单。 RSD1~2%,相对 误差0.1~0.5%。 (4) 分析速度快,仪器比较简单,操作方便,应用比较广。 可用于70余种金属元素和某些非金属元素的定量测定,应用 十分广泛,
2020/11/3
第八章 原子吸收光谱分析
Atomic Absorption Spectrometry , AAS
2020/11/3
• 第一节 原子吸收光谱分析基本原理 • 第二节 原子吸收分光光度计 • 第三节 测量条件选择及定量分析方法 • 第四节 干扰及抑制 • 第五节 原子荧光光谱法
2020/11/3
• 第一节 原子吸收光谱分析基本原理
缺 点: 除了一些先进的仪器可以进行多元素的测定外,目前大
多数仪器都不能同时进行多元素的测定。因为每测定一个元 素都需要与之对应的一个空心阴极灯(也称元素灯),一次只 能测一个元素。
由于原子化温度比较低,对于一些易形成稳定化合物的 元素,如W、Ni、Ta、Zr、Hf、稀土等以及非金属元素,原 子化效率低,检出能力差,受化学干扰较严重,所以结果不 能令人满意。

原子吸收光谱法(共73张课件)

原子吸收光谱法(共73张课件)

比尔定律:
▪ 分析中,待测元素的浓度与其吸收辐射的原子总数成正 比。在一定浓度范围和一定火焰宽度L下:
▪ 可以通过测吸光度可求得待测元素的含量。
▪ 原子吸收分光光度A分析k'的c定量基础。待测元素浓度
2024/8/30
27
§4-3 原子吸收分光光度计
一、基本构造
光源
原子化系统
分光系统
检测系统 显示装置

处吸收轮廓上两点间的距离

(即两点间的频率差)。
▪ 数量级为10-3 -10-2 nm (发射线10-4 -10-3 nm )。
图4.2 原子吸收光谱轮廓图
2024/8/30
12
谱线变宽: 自然宽度 :N
▪ 无外界影响下,谱线仍有一定宽度—自然宽度。
▪ 与原子发生能级间跃迁时激发态原子的平均寿命有关。
2024/8/30
图4.3 峰值吸收测量示意图
21
应用原理: ▪ 光源:
2024/8/30
A lg I0 I
I0
e
0
I0d
I
e
0
Id
I I0eKL
I e 0
I0eKLd
Alg
e
0
I0 d
I e d e
K L
0 0
则:
在满足瓦尔西方法的测量条件时,在积分界限
内 吸可 收以 系认 数为。为常数,并合K理 地使之等于峰值
5%,测定灵敏度极差。
噪音低;
用该元素的锐线光源发射出特征辐射。 特点: 原子吸收分析的主要特点是测定灵敏度高,特效
发射的谱线稳定性好、强度高且宽度窄。
共振线在外光路损失小。
试样在原子化器中被蒸发,解离为气态基态原子。 共Ok振! L线et(’s特Ha征ve谱a线B)re是ak元. 素所有谱线中最容易发生、最灵敏的线,又具有元素的特征,所以分析中用该谱线作为分析线。

原子吸收光谱法PPT课件

原子吸收光谱法PPT课件

消除电离干扰的方法
加入消电离剂 利用富燃火焰也可抑制电离干扰 利用温度较低的火焰 提高溶液的吸喷速率 标准加入法
化学干扰
是指试样溶液转化为自由基态原子的过程中,待 测元素和其他组分之间发生化学作用而引起的干 扰效应.它主要影响待测元素化合物的熔融,蒸发 和解离过程.这种效应可以是正效应,增强原子吸 收信号;也可以是负效应,降低原子吸收信号.化学 干扰是一种选择性干扰,它不仅取决于待测元素与 共存元素的性质,还与火焰类型,火焰温度,火焰状 态,观察部位等因素有关.化学干扰是火焰原子吸 收分析中干扰的主要来源,其产生的原因是多方面 的.
物理干扰
吸喷速率
喷雾量和雾化效率
毛细管形状
物理干扰一般都是负干扰,最终影响火焰分 析体积中原子的密度.
消除物理干扰的方法
配制与待测试液基体相一致的标准溶液; 当前者困难时,可采用标准加入法; 当被测元素在试液中浓度较高时,可以稀释溶液来降低
或消除物理干扰; 在试液中加入有机溶剂,改变试液的粘度和表面张力,
A.
A lg
I0 I
KC
原子吸收光谱仪的构成
光源:提供特征锐线光谱 原子化器:产生原子蒸汽,使被测元素
原子化 分光系统:将被测分析线与光源其他谱
线分开,并阻止其他谱线进入检测器 检测系统:光电倍增管 数据处理系统器
测量条件的选择
吸收线的选择 灯电流的选择 火焰种类的选择 燃烧气和助燃气的流量 火焰高度 石墨炉原子化条件的选择
内标法:分别在标准试样和被测试样中加入已知量的第
三种元素作为内标元素,测定分析线和内标线的吸光度比
D (工D作,曲D线x .)然并后以在D对标应准标曲准线溶上液根中据被测元计素算含出量试或样浓中度待绘测制

原子吸收光谱实验ppt课件

原子吸收光谱实验ppt课件
可经过控制试液与规范溶液的组成尽量一致的方法来 消除。
4.3 光谱干扰
待测元素的共振线与干扰物质谱线分别不完全,这 类干扰主要来自光源和原子化安装,主要有以下几种:
〔1〕在分析线附近有单色器不能分别的待测元素的临近 线,可以经过调小狭缝的方法来抑制这种干扰。
〔2〕空心阴极灯内有单色器不能分别的干扰元素的辐射 换用纯度较高的单元素灯减小干扰。
贫燃焰:焰助比小于1∶6,火焰温度较高,氧化性 气氛,适用于碱土金属测定
〔4〕火焰温度的选择:
〔a〕保证待测元素充分别解为基态原子的前提下,尽 量采用低温火焰;
〔b〕火焰温度越高,产生的热激发态原子越多,对 测定不利
〔c〕火焰温度取决于燃气与助燃气类型,常用空 气—乙炔,最高温度2600K,能测35种元素。
消除方法:普通采取在试液中参与更易电离 的元素,有效地抑制待测元素的电离,这种试剂 称消电离剂。例:参与足量的铯盐,抑制K、Na 的电离。
消电离剂是在火焰中可以提供大量电子,又 不会在所用波长发生吸收的易电离的元素。
4.2 物理干扰
试样在转移、蒸发过程中物理要素变化引起的干扰效 应,主要影响试样喷入火焰的速度、雾化效率、雾滴大小 等。
的比值ΔX/Δλ。实践任务中常用其倒数 Δλ/ΔX
〔2〕分辨率:仪器分开相邻两条谱线的才干。用 该两条谱线的平均波长与其波长差的比值λ/Δλ表示。
〔3〕通带宽度〔W〕:指经过单色器出射狭缝的某 标称波优点的辐射范围。当倒色散率〔D〕一定时, 可经过选择狭缝宽度〔S〕来确定: W=D S
2.4 检测器
2.2.2 石墨冷却维护 石墨管;内气路中氩气体由管两端流向管中心, 从中心孔流出,用来维护原子不被氧化,同时排 除枯燥和灰化过程中产生的蒸汽。

原子吸收光谱法的定量分析方法和测定条件的选择PPT课件

原子吸收光谱法的定量分析方法和测定条件的选择PPT课件

第8页/共22页
标准曲线法 特点
定量依据
标准加入法 特点
AAS
A kc
•曲线理论上过
原点,实际上 极谱 •适用 存在干扰
h kcx
cx
VsCshx
•极限浓度id 与 波高h成正比
法 于组 成简
单,
纵向比较 (Vx Vs)H Vxhx
消除基
•准确,只适用 体影响,
于纯物质中低 一定程
大批 AES 量试
第5页/共22页
标准加入法
直接计算法
✓取相同体积的试样溶液两份,分别移入容 量瓶A、B中 ✓另取一定量的标准溶液加入到B中,然后将 两份溶液稀释至刻度 ✓测出A、B的吸光度
Ax=k∙Cx A0=k(C0+Cx)
cx Ax c0 A0 Ax
第6页/共22页
外推法
✓取若干份体积相同的样品溶液 ✓从第二份开始加入不同量的待测元素的标液,稀 释至一定体积,各溶液的浓度分别cx+c1,cx+c2…… ✓依次测吸光度 ✓做出A-c曲线
火焰的氧化性随火焰高度 的变化而变化
火 焰 高 度
Cr
Mg
Ag
原则:使测量光束从自由 原子浓度最大的火焰区通 过,保证最大的吸收灵敏 度。
相对吸收值
自由原子在火焰中的分布
第15页/共22页
5.狭缝宽度的选择
单色器分辨能力大,或光源辐射弱或共振线吸收小,应选择较宽 的狭缝宽度。 单色器分辨能力小,火焰的背景发射强,或吸收线附近有干扰时, 应选择较窄的狭缝宽度。
第9页/共22页
二、测定条件的选择
放大倍 数的选

狭缝宽 度
分析线 的选择
火焰原 子化法 仪器工 作条件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

v
I0 Ivdv 0
v
I Iv•ex pkv(l)dv 0
原子吸收光谱法的定量分析方法和测定条件的选择
使用锐线光源, Δv很小,用中心频率 处K0表示原子对辐射的吸收。
v
v
A lg II0 lg vIve 0Ix vd K 0 p v l)d( v lg ex K 0 0 p l)d ( v v Ivd v 0 .4K 3 0 l
定量依据
标准加入法 特点
AAS
Akc
•曲线理论上过
原点,实际上 极谱 •适用 存在干扰
hkcx
cx
VsCshx
•极限浓度id 与 波高h成正比
法 于组 成简
单,
纵向比较 (VxVs)HVxhx
消除基
•准确,只适用 体影响,
于纯物质中低 一定程
大批 AES 量试
样的
lgIlgablgc 含量成分分析 度上消
原子吸收光谱法的定量分析方法和测定条件的选择
3.火焰的选择
➢ 分析线200nm以下采用氢气—空气火焰 ➢ 易离解的物质用低温火焰 ➢ 易生成难离解化合物的物质用高温火焰,如乙
•背景干扰很严 除其它

干扰
测定
电位 •快简速便、•发标生准移曲动线(容K易值
仅用一种标准 溶液,简单快
分析
易受T、搅拌速 度、电极表面
EKSlgai
速 •有大量络合剂

性质影响)可
存在时,测得
代两点标准确
是离子总浓度
定曲线的位原置子吸收光谱法的定量分析方法和测定条件的选择
二、测定条件的选择
原子吸收光谱法的定量分析方法和测定条件的选择
2.最少应采用4个点来做曲线
学干扰和 组成复杂, 3.第一份加入的标准溶液浓度
电离干扰,且不完全 与试样浓度应尽量接近
不能直接 确定组分 4.斜率太小的曲线易引起较大
消除背景 的试样 误差
干扰
5.应该扣除试剂的空白值。
(必须是标准加入法的空白值)
原子吸收光谱法的定量分析方法和测定条件的选择
标准曲线法 特点
2.灯电流的选择
灯电流过大:发射谱线变宽,自吸收增大,灵敏 度下降,灯寿命缩短。
灯电流过小:辐射锐线光谱窄,灵敏度高,但光 强小,信噪比降低。
通常选择最大灯电流的1/2~2/3为工作电流,实际 实验中,最合适的工作电流需通过试验确定。 原则:在保证稳定和合适光强输出的情况下,尽 量选用最小的灯电流。
外推法
✓取若干份体积相同的样品溶液
✓从第二份开始加入不同量的待测元素的标液,稀释
至一定体积,各溶液的浓度分别cx+c1,cx+c2…… ✓依次测吸光度 ✓做出A-c曲线
A kcAx
当A=0时,c
Ax k
cx
A—c曲线
原子吸收光谱法的定量分析方法和测定条件的选择
方法 特点 适用范围
注意事项
1.所用标准溶液系列浓度应在
原子吸收光谱法的定量分析方法和测定条件的选择
标准加入法
直接计算法
✓取相同体积的试样溶液两份,分别移入容 量瓶A、B中 ✓另取一定量的标准溶液加入到B中,然后将
两份溶液稀释至刻度 ✓测出A、B的吸光度
Ax=k∙Cx A0=k(C0+Cx)
cx Ax c0 A0 Ax
原子吸收光谱法的定量分析方法和测定条件的选择
0
0
由峰值吸收中
基态原
K0 2 vD
In2m e2cN0f
子数 N0 c
A=k·c
原子吸收光谱法的定量分析方法和测定条件的选择
标准曲线法
✓配制一系列已知浓度的标准溶液(可等差可不 等差) ✓在选定条件下,用空白溶液调吸光度为零。 (扣除空白值) ✓依次测吸光度A1、A2……An(由低到高) ✓绘制A-C曲线 ✓测出待测液吸光度A',从曲线上找出对应浓度
1.分析线的选择
(1)一般选择最灵敏线(主共振线) (2)最灵敏线受干扰较大或测定高含量元素时,选 择次灵敏线或其它谱线 最适宜的分析线应视具体情况通过实验决定,其 原则是选用干扰小的谱线作为分析线。
原子吸收光谱法的定量分析方法和测定条件的选择
原子吸收光谱法中常用的分析线
元素
Ag Al As Au B
Ba
Be Bi Ca Cd Ce
λ/nm
328.07,338.29
元素
Hg
λ/nm
253.65
元素
Ru
309.27,308.22
Ho
410.38,405.39
Sb
193.64,197.20
In
303.94,325.61
Sc
242.80,267.60
Ir
209.26,208.88
Se
249.68,249.77 253.55,455.40
A-C曲线的线性范围内
2.标准溶液与试样溶液要用相
标准 简便、快 组成简单、 同的试剂处理。
曲线 速、可扣 大量试样 3.扣除空白值。
横法 向
除空白值 的快速分 析
4.测定过程中,操作条件不变。 5.标准试样的组成应尽量与待 测溶液相同。


消除基体
1.校正曲线是一条不过原点的 曲线
标准 加入 法
效应,化
234.86
K
766.49,769.90
Si
move1().13,418.
La
Sm
73
Li
670.78,323.26
Sn
223.06,222.83
Lu
335.96,328.17
Sr
422.67,239.86
Mg
285.21,279.55
Ta
228.80,326..68
Tb
一、AAS的定量分析方法
原子吸收光谱法的定量分析方法和测定条件的选择
定量依据
强度为 I0 的某一波长的辐射通过均匀的原子 蒸气时,根据吸收定律,有
II0exp K 0l()
I0 和I分别为入射光和透射光的强度,K0为峰值吸收系数, l为原子蒸气层厚度
当在原子吸收线中心频率附近一定频率范围Δv
测量,则
原子吸收光谱法的定量分 析方法及测定条件的选择
杨靖 0902
原子吸收光谱法的定量分析方法和测定条件的选择
原子吸收光谱法是基于被测元素蒸气对其原子的共 振辐射吸收,而进行定量分析的方法。
物理
干 干扰 扰 化学
干扰
光谱 干扰
在实际工作中,这些干扰问题不可忽视, 某些情况下,干扰甚至是很严重的。
原子吸收光谱法的定量分析方法和测定条件的选择
520.00,369.70
Mo
313.26,317.04
Te
原子吸收光谱法的定量分析方法和测定条件的选择
λ/nm
349.89,372.80 217.58,206.83 391.18,402.04 196.09,703.99 251.61,250.69
429.67,520.06
224.61,520.69 460.73,407.77 271.47,277.59 432.65,431.89 214.28,225.90
相关文档
最新文档