高考文科导数考点汇总精选文档
导数文科高三知识点总结
导数文科高三知识点总结一、导数的概念及几何意义1. 导数的定义导数是函数在某一点的变化率,也可以理解为函数图像在某一点的切线斜率。
若函数y=f(x)在x=a处的导数存在,则称函数在x=a处可导,导数记作f'(a),即f'(a)=lim{h→0}[f(a+h)-f(a)]/h。
2. 导数的几何意义导数的几何意义即为函数图像在某一点的切线斜率,可以用于求解函数图像在某一点的切线方程,从而得出函数图像在该点的局部变化情况。
3. 导数的符号表示在通常情况下,导数的符号表示为f'(a),表示函数y=f(x)在x=a处的导数。
也可以用dy/dx表示函数y=f(x)的导数。
二、导数的计算方法1. 导数的计算公式(1)常数函数的导数若f(x)=c(c为常数),则f'(x)=0。
(2)幂函数的导数若f(x)=x^n(n为常数),则f'(x)=nx^(n-1)。
(3)指数函数的导数若f(x)=a^x(a>0且a≠1),则f'(x)=a^x·lna。
(4)对数函数的导数若f(x)=loga(x)(a>0且a≠1),则f'(x)=1/(x·lna)。
(5)三角函数的导数若f(x)=sinx,则f'(x)=cosx;若f(x)=cosx,则f'(x)=-sinx;若f(x)=tanx,则f'(x)=sec^2 x。
2. 复合函数的导数复合函数的导数计算可以根据链式法则进行,即若y=f(g(x)),则y'=(f'(g(x))·g'(x)。
3. 隐函数的导数若方程F(x,y)=0定义了函数y=f(x),则通过对方程两边求导,并利用隐函数求导公式可以求出y关于x的导数dy/dx。
4. 参数方程的导数若x=x(t)、y=y(t)定义了参数曲线C,可以通过对x(t)和y(t)分别求导来求出参数曲线的切线斜率,从而得出参数曲线的切线方程。
高考文科导数考点汇总完整版
高考文科导数考点汇总 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】高考导数文科考点总结一、考试内容导数的概念,导数的几何意义,几种常见函数的导数;两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。
导数概念与运算知识清单1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值x y∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。
如果当0→∆x 时,x y∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。
即f (x 0)=0lim→∆x x y ∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。
如果x y∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。
(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳):(1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率x y ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=x yx ∆∆→∆0lim。
2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。
也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。
导数知识点总结大全高中
导数知识点总结大全高中一、导数的基本概念1. 函数的变化率函数在定义域内的某一点上的变化率就是导数。
函数在某一点的导数描述了函数在这一点附近的变化趋势,是函数曲线的切线斜率。
当函数在某一点的导数为正时,表示函数在这一点附近是增加的;当函数在某一点的导数为负时,表示函数在这一点附近是减小的;当函数在某一点的导数为零时,表示函数在这一点附近有极值。
2. 导数的几何意义函数在某一点的导数是该函数曲线在这一点的切线斜率,即切线的倾斜程度。
当导数为正时,表示切线斜率为正,曲线是逐渐上升的;当导数为负时,表示切线斜率为负,曲线是逐渐下降的;当导数为零时,表示切线水平,曲线在该点可能有极值。
3. 导函数如果函数f(x)在x处可导,则在这一点导函数f'(x)给出了函数在这一点的变化率。
导函数是原函数f(x)关于自变量x的导数函数,通常使用f'(x)来表示。
4. 导数的符号函数f(x)在某一点的导数为正时,表示函数在这一点附近是增加的;函数f(x)在某一点的导数为负时,表示函数在这一点附近是减小的;函数f(x)在某一点的导数为零时,表示函数在这一点附近有极值。
二、导数的定义1. 函数可导如果函数f(x)在某一点x处的导数存在,那么称函数f(x)在这一点可导。
函数在某一点可导的条件是函数在这一点存在切线。
2. 函数导数的极限定义函数f(x)在x处的导数被定义为:f'(x) = lim(h→0) (f(x+h) - f(x))/h其中,lim表示极限,h→0表示当h趋近于0时的极限,f(x+h) - f(x)表示函数在x+h处和x处的高度差,h为x的增量。
3. 导数的等价形式导数的等价形式有有限增量与自变量增量之比求极限、差商公式等形式。
三、导数的性质1. 可导函数的和、差的导数如果函数f(x)和g(x)在x处可导,则它们的和f(x)+g(x)和差f(x)-g(x)在x处也可导,且导数为f'(x)+g'(x)和f'(x)-g'(x)。
高考文科导数考点汇总定稿版
高考文科导数考点汇总 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】高考导数文科考点总结一、考试内容导数的概念,导数的几何意义,几种常见函数的导数;两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。
导数概念与运算知识清单1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值x y∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。
如果当0→∆x 时,x y∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。
即f (x 0)=0lim→∆x x y ∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。
如果x y∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。
(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳):(1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率x y ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=x yx ∆∆→∆0lim。
2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。
也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。
高三文科数学导数知识点
高三文科数学导数知识点导数是高中数学中一个非常重要的概念,它在不同的数学分支中都有广泛的应用。
在高三文科数学中,导数是不可或缺的一部分。
本文将为您详细介绍高三文科数学中的导数知识点。
一、导数的定义与基本性质导数的定义:设函数f(x)在点x0的某一邻域内有定义,若极限lim┬(Δx→0)〖(f(x_0+Δx)-f(x0))/Δx 〗存在,则称此极限为函数f(x)在点x0处的导数,记为f'(x0)。
导数的基本性质包括加法、减法、数乘、乘法和复合等性质,其中最重要的是乘法和复合的性质。
具体的性质表述如下:1. 加法性质:(u(x)+v(x))'=u'(x)+v'(x)2. 减法性质:(u(x)-v(x))'=u'(x)-v'(x)3. 数乘性质:(cu(x))'=cu'(x) (c为常数)4. 乘法性质:(u(x)v(x))'=u'(x)v(x)+u(x)v'(x)5. 复合性质:(u(v(x)))'=u'(v(x))v'(x)二、计算导数的方法在高三文科数学中,常用的计算导数的方法有函数导数的四则运算法则、基本初等函数的导数、反函数的导数、复合函数的导数以及隐函数的导数等。
以下是这些方法的具体介绍:1. 函数导数的四则运算法则:根据导数的定义及其基本性质,可以得到函数导数的加减乘除法则,即通过对函数进行加减乘除的运算,可以得到对应的导数。
2. 基本初等函数的导数:基本初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。
这些函数都有对应的导数公式,可以通过直接应用公式计算导数。
3. 反函数的导数:若函数y=f(x)在某区间内可导且在该区间上存在反函数x=g(y),则可以利用反函数的求导公式计算反函数的导数。
4. 复合函数的导数:如果函数y=f(u)和u=g(x)在一定条件下都可导,则可以利用复合函数的求导公式计算复合函数的导数。
导数高考知识点总结(最全)
导数知识点归纳及应用●知识点归纳 一、相关概念 1.导数的概念函数y=f(x),y=f(x),如果自变量如果自变量x 在x 0处有增量x D ,那么函数y 相应地有增量y D =f (x 0+x D )-)-f f (x 0),比值x yDD 叫做函数y=f y=f((x )在x 0到x 0+x D 之间的平均变化率,即x y D D =x x f x x f D -D +)()(00。
如果当0®D x 时,x y D D 有极限,我们就说函数y=f(x)y=f(x)在点在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。
即f (x 0)=0lim ®D x x y D D=0lim ®D x x x f x x f D -D +)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0®D x 时,x y D D 有极限。
如果xyD D 不存在极限,就说函数在点x 0处不可导,或说无导数。
处不可导,或说无导数。
(2)x D 是自变量x 在x 0处的改变量,0¹D x 时,而y D 是函数值的改变量,可以是零。
以是零。
由导数的定义可知,求函数y=f y=f((x )在点x 0处的导数的步骤:处的导数的步骤: ① 求函数的增量y D =f =f((x 0+x D )-)-f f (x 0); ② 求平均变化率x y D D =xx f x x f D -D +)()(00;③ 取极限,得导数f’(x 0)=xyx D D ®D 0lim 。
例:设f(x)= x|x|, f(x)= x|x|, 则则f ′( 0)= . [解析]:∵0||lim ||lim )(lim )0()0(lim 0000=D =D D D =D D =D -D +®D ®D ®D ®D x x xx x x f x f x f x x x x ∴f ′( 0)=02.导数的几何意义函数y=f y=f((x )在点x 0处的导数的几何意义是曲线y=f y=f((x )在点p (x 0,f (x 0))处的切线的斜率。
高考文科数学导数知识点总结
高考文科数学:导数知识点总结(4)x x sin )(cos -='.(5)x x )(ln =';e a x xa log )(log ='. (6) x x e e =')(;a a a xx ln )(='.(7)'''()u v u v ±=±.(8)'''()uv u v uv =+. (9)'''2()(0)u u v uv v v v-=≠. (10)2'11x x -=⎪⎭⎫⎝⎛ (11)()x x 21'=5.导数的应用①单调性:如果0)('>x f ,则)(x f 为增函数;如果0)('<x f ,则)(x f 为减函数②求极值的方法:当函数)(x f 在点0x 处连续时, (注0)(0'=x f )如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,则)(0x f 是极大值;(“左增右减↗↘”) 如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,则)(0x f 是极小值.(“左减右增↘↗”) 附:求极值步骤)(x f 定义域→)('x f →)('x f 零点→列表: x 范围、)('x f 符号、)(x f 增减、)(x f 极值③求[]b a ,上的最值:)(x f 在()b a ,内极值与)(a f 、)(b f 比较6.三次函数 d cx bx ax x f +++=23)(c bx ax x f ++=23)(2/ 图象特征:(针对导函数)0,0>∆>a 0,0>∆<a(针对原函数) “↗↘↗”“↘↗↘”极值情况:)(0x f ⇔>∆有极值;)(0x f ⇔≤∆无极值 (其中“∆”针对导函数) 练习题: 一. 选择题1.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316 C .313 D .3102.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是( )A .7米/秒B .6米/秒C .5米/秒D .8米/秒 3. 函数3y x x =+的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞ 4. 若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+-- 的值为( )A .'0()f xB .'02()f xC .'02()f x -D .05. 函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件 6. 函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .07. 函数()323922y x x x x =---<<有( )A .极大值5,极小值27-B .极大值5,极小值11-C .极大值5,无极小值D .极小值27-,无极大值8. 曲线3()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( )A .(1,0)B .(2,8)C .(1,0)和(1,4)--D .(2,8)和(1,4)-- 9. 若'0()3f x =-,则000()(3)limh f x h f x h h→+--=( )A .3-B .6-C .9-D .12-10.()f x 与()g x 是定义R 上的可导函数,若()f x ,()g x 满足''()()f x g x =,则()f x 与()g x 满足( )A .()f x =()g xB .()f x -()g x 为常函数C .()f x =()0g x =D .()f x +()g x 为常函数11. 函数x x y 142+=单调递增区间是( ) A .),0(+∞B .)1,(-∞ C .),21(+∞D .),1(+∞ 12. 函数xxy ln =的最大值为( ) A .1-e B .e C .2e D .310 13.若()sin cos f x x α=-,则'()f α等于( ) A .sin αB .cos α C .sin cos αα+D .2sin α14. 若函数2()f x x bx c =++的图象的顶点在第四象限,则函数'()f x 的图象是( )15. 已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的取值范围是( ) A .),3[]3,(+∞--∞ B .]3,3[- C .),3()3,(+∞--∞ D .)3,3(- 16. 若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=17. 对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( )A.(0)(2)2(1)f f f +<B.(0)(2)2(1)f f f +≤C.(0)(2)2(1)f f f +≥ D.(0)(2)2(1)f f f +>18. 函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( )A .1个B .2个C .3个D .4个二、填空题19. 曲线x x y 43-=在点(1,3)-处的切线倾斜角为__________; 20. 函数sin xy x=的导数为_________________; 21. 曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 22. 函数x x y sin 2+=的单调增区间为。
(完整版)高考导数专题(含详细解答)
导数及其应用导数的运算1. 几种常有的函数导数:①、 c( c 为常数); ②、( x n )( n R ); ③、 (sin x) = ;④、 (cos x) =;⑤、( a x ); ⑥、 ( ex); ⑦、 (log a x ) ; ⑧、 (ln x ).2. 求导数的四则运算法规:(u v)u v ; (uv) u vu'u v ' uv 'u ( v0 ) 注:① u, v 必定是可导函数 .uv ; (u)vuvvvv 223. 复合函数的求导法规:f x ( ( x))f (u) ? ( x) 或 y xy u ? u x一、求曲线的切线(导数几何意义)导数几何意义: f (x 0 ) 表示函数 y f (x) 在点 ( x 0 , f (x 0 ) )处切线 L 的斜率;函数 y f (x) 在点 ( x 0 , f (x 0 ) )处切线 L 方程为 y f (x 0 )f (x 0 )(x x 0 )1. 曲线在点 处的切线方程为( )。
A:B:C:D:答案详解 B 正确率 : 69%, 易错项 : C解析 :本题主要观察导数的几何意义、导数的计算以及直线方程的求解。
对 求导得,代入 得 即为切线的斜率, 切点为,因此切线方程为即。
故本题正确答案为B 。
2.3. 设函数f ( x) g( x) x2,曲线 y g(x) 在点 (1,g(1)) 处的切线方程为 y 2x 1,则曲线 y f ( x) 在点 (1, f (1))处切线的斜率为( )A .41C.21B . D .4 24. 已知函数 f ( x) 在R上满足 f ( x) 2 f (2 x) x28x 8,则曲线y f (x) 在点 (1, f (1)) 处的切线方程是()A . y2x 1 B. y x C. y3x 2 D. y2x 3变式二:5. 在平面直角坐标系xoy 中,点P在曲线C : y x310 x 3 上,且在第二象限内,已知曲线 C 在点 P 处的切线的斜率为 2,则点 P 的坐标为.6. 设曲线 yx n 1 (n N * ) 在点( 1,1)处的切线与 x 轴的交点的横坐标为 x n ,令 a n lg x n ,则 a 1 a 2 L a 99 的值为.7. 已知点 P 在曲线 y=4 上, 为曲线在点 P 处的切线的倾斜角,则的取值范围是e x1, 3]D 、 [ 3,A 、 [0, )B 、 [, ) C 、 ( )44 22 4 4变式三:8. 已知直线y =x+ 1 与曲线y ln( x a) 相切,则α的值为( )A . 1 B. 2 C. - 1 D. - 29. 若存在过点 (1,0)的直线与曲线 yx 3 和 y ax 2 15 x 9 都相切,则 a 等于4( )A . 1或 -25B . 1或21C . 7 或 - 25D .7或 76444 6441 110. 若曲线 yx 2 在点 a, a 2 处的切线与两个坐标围成的三角形的面积为18,则 aA 、64B 、 32C 、 16D 、811. (本小题满分 13 分) 设 f ( x)ae x 1b( a 0) . ( I )求 f ( x) 在 [0, ) 上的最小值;ae x3x ;求 a,b 的值 .( II )设曲线 yf ( x) 在点 (2, f (2)) 的切线方程为 y212. 若曲线 f x ax2Inx 存在垂直于y轴的切线,则实数 a 的取值范围是.二、求单调性或单调区间1、利用导数判断函数单调性的方法:设函数y f (x) 在某个区间 D 内可导,若是 f ( x) >0,则y f (x) 在区间D上为增函数;若是 f ( x) <0,则y f (x) 在区间 D 上为减函数;若是 f ( x) =0恒成立,则y f (x) 在区间 D 上为常数 .2、利用导数求函数单调区间的方法:不等式 f ( x) >0的解集与函数y f (x) 定义域的交集,就是y f ( x) 的增区间;不等式 f ( x) <0的解集与函数y f (x) 定义域的交集,就是y f (x) 的减区间 .1、函数f (x) ( x 3)e x的单调递加区间是( )A . ( ,2) B. (0,3) C. (1,4) D . (2, )2. 函数f (x)x315x233x 6 的单调减区间为.3. 已知函数,,谈论的单调性。
高考文科导数考点汇总
高考导数文科考点总结一、考试内容导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。
导数概念与运算知识清单 1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值x y ∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。
如果当0→∆x 时,x y∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。
即f (x 0)=0lim →∆x x y∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。
如果x y∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。
(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率x y ∆∆=x x f x x f ∆-∆+)()(00; (3)取极限,得导数f’(x 0)=x yx ∆∆→∆0lim。
2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。
也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。
相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。
3.几种常见函数的导数:①0;C'=②()1;n nx nx-'=③(sin)cosx x'=; ④(cos)sinx x'=-;⑤();x xe e'=⑥()lnx xa a a'=; ⑦()1ln xx'=; ⑧()1l g loga ao x ex'=.4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即:(.)'''vuvu±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:.)('''uvvuuv+=若C为常数,则'''''0)(CuCuCuuCCu=+=+=.即常数与函数的积的导数等于常数乘以函数的导数:.)(''Cu Cu=法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫⎝⎛vu‘=2''vuvvu-(v≠0)。
导数知识点总结大全
导数知识点总结大全一、基本概念1.1 导数的定义对于函数y = f(x),在点x处的导数表示为f'(x),它定义为函数在该点的变化率。
导数可以用极限的概念来定义:\[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\]其中,h表示自变量x的小变化量,当h趋近于0时,这个极限就表示了函数在点x处的导数。
导数也可以表示为函数的微分形式,即dy = f'(x)dx。
1.2 导数的几何意义导数有着重要的几何意义,它表示了函数在某一点上的切线斜率。
对于函数y = f(x),在点(x, f(x))处的切线的斜率恰好等于函数在该点的导数f'(x)。
这意味着导数可以描述函数在某一点的变化速率和方向。
1.3 导数的物理意义在物理学中,导数也有着重要的物理意义。
对于物理量s关于时间t的函数s(t),它的导数s'(t)表示了速度的变化率,即s'(t) = ds/dt。
类似地,速度关于时间的函数v(t)的导数v'(t)表示了加速度的变化率,即v'(t) = dv/dt。
因此,导数在描述物理过程中的变化率和速度方面也有着重要的应用。
1.4 导数的符号表示导数的符号表示通常有几种形式,常见的包括f'(x)、dy/dx、y'等。
它们都表示对函数y =f(x)的自变量x求导所得到的结果,即函数在某一点上的变化率或者斜率。
二、导数的性质2.1 导数存在性对于一个函数f(x),它在某一点上的导数可能存在也可能不存在。
如果函数在某一点上导数存在,那么称该函数在该点上可导。
对于大多数常见的函数,它们在定义域内是可导的,例如多项式函数、三角函数、指数函数等。
但也存在一些特殊的函数,在某些点上导数可能不存在,例如绝对值函数在原点处的导数就不存在。
2.2 导数的连续性如果一个函数在某一点上导数存在,并且它在该点上是连续的,那么称该函数在该点上是可微的。
导数文科高三知识点
导数文科高三知识点导数是高中数学的重要概念之一,也是文科高三学生必须掌握的知识点之一。
本文将介绍导数的基本概念、求导法则以及导数在文科领域中的应用。
导数的基本概念导数是函数在某一点上的变化率,用数学符号表示为f'(x)或dy/dx,其中f'(x)表示函数f(x)的导数,dy/dx表示函数y(x)的导数。
导数描述了函数在某一点上的变化趋势。
求导法则求导法则是求解导数的基本规则,主要包括以下几个方面:1. 基本导数法则:包括常数导数法则(常数的导数为0)、幂函数导数法则(幂函数的导数可通过指数和系数相乘得到)、和差导数法则(和差函数的导数可通过各项的导数相加得到)等。
2. 乘积法则和商法则:乘积法则用来求解函数乘积的导数,商法则用来求解函数商的导数。
3. 链式法则:链式法则适用于复合函数的求导,即由两个函数合成的函数的导数。
4. 导数的四则运算法则:导数的四则运算法则可用于函数之间加减乘除的导数求解。
导数在文科领域中的应用导数在文科领域中有广泛的应用,例如:1. 辨析极值:通过求函数的导数,可以确定函数的增减性,从而判断函数的极值点。
2. 确定函数的最值:通过求函数的导数,可以确定函数的最值点,进而求解出函数的最大值和最小值。
3. 描述函数图像:导数可以表示函数在某一点上的切线斜率,通过判断导数的正负可以确定函数的增减性,从而绘制函数的图像。
4. 理解经济学概念:导数在经济学中有广泛的应用,例如边际效用和边际成本等概念都与导数有关。
总结导数是文科高三学生必须掌握的数学概念之一。
通过学习导数的基本概念和求导法则,文科高三学生可以应用导数的知识解决实际问题,如辨析极值、确定最值、描述函数图像等。
掌握导数知识对于文科高三学生的数学学习和理解其他学科概念都有重要的作用。
因此,建议文科高三学生加强对导数的学习和应用,提高数学水平。
高中文科导数知识点汇总
导数公式及知识点1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数;],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.3、几种常见函数的导数①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 4、导数的运算法则 (1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 5、会用导数求单调区间、极值、最值6、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:(1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值;(2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.1.导数与单调性: 导数及其应用1) 一般地,设函数 y = f ( x) 在某个区间可导,如果 f ′( x ) > 0 ,则 f ( x ) 为增函数;如果 f ′( x) < 0 ,则 f ( x) 为减函数;如果在某区间内恒有 f ′( x) = 0 ,则 f ( x) 为常数;对于可导函数 y = f ( x) 来说, f ′( x ) > 0 是 f ( x ) 在某个区间上为增函数的充分非必要 条件, f ′( x ) < 0 是 f ( x ) 在某个区间上为减函数的充分非必要条件;2)利用导数判断函数单调性的步骤:①求函数 f ( x ) 的导数 f ′( x ) ;②令 f ′( x ) > 0 解不等式,得 x 的范围,就是递增区间;③令 f ′( x) < 0 解不等式,得 x 的范围,就是递增区间。
高考文科导数知识点总结
高考文科导数知识点总结高考是每个学生都渴望成功的重要考试,其中文科类科目的一项重点是数学。
在数学中,导数是一个关键的知识点。
本文将对高考文科中与导数相关的知识点进行总结和归纳,以帮助学生更好地掌握和应用导数。
一、导数的定义与求法导数是函数与自变量之间的变化率关系。
在数学中,我们通常使用极限的概念来定义一个函数的导数。
对于一个函数f(x),它的导数可以表示为f'(x)或df/dx。
求函数的导数可以使用以下几种方法:1. 函数基本求导法则:常数法则、幂法则、指数函数求导法则、对数函数求导法则、三角函数求导法则等;2. 利用导数定义进行求导:利用导数的定义进行求导是一种基础的方法,根据导数定义计算极限得到准确的导数值;3. 复合函数求导法则:根据复合函数的求导法则可以求得复合函数的导数。
二、导数在函数图像中的应用导数在研究函数图像中有着重要的应用。
下面列举了一些常见的应用:1. 切线和法线:导数有助于确定函数图像上某点的切线和法线,切线的斜率等于该点的导数值,法线的斜率为导函数的负倒数;2. 函数的增减与极值:导数为正说明函数单调递增,导数为负说明函数单调递减,导数为零的点可能是函数的极值点;3. 函数的凹凸性与拐点:利用导数的二阶导数可以判断函数图像的凹凸性,凹函数和凸函数在导数的正负变化处有转折点,即拐点。
三、导数在变化率问题中的应用导数在变化率问题中也有着广泛的应用,比如速度、密度等问题。
以下是几个常见的应用场景:1. 平均变化率与瞬时变化率:平均变化率是指在两个点之间的变化率,瞬时变化率是指在某一点的瞬时速度;2. 边际变化与边际效益:导数还可以用来表示某一变量的边际变化,比如边际利润、边际成本等;3. 最优化问题:通过求解导数为零的点可以得到函数的最值点,这在最优化问题中十分常见。
四、常见的导数公式在高考文科中,以下是一些常见的导数公式,学生们可以熟练掌握和应用:1. 常数函数的导数为零;2. 幂函数的导数公式:(x^n)' = n*x^(n-1),其中n为常数;3. 指数函数的导数公式:(e^x)' = e^x;4. 对数函数的导数公式:(log_a(x))' = 1/(x * ln(a)),其中a为底数;5. 三角函数的导数公式:(sin(x))' = cos(x),(cos(x))' = -sin(x),(tan(x))' = sec^2(x);6. 反三角函数的导数公式:(arcsin(x))' = 1/sqrt(1-x^2),(arccos(x))' = -1/sqrt(1-x^2),(arctan(x))' = 1/(1+x^2)。
高中文科导数知识点汇总
高中文科导数知识点汇总高中文科导数知识点汇总高中文科中,导数是数学分析中的重要概念之一。
导数可以帮助我们研究函数的变化情况以及求解函数的极值等问题。
下面是一些高中文科中常见的导数知识点的汇总:1. 定义:导数可以被视为函数在某一点处的变化率。
如果函数f(x)在点x=a处导数存在,则导数的定义为:f'(a)=lim(x→a) (f(x)-f(a))/(x-a)。
其中,lim表示极限。
2. 导数记号:函数的导数可以用不同的符号表示。
除了上面提到的f'(a),还可以用dy/dx、f(x)、y′等来表示。
3. 导函数:如果一个函数在定义域上的每个点都存在导数,那么我们可以得到一个新的函数,称为原函数的导函数。
导函数的表示可以是f'(x)或者y'。
4. 在数值上求导:对于函数f(x),如果我们要求它在某点x=a 处的导数,可以通过计算函数在该点附近的斜率来近似求得。
具体方法有使用差商和利用求极限。
差商的计算方式为:(f(a+h)-f(a))/h,其中h→0。
5. 导数的几何意义:函数在某一点的导数可以表示函数在该点处的切线的斜率。
切线的斜率是函数在该点的局部增长率的表示。
6. 导数的运算法则:导数满足一些有用的运算法则,这些法则可以帮助我们简化求导的过程。
常见的导数运算法则包括:常数法则、幂函数法则、和差法则、乘积法则、商法则、复合函数法则等。
7. 高阶导数:除了一阶导数,我们还可以计算高阶导数。
高阶导数表示导函数求导的结果。
例如,f''(x)表示函数f(x)的二阶导数。
8. 反函数和导数:如果一个函数f(x)在某一区间上是可递增或可递减的,并且在该区间上的导数不为零,那么它的反函数f^(-1)(x)在相应区间上也有导数,并且具有以下关系式:(f^(-1))'(y)=1/f'(x),其中y=f(x)。
9. 隐函数和导数:隐函数是指不能直接用y=f(x)的形式表示的函数,而是以xy的关系表示的函数。
导数高端知识点总结高中
导数高端知识点总结高中一、导数的概念1. 导数的定义在数学中,导数是函数变化率的量度,它表示函数在某一点的变化速率。
设函数y=f(x),若极限f'(x)=lim[(f(x+Δx)-f(x))/Δx](Δx→0)存在,则称f(x)在点x处可导,并称这个极限为函数f(x)在点x处的导数,记为f'(x)。
导数的几何意义是函数在某一点处的切线斜率。
2. 导数的几何意义导数的几何意义可以从图像的角度来理解。
在函数图像的某一点A处,函数的导数f'(x)表示了曲线在A点的切线斜率,也就是函数在这一点处的变化速率。
如果导数为正,表示函数在该点处是递增的;如果导数为负,表示函数在该点处是递减的;如果导数为零,表示函数在该点处的变化率为零,即函数在该点处有极值。
3. 导数的物理意义导数在物理学中也有着重要的应用。
例如,物体的位移与时间的关系可以用函数来描述,而物体的速度就是位移对时间的导数,加速度就是速度对时间的导数。
因此,导数可以用来描述物体在某一时刻的速度和加速度,这对于研究物体的运动特性具有重要的意义。
二、导数的性质1. 导数存在的条件函数f(x)在点x处可导的条件是函数在该点处的左导数和右导数存在且相等。
这个条件可以用极限的形式来描述,即lim[Δx→0-(f(x+Δx)-f(x))/Δx]=lim[Δx→0+(f(x+Δx)-f(x))/Δx]。
2. 导数的四则运算性质导数具有四则运算的性质,即对于两个可导函数f(x)和g(x),它们的和、差、积和商的导数可以通过原函数的导数来求得。
具体的性质如下:(1)和函数的导数:(f+g)'=f'+g'(2)差函数的导数:(f-g)'=f'-g'(3)积函数的导数:(fg)'=f'g+fg'(4)商函数的导数:(f/g)'=(f'g-fg')/g^23. 复合函数的导数如果函数y=f(u)和u=g(x)都可导,则复合函数y=f(g(x))也是可导的,它的导数可以通过链式法则来求得。
导数知识点总结最全
导数知识点总结最全一、导数的定义1. 函数的变化率在微积分中,导数是描述函数的变化率的重要工具。
当函数y=f(x)的自变量x在某一点x0处发生微小的增量Δx时,相应的函数值y也会发生微小的增量Δy,即Δy=f(x0+Δx)-f(x0)。
函数f(x)在点x0处的导数定义为:f'(x0)=lim(Δx→0)Δy/Δx=lim(Δx→0)(f(x0+Δx)-f(x0))/Δx该极限存在时,即函数f在点x0处可导,导数f'(x0)就是函数在该点处的变化率。
2. 函数的切线在直角坐标系中,当函数y=f(x)在点x0处可导时,我们可以利用导数来求得函数在该点处的切线。
设切线方程为y=kx+b,则k=f'(x0),b=f(x0)-f'(x0)x0。
通过这个切线方程,我们可以比较精确地描述函数在某一点的近似变化情况。
二、连续性与可导性1. 连续函数的导数在实际应用中,我们常常需要研究函数在某一点的变化情况。
在微积分中,我们知道,如果函数在某一点可导,则该点也是函数的连续点。
也就是说,可导性是函数连续性的充分条件。
但是,连续性并不是可导性的充分条件,也就是说,函数在某一点连续并不一定可导。
2. 可导函数的连续性对于可导函数来说,它具有一定的光滑性,也就是说,可导函数在某一点处的导数存在且有定义。
因此,可导函数的图像具有一定的光滑性,没有明显的折线或者间断点。
3. 不可导的情况在实际应用中,我们也会遇到一些不可导的函数,这些函数的导数在某些点处不存在。
这种情况常常出现在函数图像发生角点、尖点、间断、垂直渐近线等情况下。
这些函数在不可导点处的导数通常需要通过极限或者其他方法来求得。
三、导数的计算1. 基本函数的导数在微积分中,我们需要掌握一些基本函数的导数。
这些基本函数包括常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数等。
这些基本函数的导数公式对于我们计算更加复杂的函数的导数有着非常重要的作用。
word完整版高考文科导数考点汇总推荐文档
高考导数文科考点总结一、考试内容导数的概念,导数的几何意义,几种常见函数的导数;两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值, 函数的最大值和最小值。
导数概念与运算知识清单 1 .导数的概念函数y=f(x),如果自变量x 在X 。
处有增量 X,那么函数y 相应地有增量y=f (x 0+ X ) —f(x 0),yy f(x 。
x) f(x 。
)比值 x 叫做函数y=f f x )在x 0到x 0+ x 之间的平均变化率,即x =x。
_y如果当 x 0时,x 有极限,我们就说函数 y=f(x)在点X 。
处可导,并把这个极限叫做f ( x )在点x 0处的导数,记作f '(x 0 )或y'x/。
y f(x 。
x) f(x 。
) lim lim即 f (x 0) = X 0 X = x 0 x说明:(1) 函数f (X )在点X 0处可导,是指 X 数在点X 0处不可导,或说无导数。
(2)X是自变量X 在X 0处的改变量,X由导数的定义可知,求函数 y=f (X )在点X 0处的导数的步骤(可由学生来归纳): (1)求函数的增量 y=f (x 0+ x )- f (x 0 );y f(x °x) f(x °)(2) 求平均变化率 x =x;.. ylim —(3) 取极限,得导数f ' (X )= x 0 x 。
2 •导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线 y=f (x )在点p (x 0, f (x 0))处的切线的斜 率。
也就是说,曲线 y=f (x )在点p (x 0, f (x 0))处的切线的斜率是 f' (x 0)。
相应地,切线y y0时, X 有极限。
如果 x 不存在极限,就说函0时,而 y 是函数值的改变量,可以是零。
方程为y—y0=f/ (x0) (x-x0)。
4 •两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和 (或差), 即:(U V ) u v.法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个III函数乘以第二个函数的导数,即:(uv ) uv uv .若C 为常数,则(Cu ) Cu Cu 0 Cu Cu .即常数与函数的积的导数等于常数乘以函数II的导数:(Cu ) Cu .法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除U u'v uv'2以分母的平方: v‘ =v( v 0)。
高考文科导数考点汇总培训讲学
联系网站删除
高考导数文科考点总结 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 导数概念与运算知识清单 1.导数的概念 函数y=f(x),如果自变量x在x0处有增量x,那么函数y相应地有增量y=f(x0+x)-f(x0),比值xy叫做函数y=f(x)在x0到x0+x之间的平均变化率,即xy=xxfxxf)()(00。如果当0x时,xy有极限,我们就说函数y=f(x)在点x0处可导,并把这个极限叫做f(x)在点x0处的导数,记作f’(x0)或y’|0xx。 即f(x0)=0limxxy=0limxxxfxxf)()(00。 说明: (1)函数f(x)在点x0处可导,是指0x时,xy有极限。如果xy不存在极限,就说函数在点x0处不可导,或说无导数。 (2)x是自变量x在x0处的改变量,0x时,而y是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f(x)在点x0处的导数的步骤(可由学生来归纳): (1)求函数的增量y=f(x0+x)-f(x0); (2)求平均变化率xy=xxfxxf)()(00; (3)取极限,得导数f’(x0)=xyx0lim。 2.导数的几何意义 函数y=f(x)在点x0处的导数的几何意义是曲线y=f(x)在点p(x0,f(x0))处的切线的斜率。也就是说,曲线y=f(x)在点p(x0,f(x0))处的切线的斜率是f’(x0)。相应地,切线方程为y-y0=f/(x0)(x-x0)。
联系网站删除
3.几种常见函数的导数: ①0;C ②1;nnxnx ③(sin)cosxx; ④(cos)sinxx; ⑤();xxee⑥()lnxxaaa; ⑦1lnxx; ⑧1lglogaaoxex. 4.两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)'''vuvu 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:.)('''uvvuuv 若C为常数,则'''''0)(CuCuCuuCCu.即常数与函数的积的导数等于常数乘以函数的导数: .)(''CuCu 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:vu‘=2''vuvvu(v0)。 形如y=fx()的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y'|X= y'|U ·u'|X 导数应用知识清单 单调区间:一般地,设函数)(xfy在某个区间可导, 如果'f)(x0,则)(xf为增函数; 如果'f0)(x,则)(xf为减函数; 如果在某区间内恒有'f0)(x,则)(xf为常数; 2.极点与极值: 曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正; 3.最值: 一般地,在区间[a,b]上连续的函数f)(x在[a,b]上必有最大值与最小值。 ①求函数?)(x在(a,b)内的极值; ②求函数?)(x在区间端点的值?(a)、?(b);
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考文科导数考点汇总精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-高考导数文科考点总结一、考试内容导数的概念,导数的几何意义,几种常见函数的导数;两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。
导数概念与运算知识清单1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f(x 0+x ∆)-f (x 0),比值x y∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。
如果当0→∆x 时,x y∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。
即f (x 0)=0lim →∆x x y∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。
如果x y∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。
(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳):(1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率x y ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=x yx ∆∆→∆0lim。
2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。
也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。
相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。
3.几种常见函数的导数:①0;C '= ②()1;nn xnx-'= ③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();x x e e '=⑥()ln x xa a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=.4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: (.)'''v u v u ±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:.)('''uv v u uv +=若C 为常数,则'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数:.)(''Cu Cu =法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫ ⎝⎛v u ‘=2''v uv v u -(v ≠0)。
形如y=f [x (ϕ])的函数称为复合函数。
复合函数求导步骤:分解——求导——回代。
法则:y '|X = y '|U ·u '|X导数应用知识清单单调区间:一般地,设函数)(x f y =在某个区间可导,如果'f )(x 0>,则)(x f 为增函数;如果'f 0)(<x ,则)(x f 为减函数;如果在某区间内恒有'f 0)(=x ,则)(x f 为常数;2.极点与极值:曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正;3.最值:一般地,在区间[a ,b]上连续的函数f )(x 在[a ,b]上必有最大值与最小值。
①求函数?)(x 在(a ,b)内的极值;②求函数?)(x 在区间端点的值?(a)、?(b);③将函数? )(x 的各极值与?(a)、?(b)比较,其中最大的是最大值,其中最小的是最小值。
二、热点题型分析题型一:利用导数研究函数的极值、最值。
1.32()32f x x x =-+在区间[]1,1-上的最大值是 22.已知函数2)()(2=-==x c x x x f y 在处有极大值,则常数c = 6 ;3.函数331x x y -+=有极小值 -1 ,极大值 3题型二:利用导数几何意义求切线方程1.曲线34y x x =-在点()1,3--处的切线方程是 2y x =-2.若曲线x xx f -=4)(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为(1,0)3.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --=4.求下列直线的方程:(1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2x y =过点P(3,5)的切线; 解:(1)123|y k 23 1)1,1(1x /2/23===∴+=∴++=-=-上,在曲线点-x x y x x y P所以切线方程为02 11=+-+=-y x x y 即,(2)显然点P (3,5)不在曲线上,所以可设切点为),(00y x A ,则200x y =①又函数的导数为x y 2/=,所以过),(00y x A 点的切线的斜率为/2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有352000--=x y x ②,由①②联立方程组得,⎩⎨⎧⎩⎨⎧====255 110000y x y x 或,即切点为(1,1)时,切线斜率为;2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即,或题型三:利用导数研究函数的单调性,极值、最值1.已知函数))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1(Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式;(Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值;(Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围解:(1)由.23)(,)(223b ax x x f c bx ax x x f ++='+++=求导数得过))1(,1()(f P x f y 上点=的切线方程为:而过.13)]1(,1[)(+==x y f P x f y 的切线方程为上故⎩⎨⎧-=-=+⎩⎨⎧-=-=++3023323c a b a c a b a 即∵124,0)2(,2)(-=+-∴=-'-==b a f x x f y 故时有极值在 ③由①②③得 a=2,b=-4,c=5 ∴.542)(23+-+=x x x x f(2)).2)(23(443)(2+-=-+='x x x x x f当;0)(,322;0)(,23<'<≤->'-<≤-x f x x f x 时当时①13)2()(.0)(,132=-=∴>'≤<f x f x f x 极大时当 又)(,4)1(x f f ∴=在[-3,1]上最大值是13。
(3)y=f(x)在[-2,1]上单调递增,又,23)(2b ax x x f ++='由①知2a+b=0。
依题意)(x f '在[-2,1]上恒有)(x f '≥0,即.032≥+-b bx x①当6,03)1()(,16min ≥∴>+-='='≥=b b b f x f bx 时; ②当φ∈∴≥++=-'='-≤=b b b f x f bx ,0212)2()(,26min 时;③当.60,01212)(,1622min ≤≤≥-='≤≤-b b b x f b 则时综上所述,参数b 的取值范围是),0[+∞2.已知三次函数32()f x x ax bx c =+++在1x =和1x =-时取极值,且(2)4f -=-.(1) 求函数()y f x =的表达式;(2) 求函数()y f x =的单调区间和极值;解:(1) 2()32f x x ax b '=++,由题意得,1,1-是2320x ax b ++=的两个根,解得,0,3a b ==-.再由(2)4f -=-可得2c =-.∴3()32f x x x =--.(2) 2()333(1)(1)f x x x x '=-=+-,当1x <-时,()0f x '>;当1x =-时,()0f x '=;当11x -<<时,()0f x '<;当1x =时,()0f x '=;当1x >时,()0f x '>.∴函数()f x 在区间(,1]-∞-上是增函数;在区间[1,]-1上是减函数;在区间[1,)+∞上是增函数.函数()f x 的极大值是(1)0f -=,极小值是(1)4f =-.3.设函数()()()f x x x a x b =--.(1)若()f x 的图象与直线580x y --=相切,切点横坐标为2,且()f x 在1x =处取极值,求实数,a b 的值;(2)当b=1时,试证明:不论a 取何实数,函数()f x 总有两个不同的极值点.解:(1)2()32().f x x a b x ab '=-++由题意(2)5,(1)0f f ''==,代入上式,解之得:a=1,b=1.(2)当b=1时,()0f x '=令得方程232(1)0.x a x a -++=因,0)1(42>+-=∆a a 故方程有两个不同实根21,x x .不妨设21x x <,由))((3)(21'x x x x x f --=可判断)('x f 的符号如下:当时,1x x <)('x f >0;当时,21x x x <<)('x f <0;当时,2x x >)('x f >0因此1x 是极大值点,2x 是极小值点.,当b=1时,不论a 取何实数,函数()f x 总有两个不同的极值点。