电化学步骤动力学
电化学第3章电化学极化讲解
电化学第3章电化学极化讲解第3章电化学极化(电荷转移步骤动⼒学)绪论中曾提到:⼀个电极反应是由若⼲个基本步骤形成的,⼀个反应⾄少有三个基本步骤:00R R ze O O s s →→+→-1) 反应粒⼦⾃溶液深处向电极表⾯的扩散——液相传质步骤。
2) 反应粒⼦在界⾯得失电⼦的过程——电化学步骤。
3) 产物⽣成新相,或向溶液深处扩散。
当有外电流通过电极时,?将偏离平衡值,我们就说此时发⽣了极化。
如果传质过程是最慢步骤,则?的偏离是由浓度极化引起的(此时0i s i C C ≠,e ?的计算严格说是⽤s i C 。
⽆浓度极化时0i s i C C =,?的改变是由s i C 的变化引起)。
这时电化学步骤是快步骤,平衡状态基本没有破坏。
因此反映这⼀步骤平衡特征的Nernst ⽅程仍能使⽤,但须⽤?代e ?,s i C 代0i C ,这属于下⼀章的研究内容。
如果传质等步骤是快步骤,⽽电化学步骤成为控制步骤,则这时?偏离e ?是由电化学极化引起的,也就是本章研究的内容。
实际上该过程常常是⽐较慢的,反应中电荷在界⾯有积累(数量渐增),?随之变化。
由此引起的?偏离就是电化学极化,这时Nernst ⽅程显然不适⽤了,这时?的改变将直接以所谓“动⼒学⽅式”来影响反应速度。
3.1 电极电位与电化学反应速度的关系电化学反应是⼀种特殊的氧化—还原反应(⼀个电极上既有氧化过程,⼜有还原过程)。
若⼀个电极上有净的氧化反应发⽣,⽽另⼀个电极上有净的还原反应发⽣,则在这两个电极所构成的电化学装置中将有电流通过,⽽这个电流刚好表征了反应速度的⼤⼩,)(nFv i v i =∝[故电化学中总是⽤i 表⽰v ,⼜i 为电信号,易测量,稳态下串联各步速度同,故浓差控制也⽤i 表⽰v 。
i 的单位为A/cm 2,zF 的单位为C/mol ,V 的单位为mol/(cm 2.s )]。
既然电极上有净的反应发⽣(反应不可逆了),说明电极发⽣了极化,?偏离了平衡值,偏离的程度⽤η表⽰,极化的⼤⼩与反应速度的⼤⼩有关,这⾥就来研究i ~?⼆者间的关系。
第五章 电化学步骤的动力学
5.1 改变电极电势对电化学步骤活化能的影响 电极电势改变了后阳极 反应和阴极反应的活化能 分别变成:
W W1 F
' 1
'
(5.1a)
W2 W2 F
(5.1b)
和 分别表示改变电极电势对阴极和阳极
k e
阳极过程和阴极过程的电流密度 阳极:
nF 0 ia nFKcR exp 平 RT
=
nF i exp a RT
0
阴极:
nF 0 ic nFKcO exp 平 RT
0 * a R
nF 0 * 1 ik nFKk cO exp RT
z R F 1 c c R exp RT zO F 1 * 0 cO cO exp RT
* R 0
1
z R zO n,
0 i
0
根据能斯特方程式,电极的平衡电极电位 e 可写成下列通式,即:
RT a氧化态 RT aO 0 e ln e ln nF a还原态 nF a R
0 e
5.4
电极电势的“电化学极化”
定义:若体系处于平衡电势下,则 ia ik ,因 而电极上不会发生净电极反应。当电极上 有净电流通过时,由于 ia ik ,故电极上的 平衡状态受到了破坏,电极电势或多或少 会偏离平衡电势,我们称这种现象为电极 电势发生了“电化学极化”。 这时流过电极表面的净电流密度等于:
a
0
I i0
电化学反应的机理和动力学
电化学反应的机理和动力学电化学反应是指在电化学电池中,通过电子和离子在电极之间的转移而发生的化学反应。
电化学反应的机理和动力学是研究这些反应发生的原理和速率的重要内容。
本文将分别介绍电化学反应的机理和动力学,并探讨它们在实际应用中的意义。
一、电化学反应机理电化学反应机理研究的是反应本质和反应过程中电子和离子的转移路径。
在电化学反应过程中,通常涉及两种基本类型的反应:氧化和还原。
氧化反应是指电子从物质中转移到电极上,形成正离子,同时释放出负离子或氧气等。
例如,铁的腐蚀就是一种氧化反应,它的机理是通过电子在金属铁和氧气的相互作用下发生。
还原反应是指电子从电极向物质中转移,将正离子还原为中性物质。
例如,电池的充电过程就是一种还原反应,其机理是通过电子在电极上与正离子发生反应,将其还原为中性物质。
电化学反应机理的研究对于理解反应过程和控制反应速率具有重要意义。
通过研究反应的电子和离子转移路径,可以揭示反应过程中可能存在的限制因素,并优化反应条件,提高反应效率。
二、电化学反应动力学电化学反应动力学研究的是反应速率与反应条件之间的关系。
反应速率是指单位时间内反应物消失或生成的量,它受到反应物浓度、温度、电子转移速率等因素的影响。
反应速率可以用电流大小来表示。
电流是单位时间内通过电解池的电子或离子的数量。
根据法拉第定律,反应速率与电流之间存在着一定的关系。
在有些电化学反应中,反应速率会随着反应过程的进行逐渐减慢,这是因为反应物浓度减小导致反应速率减小。
这种现象被称为极化现象,可以通过改变电解质浓度或电极材料的选择来减轻极化效应,提高反应速率。
电化学反应动力学的研究对于优化反应条件、设计高效电化学电池和改善电化学催化剂等具有重要意义。
通过揭示反应速率与反应条件的关系,可以为实际应用中的电化学反应提供理论指导,提高反应效率和能量利用率。
三、电化学反应的应用意义电化学反应的机理和动力学研究不仅对于理解和控制电化学过程具有重要意义,还有着广泛的应用。
电化学-第五章电荷转移步骤动力学与电化学极化(极力推荐)
W1 W2’-W1’ W2-W1
nF W
2
W2’
还原态
氧化态
nF
nF
nF
x
改变电极电位对电极反应活化能的影响的示意图
W2’ – W1’ = W2- W1 + nF
这样, W2’ – W2 = W1’- W1 + nF
阴极反应活化 能增值
阳极反应活化 能增值
再变化为:(W2’ – W2)- (W1’- W1)= nF
当电极反应处于标准平衡状态时,即 = 平
ia nFk c exp(
0 a R 0 c o
nF
RT RT
0 平 ) nFK a cR
ic nFk c exp(
nF
0 平 ) nFK c co
上两式中:
K a k exp(
0 a
nF
RT
0 平 ) 0 平 )
K c kc0 exp(
a b lg I
从上式可以看出,不仅与电流密度I有关,还 与a、b有关。而a、b则与电极材料性质、表面结 构、电极的真实表面积、溶液的组成及温度有关。
5.1.2 影响电化学极化的主要因素
(1)电流密度。
(2)电极材料,不同的电极材料a值不同,反应能力完全 不同。需要寻找具有高催化活性的材料。 (3)电极的真实表面积,表面积越大电极的反应能力越大, 可减小电极的极化。如采用多孔电极。
若改写成指数形式,则有:
阳极反应
ia i exp(
0
nF
RT
a )
阴极反应
ic i exp(
0
nF
RT
c )
知道了、和i0,根据上面的电化学步骤的基本动 力学方程,就可以计算任一电位下的绝对电流密 度 ia 、 ic 。
第五章 电化学步骤动力学
它只在一定的电 流范围内适用
a blgi
a,b的物理意义不明确,不 能说明电位的变化是怎样影 响电极反应速度的。
❖ 即电极电位直接影响到电子在两相间的传递,直接与电化学步骤的 快慢有关。
❖ 为了从理论上证明这个公式的合理性,必须从理论上来进行推导和 说明,因此必须建立起描叙电化学步骤动力学状态的方程。
❖ 此时,电化学步骤动力学方程不能进行简化,必须用整个公式来描叙, 即:
ik
i阴
i阳
i0
[exp(
nF
RT
)
exp(
nF
RT
)]
iA
i阴
i阳
i0[exp(
nF
RT
)
exp( nF
RT
)]
5.4、电化学的基本动力学参数
1.传递系数:--α、β ❖描述电极电位对活化能影响程度的动力学参数,叫对称系数,或传递系数。
❖ 用电流密度来表示反应速度,即:
i阴
V阴 s
nF
nFZ阴Co'
exp( W阴 RT
)
i阳
nF
V阳 s
nFZ阳CR'
exp( W阳 ) RT
❖ 因扩散步骤很快,则
Co' Co
CR' CR
i阴
nFZ阴Co
exp(
W阴 RT
)
nFK阴Co
i阳
nFZ阳CR
exp(
W阳 RT
)
nFK阳CR
5.1巴特勒-伏尔摩方程
a
2.303RT
nF
lg i0
2.303RT
nF
lg
ia
(5-10)
电化学反应的动力学与机制
电化学反应的动力学与机制电化学反应是一种将电能转化为化学能的反应,通常发生在电极上。
了解电化学反应的动力学与机制,可以帮助我们更好地理解电化学过程,并为电化学和能源领域的研究提供帮助。
一、电化学反应的基本原理电化学反应是指在电场的作用下,化学反应过程中电子的输送或移位。
通常情况下,电化学反应分为氧化还原反应和非氧化还原反应。
氧化还原反应中,物质从氧化态转化为还原态,并伴随着电子的移位。
非氧化还原反应中,物质的化学键被打断或形成新的化学键,而不涉及电子的输送。
二、电化学反应的动力学电化学反应的动力学包括反应速率、电化学反应机理、电化学反应中间态等方面。
1、反应速率反应速率是指反应物转化的速率,通常用反应物浓度随时间的变化率来表示。
电化学反应速率受反应物浓度、温度和电场强度等因素影响。
在电化学反应中,反应物的扩散是一个重要的影响因素。
当电极表面反应物浓度变化时,阻挡层的厚度也会变化,这会影响反应速率。
2、电化学反应机理电化学反应机理是指电化学反应的具体过程和中间态。
电化学反应的机理可以通过实验和计算模拟的方法来研究。
一般来说,电化学反应的机理包括电化学反应的过程和电化学反应的各个步骤(如电化学中间体的转化)。
3、电化学反应中间态在电化学反应中,有一些中间态参与了反应过程。
例如,电极表面的物质经过氧化或还原反应后,可能形成一种氧化态或还原态的中间体。
这些中间体不稳定,容易发生其他反应,从而影响电化学反应的速率。
三、电化学反应的机制电化学反应机制包括各种反应条件下,可控经过某些助剂或催化剂催化下的电化学反应。
电化学反应的机制取决于电化学反应速率的控制步骤。
例如,在非催化反应中,转化速率通常由反应物扩散速率决定。
但是,在某些情况下,较慢的电子转移过程可能会成为限制转化速率的因素。
在这种情况下,通过添加催化剂来提高电子转移速率是一种有效的方法。
四、电化学反应的应用电化学反应的应用非常广泛,包括能量存储、电化学催化和传感器等。
电化学原理-第六章-电子转移步骤动力学
其中:
nF i nF K cR exp RT
G 0 K k exp RT
G 0 K k exp RT
令:
i 0 nF K cO i nF K c R
0
则:
nF i i exp RT nF i i 0 exp RT
稳态时
s s c F c F R exp i i i i0 O exp 0 0 c RT c RT R O
阴极极化时:
F ic i i 0 exp RT cO i s 0 ∵ c c 1 i d
K的物理意义:标准电极电位和反应物
浓度为单位浓度时的电极反应绝对速度。
K 的应用: 以 K 代替 i 0 描述动力学特征,将不包含浓 度 c i 的影响:
F 0, i FKcO exp RT
F 0, i FKcR exp RT
与经验公式的比较
对阴极反应:
2.3RT 0 a log i F
2.3RT b F
对阳极反应:
2.3RT 0 a log i F
2.3RT b F
三、高过电位区的电化学极化规律
高过电位区的条件:
F F jc j exp( c ) exp( c ) RT RT
6.1
电极电位对电子转移步骤活化 能的影响
体 系 能 量
位能图:表示 金属离子处在 金属/溶液界面 不同位置时, 位能高低的一 种示意图。 活化能:活化 态离子平均能 量
电化学反应的动力学分析
电化学反应的动力学分析电化学反应是指在电化学条件下,电子参与的化学反应。
电化学反应的研究非常广泛,既涉及到基础学科的理论研究,也应用于实际生产和工程设计中。
动力学分析是电化学反应研究中至关重要的一部分,它可以帮助我们了解反应速率和机理,进而优化反应条件和提高反应效率。
在本文中,我们将围绕电化学反应的动力学分析展开讨论。
首先,我们需要了解电化学反应的基本原理。
电化学反应包括电化学氧化和电化学还原两个过程。
在电化学反应中,通过一个外部电源将电流通过电极引入到电解液中,从而引发化学反应。
这个外部电源称为电化学池,由两个电极(阴极和阳极)和一个电解质溶液组成。
在电化学反应中,电解质溶液中的金属离子或电子会发生转移,这种转移称为电解质的电离或电荷转移。
动力学分析主要关注电化学反应速率的测定和影响因素的研究。
电化学反应速率可以通过电流密度来表征,即单位时间内通过电解质溶液中的电流量。
电流密度与电化学反应速率之间存在一定关系,可以通过电流-时间曲线来观察和分析。
在实际实验中,常常使用电化学方法如极化曲线和循环伏安法来测定电流密度和电化学反应速率。
动力学分析的目的是揭示电化学反应速率的规律和机理。
在分析电化学反应速率时,我们需要考虑多个因素的影响,包括反应物浓度、电极表面特性、温度和电解质浓度等。
这些因素可以通过实验实际测定和理论计算来获得,从而建立电化学反应速率的数学模型。
这个模型可以帮助我们预测和优化电化学反应条件,提高反应效率。
在动力学分析中,还需要考虑电化学反应的反应机理。
电化学反应涉及到电子转移和物质转移两个过程,因此反应机理比较复杂。
通常情况下,我们采用基本的转移系数和速率常数来描述电化学反应的动力学。
这些参数可以通过实验数据的拟合和理论计算来得到。
对于复杂的电化学反应,我们还可以采用循环伏安法和交流阻抗法等高级技术进行研究和分析。
除了基础科学研究,电化学反应的动力学分析还广泛应用于实际工程和生产中。
电化学反应中的电极动力学
电化学反应中的电极动力学电化学反应是一种重要的化学反应,它可以在不同的领域中得到应用。
电化学反应的核心是电极动力学,即电势差与电化学反应的关系。
本篇文章将重点讨论电化学反应中的电极动力学。
一、电极反应和电极电势电化学反应是指在电解质溶液中发生的化学反应,包括氧化还原反应和非氧化还原反应等。
其反应过程可以分为两个步骤:电化学反应发生时,电荷转移在电极上发生,同时伴随着反应物的变化。
电极反应的产生是由于溶液中离子和电极表面的相互作用造成的。
而电极电势是指电极内外之间产生的电势差,其大小与溶液中溶质的浓度有关。
当电极电势增加时,其化学反应的速率也会加快。
因此,电极电势是检验电化学反应发生程度的一个重要指标。
二、电极电势的来源电极电势的来源包括两类,一类是电极反应本身的化学性质,即电极反应的标准电位。
另一类是电荷转移引起的电势,在电化学反应中电荷转移发生产生电势是因为反应物的不同。
这两种电势是相互独立的。
电极反应的标准电位是指在标准溶液中电极与外部参考电极(如标准氢电极)之间的电势差。
标准电位通常用 E^0 表示,其值与反应物、反应条件有关。
当标准电位为正时,化学反应皆能发生;当标准电位为负时,反应物难以还原或难以氧化。
电极反应的化学性质决定了标准电位的大小。
例如,铁离子的还原反应是 Fe3+ + e^- ⇌ Fe2+,其标准电位为-0.44 V。
而氢离子的还原反应是 H+ + e^- ⇌ 1/2 H2 ,其标准电位为0 V,是电化学反应中最常用的参考电极。
三、电极电势的计算对于某一电化学反应,如果其电极反应和标准参考电极的电势已知,那么可以使用以下公式计算电极电势:E = E^0 + (RT/nF)lnq其中,E^0 是标准电位,R 是理想气体常量,T 是绝对温度,n 是反应的电子数,F 是法拉第常数,q 是反应物和产物的浓度比。
这个公式是基于吉布斯自由能变化ΔG=-nFE 设计的,ΔG 表示反应物与产物的能量差,n 表示电极反应的电子数,F 表示法拉第常数(电场强度为1伏/厘每摩尔电子的电量),E 表示电极电势,E^0 表示标准电位。
第五章电荷转移步骤动力学与电化学极化
第五章电荷转移步骤动力学与电化学极化电荷转移步骤动力学与电化学极化是物理学中重要的研究领域之一,在材料科学、化学和电子工程等领域都有广泛的应用。
本文将从电荷转移步骤动力学和电化学极化两个方面进行介绍和讨论。
第五章:电荷转移步骤动力学电荷转移步骤动力学研究的是在化学反应、光电子器件和电池等过程中,电子和离子的传输过程。
这个过程通常包括以下几个步骤:电子从一个分子或物质转移到另一个分子或物质上,并伴随着电荷的重分布,使得系统的总能量发生变化。
这个过程的速率决定了反应动力学和物质传输的效率。
在电子转移步骤中,电荷输运的主要方式有两种:自由扩散和有界扩散。
自由扩散是指电荷无需受到限制地运动,而有界扩散是指电荷移动受到限制,比如在电极表面或界面处。
这两种方式的动力学行为有很大的差异,需要针对不同的应用场景进行研究和优化。
在电化学反应中,电荷转移步骤动力学对于理解反应速率和机制至关重要。
电荷转移反应通常包括电子转移和离子转移两个方面,比如在电化学电池中,电子可以从阴极转移到阳极,离子则在电解质中进行扩散。
这个过程经常涉及电极表面的催化作用和界面扩散效应,需要深入研究以提高电化学反应效率和电池性能。
另外,在光电子器件中,电荷转移步骤动力学也是一个重要的研究方向。
比如在太阳能电池中,光子的能量可以激发电子从价带跃迁到导带,形成电荷分离和传输。
了解光电子转移的动力学过程有助于设计和制备更高效的太阳能电池材料和结构。
电化学极化是指电化学系统中,由于电荷转移和离子扩散引起的极化现象。
在电化学过程中,电子和离子的传输会导致电位和电流的分布不均,进而引发电化学极化。
电化学极化可以分为电势极化、浓度极化和阻抗极化等几种不同类型。
电势极化是指由于电流通过电解质中导致的电位差,在电解质中产生的电场会改变电荷传输的速率。
浓度极化是指由于电极表面处离子浓度不均匀引起的电位差,从而影响电荷转移速率。
阻抗极化是指由于电池内部电阻的存在而影响电流的分布和传输速率。
电化学反应的动力学机制
电化学反应的动力学机制电化学反应是通过电流作用下而产生的化学反应,它起源于19世纪初期的伏特和法拉第的电化学研究中。
在电化学反应中,电子转移导致了原子、离子、分子的化学反应,这些反应被称为氧化还原反应。
电化学反应有着广泛的应用,比如用于电解产生各种金属、合成有机物、生产氢气等。
下面将从动力学机制方面对电化学反应进行介绍。
一、电化学反应的基本原理任何电化学反应都可以分解为部分反应,也就是氧化反应和还原反应。
在氧化反应中,电子从物质中转移到外部电路中,形成正离子;在还原反应中,电子从外部电路中流回物质中,形成负离子。
氧化还原反应的原理依赖于电子传输以及化学反应的结合。
电子的传输是通过电化学反应中的电极来完成的,化学反应的结合是通过反应物在电极上的吸附和反应来完成的。
二、电化学反应的动力学机制在电化学反应中,电流对反应质量的影响是根据动力学机制来解释的。
动力学机制指的是反应的特定步骤,包括电化学反应速率、电荷传递过程、电化学反应的机理等。
在电化学反应中,速率是由质子和电子的传递来决定的。
(一)电解过程中的动力学机制电解过程中的动力学机制包括单电极过程和电解全过程。
单电极过程指的是一个极上的反应过程,比如在阳极上,氧化反应会产生氧气,反应速率取决于电极的特征以及电荷传递过程。
电解全过程指的是在溶液中同时发生的两个单电极的反应,反应速率取决于离子交换的速率和扩散速率。
初始时,反应速率由扩散步骤控制,而在后续,速率由电荷传递步骤控制。
(二)电催化反应中的动力学机制电催化反应是通过电化学方法促进反应的化学反应。
在电催化反应中,金属电极的表面会吸附反应物,在此过程中发生电子转移。
电荷传递后,经过催化剂表面的化学反应即为电催化反应。
电催化反应速率的控制因素包括电化学反应过程中的扩散、电荷传递和化学反应等因素。
三、电化学反应的控制因素电化学反应速率的控制因素包括反应物浓度、电流密度、温度、电解质浓度等因素。
其中反应物浓度和电流密度对反应速率的影响最为显著。
第五章 电化学步骤动力学
电化学步骤动力学
如果电化学反应步骤的速度很慢,成为整个过程的控制步骤, 如果电化学反应步骤的速度很慢,成为整个过程的控制步骤, 电极过程的速度就将由电化学反应步骤的速度控制。 电极过程的速度就将由电化学反应步骤的速度控制。 由电化学步骤缓慢所引起的极化叫电化学极化。 由电化学步骤缓慢所引起的极化叫电化学极化。 电化学极化 电化学步骤控制的电极过程的动力学规律就是电化学步骤的动 力学规律。 力学规律。 因此找到了影响电化学步骤的反应速度的主要因素, 因此找到了影响电化学步骤的反应速度的主要因素,也就找到 了影响电极过程速度的主要因素, 了影响电极过程速度的主要因素, 电化学步骤动力学就是研究电极过程处于电化学反应步骤所控 制时的动力学规律或动力学特征。 制时的动力学规律或动力学特征。
5.1巴特勒-伏尔摩方程 5.1
一.电化学极化经验公式
过电位服从一个半经验公式: 过电位服从一个半经验公式:
与电极材料、电极表 面状态、溶液组成和 温度有关 它只在一定的电流 范围内适用
1905年塔费尔根据大量实验事实, 1905年塔费尔根据大量实验事实,发现氢离子的放电过程中其放电 年塔费尔根据大量实验事实
a,b的物理意义不明确,不 , 的物理意义不明确 的物理意义不明确, 能说明电位的变化是怎样影 响电极反应速度的。 响电极反应速度的。
即电极电位直接影响到电子在两相间的传递, 即电极电位直接影响到电子在两相间的传递,直接与电化学步骤的 快慢有关。 快慢有关。 为了从理论上证明这个公式的合理性, 为了从理论上证明这个公式的合理性,必须从理论上来进行推导和 说明,因此必须建立起描叙电化学步骤动力学状态的方程。 说明,因此必须建立起描叙电化学步骤动力学状态的方程。
电极过程最重要的特征就是电极电位对电极反应速度的影响, 电极过程最重要的特征就是电极电位对电极反应速度的影响,这种影 响有直接的,也有间接的。 响有直接的,也有间接的。 直接影响主要指对电化学步骤的活化能的影响, 直接影响主要指对电化学步骤的活化能的影响,主要影响电极表面上 参加反应粒子的浓度。 参加反应粒子的浓度。 当扩散步骤成为控制步骤,电位的变化是由于参加反应的粒子的浓度 当扩散步骤成为控制步骤, 变化而引起的,可用能斯特方程计算电位变化,这种影响称为“ 变化而引起的,可用能斯特方程计算电位变化,这种影响称为“热力 学方式” 学方式”。 如果电子转移步骤是电极过程的控制步骤时, 如果电子转移步骤是电极过程的控制步骤时,电极电位直接影响电子 转移步骤和整个电极反应过程的速度,这种影响称为“ 转移步骤和整个电极反应过程的速度,这种影响称为“动力学方 式” 。
第四章-电化学步骤的动力学
1 电极电势对电化学步骤反应速度的影响 2 平衡电势与电极电势的“电化学极化”
3 浓度极化对电化学步骤反应速度和极化曲线的影响
4 测量电化学步骤动力学参数的暂态方法 5 相间电势分布对电化学步骤反应的影响
6 电子交换步骤的反应机理
李梦凯 151320120 物理化学
1 电极电势对电化学步骤反应速度的影响
RT RT (4.16)式表明,决定“电化学极化“数值的主要因素是外电流与交换电流 的相对大小。这种电流密度与过电位的关系称之为Butler-Volmer公式。
I c i 0 [exp(
nF
c ) exp(
nF
c )
|I| << i0的线性极化
通过外电流(I)远小于电极体系的交换 电流(i0)。例如在一个 i0 = 10安/厘米2 的电极体系中。通过Ic = 0.1 安/厘米2 的阴极外电流,则从图4.6可以看到, 只要电极电势稍稍偏离平衡数值,以 致的数值略有不同,就足以引起这种 比i0小得多的外电流。因此,当|I| << i0时,出现的超电势必然是很小的, 仍然保持 平及ia ic ,习惯上称 此时的电极反应处于“近乎可逆“或” 准平衡“的状态。
0 c
上二式中ka,kc为“频率因子”(或称“指前因子”) ,Ka0,Kc0为电极 电势 = 0时的反应速度常数:
W0 K k exp( ) RT
0
若将电极反应速度用电流密度表示 ,则有
0 0 ia nFKa cR
ic0 nFKc0cO
(4.4)
ia0,ic0 为 = 0 时相应于正、反向绝对反应速度的阳极、阴极电流密度, 均为正值。 注意到异相反应的描述与均相是不同的。异相反应速率与界面的单位面 积有关,因此其单位为mol.s-1.cm-2。如果浓度单位是mol/m3,则异相的速 率常数是m/s。 A C m mol 3 (4.4)式两边的单位换算(SI) 2 m mol S m 如果将电极电势改变至 (即 0 ),则根据(4.1)式应有
电化学步骤动力学
5.2 电化学极化方程式
一、电化学极化的基本方程式 (B-V公式)
在平衡电势下,还原反应速度和氧化反应速度
相等,ic ia ,若此时电极上通以一定大小的外 电流,电极电势将偏离平衡电势,ic ≠ ia ,这 种变化直到延续到与之间的差值与外电流密度
最后两个相反过程的活化能达到相等,氧化反 应速度等于还原反应速度。此时电极处于平衡 状态。在界面没有剩余电荷的情况下(q=0), Zn2+在两相间转移时涉及的活化能可用下图示
意地加以说明
图中曲线1a表示Zn2+自晶格中逸出时的势能变化 情况(氧化反应),曲线1b则表示Zn2+自水溶液 中逸出时的势能变化情况(还原反应)。氧化反应 与还原反应的活化能分别为图中的W1和W2。如 果将电极电势改变△φ(△φ=φ-φ。),则紧密 层中的电势变化如图中曲线3所示。电极电势的 改变将使界面间进行电化学反应时,增加了额外 的电能nF△φ(n为反应的电子得失数),如图中 曲线4所示,将曲线4与曲线1相加得到曲线2, 它表示当电极电势改变△φ后锌电极两相间进行 电化学反应时势能的变化情况。
),基
Ia ia ic ≈
ia
i
0
exp( nFa
RT
)
或用对数表示,则为
a
2.3RT
nF
lg i 0
2.3RT
nF
lg
Ia
上述公式所表示的超电势与极化电流密度对数值
的直线关系,就是塔菲尔方程,即
a b lg I
式中 a 2.3RT lg i0或 2.3RT lg i0
nF
nF
b 2.3RT
I 相等时,才达到稳态。
大学化学专业第三章电化学反应动力学
表 2.1 一些电化学反应的标准速率常数
电极反应 Bi3+ + 3eCd2+ + 2eCe4+ + eCr3+ + eCs+ + eFe3+ + eHg+ + eNi2+ + 2ePb2+ + 2eTl+ + eZn2+ + 2eZn2+ + 2eZn2+ + 2e-1
Bi Cd Ce3+ Cr2+ Cs Fe2+ Hg Ni Pb Tl Zn Zn
将以上两式带回到公式
得到: i ic ia nFA k f cOs kbcRs
Butler-Voluner方程
也称为电化学反应的基本方程
这一表达式是首先由Butler和Voluner 推出的,所以这一表达式以及其相关的动力 学表达式都称为Butler-Voluner方程,以纪 念他们在这一领域的杰出贡献。
假定电极电位在0 V时的阴极反应活化能和阳 极反应活化能各为G0,c <G0,a,若电极电位从0 V向正方向移动到+ ,则电极上电子的能量将改 变-nF(能量下降),
O ne R
Ga Go,a 1 nF Gc Go,c nF 1 nF
2. 速率常数与温度的关系
实验表明,溶液中的大多数反应,其速率常数随温度
的变化符合Arrhenius公式。事实上任何形式的电极反应,
其活化焓 式:
与速H率常数之间的关系也符合Arrhenius公
k Aexp H / RT
A是指前因子。在电子转移反应中,离子氛重排是基本步 骤,这步骤包含活化熵ΔS≠(activation entropy)。重新
电化学原理-第5章:液相传质步骤动力学
10-3-10-2厘米
如果采用一定措施,
例如向溶液中加入大量的局外电解质(即不参 加电极反应的电解质),此时溶液中输送电荷 的任务主要是由它承担,反应离子的电迁移传 质作用可忽略,可以认为在紧靠电极表面的液 层中(扩散层)只有扩散传质起作用。
1.电流通过电极时,三种传质方式可能同时存在,但在一 定的区域中,起主要作用的传质方式往往只是其中一种 或两种。
4、在紧靠电极表面的液层中,没有大量的局外电解质存在 时,( )传质方式占主导地位。
A 电迁移; B 对流; C 扩散; D 电迁移、扩散。
4、传质作用的区域:
扩散
c 0 本体浓度
电迁移
-++ c
-+
对流(小,可忽略)
c0 cs
-+ -+
-+
cs
c 表面浓度
电迁移(小,可忽略) 对流
双电层(零点 几-几纳米)
电迁移速 度cm/s
离子淌度 V/cm c(m52.1/()sV)
电迁流量与i离子的迁移数有关,溶液中的
各种离子不管它们是否参加电极反应,均
在电场作用下迁移。溶液中其它各种离子
浓度越大,当通过一定电流时,则i离子的
电迁流量也就越小。
ti
zii c i ziici
i
2、对流
对流:一部分溶液与另一部分溶液之间的相对流动。
非稳态扩散
ci f(x,t)
• 稳态扩散:扩散的速度 , 扩散层厚度δ随时间变化
扩散补充的反应离子与电
稳态扩散:
极反应消耗的反应粒子相
等,扩散层中,各点的反
ci f(x)
dc 常数 dx
应粒子浓度分布不再随时 扩散层厚度δ不随时间变化
间的变化而变化,仅仅是
第六章电化学步骤动力学基础
(6-13)
度
2019/12/16
12
将
GG0nF代入,得:
GG0nF
ink F cO ex p G 0R n T F nK F cO ex pR n F T (6-14)
其中:
i=nFKcRexpR nFT
2
1
GG0 nF(6-3)
1
传递系数
F
4 3
G 0 G
d
x
F
F x
2019/12/16
图6.3电极电位对Ag+离子位能曲线的影响
6
电子的位能曲线变化
图6.4电极电位对电子位能曲线的影响
2019/12/16
7
结论:只要反应是按 On e R 的形
10exp0.5965000.24107m0 A/cm2 8.314298
2019/12/16
17
§6-2电子转移步骤的基本动力学参数
一.电极过程的传递系数 、
物理意义:表示电极电位对还原反应和氧化反应 活化能影响的程度。
GG0 nF
GG0 nF
O*
变化;
RR ,:Ag 自晶格中逸出
的位能变化;
G 0
RAO:Ag 在相间转移
的位能曲线;
R
R*
A G 0
O
2019/12/16
dx
图6.2零电荷电位时,Ag+离子的位能曲线
5
2、界面电场对活化能的影响
电化学位:
F MF G
GG0nF(6-2) G 0
i0物理意义:平衡电位下氧化反应和还原反应的绝 对速度,也就是平衡状态下,氧化态粒子和还原 态粒子在电极/溶液界面的交换速度。
电化学过程的动力学与催化作用
电化学过程的动力学与催化作用电化学是研究电化学反应及其规律的学科,是化学、电子学和物理学交叉结合的领域。
电化学反应包括电解、电容、电化学合成等。
而电化学过程的动力学与催化作用则是电化学反应研究的一个重要方面。
动力学是化学反应速率与反应过程的研究。
在电化学过程中,证明电解反应是否进行的重要指标是电势变化,电势变化的大小与化学反应速率有关。
电解反应的进行速率与温度、浓度、电极表面以及电解质的种类等因素有关。
对于催化作用,其实现机理可以简单描述为催化剂在反应运动过程中通过吸附、反应与解离三个步骤来实现,且催化剂在吸附和解离步骤中与反应物或产物的接触可以增强或减弱反应物或产物之间的相互作用能,这种作用能的变化则引发反应速率的升高或降低。
在电化学过程中,催化剂在反应中同样发挥着重要作用。
比如,一些催化剂可以促进电极表面的氧化还原反应,从而提高电化学反应速率和效率。
同时,一些催化剂可通过滞留在电极表面上,将电解质分子引向电极,增加反应发生的可能性,进而提高反应速率。
催化剂可以被喻为化学反应的“促进剂”,其产生的成果常常减少化学反应的能量损失,大大提高了反应发生的效率。
在实际应用上,电化学过程的动力学与催化作用可以帮助人们理解和掌握电化学反应的规律。
在诸如电化学合成、电化学清洗等领域中,都需要准确的掌握电化学过程的动力学与催化作用,以更好地实现反应过程的控制与优化。
在电化学反应中,通过催化剂对反应物或产物的吸附、反应与解离三个步骤的作用,可以大大提高反应速率和效率,也可以使反应过程更容易控制。
在应用上,需要充分利用这些特性,并在合成、清洗等过程中加以采用,以更好地实现反应的高效、可控。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能将这种 电流值与外电路中可以用仪表测出的净电流(I)
混为一谈。
3.1电极电势对电化学步骤反应速度影响
3.1.3电化学步骤的基本动力学参数
• 选极取电电势极的反数应值体表系示的电平极衡电电势势与(体系平平)衡作电为势电之势间零的点差, 则别电。 这种电势值就是"超电势”。
• 对于阳极反应有
a
W1' W1 F W2' W2 F
3.1电极电势对电化学步骤反应速度影响
3.1.1 改变电极电势对电化学步骤活化能的影响
W1' W1 F
W2' W2 F
• 由此可见,改变电极电势后阳极反应的活化能降低了,因 此阳极反应速度会相应增大;同理,由于阴极反应的活化 能增大了,阴极反应将受到阻化。
平
2.3RT
nF
lg ia0
2.3RT
nF
lg ia
• 对于阴极反应有
c
平
Hale Waihona Puke 2.3RT
nF
lg ic0
2.3RT
nF
lg ic
i下统密a的一度0绝的”和对符。i电号c0流i表0密示来度在代,所替显取i然a电应0势和有标ii的ca0零0,点=,ii0即c称0反为,应“因体交此系换,平电可衡流用
3.2平衡电势与极化电势
3.2.1 平衡电势 • 当电极体系处于平衡状态时( 平 ),不会出现宏观的
物质变化,即没有净反应发生。但是,此时微观的物质交 换仍然在进行,只是正、反两个方向的反应速度相等而已。
• 由此得到:
kacR
exp(
W10
nF平 RT
)
kccO
exp(
W20
• 利用 c = -a ,可得电化学极化曲线公式:
Ia
i0[exp(nF
RT
a
)
exp(
nF
RT
a )]
Ic
i0[exp(nF
RT
c
)
exp(
nF
RT
c )
• 上式表明,决定“电化学极化“数值的主要因素是外电流 与交换电流的相对大小。
3.2平衡电势与极化电势
交换电流密度对极化大小的影响
• 阳极反应速度为
0a
kacR
exp( W10 ) RT
K a0cR
• 阴极反应速度为
c0
kccO
exp( W20 RT
)
K c0 cO
• 二Ka式0中,k Kca0,为k电c极为电“势频率= 0因时子的”反(或应称速度“常指数前:因子”) ,
K 0 k exp( W 0 ) RT
• 和 分别表示电极电势对阴极和阳极反应活化能的影
响程度,称为阴极和阳极反应的“传递系数”
3.1电极电势对电化学步骤反应速度影响
3.1.2改变电极电势对电极反应速度的影响
• 设电极反应为
O + ne
R
• 设在所选用电势坐标的零点(即0 = 0)处阳极和阴极反应的
活化能分别为 W10和W20。根据反应动力学基本理论,此时
nF 平 RT
)
平
(W10 W20 nF
2.3RT nF
lg
kc ka
)
2.3RT nF
lg
cO cR
0' 平
2.3RT nF
lg
cO cR
3.2平衡电势与极化电势
3.2.2 电极电势的电化学极化
• 当有外电流通过电极时,电极上的平衡状态受到破坏,致 使电极电势偏离平衡电势,发生电化学极化。
目录
• 3.1电极电势对电化学步骤反应速度影响 • 3.2平衡电势与极化电势 • 3.3浓差极化及其极化曲线 • 3.4测量动力学参数暂态方法
3.1电极电势对电化学步骤反应速度影响
3.1.1 改变电极电势对电化学步骤活化能的影响 • 电极电势对电化学步骤反应速度的影响主要是通过影响反
应活化能来实现的。
lg
Ia
Ic
ic
i0
exp(nF RT
c
)
c
2.3RT nF
lg i0
2.3RT nF
lg Ic
3.2平衡电势与极化电势
3.当 io 很小时
• 即使通过不大的外电流也能使用电极电势发生较大的变化, 这种电极称为“极化容量小”或“易极化电极”,有时也 称为电极反应的“可逆性小”,若 i0 = 0 ,则不需要通 过电解电流(即没有电极反应)也能改变电极电势,因而 称为“理想极化电极”。
3.1电极电势对电化学步骤反应速度影响
3.1.2改变电极电势对电极反应速度的影响
• 若将反应速度 用电流密度表示 ,则有
ia0 nFKa0cR
ic0 nFKc0cO
ia0,ic0 为 = 0 时相应于正、反向绝对反应速度的阳 极、阴极电流密度,均为正值。
• 如果将电极电势改变至 (即 0 据上式应有
nF
RT
c
)
i0
nF RT
c
3.2平衡电势与极化电势
2. io
i i
• 即有 | a - c | i0 ,从而完全可以忽略较小的一项不
影响计算结果。此时称电极反应处于“完全不可逆”状态。
Ia
ia
i0
exp(
nF
RT
a
)
a
2.3RT nF
lg i0
2.3RT nF
• 3.1.2改变电极电势对电极反应速度的影响 • 改写成对数形式并整理后得到
2.3RT nF
lg
ia0
2.3RT nF
lg
ia
-
lgic
坡度=
2.3RT nF
lg
ic0
2.3RT nF
lg
ic
平 0 lgic0 lgia0
lgi
• 再次着重指出:在上述诸式中,ia,ic分别为阳lgia 极反应 和阴极反应的单向绝对反应速度相当的电流密度, 因此不
1. ﹤﹤ io
出现的超电势必然是很小的,仍然保持 平及ia ic ,习惯上称此时的电极反应处于“近乎可逆“或”准 平衡“的状态。
当
c
RT nF
及
RT nF
时,
Ia
i0
nF RT
a
Ic
i
0
[(1
nF RT
c
)
(1
nF RT
c
)]
i0 (nF
RT
c
),则根
ia
nFkacR
exp(
W10
nF RT
)
nFKa0cR
exp(
nF
RT
)
ic
nFkccO
exp( W20
nF RT
)
nF
Kc0cO
exp(
nF RT
)
ia
ia0
exp( nF
RT
)
ic
ic0
exp( nF
RT
)
3.1电极电势对电化学步骤反应速度影响
4.如果ia 与 ic相差不大,此时超电势大约为25~ 100mV,则净阴极及净阳极电流中任意一项都不能忽略, 也不能线性化。这时的电极反应常称为“”部分可逆”。