经典的矩阵键盘扫描程序

合集下载

单片机矩阵键盘扫描程序

单片机矩阵键盘扫描程序
***********************************************************************/
void L1602_string(uchar hang,uchar lie,uchar *p)
{
uchar a,b=0;
if(hang == 1) a = 0x80;
{
P1 = Buffer[j];
temp = 0x10;
for(i=0; i<4; i++)
{
if(!(P1 & temp))
{
x= i+j*4;
switch(x)
{ case 0:return 1; break;
case 1:return 2; break;
case 2:return 3;break;
uint keyflag ; //键盘正在读取标志位,如果Keyflag为1,表示正在读取键盘,停止其他功能;
char x,y,m,n,c;
//Keyflag为0,读取键盘结束,恢复其他功能
char flag1=0;
//频率范围10~1000Hz
uchar Hrate = 0;//一个周期内高点平占据时间
E = 0;
delay();
P0 = del;
delay();
E = 1;
delay();
E = 0;
}
/********************************************************************
*名称: L1602_init()
*功能: 1602初始化,请参考16பைடு நூலகம்2的资料

矩阵键盘扫描程序:线反转法

矩阵键盘扫描程序:线反转法

#include<reg52.h>//STC89C52RC 头文件#include<intrins.h>//_crol_函数的头文件#define uint unsigned int//宏定义#define uchar unsigned char//宏定义uchar num;//定义全局变量uchar codetable[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e, 0x79,0x71};//共阳极数码管字符表void delay(uint xms) //延时函数{uint i,j;for(i=0;i<xms;i++)for(j=0;j<110;j++);}void display(num) //显示函数{uchar numwe,xwei;xwei=6;//用几位数码管显示?numwe=0xfe;//初始化数码管位选控制for(;xwei!=0;xwei--){dula=1; //开段选锁存器P0=table[num];//送显示数dula=0; //关段选锁存器P0=0xff;//消影wela=1; //开位选锁存器P0=numwe;//送数码管位选控制wela=0; //关位选锁存器numwe=_crol_(numwe,1); //对数码管位选控制左移位delay(1);//调用延时函数}}void keyscan()//矩阵键盘扫描函数开始{uchar x,y,key,temp;//定义:行坐标x、列坐标y、按键keytemp=0x0f;// 0000 1111P3=temp;//P3口:4列送0000、4行送1111;if (P3!=temp)//1判断是否有按键按下;{delay(10);//延时10毫秒消抖动;P3=temp;//P3口:列送0000、行送1111;if (P3!=temp)//2次判断是否有按键按下;{x=P3&temp;//取按下矩阵键盘的行坐标temp=~temp;//按位取反,线反转使用;P3=temp;//线反转P3口:4列送高电平、4行送低电平; y=P3&temp;//取按下矩阵键盘的列坐标key=x|y;//行坐标x、列坐标y 进行或运算组合在一起。

51单片机矩阵键盘行扫描

51单片机矩阵键盘行扫描

51单⽚机矩阵键盘⾏扫描————————————————————————————————————————————分类:按结构原理分:触点式开关按键⽆触点开关按键接⼊⽅式独⽴式按键矩阵式键盘————————————————————————————————————————————矩阵式键盘识别⽅法(⾏扫描法)检测列线的状态:列线Y4~Y7置⾼电平,⾏线Y0~Y3置低电平。

只要有⼀列的电平为低,则表⽰键盘该列有⼀个或多个按键被按下。

若所有列线全为⾼电平,则键盘中⽆按键按下。

判断闭合按键所在的位置:⾏线置⾼电平,列线置低电平。

检测⾏线的状态。

举例:当按下第⼀⾏第⼀列的按键时⾏扫描,⾏线为低电平,列线为⾼电平,得到 1110 0000列扫描,⾏线为⾼电平,列线为低电平,得到 0000 1110将得到的结果进⾏或运算,得到 1110 1110,对应第⼀⾏第⼀列,⼗六进制为0xEE按键表⾏列bin hex111110 11100xEE121101 11100xDE131011 11100xBE140111 11100x7E211110 11010xED221101 11010xDD231011 11010xBD240111 11010x7D311110 10110xEB321101 10110xDB331011 10110xBB340111 10110x7B411110 01110xE7421101 01110xD7431011 01110xB7440111 01110x77————————————————————————————————————————————矩阵式键盘应⽤实例实现结果:通过4*4矩阵键盘对应数码管显⽰0~F设计思路:当检测到按键被按下时,将此时⾏扫描的结果存⼊临时变量,再进⾏列扫描,得到的结果和临时变量进⾏或运算。

通过数组存放按键和数码管编码,⾏列扫描得到结果后遍历数组,找到对应的编码位置并显⽰数码管编码实现代码:1 #include <reg52.h>2 typedef unsigned char uchar;3 typedef unsigned int uint;4 uchar code KEY_TABLE[] =5 {60xEE, 0xDE, 0xBE, 0x7E,70xED, 0xDD, 0xBD, 0x7D,80xEB, 0xDB, 0xBB, 0x7B,90xE7, 0xD7, 0xB7, 0x7710 };11 uchar code TABLE[] =12 {130x3F, 0x06, 0x5B, 0x4F,140x66, 0x6D, 0x7D, 0x07,150x7F, 0x6F, 0x77, 0x7C,160x39, 0x5E, 0x79, 0x71,17 };18void Delay(uchar m)19 {20 --m;21 }22void main()23 {24 uchar temp, key, i;25while(1)26 {27 P3 = 0xF0;28if (P3 != 0xF0)29 {30 Delay(2000);31if (P3 != 0xF0)32 {33 temp = P3;34 P3 = 0x0F;35 key = temp | P3;36for (i = 0; i < 16; ++i)37if (key == KEY_TABLE[i])38break;39 P2 = TABLE[i];40 }41 }42 }43 }。

经典的矩阵键盘扫描程序

经典的矩阵键盘扫描程序

经典的矩阵键盘扫描程序查找哪个按键被按下的方法为:一个一个地查找。

先第一行输出0,检查列线是否非全高;否则第二行输出0,检查列线是否非全高;否则第三行输出0,检查列线是否非全高;如果某行输出0时,查到列线非全高,则该行有按键按下;根据第几行线输出0与第几列线读入为0,即可判断在具体什么位置的按键按下。

下面是具体程序:void Check_Key(void){unsigned char row,col,tmp1,tmp2;tmp1 = 0x10; //tmp1用来设置P1口的输出,取反后使P1.4~P1.7中有一个为0for(row=0;row<4;row++) // 行检测{P1 = 0x0f; // 先将p1.4~P1.7置高P1 =~tmp1; // 使P1.4~p1.7中有一个为0tmp1*=2; // tmp1左移一位if ((P1 & 0x0f) < 0x0f) // 检测P1.0~P1.3中是否有一位为0,只要有,则说明此行有键按下,进入列检测{tmp2 = 0x01; // tmp2用于检测出哪一列为0for(col =0;col<4;col++) // 列检测{if((P1 & tmp2)==0x00) // 该列如果为低电平则可以判定为该列{key_val =key_Map[ row*4 +col ]; // 获取键值,识别按键;key_Map为按键的定义表return; // 退出循环}tmp2*=2; // tmp2左移一位}}}} //结束这是一种比较经典的矩阵键盘识别方法,实现起来较为简单,程序短小精炼。

4*4矩阵键盘扫描程序/*设置行线为输入线,列线为输出线*/uchar KeyScan(); //按键扫描子程序void delay10ms(); //延时程序uchar key_free(); //等待按键释放程序void key_deal(); //键处理程序//主程序void main(){while(1){KeyScan();key_free();key_deal();}}//按键扫描子程序uchar KyeScan(){unsigned char key,temp;P1=0xF0;if(P1&0xF0!=0xF0){delay10ms(); //延时去抖动if(P1&0xF0!=0xF0){P1=0xFE; //扫描第一列temp=P1;temp=temp&0xF0;if(temp!=0xF0) //如果本列有键按下{switch(temp){case 0xE0: //第一行有键按下key=1;break;case 0xD0: //第二行有键按下key=4;break;case 0xB0: //第三行有键按下key=8;break;case 0x70: //第四行有键按下key=12;break;}}P1=0xFD; //扫描第二列temp=P1;temp&=0xF0;if(temp!=0xF0){switch(temp){case 0xE0: //第一行有键按下key=1;break;case 0xD0: //第二行有键按下key=5;break;case 0xB0: //第三行有键按下key=9;break;case 0x70: //第四行有键按下key=13;break;}}P1=0xFb; //扫描第三列temp=P1;temp&=0xF0;if(temp!=0xF0){switch(temp){case 0xE0: //第一行有键按下key=2;break;case 0xD0: //第二行有键按下key=6;break;case 0xB0: //第三行有键按下key=10;break;case 0x70: //第四行有键按下key=14;break;}}P1=0xF7; //扫描第四列temp=P1;temp&=0xF0;if(temp!=0xF0){switch(temp){case 0xE0: //第一行有键按下key=3;break;case 0xD0: //第二行有键按下key=7;break;case 0xB0: //第三行有键按下key=11;break;case 0x70: //第四行有键按下key=15;break;}}}return(key);}}//延时程序void delay10ms(){unsigned char i,j;for(i=0;i<10;b++)for(j=0;j<120;j++)//延时1ms{}}//等待按键释放程序uchar key_free(){key=key_scan(); //取扫描到的键值P1=0xF0;//置行线全为高电平,列线全为低电平wheile(P1&0xF0!=0xF0) //如果仍有键按下{}return(key);//返回键值}51单片机矩阵键盘扫描、数码管显示键值实验/***********************************************程序名称:矩阵键盘扫描显示键值简要说明:P1口接矩阵键盘:低四位列,高四位行使用共阳型数码管:P0口输出数码管段码,P2口输出数码管位码编写:***********************************************/#include <AT89x52.h>#define uchar unsigned char;uchar key_val=0; //定义键值,初始默认为0uchar code TAB[16]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xC6,0xa1,0x86,0x8e}; //0~F 共阳数码管显示段码/*****按键扫描*****/void Check_Key(void){unsigned char row,col,tmp1,tmp2;tmp1 = 0x10; //tmp1用来设置P1口的输出,取反后使P1.4~P1.7中有一个为0for(row=0;row<4;row++) // 行检测{P1 = 0x0f; // 先将p1.4~P1.7置高P1 =~tmp1; // 使P1.4~p1.7中有一个为0tmp1*=2; // tmp1左移一位if ((P1 & 0x0f) < 0x0f) // 检测P1.0~P1.3中是否有一位为0,只要有,则说明此行有键按下,进入列检测{tmp2 = 0x01; // tmp2用于检测出哪一列为0for(col =0;col<4;col++) // 列检测{if((P1 & tmp2)==0x00) // 该列如果为低电平则可以判定为该列{key_val = row*4 +col; // 获取键值,识别按键return; // 退出循环}tmp2*=2; // tmp2左移一位}}}}/*****主函数,显示键值*****/void main(){P2=0x00; //位码,这里全部置低,点亮8位数码管(见视频效果)while(1){Check_Key();P0=TAB[key_val]; //显示}}实验7 矩阵按键识别技术矩阵按键部分由16个轻触按键按照4行4列排列,连接到JP50端口。

经典的矩阵键盘扫描程序1

经典的矩阵键盘扫描程序1

取键值以启动相应的功能程序。

/***************************************************File Name :LED Debug*Autor :HR*Version :V1.0*Data :*Descrption :none*********************************************************************************************************/#include "include.h"JOB Job_Data; ----------1SYS_TimeHandler SYS_Time; ---------2MSG Msg_Key; /* 按键任务使用的结构体消息*/ ---------3uint16 test_a; ---------4 uint16 TX_Buff_Byte[25]; ---------4uint8 TX_Buff_ASIC[25]; ---------4/************************************************主程序************************************************/int main(){BSP_Init(); ---------5SYSTEM_LogShow (); ---------6for(;;) {SYS_100US_handler(); ---------7SYS_10MS_handler(); ---------8SYS_100MS_handler(); ---------9SYS_200MS_handler(); ---------10 }}JOB Job_Data;typedef struct WELD /* 任务用的焊接数据包(结构体数据类型) */{// 临时标记uint8 FgWeldRunEn; // 焊接输出标记uint8 FgGasRunEn; // 焊接气体输出标记uint8 FgPowerRunEn; // 系统工作标记uint8 FgMotorRunEn; // 送丝机系统工作标记uint8 FgLcmFlickerEn; // 显示闪烁工作标记uint8 FgRoughMachiningEn; // 粗调节有效uint8 FgCURRENTIndicateLedEn; // 输出正常电流指示LEDuint8 FgMotorCheckEn; // 送丝机系统检测标记uint8 FgEepromSaveEn; // 数据记忆标记uint8 FgLcmHoldEn; // 冻结显示内容uint8 FgVRDReset; // VRD复位辅助标记uint8 LockState; // 4T焊接辅助指令uint8 Fg_RXFinish; // 串口接收数据完成标记uint8 Fg_ShowLog; // 开机LOG辅助标记uint8 Fg_UsartConnect; // USART连接标记uint8 FgACV oltageState; // 网压状态标记uint8 FgSystemFault; // 系统故障标记uint8 FgFactoryTest; // 工厂调试标记uint8 FgDisChannel; // 公英制切换uint8 RunV olatgeTest; // 关机检测状态// 临时数据处理uint16 FaultOrderSet; /* 设备故障指令数据缓存*/uint16 SystemOrderSet; /* 传递系统指令数据缓存*/uint16 LcmOrderSet; /* 传递LCM显示指令数据缓存*/uint16 DriveOrderSet; /* 传递驱动组件指令数据缓存*/uint16 WorkOrderSet; /* 焊接工作指令数据缓存*/uint16 MainMenu; /* 主目录数据缓存*/uint16 CheckOrderSet;uint16 LcmV oltageData; /* 焊接显示电压数据缓存*/uint16 LcmCurrentData; /* 焊接显示电流数据缓存*/uint16 LcmV oltageDataDis; /* 焊接显示电压数据缓存*/uint16 LcmCurrentDataDis; /* 焊接显示电流数据缓存*/uint16 LcmMotorData; /* 焊接显示电机数据缓存*/uint16 LcmTempData; /* 焊接显示温度数据缓存*/uint16 LcmACSupplyState; /* 网压显示数据缓存*/uint16 LCMDataBuff_1; /* LCM1显示数据缓存*/uint16 LCMDataBuff_2; /* LCM2显示数据缓存*/uint16 SystemV oltageData; /* 焊接实际电压数据缓存*/uint16 SystemCurrentData; /* 焊接实际电流数据缓存*/uint16 SystemCurrentBuff;// 设备数据处理(需要记忆) //uint16 WeldWorkSetMode; // 焊接类型选择:MMA,TIG,MIG uint16 WeldRunSetVRD; // VRD setuint16 WeldRunSetMode; // 焊接方式选择:2T,4T// MMA //uint16 MMASetCurrent; // MMA手工焊电流设置// TIG //uint16 TIGSetCurrent; // TIG焊接电流// MIG //uint16 MIGSetV oltage; // MIG焊接电压uint16 MIGSetMotorSpeed; // MIG送丝速度uint16 MIGSetInductance; // MIG电子电抗uint16 MIGSetV oltageFine; // MIG焊接电压微调uint8 MIGSetV oltageCorrect; // 系统给定焊接电压修正uint8 MIGDisV oltageCorrect; // 系统显示焊接电压修正uint8 MIGSetCurrentCorrect; // 系统给定焊接电流修正uint8 MIGDisCurrentCorrect; // 系统显示焊接电流修正//外置MIG //uint16 Ext_MIGSetVoltage; // MIG焊接电压// 已更改uint16 Ext_MIGSetMotorSpeed; // MIG送丝速度// 已更改uint16 Ext_MIGSetInductance; // MIG电子电抗// 已更改uint16 Ext_MIGSetVoltageFine; // MIG焊接电压微调// 已更改uint8 Ext_MIGSetV oltageCorrect; // 系统给定焊接电压修正// 已更改uint8 Ext_MIGDisVoltageCorrect; // 系统显示焊接电压修正// 已更改uint8 Ext_MIGSetCurrentCorrect; // 系统给定焊接电流修正// 已更改uint8 Ext_MIGDisCurrentCorrect; // 系统显示焊接电流修正// 已更改uint8 CheckW_VRD_RunI_2T4T;int16 V_Set_Value_08;} JOB;{unsigned char row,col,tmp1,tmp2;tmp1 = 0x10; //tmp1用来设置P1口的输出,取反后使P1.4~P1.7中有一个为0for(row=0;row<4;row++) // 行检测{P1 = 0x0f; // 先将p1.4~P1.7置高P1 =~tmp1; // 使P1.4~p1.7中有一个为0tmp1*=2; // tmp1左移一位if ((P1 & 0x0f) < 0x0f) // 检测P1.0~P1.3中是否有一位为0,只要有,则说明此行有键按下,进入列检测{tmp2 = 0x01; // tmp2用于检测出哪一列为0for(col =0;col<4;col++) // 列检测{if((P1 & tmp2)==0x00) // 该列如果为低电平则可以判定为该列{key_val =key_Map[ row*4 +col ]; // 获取键值,识别按键;key_Map为按键的定义表return; // 退出循环}tmp2*=2; // tmp2左移一位}}}}。

单片机控制的矩阵键盘扫描程序集

单片机控制的矩阵键盘扫描程序集

单片机控制的矩阵键盘扫描程序集各种各样的矩阵键盘扫描程序集矩阵键盘的扫描对初学者来说是不可避免的,然而也相对来说有点难度.鉴于此,我整理了一下,我所遇到的矩阵键盘扫描程序集,将相继贴上来,供大家参考! 说明:这些大多都是网上转贴来的,其所有权归原作者!谢谢合作.最简单矩阵键盘扫描程序key:MOV p0,#00001111b;上四位和下四位分别为行和列,所以送出高低电压检查有没有按键按下jmp k10;跳到K10处开始扫描,这里可以改成其它条件转移指令来决定本次扫描是否要继续,例如减1为0转移或者位为1或0才转移,这主要用来增加功能,确认上一按键功能是否完成?是否相当于经过了延时?是否要封锁键盘?goend:jmp kend;如果上面判断本次不执行键盘扫描程序,则立即转到程序尾部,不要浪费CPU的时间k10:jb p0.0,k20;扫描正式开始,先检查列1四个键是否有键按下,如果没有,则跳到K20检查列2k11:MOV p0,#11101111b;列1有键按下时,P0.0变低,到底是那一个键按下?现在分别输出各行低电平jb p0.0,k12;该行的键不按下时,p0.0为高电平,跳到到K12,检查其它的行MOV r1,#1;如果正好是这行的键按下,将寄存器R0写下1,表示1号键按下了k12:MOV p0,#11011111bjb p0.0,k13MOV r1,#2;如果正好是这行的键按下,将寄存器R0写下2,表示2号键按下了k13:MOV p0,#10111111bjb p0.0,k14MOV r1,#3;如果正好是这行的键按下,将寄存器R0写下3,表示3号键按下了k14:MOV p0,#01111111bjb p0.0,kend;如果现在四个键都没有按下,可能按键松开或干扰,退出扫描(以后相同)MOV r1,#4如果正好是这行的键按下,将寄存器R0写下4,表示4号键按下了jmp kend;已经找到按下的键,跳到结尾吧k20:jb p0.1,k30;列2检查为高电平再检查列3、4k21:MOV p0,#11101111b;列2有健按下时,P0.0会变低,到底是那一行的键按下呢?分别输出行的低电平jb p0.1,k22;该行的键不按下时p0.0为高电平,跳到到K22,检查另外三行MOV r1,#5;如果正好是这行的键按下,将寄存器R0写下5,表示5号键按下了(以后相同,不再重复了)k22:MOV p0,#11011111bjb p0.1,k23MOV r1,#6k23:MOV p0,#10111111bjb p0.1,k24MOV r1,#7k24:MOV p0,#01111111bjb p0.1,kendMOV r1,#8jmp kend;已经找到按下的键,跳到结尾吧(以后相同,不要重复了)k30:jb p0.2,k40k31:MOV p0,#11101111bjb p0.2,k32MOV r1,#9k32:MOV p0,#11011111bjb p0.2,k33MOV r1,#10k33:MOV p0,#10111111bjb p0.2,k34MOV r1,#11k34:MOV p0,#01111111bjb p0.2,kendMOV r1,#12jmp kendk40:jb p0.3,kendk41:MOV p0,#11101111bjb p0.3,k42MOV r1,#13k42:MOV p0,#11011111bjb p0.3,k43MOV r1,#14k43:MOV p0,#10111111bjb p0.3,k44MOV r1,#15k44:MOV p0,#01111111bjb p0.3,kendMOV r1,#16kend: ret行列扫描键盘可检测出双键按下#include <reg52.h>#define ulong unsigned long#define uint unsigned int#define uchar unsigned charextern void delay(unsigned int x);unsigned char Tab_key[]= //行列式键盘映射{0x00, //无键按下’’7’’,’’8’’,’’9’’,’’/’’,’’4’’,’’5’’,’’6’’,’’*’’,’’1’’,’’2’’,’’3’’,’’-’’,’’C’’,’’0’’,’’=’’,’’+’’,//下面为按’’C’’同时再按的键:’’7’’,’’8’’,’’9’’,’’/’’,’’4’’,’’5’’,’’6’’,’’*’’,’’1’’,’’2’’,’’3’’,’’-’’,’’0’’,’’=’’,’’+’’,};// P1口行列式键盘//#define KEYPIN_L P1 // 定义键扫描列端口为P1低四位输入//#define KEYPIN_H P1 // 定义键扫描行端口为P1高四位扫描输出//// P1口行列式键盘////公用函数unsigned char KeysCAN(void); // 键扫描函数// //内部私有函数unsigned char fnKeycode(unsigned char key); // 根据键盘映射表输出顺序键值///*// P1口行列式键盘//extern unsigned char KeysCAN(void); // 键扫描函数//*/// P1口行列式键盘////---------------------------------------------------------------------------//unsigned char KeysCAN(void) // 键扫描函数//{unsigned char sccode,recode,keytemp = 0;KEYPIN_L = KEYPIN_L|0x0f; // P1低四位为列线输入//KEYPIN_H = KEYPIN_H&0x0f; // P1高四位为行线发全零扫描码//if ((KEYPIN_L&0x0f) != 0x0f){delay(10); // 延时10 MS 消抖//if ((KEYPIN_L&0x0f) != 0x0f){sccode = 0xef; // 逐行扫描码初值(1110 1111) //while(sccode != 0xff) //将扫描4次,keytemp为每次键值相或的值//{KEYPIN_H = sccode; // 输出行扫描码//if ((KEYPIN_L&0x0f) != 0x0f) // 本行有键按下//{recode = (KEYPIN_L&0x0f)|0xf0; // 只要低位,高位置1 //keytemp |= (~sccode)+(~recode); //特征码(高位为列P3,低位为行KEYPIN_H) //}sccode = (sccode << 1)|0x01; // 扫描码0向高位移动//}}}KEYPIN_H = KEYPIN_H|0xf0;return(fnKeycode(keytemp));}//---------------------------------------------------------------------------//unsigned char fnKeycode(unsigned char key) // 根据键盘映射表输出顺序键值//{switch(key){case 0x11: // 1 键//key = 0x01;break;case 0x21: // 2 键// key = 0x02;break;case 0x41: // 3 键// key = 0x03;break;case 0x81: // 4 键// key = 0x04;break;case 0x12: // 5 键// key = 0x05;break;case 0x22: // 6 键// key = 0x06;break;case 0x42: // 7 键// key = 0x07;break;case 0x82: // 8 键// key = 0x08;break;case 0x14: // 9 键// key = 0x09;break;case 0x24: // 10 键// key = 0x0A;break;case 0x44: // 11 键// key = 0x0B;break;case 0x84: // 12 键// key = 0x0C;break;case 0x18: // 13 键// key = 0x0D;break;case 0x28: // 14 键// key = 0x0E;break;case 0x48: // 15 键// key = 0x0F;break;case 0x88: // 16 键// key = 0x10;break;//以下为功能键//case 0x19: // ’’C’’ +1 键//key = 0x11;break;ca se 0x29: // ’’C’’ +2 键//key = 0x12;break;case 0x49: // ’’C’’ +3 键//key = 0x13;break;case 0x89: // ’’C’’ +4 键//key = 0x14;break;case 0x1A: // ’’C’’ +5 键// key = 0x15;break;case 0x2A: // ’’C’’ +6 键// key = 0x16;break;case 0x4A: // ’’C’’ +7 键// key = 0x17;break;case 0x8A: // ’’C’’ +8 键// key = 0x18;break;case 0x1C: // ’’C’’ +9 键//key = 0x19;break;case 0x2C: // ’’C’’ +10 键// key = 0x1A;break;case 0x4C: // ’’C’’ +11 键// key = 0x1B;break;case 0x8C: // ’’C’’ +12 键// key = 0x1C;break;// case 0x18: // ’’C’’ +13 键// // key = 0x1D;// break;case 0x38: // ’’C’’ +14 键// key = 0x1D;break;case 0x58: // ’’C’’ +15 键// key = 0x1E;break;case 0x98: // ’’C’’ +16 键// key = 0x1F;break;default : // 无键//key = 0x00;break;}return(Tab_key[key]);}矩键查寻键值44程序与显示#include <reg52.h>//#include <math.h>#include <intrins.h>#define uchar unsigned char#define TURE 1#define FALSE 0int key;int del;void Tkey(void);void led(void);/************主程序*************/void main(void){void tkey(void);void led(void);void delay(int);SCON=0x00;TI=0;while(TURE){Tkey();led();delay(2000);}}/********矩键查寻键值4*4程序******/按键为P1.0---P1.7 void Tkey(void){uchar readkey;//rereadkey;uchar x_temp,y_temp;P1=0x0f;x_temp=P1&0x0f;if(x_temp==0x0f) goto keyout;P1=0xf0;y_temp=P1&0xf0;readkey=x_temp|y_temp;readkey=~readkey;switch(readkey){case 0x11:key=0; break;case 0x21:key=1; break;case 0x41:key=2; break;case 0x81:key=3; break;case 0x12:key=4; break;case 0x22:key=5; break;case 0x42:key=6; break;case 0x82:key=7; break;case 0x14:key=8; break;case 0x24:key=9; break;case 0x44:key=10;break;case 0x84:key=11;break;case 0x18:key=12;break;case 0x28:key=13;break;case 0x48:key=14;break;case 0x88:key=15;break;default: key=16;break;}keyout:_nop_();}/************显示程序*************/void led(void){uchar code LEDValue[]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90}; //0-9 uchar data num[6];uchar k;num[0]=0;num[1]=0;num[2]=0;num[3]=0;num[4]=key/10;num[5]=key-(key/10)*10;for(k=0;k<=5;k++){SBUF=LEDValue[num[5-k]];while(TI==0);TI=0;}}/************延时程序*************/void delay(del){for(del;del>0;del--);;伪定义KEYBUF EQU 30H ;键值暂存单元,查表时用;*************************************;* *;* 主程序和中断程序入口*;* *;*************************************ORG 0000H ;程序执行开始地址AJMP MAIN ;跳至MAIN执行;*************************************;* *;* 主程序*;* *;*************************************ORG 0040HMAIN: MOV P1,#0FFHMOV P3,#0FFHLCALL KEYSCAN ;主体程序。

矩阵键盘扫描汇编程序

矩阵键盘扫描汇编程序

4*4矩阵键盘扫描汇编程序(基于51单片机)// 程序名称:4-4keyscan.asm;// 程序用途:4*4矩阵键盘扫描检测;// 功能描述:扫描键盘,确定按键值。

程序不支持双键同时按下,;// 如果发生双键同时按下时,程序将只识别其中先扫描的按键;// 程序入口:void;// 程序出口:KEYNAME,包含按键信息、按键有效信息、当前按键状态;//================================================================== ====PROC KEYCHKKEYNAME DATA 40H ;按键名称存储单元;(b7-b5纪录按键状态,b4位为有效位,;b3-b0纪录按键)KEYRTIME DATA 43H ;重复按键时间间隔SIGNAL DATA 50H ;提示信号时间存储单元KEY EQU P3 ;键盘接口(必须完整I/O口) KEYPL EQU P0.6 ;指示灯接口RTIME EQU 30 ;重复按键输入等待时间KEYCHK:;//=============按键检测程序========================================= ====MOV KEY,#0FH ;送扫描信号MOV A,KEY ;读按键状态CJNE A,#0FH,NEXT1 ;ACC<=0FH; CLR C ;Acc等于0FH,则CY为0,无须置0NEXT1:; SETB C ;Acc不等于0FH,则ACC必小于0 FH,;CY为1,无须置1MOV A,KEYNAMEANL KEYNAME,#1FH ;按键名称屏蔽高三位RRC A ;ACC带CY右移一位,纪录当前按键状态ANL A,#0E0H ;屏蔽低五位ORL KEYNAME,A ;保留按键状态;//=============判别按键状态,决定是否执行按键扫描=================== =====CJNE A,#0C0H,NEXT2 ;110按键稳定闭合,调用按键检测子程序SJMP KEYSCANNEXT2:CJNE A,#0E0H,NEXT3 ;111按键长闭合,重复输入允许判断SJMP WAITNEXT3:CJNE A,#0A0H,EXIT ;101干扰,当111长闭合处理ORL KEYNAME,#0E0HWAIT:MOV A,KEYRTIMEJNZ EXIT ;时间没到,退出;//=============键盘扫描程序========================================= =====KEYSCAN:MOV R1,#0 ;初始化列地址MOV R3,#11110111B ;初始化扫描码LOOP:MOV A,R3RL AMOV R3,A ;保留扫描码MOV KEY,A ;送扫描码MOV A,KEY ;读键盘ORL A,#0F0H ;屏蔽高四位CJNE A,#0FFH,NEXT31 ;A不等于FFH,说明该列有按键动作INC R1 ;列地址加1,准备扫描下一列CJNE R1,#4,LOOP ;列地址不等于4,扫描下一列SJMP EXIT ;没有按键,退出;//=============按键判断对应位等于零,说明该行有按键按下============= =====NEXT31:JB ACC.0,NEXT32MOV R2,#0 ;第0行有按键SJMP NEXT5NEXT32:JB ACC.1,NEXT33MOV R2,#1 ;第1行有按键SJMP NEXT5NEXT33:JB ACC.2,NEXT34MOV R2,#2 ;第2行有按键SJMP NEXT5NEXT34:MOV R2,#3 ;第3行有按键NEXT5: ;计算按键地址MOV A,R1RL ARL A ;列地址乘4(每列对应4行)ADD A,R2 ;加行地址MOV DPTR,#KEYTABMOVC A,@A+DPTRANL KEYNAME,#0E0HORL KEYNAME,A ;送按键(送值的时候已经置按键有效)MOV KEYRTIME,#RTIME ;送重复按键等待时间CLR KEYPL ;打开指示灯MOV SIGNAL,#10 ;送信号提示时间(每次按键闪10 0ms)EXIT:MOV KEY,#0FFH ;置键盘接口高电平RET ;退出;//=============按键名称表=========================================== =====KEYTAB:DB 1AH ;扫描码0,对应A ************************************ ******DB 1BH ;扫描码1,对应B ** **DB 1CH ;扫描码2,对应C ** I/O口 PX.4 PX.5 PX.6 PX.7 **DB 1DH ;扫描码3,对应D ** **DB 11H ;扫描码4,对应1 ** PX.0 A(0) 1(4) 2(8) 3 (C) **DB 14H ;扫描码5,对应4 ** **DB 17H ;扫描码6,对应7 ** PX.1 B(1) 4(5) 5(9) 6 (D) **DB 1EH ;扫描码7,对应E ** **DB 12H ;扫描码8,对应2 ** PX.2 C(2) 7(6) 8(A) 9 (E) **DB 15H ;扫描码9,对应5 ** **DB 18H ;扫描码A,对应8 ** PX.3 D(3) E(7) 0(B) F(F) **DB 10H ;扫描码B,对应0 ** **DB 13H ;扫描码C,对应3 ************************************ ******DB 16H ;扫描码D,对应6DB 19H ;扫描码E,对应9DB 1FH ;扫描码F,对应FEND第二种解法ORG 0000HSTART: MOV R0,#00H ;初始化程序,开始的延时是为了使硬件能够准备好DJNZ R0,$LOOP: MOV SP,#60HCALL KEYDISPLAY:MOV A,R4MOV DPTR,#TABLE ;定义字形表的起始地址MOVC A,@A+DPTR ;TABLE为表的起始地址MOV P2,ASJMP LOOP;子程序内容,P1口的低四位为行线,高四位为列线KEY: PUSH PSWPUSH ACCMOV P1,#0F0H ;令所有的行为低电平,全扫描字-P1.0-P1.3,列为输入方式;这一段只是验证有键按下,并不能判断是哪一行MOV R7,#0FFH ;设置计数常数,作为延时KEY1: DJNZ R7, KEY1MOV A,P1 ;读取P1口的列值ANL A,#0F0H ;判别有键值按下吗(当有键按下时,P1口的高四位就不全为1了,底四位还是都为0的);这个地方进行相或的原因,是因为要把底四位的0000变成1111,以便下一步进行求反ORL A,#0FH //这个地方原版上没有,这是又加了,如果不加的的话,是不对的********CPL A ;求反后,有高电平就有键按下JZ EKEY;累加器为0则转移(意为求反后本来全为0的,如果有键按下时,求反后高四位就有1了),退出LCALL DEL20ms ;有键按下,进行处理;下面进行行行扫描,1行1行扫SKEY: MOV A,#00HMOV R0,A ;R0作为行计数器,开始初值为0MOV R1,A ;R1作为列计数器,开始初值为0MOV R2,#0FEH ;R2作为扫描暂存字,开始初值为1111 1110,(第四位作为行扫描字)SKEY2: MOV A,R2MOV P1,A ;输出行扫描字,1111 1110NOPNOPNOP ;3个NOP操作使P1口输出稳定MOV A,P1 ;读列值(和开始一样)MOV R1,A ;暂存列值(第一次为**** 1110,既高四位有一位"可能"会为0)ANL A,#0F0H ;取高四位,ORL A,#0FH ;使第四位全部置1CPL ABIAOZHI:JNZ SKEY3 ;累加器为非0则转移指令(意思是判断到按键在这一行),转去处理INC R0 ;如果按键没在这一行,行计数器加1SETB C ;进位标志位加1,为了在左移的时候开始的低位0不在出现在低(循环一圈后)MOV A,R2RLC A ;带进位左移1位(形成下一行扫描字,再次扫描)MOV R2,AMOV A,R0;把加1后的行计数器R0和总共扫描次数(4次比较)CJNE A,#04H,SKEY2 ;(扫描完了么)书本上这个地方也有错误,书本上写的是:SKEY1AJMP EKEY ;如果没有的话,退出;有键按下后行扫描过后,此为确列行SKEY3: MOV A,R1 ;JNB ACC.4,SKEY5 ;直接寻址位为0咋转移指令JNB ACC.5,SKEY6JNB ACC.6,SKEY7JNB ACC.7,SKEY8AJMP EKEY //我自己感觉到这命令没有用处SKEY5: MOV A,#00H ;存0列号MOV R3,AAJMP DKEYSKEY6: MOV A,#01H ;存1列号MOV R3,AAJMP DKEYSKEY7: MOV A,#02H ;存2列号MOV R3,AAJMP DKEYSKEY8: MOV A,#03H ;存3列号MOV R3,AAJMP DKEY;取出具体的行号,再加上列号,最终确认按键的号码DKEY: //MOV R4,#00HMOV A,R0MOV B,#04HMUL AB ;让行号*4,第四位放在A中(总共就4行,相乘后一定<16,也就是只有第四位有值)ADD A,R3 ;让行号和列号相加,最终确认任按键的具体号MOV R4,AEKEY: POP ACCPOP PSWRET ;按键扫描处理函数DEL20ms:MOV R7,#2DL2: MOV R6,#18DL1: MOV R5,#255DJNZ R5,$DJNZ R6,DL1DJNZ R7,DL2RET;此为共阴极数码管的数字表TABLE: DB 3FH ;0DB 06H ;1DB 5BH ;2DB 4FH ;3DB 66H ;4DB 6DH ;5DB 7DH ;6DB 27H ;7DB 7FH ;8DB 6FH ;9DB 77HDB 7CHDB 39HDB 5EHDB 79HDB 71HEND第三种PIC单片机键盘扫描汇编程序;本程序用于PIC外接键盘的识别,通过汇编程序,使按下K1键时第一个数码管显示1,按下K2键时第一;个数码管上显示2,按下K3键时第一个数码管上显示3,按下K4键时第一个数码管上显示4,;汇编程序对键盘的扫描采用查询方式LIST P=18F458INCLUDE "P18F458.INC";所用的寄存器JIANR EQU 0X20FLAG EQU JIANR+1 ;标志寄存器DEYH EQU JIANR+2DEYL EQU JIANR+3F0 EQU 0 ;FLAG的第0位定义为F0ORG 0X00GOTO MAINORG 0X30;*************以下为键盘码值转换表****************** CONVERT ADDWF PCL,1RETLW 0XC0 ;0,显示段码与具体的硬件连接有关RETLW 0XF9 ;1RETLW 0XA4 ;2RETLW 0XB0 ;3RETLW 0X99 ;4RETLW 0X92 ;5RETLW 0X82 ;6RETLW 0XD8 ;7RETLW 0X80 ;8RETLW 0X90 ;9RETLW 0X88 ;ARETLW 0X83 ;BRETLW 0XC6 ;CRETLW 0XA1 ;DRETLW 0X86 ;ERETLW 0X8E ;FRETLW 0X7F ;"."RETLW 0XBF ;"-"RETLW 0X89 ;HRETLW 0XFF ;DARKRETURN;***************PIC键盘扫描汇编程序初始化子程序***************** INITIALBCF TRISA,5 ;置RA5为输出方式,以输出锁存信号BCF TRISB,1BCF TRISA,3BCF TRISE,0BCF TRISE,1BSF TRISB,4 ;设置与键盘有关的各口的输入输出方式BCF TRISC,5BCF TRISC,3 ;设置SCK与SDO为输出方式BCF INTCON,GIE ;关闭所有中断LW 0XC0WF SSPSTAT ;设置SSPSTAT寄存器LW 0X30WF SSPCON1 ;设置SPI的控制方式,允许SSP方式,并且时钟下降;沿发送数据,与"74HC595当其SCLK从低到高电平;跳变时,串行输入数据(DI)移入寄存器"的特点相对应LW 0X01WF JIANR ;显示值寄存器(复用为键值寄存器)赋初值CLRF FLAG ;清除标志寄存器RETURN ;返回;**************显示子程序*****************DISPLAYCLRF PORTAWF SSPBUFAGAINBTFSS PIR1,SSPIFGOTO AGAINNOPBCF PIR1,SSPIFBSF PORTA,5 ;详细的程序语句请参考 pic教程语句部分,可在首页搜索。

单片机矩阵键盘扫描的两种方式

单片机矩阵键盘扫描的两种方式

单片机矩阵键盘扫描的两种方式单片机矩阵键盘扫描的两种方式矩阵键盘扫描方式:第一种:逐行扫描法,就是一行一行的扫描。

实现代码如下(键盘连接P2口):#define NO_KEY 0XFF#define KEY_LO() P2 &= 0XF0#define KEY_HI() P2 |= 0X0F#define KEY_L(i) P2 &= ~(1<<i)#define KEY_RD() ((P2>>4) & 0x0f)UINT8 OnceKey(void){UINT8 line = 0;UINT8 key = NO_KEY;//key valueKEY_LO();if (KEY_RD() == 0X0F){KEY_HI();return NO_KEY;}for (line=0; line<4; line ++){KEY_HI();KEY_L(line);key = KEY_RD();switch (key){case ROW_FIRST:key = 4*line + 0;break;case ROW_SECOND:key = 4*line + 1;break;case ROW_THIRD:key = 4*line + 2;break;case ROW_FOURTH:key = 4*line +3;break;default :key = 0x0f;break;}if (key < 0x10){return key;}}return NO_KEY;}第二种,线性反转法。

就是行和列分别读出。

实现代码如下:#define CVT(i) ((i)==(~1)&0x0f)? 0: ((i)==(~2)&0x0f)? 1: ((i)==(~4)&0x0f)? 2: ((i)==(~8)&0x0f)? 3: 4;#define KEY0_3HI() P2 |= 0X0F#define KEY0_3LO() P2 &= 0XF0#define KEY4_7HI() P2 |= 0XF0#define KEY4_7LO() P2 &= 0X0F#define KEY0_3RD() (P2 & 0X0F)#define KEY4_7RF() ((P2>>4) & 0X0F)UINT8 OnceKey(void){UINT8 line = NO_KEY;UINT8 row = NO_KEY;UINT8 key;KEY0_3HI();KEY4_7LO();line = KEY0_3RD();//读入行的值if (0x0f == line){key = NO_KEY;}else{KEY0_3LO();KEY4_7HI();row = KEY4_7RD();//读入列的值if (0x0f == row){key = NO_KEY;}else{key = CVT(line)*4 + CVT(row);}}KEY0_3HI();KEY4_7HI();return key; }。

简述矩阵式键盘的查询扫描流程

简述矩阵式键盘的查询扫描流程

简述矩阵式键盘的查询扫描流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!1. 初始化:设置键盘的行线和列线为输入或输出模式。

初始化变量,如行号、列号、按键状态等。

矩阵键盘过程及扫描程序

矩阵键盘过程及扫描程序

键盘是单片机常用输入设备,在按键数量较多时,为了节省I/O口等单片机资源,一般采取扫描的方式来识别到底是哪一个键被按下。

即通过确定被按下的键处在哪一行哪一列来确定该键的位置,获取键值以启动相应的功能程序。

矩阵键盘的四列依次接到单片机的P1.0~P1.3,四行依次接到单片机的P1.4~P1.7;同时,将列线上拉,通过10K电阻接电源。

查找哪个按键被按下的方法为:一个一个地查找。

先第一行输出0,检查列线是否非全高;否则第二行输出0,检查列线是否非全高;否则第三行输出0,检查列线是否非全高;如果某行输出0时,查到列线非全高,则该行有按键按下;根据第几行线输出0与第几列线读入为0,即可判断在具体什么位置的按键按下。

下面是具体程序:void Check_Key(void){unsigned char row,col,tmp1,tmp2;tmp1 = 0x10;//tmp1用来设置P1口的输出,取反后使P1.4~P1.7中有一个为0for(row=0;row<4;row++) // 行检测{P1 = 0x0f; // 先将p1.4~P1.7置高P1 =~tmp1; // 使P1.4~p1.7中有一个为0tmp1*=2; // tmp1左移一位if ((P1 & 0x0f) < 0x0f)// 检测P1.0~P1.3中是否有一位为0,只要有,则说明此行有键按下,进入列检测{tmp2 = 0x01; // tmp2用于检测出哪一列为0for(col =0;col<4;col++) // 列检测{if((P1 & tmp2)==0x00)// 该列如果为低电平则可以判定为该列{key_val =key_Map[ row*4 +col ];// 获取键值,识别按键;key_Map为按键的定义表return; // 退出循环}tmp2*=2; // tmp2左移一位}}}} //结束。

经典的矩阵键盘扫描程序

经典的矩阵键盘扫描程序

经典的矩阵键盘扫描程序查找哪个按键被按下的方法为:一个一个地查找。

先第一行输出0,检查列线是否非全高;否则第二行输出0,检查列线是否非全高;否则第三行输出0,检查列线是否非全高;如果某行输出0时,查到列线非全高,则该行有按键按下;根据第几行线输出0与第几列线读入为0,即可判断在具体什么位置的按键按下。

下面是具体程序:void Check_Key(void){unsigned char row,col,tmp1,tmp2;tmp1 = 0x10; //tmp1用来设置P1口的输出,取反后使P1.4~P1.7中有一个为0for(row=0;row<4;row++) // 行检测{P1 = 0x0f; // 先将p1.4~P1.7置高P1 =~tmp1; // 使P1.4~p1.7中有一个为0tmp1*=2; // tmp1左移一位if ((P1 & 0x0f) < 0x0f) // 检测P1.0~P1.3中是否有一位为0,只要有,则说明此行有键按下,进入列检测{tmp2 = 0x01; // tmp2用于检测出哪一列为0for(col =0;col<4;col++) // 列检测{if((P1 & tmp2)==0x00) // 该列如果为低电平则可以判定为该列{key_val =key_Map[ row*4 +col ]; // 获取键值,识别按键;key_Map为按键的定义表return; // 退出循环}tmp2*=2; // tmp2左移一位}}}} //结束这是一种比较经典的矩阵键盘识别方法,实现起来较为简单,程序短小精炼。

4*4矩阵键盘扫描程序/*设置行线为输入线,列线为输出线*/uchar KeyScan(); //按键扫描子程序void delay10ms(); //延时程序uchar key_free(); //等待按键释放程序void key_deal(); //键处理程序//主程序void main(){while(1){KeyScan();key_free();key_deal();}}//按键扫描子程序uchar KyeScan(){unsigned char key,temp;P1=0xF0;if(P1&0xF0!=0xF0){delay10ms(); //延时去抖动if(P1&0xF0!=0xF0){P1=0xFE; //扫描第一列temp=P1;temp=temp&0xF0;if(temp!=0xF0) //如果本列有键按下{switch(temp){case 0xE0: //第一行有键按下key=1;break;case 0xD0: //第二行有键按下key=4;break;case 0xB0: //第三行有键按下key=8;break;case 0x70: //第四行有键按下key=12;break;}}P1=0xFD; //扫描第二列temp=P1;temp&=0xF0;if(temp!=0xF0){switch(temp){case 0xE0: //第一行有键按下key=1;break;case 0xD0: //第二行有键按下key=5;break;case 0xB0: //第三行有键按下key=9;break;case 0x70: //第四行有键按下key=13;break;}}P1=0xFb; //扫描第三列temp=P1;temp&=0xF0;if(temp!=0xF0){switch(temp){case 0xE0: //第一行有键按下key=2;break;case 0xD0: //第二行有键按下key=6;break;case 0xB0: //第三行有键按下key=10;break;case 0x70: //第四行有键按下key=14;break;}}P1=0xF7; //扫描第四列temp=P1;temp&=0xF0;if(temp!=0xF0){switch(temp){case 0xE0: //第一行有键按下key=3;break;case 0xD0: //第二行有键按下key=7;break;case 0xB0: //第三行有键按下key=11;break;case 0x70: //第四行有键按下key=15;break;}}}return(key);}}//延时程序void delay10ms(){unsigned char i,j;for(i=0;i<10;b++)for(j=0;j<120;j++)//延时1ms{}}//等待按键释放程序uchar key_free(){key=key_scan(); //取扫描到的键值P1=0xF0;//置行线全为高电平,列线全为低电平wheile(P1&0xF0!=0xF0) //如果仍有键按下{}return(key);//返回键值}51单片机矩阵键盘扫描、数码管显示键值实验/***********************************************程序名称:矩阵键盘扫描显示键值简要说明:P1口接矩阵键盘:低四位列,高四位行使用共阳型数码管:P0口输出数码管段码,P2口输出数码管位码编写:***********************************************/#include <AT89x52.h>#define uchar unsigned char;uchar key_val=0; //定义键值,初始默认为0uchar code TAB[16]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xC6,0xa1,0x86,0x8 e}; //0~F共阳数码管显示段码/*****按键扫描*****/void Check_Key(void){unsigned char row,col,tmp1,tmp2;tmp1 = 0x10; //tmp1用来设置P1口的输出,取反后使P1.4~P1.7中有一个为0for(row=0;row<4;row++) // 行检测{P1 = 0x0f; // 先将p1.4~P1.7置高P1 =~tmp1; // 使P1.4~p1.7中有一个为0tmp1*=2; // tmp1左移一位if ((P1 & 0x0f) < 0x0f) // 检测P1.0~P1.3中是否有一位为0,只要有,则说明此行有键按下,进入列检测{tmp2 = 0x01; // tmp2用于检测出哪一列为0for(col =0;col<4;col++) // 列检测{if((P1 & tmp2)==0x00) // 该列如果为低电平则可以判定为该列{key_val = row*4 +col; // 获取键值,识别按键return; // 退出循环}tmp2*=2; // tmp2左移一位}}}}/*****主函数,显示键值*****/void main(){P2=0x00; //位码,这里全部置低,点亮8位数码管(见视频效果)while(1){Check_Key();P0=TAB[key_val]; //显示}}实验7 矩阵按键识别技术矩阵按键部分由16个轻触按键按照4行4列排列,连接到JP50端口。

矩阵式键盘的按键识别方法

矩阵式键盘的按键识别方法

矩阵式键盘的按键识别方法矩阵式键盘是一种常见的电子输入设备,它由多个按键组成,这些按键以矩阵的形式排列在键盘上。

在使用矩阵式键盘时,我们需要将按下的按键与相应的键值进行关联,以实现按键的识别。

下面将介绍几种常见的矩阵式键盘按键识别方法。

1.矩阵扫描法矩阵扫描法是最常见的一种按键识别方法。

在矩阵式键盘上,按键被组织成不同的行和列。

通过扫描每一行和每一列,我们可以确定按下的按键。

具体操作步骤如下:-所有行设置为输出,所有列设置为输入。

-循环扫描每一行,将当前行设置为高电平,然后读取所有列的状态。

-如果其中一列的状态为低电平,说明当前位置的按键被按下。

-记录下按下按键的位置(行和列),以及对应的键值。

2.矩阵编码法矩阵编码法是一种较为高级的按键识别方法,它通过给每个按键分配一个唯一的编码,以实现按键的识别。

具体操作步骤如下:-所有行和列都需要连接到对应的编码器上。

-当按键被按下时,编码器会生成一个唯一的编码,表示按下的按键。

-通过读取编码器的输出,我们可以确定按下的按键以及对应的键值。

3.容量触摸法除了物理按键,一些矩阵式键盘还具有触摸功能。

这种键盘使用触摸传感器来检测手指触摸的位置,以实现按键的识别。

具体操作步骤如下:-键盘上的每个按键都带有一个触摸传感器。

-当手指触摸一些按键时,触摸传感器会检测到电容的变化。

-根据电容的变化,我们可以确定手指触摸的位置,从而确定按下的按键以及对应的键值。

总结起来,矩阵式键盘的按键识别方法可以通过矩阵扫描法、矩阵编码法和容量触摸法来实现。

无论采用哪种方法,都需要通过适当的硬件和软件设计来实现按键的检测和识别。

这些方法的选择通常取决于键盘的设计要求和成本限制。

矩阵键盘的三种扫描方法

矩阵键盘的三种扫描方法

矩阵键盘的三种扫描方法矩阵键盘是一种常见的输入设备,它由多个按键组成,并通过矩阵扫描的方式来检测用户的按键输入。

矩阵键盘的扫描方法可以分为三种:行扫描、列扫描和交错扫描。

下面将详细介绍这三种扫描方法。

1.行扫描行扫描是最简单的一种扫描方法。

它的原理是将矩阵键盘的每一行连接到一个IO口,通过轮询检测每一行的电平变化来获取用户的按键输入。

行扫描的工作流程如下:1)将矩阵键盘的每一行连接到一个IO口,并设置为输入模式。

2)逐个地将每一行的IO口设置为高电平,并检测列的电平状态。

3)如果其中一列的电平为低电平,说明该列有按键按下。

此时,记录下这个按键的位置(行号和列号)以及按键的值(键码或字符),然后将这个按键的位置和值传递给上层应用或处理器。

4)将当前行的IO口设置为低电平,然后继续下一行的检测,重复2)~3)步骤,直到所有行都被检测完毕。

行扫描的优点是实现简单,只需要一个IO口来检测按键的状态。

但是它的缺点是扫描速度较慢,因为需要逐个地检测每一行。

2.列扫描列扫描是一种比较常用的扫描方法。

它的原理是将矩阵键盘的每一列连接到一个IO口,通过轮询检测每一列的电平变化来获取用户的按键输入。

列扫描的工作流程如下:1)将矩阵键盘的每一列连接到一个IO口,并设置为输入模式。

2)逐个地将每一列的IO口设置为高电平,并检测行的电平状态。

3)如果其中一行的电平为低电平,说明该行有按键按下。

此时,记录下这个按键的位置(行号和列号)以及按键的值(键码或字符),然后将这个按键的位置和值传递给上层应用或处理器。

4)将当前列的IO口设置为低电平,然后继续下一列的检测,重复2)~3)步骤,直到所有列都被检测完毕。

列扫描的优点是速度较快,因为只需要逐个地检测每一列。

但是它的缺点是需要多个IO口来检测按键的状态。

3.交错扫描交错扫描是一种综合了行扫描和列扫描的扫描方法,它可以有效地减少扫描的时间。

交错扫描的原理是将矩阵键盘的行和列交错地连接到多个IO口,通过并行检测行和列的电平变化来获取用户的按键输入。

经典的矩阵键盘扫描程序

经典的矩阵键盘扫描程序

经典的矩阵键盘扫描程序矩阵键盘是一种常见的输入设备,广泛应用于电子产品中。

为了实现对矩阵键盘的扫描和输入响应,需要编写一个矩阵键盘扫描程序。

本文将详细介绍如何编写一个经典的矩阵键盘扫描程序。

1. 程序功能描述矩阵键盘扫描程序的主要功能是实现对矩阵键盘的扫描,并根据按键的状态进行相应的处理。

程序需要实现以下功能:- 扫描矩阵键盘的按键状态;- 根据按键状态进行相应的处理;- 输出按键的值或执行相应的操作。

2. 程序设计思路矩阵键盘通常由多行多列的按键组成,每个按键都有一个唯一的行列地址。

程序的设计思路如下:- 初始化矩阵键盘的引脚和状态变量;- 循环扫描矩阵键盘的按键状态;- 检测按键状态变化,并根据变化进行相应的处理;- 输出按键的值或执行相应的操作。

3. 程序代码示例下面是一个简单的矩阵键盘扫描程序的代码示例:```#include <stdio.h>#include <stdbool.h>// 定义矩阵键盘的行列数#define ROWS 4#define COLS 4// 定义矩阵键盘的引脚int rowPins[ROWS] = {2, 3, 4, 5}; int colPins[COLS] = {6, 7, 8, 9}; // 定义矩阵键盘的按键值char keys[ROWS][COLS] = {{'1', '2', '3', 'A'},{'4', '5', '6', 'B'},{'7', '8', '9', 'C'},{'*', '0', '#', 'D'}};// 初始化矩阵键盘void setup() {// 设置引脚模式为输入for (int i = 0; i < ROWS; i++) { pinMode(rowPins[i], INPUT); }// 设置引脚模式为输出for (int i = 0; i < COLS; i++) {pinMode(colPins[i], OUTPUT);}}// 扫描矩阵键盘void scanKeypad() {for (int i = 0; i < COLS; i++) {// 将当前列引脚设置为高电平digitalWrite(colPins[i], HIGH);for (int j = 0; j < ROWS; j++) {// 检测当前行引脚的状态bool state = digitalRead(rowPins[j]); // 如果按键状态发生变化if (state != lastState[i][j]) {// 更新按键状态lastState[i][j] = state;// 如果按键被按下if (state == LOW) {// 输出按键的值Serial.println(keys[j][i]);// 执行相应的操作switch (keys[j][i]) {case '1':// 执行操作1break;case '2':// 执行操作2break;// 其他按键的操作}}}}// 将当前列引脚设置为低电平 digitalWrite(colPins[i], LOW); }}void loop() {// 扫描矩阵键盘scanKeypad();// 延时一段时间,避免频繁扫描delay(10);}```4. 程序运行结果编写完成矩阵键盘扫描程序后,可以将程序上传到相应的开发板或单片机上进行测试。

51单片机的矩阵按键扫描的设计C语言程序

51单片机的矩阵按键扫描的设计C语言程序

51单片机的矩阵按键扫描的设计C语言程序以下为一个基于51单片机的矩阵按键扫描的设计C语言程序:```c#include <reg51.h>//定义端口连接到矩阵键盘sbit col1 = P2^0;sbit col2 = P2^1;sbit col3 = P2^2;sbit row1 = P2^3;sbit row2 = P2^4;sbit row3 = P2^5;sbit row4 = P2^6;//声明按键函数char read_keypad(;void maiwhile (1)char key = read_keypad(; // 读取按键值//根据按键值进行相应操作switch(key)case '1'://第一行第一列按键逻辑//在此处添加相应的代码break;case '2'://第一行第二列按键逻辑//在此处添加相应的代码break;//继续处理其他按键//...default://未识别到按键break;}}//按键扫描函数char read_keypacol1 = 0; col2 = 1; col3 = 1; // 激活第一列if (row1 == 0) { // 第一行第一列按键被按下while (row1 == 0); //等待按键释放return '1'; // 返回按键值}if (row2 == 0) { // 第二行第一列按键被按下while (row2 == 0); //等待按键释放return '4'; // 返回按键值}if (row3 == 0) { // 第三行第一列按键被按下while (row3 == 0); //等待按键释放return '7'; // 返回按键值}if (row4 == 0) { // 第四行第一列按键被按下while (row4 == 0); //等待按键释放return '*'; // 返回按键值}col1 = 1; col2 = 0; col3 = 1; // 激活第二列//处理第二列的按键逻辑//...col1 = 1; col2 = 1; col3 = 0; // 激活第三列//处理第三列的按键逻辑//...return '\0'; // 返回空字符表示未检测到按键```以上代码中,我们使用51单片机的P2端口连接到矩阵键盘的列和行,通过扫描不同的列和检测行的状态来判断按键是否被按下。

C51矩阵键盘扫描去抖程序

C51矩阵键盘扫描去抖程序

C51单片机矩阵键盘扫描去抖程序时间:2011-10-27 22:22:26 来源:作者:C51单片机矩阵键盘电子扫描去抖程序这段有1个C51的项目,用的是新华龙的C51 F020单片机。

项目中要使成为事实4*5的矩阵键盘。

矩阵电路图如次如示此中,四条列线接在 F020的P2~P5口线上,5条行线接在P5口线上(F020的P5口是差别于平凡C51的扩大接口,不克不及位寻址)。

同时4条列线接在一四输入与非门(74LS20)上,门输出接F020的外间断1,如许,不论什么一键按下,都会孕育发生间断,报信程序举行键盘电子扫描。

托1个新手给写了键盘的电子扫描程序,基本功效都能使成为事实,但对键盘的去抖措置惩罚老是做欠好,体现是或不克不及去抖,或按钮相应太卡,或采集到纰缪键值。

看来新手对矩阵键盘电子扫描原理掌握较好(网上资料多),但对键盘去抖的知识却有所欠缺,基本都是按照书上说的延时一段时间再采集键值,现实应用中,如许的措置惩罚是远远不敷的,过于简单。

现实去抖措置惩罚应该如许举行更合理一些,即连续采集键值,当采集到的键值在一段时间内是不异的,即以为按钮状况已经稳定,此键值为真实键值。

别的,按钮开释时,也会有抖动,导致误采键值,是以在键开释时,也应举行去抖措置惩罚,措置惩罚要领同时是连续一段时间采集到无键按下状况,才以为按钮被开释。

按照这个要领,我重写了新手的程序,现实应用中体现极好。

现将程序发布如次,供新手参考。

Key.h文件内容#ifndef __key_H__#define __key_H__#define 灭茬_KEY 0x0000#define S1 0x3801#define S2 0x3401#define S3 0x3802#define S4 0x3402#define S5 0x3804#define S6 0x3404#define S7 0x3808#define S8 0x3408#define S9 0x3810#define S10 0x3410#define S11 0x2C01#define S12 0x1C01#define S13 0x2C02#define S14 0x1C02#define S15 0x2C04#define S16 0x1C04#define S17 0x2C08#define S18 0x1C08#define S19 0x2C10#define S20 0x1C10#define KEY_DELAY 20extern unsigned int Key_Value;extern void Init_Key();extern void Scan_Key();extern bit Key_Pressed;extern bit Key_Released;extern unsigned int idata Keypress_Count; extern unsigned int idata Keyrelease_Count; #endifkey.c 文件内容#include#include "key.h"bit Key_Down; //是不是有键按下的标记unsigned int idata Keypress_Count;sbit Col_Key0 = P2^2;sbit Col_Key1 = P2^3;sbit Col_Key2 = P2^4;sbit Col_Key3 = P2^5;bit Key_Pressed;bit Key_Released;unsigned int Key_Value; bit Key_Down; //是不是有键按下的标记unsigned int idata Keypress_Count; //一毫秒增加一次的变量unsigned int idata Keyrelease_Count; //一毫秒增加一次的变量//矩阵键盘施用间断1作为键盘间断void Init_Key(){P5 = 0; //行线全数置为0EX1 = 1; // 允许外部钟表秒间断IT1 = 1; // 外部钟表间断配备布置为边缘触发}void Key_Int() interrupt 2{Key_Pressed = 1;EX1 = 0;}void Scan_Key(){unsigned char temp,rowvalue;unsigned int key;int i;temp = P2;temp &= 0x3C;if(temp == 0x3C){Key_Released = 0;Key_Pressed = 0;key = 灭茬_KEY;EX1 = 1;}else{key = temp;key = key<<8;rowvalue = 0x01;for(i=0;i<5;i ){P5 = rowvalue<DelayMs⑴;temp = P2;temp &= 0x3C;if(temp == 0x3c){rowvalue = rowvalue<key = key | rowvalue;P5 = 0x00;break;}}P5 = 0x00;DelayMs⑴;}if(key!=灭茬_KEY) //如果有键按下{ if(key==Key_Value) //如果按下的是不异的键{if(Keypress_Count>=KEY_DELAY){Key_Down = 1;}}else if(Key_Down != 1){Keypress_Count=0;Keyrelease_Count = 0;Key_Value=key;}}else //如果无键按下{if(Key_Down) //如果时下是键开释,返回键值{if(Keyrelease_Count >= KEY_DELAY){Key_Down=0;Keypress_Count=0;Keyrelease_Count=0;Key_Released = 1;EX1 = 1;return;}}else{Keypress_Count=0;Keyrelease_Count=0;Key_Value = 灭茬_KEY;EX1 = 1;return;}}}在main.c中的挪用要领为if(Key_Pressed == 1){//Key_Pressed = 0;Scan_Key();}if(Key_Released == 1){Key_Released = 0;Ack_Key();}(注:可编辑下载,若有不当之处,请指正,谢谢!)。

单片机部队式键盘扫描程序

单片机部队式键盘扫描程序

单片机部队式键盘扫描程序单片机部队式键盘扫描程序一、部队扫描法矩阵式键盘的构造与作业原理:在键盘中按键数量较多时,为了削减I/O口的占用,一般将按键摆放成矩阵方法,如图1所示。

在矩阵式键盘中,每条水平线和笔直线在穿插处不直接连通,而是通过一个按键加以联接。

这么,一个端口(如P1口)就能够构成4*4=16个按键,比之直接将端口线用于键盘多出了一倍,并且线数越多,差异越显着,比方再多加一条线就能够构成20键的键盘,而直接用端口线则只能多出一键(9键)。

由此可见,在需求的键数比照多时,选用矩阵法来做键盘是合理的。

矩阵式构造的键盘显着比直接法要杂乱一些,辨认也要杂乱一些,上图中,列线通过电阻接正电源,并将行线所接的单片机的I/O 口作为输出端,而列线所接的I/O口则作为输入。

这么,当按键没有按下时,悉数的输出端都是高电平,代表无键按下。

行线输出是低电平,一旦有键按下,则输入线就会被拉低,这么,通过读入输入线的情况就可得知是不是有键按下了。

详细的辨认及编程方法如下所述。

矩阵式键盘的按键辨认方法断定矩阵式键盘上何键被按下介绍一种行扫描法。

行扫描法行扫描法又称为逐行(或列)扫描查询法,是一种最常用的按键辨认方法,如上图所示键盘,介绍进程如下。

差异键盘中有无键按下将悉数行线Y0-Y3置低电平,然后查看列线的情况。

只需有一列的电平为低,则标明键盘中有键被按下,并且闭合的键坐落低电平线与4根行线相穿插的4个按键傍边。

若悉数列线均为高电平,则键盘中无键按下。

差异闭合键地址的方位在供认有键按下后,即可进入断定详细闭合键的进程。

其方法是:顺次将行线置为低电平,即在置某根行线为低电往常,其它线为高电平。

在断定某根行线方位为低电平后,再逐行查看各列线的电平情况。

若某列为低,则该列线与置为低电平的行线穿插处的按键即是闭合的按键。

下面给出一个详细的比方:8031单片机的P1口用作键盘I/O口,键盘的列线接到P1口的低4位,键盘的行线接到P1口的高4位。

32矩阵键盘c语言程序

32矩阵键盘c语言程序

32矩阵键盘c语言程序是一种使用c语言实现的矩阵键盘驱动程序,它是通过扫描键盘的行列来确定按键位置的。

键盘的每一行和每一列都连接到微控制器的端口上,当某个按键被按下时,对应的行和列的端口就会产生一个变化,从而可以确定按键的位置。

32矩阵键盘c语言程序的实现步骤如下:1. 定义键盘的行列数,以及对应的端口地址。

2. 初始化键盘的端口,将其设置为输入端口。

3. 扫描键盘的行列,当某个按键被按下时,对应的行和列的端口就会产生一个变化,从而可以确定按键的位置。

4. 根据按键的位置,执行相应的操作。

下面是一个32矩阵键盘c语言程序的示例:#include <stdio.h>#include <stdlib.h>#include <string.h>#define ROWS 4#define COLS 8#define KEYPAD_PORT 0x3Funsigned char keypad_scan() {unsigned char keypad_state[ROWS][COLS] = {{'1', '2', '3', 'A', '4', '5', '6', 'B'},{'7', '8', '9', 'C', '*', '0', '#', 'D'},{'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L'},{'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T'}};unsigned char row, col;unsigned char keypad_value=0;// Set all rows to output and all columns to inputfor (row=0; row<ROWS; row++) {DDRD|= (1<< (row+4));DDRD&=~(1<<row);}// Scan each rowfor (row=0; row<ROWS; row++) {// Set the current row to lowPORTD&=~(1<<row);// Read the columnsfor (col=0; col<COLS; col++) {// If the current column is high, then the corresponding key is pressed if (PIND& (1<<col)) {keypad_value=keypad_state[row][col];break;}}// Set the current row to highPORTD|= (1<<row);}return keypad_value;}int main() {unsigned char keypad_value;// Initialize the keypad portDDRD|=0xF0;PORTD|=0x0F;// Continuously scan the keypadwhile (1) {keypad_value=keypad_scan();// If a key is pressed, print its valueif (keypad_value!=0) {printf("Key pressed: %c\n", keypad_value);}}return0;}这个程序首先定义了键盘的行列数,以及对应的端口地址。

单片机典型矩阵键盘扫描程序

单片机典型矩阵键盘扫描程序

单片机典型矩阵键盘扫描程序#include "Key.h"static uchar GetKeyStatus();////$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$bit KeyProcess() // 为程序方便而设的返回值{uchar i,j;void (*pFunction)(); // 定义函数指针void (*code Tab[mHorizontalNumber][mVerticalNumber])()= // 定义函数表{ { ZeroKey, OneKey, FourKey, SevenKey },{ DotKey, TwoKey, FiveKey, EightKey },{ NegativeKey, ThreeKey, SixKey, NineKey },{ EnterOrShiftKey, CancelKey, OptionKey, PauseKey }}; // 二维数组,对对应16个按键NOP(); NOP();if(!bScanKey)return 0; // 扫描时间未到,返回(时间值在定时器中设定)bScanKey=0;NOP(); NOP();j=GetKeyStatus(); // 取键值,0xff为无效键,即无按键NOP(); NOP();if(bKeyDown||bKeyPress||bKeyUp){i=j>>4; j=j&0x0f; // 高半字节为行,低半字节为列if((i<mHorizontalNumber)&&(j<mVerticalNumber)){pFunction=Tab[j]; // 指向函数入口地址(*pFunction)(); // 调用函数}}}//$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ // 判断按键状态:KeyFree,KeyDown,KeyPress,KeyUp,并返回键值//$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ static uchar ucKey1,ucKey2,ucKeyBak;static uchar GetKeyCode();static uchar GetKeyStatus(){uchar c;NOP(); NOP();mHorizontalAllLow; // 行输入全为0mJugeVertical(c); // 判断是否有按键NOP(); NOP();if((ucKey1==0xff)&&(ucKey2==0xff)&&(c==0xff)){ // 三个值均为0xff,无按键bKeyDown=bKeyPress=bKeyUp=0;bKeyFree=TRUE; return 0xff; // 没按键}else{bKeyFree=0;if(c!=0xff)c=GetKeyCode(); // 扫描键值if((ucKey1==0xff)&&(ucKey2==c)){ucKey1=ucKey2; ucKey2=c;bKeyDown=TRUE; return c; // 键被按下}if((ucKey1==ucKey2)&&(ucKey2==c)){NOP();if(bKeyDown){bKeyPress=TRUE; // 键被按住bKeyDown=0;}return c;}if((ucKey1!=0xff)&&(ucKey2==0xff)&&(c==0xff)){ucKeyBak=ucKey1; ucKey1=ucKey2; ucKey2=c;if(bKeyPress){bKeyUp=TRUE; // 键弹起bKeyPress=0;}return ucKeyBak;}ucKey1=ucKey2; ucKey2=c;}return 0xff;}//$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$// 本程序读按键的行列号值,将行列号组合成一个字节后返回, //// 若读键错误,或没按键均返回0xff。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

键盘是单片机常用输入设备,在按键数量较多时,为了节省I/O口等单片机资源,一般采取扫描的方式来识别到底是哪一个键被按下。

即通过确定被按下的键处在哪一行哪一列来确定该键的位置,获取键值以启动相应的功能程序。

4*4矩阵键盘的结构如图1(实物参考见万用板矩阵键盘制作技巧)。

在本例中,矩阵键盘的四列依次接到单片机的P1.0~P1.3,四行依次接到单片机的P1.4~P1.7;同时,将列线上拉,通过10K电阻接电源。

查找哪个按键被按下的方法为:一个一个地查找。

先第一行输出0,检查列线是否非全高;
否则第二行输出0,检查列线是否非全高;
否则第三行输出0,检查列线是否非全高;
如果某行输出0时,查到列线非全高,则该行有按键按下;
根据第几行线输出0与第几列线读入为0,即可判断在具体什么位置的按键按下。

下面是具体程序:
void Check_Key(void)
{
unsigned char row,col,tmp1,tmp2;
tmp1 = 0x10; //tmp1用来设置P1口的输出,取反后使P1.4~P1.7中有一个为0
for(row=0;row<4;row++) // 行检测
{
P1 = 0x0f; // 先将p1.4~P1.7置高
P1 =~tmp1; // 使P1.4~p1.7中有一个为0
tmp1*=2; // tmp1左移一位
if ((P1 & 0x0f) < 0x0f) // 检测P1.0~P1.3中是否有一位为0,只要有,则说明此行有键按下,进入列检测
{
tmp2 = 0x01; // tmp2用于检测出哪一列为0
for(col =0;col<4;col++) // 列检测
{
if((P1 & tmp2)==0x00) // 该列如果为低电平则可以判定为该列
{
key_val =key_Map[ row*4 +col ]; // 获取键值,识别按键;key_Map 为按键的定义表
return; // 退出循环
}
tmp2*=2; // tmp2左移一位
}
}
}
} //结束
这是一种比较经典的矩阵键盘识别方法,实现起来较为简单,程序短小精炼。

相关文档
最新文档