计算机网络体系结构资料

合集下载

计算机网络体系结构

计算机网络体系结构

计算机网络体系结构计算机网络体系结构是指将计算机网络划分为不同的层级,并在每个层级中定义特定的功能和协议。

这种分层结构有助于网络的设计、维护和扩展。

在计算机网络体系结构中,常用的是OSI参考模型和TCP/IP参考模型。

下面是TCP/IP参考模型的五层结构:1. 物理层:该层负责物理传输介质的传输,例如光纤、电缆等。

它定义了连接计算机所需的硬件细节,以及数据的电压、信号速率等特性。

在此层上,数据以比特流的形式传输。

2. 数据链路层:该层负责将原始的比特流转换为有意义的数据帧,并提供传输信道的错误检测和纠正。

它通常有两个子层:逻辑链路控制子层和介质访问控制子层。

3. 网络层:该层负责在计算机网络中进行数据包的路由和转发。

它使用IP地址来标识不同的网络设备,并为数据包选择合适的路径。

在此层上,数据被划分为小块,并加上源和目的地的网络地址信息。

4. 传输层:该层负责在源和目的地之间提供可靠的数据传输。

它使用TCP和UDP协议来实现数据的分段和重新组装,以及连接的建立和终止。

在此层上,数据被划分为报文段,每个报文段都有序号和检验和。

5. 应用层:该层提供应用程序访问网络的接口,并为各种网络应用提供服务。

它包括HTTP、FTP、SMTP等协议,用于实现Web浏览、文件传输、电子邮件等常见的应用功能。

这种分层结构的优点在于,每个层级的功能和协议都相对独立,可以由不同的厂商和团队进行独立开发和测试。

同时,各层之间的接口规范也使得不同厂商的设备能够互相兼容和交互操作。

此外,通过将网络分解为多个层级,可以更好地进行网络故障诊断和故障隔离,提高网络的可靠性和可扩展性。

总之,计算机网络体系结构的分层设计为网络的建设、管理和维护提供了一种有效的方法。

它不仅可以提供高效的数据传输和服务提供,同时也为网络的安全性和可靠性提供了保障。

计算机网络体系结构的分层设计是网络通信的基础。

通过将网络的各个功能划分为不同的层级,可以使得不同的网络设备和应用程序可以按照规定的协议进行交互,实现信息的传输和交换。

计算机网络体系结构

计算机网络体系结构
图3-2 协议数据单元PDU、接口数据单元IDU和服务数据单元SDU
返回本节
第3章 计算机网络体系结构
3.2.4 服务原语
服务原语(Service Primitive)是指服务用户与服务提 供者之间进行交互时所要交换的一些必要信息。 OSI/RM规定了四种服务原语类型,如表3-2所示。
第3章 计算机网络体系结构
本章学习目标
l 了解开放系统互连参考模型中的若干重要概 念 l 熟悉OSI/RM各层协议的功能及基本原理并掌 握传输控制协议TCP
返回本章首页
第3章 计算机网络体系结构
3.1 网络体系结构概述
1974年,美国IBM公司首先公布了世界上第一个计算机 网络体系结构(SNA,System Network Architecture), 凡是遵循SNA的网络设备都可以很方便地进行互连。 1977年3月,国际标准化组织ISO的技术委员会TC97成 立了一个新的技术分委会SC16专门研究“开放系统互 连”,并于1983年提出了开放系统互连参考模型,即著 名的ISO 7498国际标准(我国相应的国家标准是GB 9387),记为OSI/RM。
返回本节
第3章 计算机网络体系结构
3.4.2 具有最简单流量控制的数据链路层协议
为了使收方的接收缓冲区在任何情况下都不会溢出,最 简单的方法是发方从主机每取一个数据块,就将其送到 数据链路层的发送缓冲区中发送出去,然后等待;收方 收到数据帧后,将其放入数据链路层的接收缓冲区并交 付给主机,同时回应一信息给发送节点表示数据帧已经 上交给主机,接收任务已经完成;发方收到由接收站点 发过来的双方事先商定好的信息,则从主机取下一个新 的数据帧再发送。在这种情况下,收方的接收缓冲区的 大小只要能够装得下一个数据帧即可,这就是最简单最 基本的停止-等待(Stop-and-Wait)协议。

第2章 计算机网络体系结构

第2章  计算机网络体系结构






2.1.1.研究制定计算机网络体系结构的科学方法 在初期的自由竞争中,计算机网络体系结构在短时间内得 到了迅速发展,但是伴随着计算机网络形式的多样化、复杂 性,也出现了许多问题。 例如,用户的资源和数据存储在采用不同操作系统的主 机中,这些主机分布在网络的不同地方,需要在不同的传输 媒体上实现采用不同操作系统的主机之间的通信;如何解决 异种机和异种网络互连问题;特别是系统的互连成为一个大 问题。






4.美国电气电子工程师学会 美国电气电子工程师学会(Institute of Electrical and Electronics Engineers,IEEE)于1963年由美国电气工程师 学会(AIEE)和美国无线电工程师学会(IRE)合并而成,是美 国规模最大的制定标准的专业学会。 IEEE由大约17万名从事电气工程、电子和有关领域的专 业人员组成,分设1O个地区和206个地方分会,设有31个技 术委员会。 IEEE制定的标准内容有:电气与电子设备、试验方法、元 器件、符号、定义以及测试方法等。 IEEE最引人注目的成就之一是通过802方案对LAN和城域网 MAN进行的标准化。802方案含局域网和城域网各方面上百个 单独的规范,符合IEEE的LAN包括以太网(IEEE 802.3)和令 牌环网(802,5),802系列标准和所有规范限于物理层和/ 或数据链路层。



5.美国电子工业协会 美国电子工业协会(Electronic Industries Association, EIA)创建于1924年,当时名为无线电制造商协会(Radio Manufacturers Association,RMA),总部设在弗吉尼亚的 阿灵顿。

计算机网络的体系结构概述

计算机网络的体系结构概述
只要遵循 OSI 标准,一个系统就可以和位于世界 上任何地方的、也遵循这同一标准的其他任何系统 进行通信。
开放系统互连参考模型 OSI/RM
• OSI 只获得了一些理论研究的成果,在市 场化方面却失败了。原因包括:
– OSI 的专家们在完成 OSI 标准时没有商业驱动 力;
– OSI 的协议实现起来过分复杂,且运行效率很 低;
计算机网络的体系结构
• 1.1 计算机网络体系结构的形成 • 1.2 协议与划分层次 • 1.3 具有五层协议的体系结构 • 1.4 实体、协议、服务和服务访问点 • 1.5 TCP/IP 的体系结构
1.1 计Leabharlann 机网络体系结构的形成• 计算机网络是个非常复杂的系统。 • 相互通信的两个计算机系统必须高度协调
– OSI 标准的制定周期太长,因而使得按 OSI 标 准生产的设备无法及时进入市场;
– OSI 的层次划分也不太合理,有些功能在多个 层次中重复出现。
两种国际标准
• 法律上的 (de jure) 国际标准 OSI 并没有得 到市场的认可。
• 非国际标准 TCP/IP 却获得了最广泛的应用。 TCP/IP 常被称为事实上的 (de facto) 国际 标准。
• 不久后,其他一些公司也相继推出自己公 司的具有不同名称的体系结构。
• 由于网络体系结构的不同,不同公司的设 备很难互相连通。
开放系统互连参考模型 OSI/RM
• 为了使不同体系结构的计算机网络都能互连,国 际标准化组织 ISO 于 1977 年成立了专门机构研 究该问题。
• 他们提出了一个试图使各种计算机在世界范围内 互连成网的标准框架,即著名的开放系统互连基 本参考模型 OSI/RM (Open Systems Interconnection Reference Model),简称为 OSI。

ISOOSI网络体系结构计算机网络

ISOOSI网络体系结构计算机网络

ISO/OSI网络体系结构计算机网络1. ISO/OSI网络体系结构:即开放系统互联参考模型(Open System Interconnect Reference Model)。

是ISO(国际标准化组织)根据整个计算机网络功能将网络分为物理层、数据链路层、网络层、传输层、会话层、表示层、应用层七层。

也称"七层模型"。

每层之间相对独立,下层为上层提供服务。

物理层(Physics Layer) 1. 物理层是网络的最底层。

实现的物理实体主要是通信媒体(线路)和通信接口,其主要指实现传输原始比特流的物理连接的各种特性(手段)。

物理层的概念:(1)OSI:在物理信道实体之间合理地通过中间系统,为比特传输所需物理连接的激活、保持和去活提供的机械的、电气的、功能特性和规程特性的手段。

(2) CCITT(国际电话与电报顾问委员会):利用物理的、电气的、功能和规程特性在DTE和DCE之间实现对物理信道的建立、保持和拆除功能。

信道实体的特性:物理特性(特性),电气特性,功能特性,规程特性。

2.物理的功能:(1)实现各节点之间的位传输。

保证位传输的正确性,并向数据链路层提供一个透明的位流传输。

(2)在DTE,DCE之间完成对数据链路的建立、保持和拆除操作。

3. 解决的主要问题:物理层负责一个节点(主机、工作站)与下一节点之间的比特流(位)传输。

包括传输介质的接口,数据信号的编码,电压或电压放大,接头尺寸,形状及输出针,以及与位流的物理传输相关的其它任何东西。

4.物理层的四个特性:物理特性(机械特性),电气特性,功能特性,规程特性。

(1) 机械特性(物理特性):指通信实体间硬件连接接口的机械特点。

如:接口的形状、大小;接口引脚的个数、功能、规格、引脚的分布;相应通信媒体的参数和特性。

(2)电气特性:线路连接方式、信号电平、传输速率、电缆长度和阻抗。

(3)功能特性:接口电路的功能,物理接口各条信号线的用途(用法)。

计算机网络的体系结构

计算机网络的体系结构

只看这两个文件传送模块 好像文件及文件传送命令 是按照水平方向的虚线传送的
主机 2 文件传送模块
把文件交给下层模块 进行发送
把收到的文件交给 上层模块
再设计一个通信服务模块
主机 1 文件传送模块
通信服务模块
只看这两个通信服务模块 好像可直接把文件 可靠地传送到对方
主机 2 文件传送模块
通信服务模块
实体、协议、服务 和服务访问点(续)
●本层的服务用户只能看见服务而无法看见下面的 协议。
●下面的协议对上面的服务用户是透明的。
●协议是“水平的”,即协议是控制对等实体之间 通信的规则。
●服务是“垂直的”,即服务是由下层向上层通过 层间接口提供的。
●同一系统相邻两层的实体进行交互的地方,称为 服务访问点 SAP (Service Access Point)。
● 但最下面的网络接口层并没有具体内容。 ● 因此往往采取折中的办法,即综合 OSI 和 TCP/IP 的优点,采用一
种只有五层协议的体系结构 。
五层协议的体系结构
5 应用层 4 运输层 3 网络层 2 数数据据链链路路层层 1 物理层
● 应用层(application layer) ● 运输层(transport layer) ● 网络层(network layer) ● 数据链路层(data link layer) ● 物理层(physical layer)
著名的协议举例
【例1-1】
占据东、西两个山顶的蓝军1和蓝军2与驻扎在 山谷的白军作战。其力量对比是:单独的蓝军1 或蓝军2打不过白军,但蓝军1和蓝军2协同作战 则可战胜白军。现蓝军1拟于次日正午向白军发 起攻击。于是用计算机发送电文给蓝军2。但通 信线路很不好,电文出错或丢失的可能性较大 (没有电话可使用)。因此要求收到电文的友 军必须送回一个确认电文。但此确认电文也可 能出错或丢失。试问能否设计出一种协议使得 蓝军1和蓝军2能够实现协同作战因而一定(即 100 %而不是99.999…%)取得胜利?

《计算机网络》第1章:计算机网络体系结构

《计算机网络》第1章:计算机网络体系结构

《计算机⽹络》第1章:计算机⽹络体系结构第1章计算机⽹络体系结构1.1计算机⽹络概述计算机⽹络是⼀个将分散的、具有独⽴功能的计算机系统,通过通信设备与线路连接起来,由功能完善的软件实现资源共享和信息传递的系统。

计算机⽹络是互连的、⾃洽的计算机系统的集合。

⼀个完整的计算机⽹络主要由硬件、软件、协议三⼤成分组成,缺⼀不可。

硬件由主机(端系统)、通信链路(双绞线、光纤)、交换设备(路由器、交换机)、通信处理机(⽹卡)等组成。

计算机⽹络由通信⼦⽹和资源⼦⽹组成。

计算机⽹络的功能:数据通信、资源共享、分布式处理、提⾼可靠性、负载均衡计算机⽹络的分类按分布范围分:⼴域⽹(WAN)、城域⽹(MAN)、局域⽹(LAN)、个⼈区域⽹(PAN)。

按交换技术分:电路交换⽹络、分组交换⽹络、报⽂交换⽹络。

按拓扑结构分:星形⽹络、总线型⽹络、环形⽹络、⽹状形⽹络按传播技术分:⼴播式⽹络、点对点⽹络按使⽤者分:公⽤⽹、专⽤⽹按传输介质分:有线⽹、⽆线⽹RFC(Request For Comments)上升为因特⽹正式标准需经过以下四个阶段:因特⽹草案、建议标准(这个阶段开始成为RFC⽂档)、草案标准、因特⽹标准。

计算机⽹络的性能指标:带宽:⽹络的通信线路所能传送数据的能⼒,单位是『⽐特每秒(b/s)』时延:指数据(⼀个报⽂或分组)从⽹络(或链路)的⼀段传送到另⼀端所需要的总的时间。

n 发送时延:节点将分组的所有⽐特推向(传输)链路所需的时间。

也称传输时延。

发送时延=分组长度/信道宽度n 传播时延:电磁波在信道中传播⼀定的距离需要花费的时间。

传播时延=信道长度/电磁波在信道上的传播速度n 处理时延:数据在交换节点为存储转发⽽进⾏的⼀些必要的处理所花费的时间。

n 排队时延:等待输⼊队列和输出队列处理所需时间。

总时延=发送时延+传播时延+处理时延+排队时延 //排队时延和处理时延⼀般忽略不计⾼速链路提⾼的仅是数据发送速率⽽不是⽐特在链路上的传播速度。

计算机网络的组成与结构(共10张PPT)

计算机网络的组成与结构(共10张PPT)

二、计算机网络的拓扑结构
2、 广播式传输结构 (2) 无线通信
采用微波、卫星通信等无线电波传输数据的网路,其构型也是任意的。
(1)、星型结构
X
1、 点对点传输结构
树型结构是星形的扩展,是一种分层结构,具有根节点和各分支节点。
二二、、计 计算算机机网网络络的的拓拓Y扑扑结结构构
W
优点:费用比星形结构低,网络软件也不复杂,维护方便。
优点:不会发生冲突情况。
1、 点对点传输结构
Z
基本拓扑结构有总线形、树形、环形和无线a)通信等。
二、计算机网络的拓扑结构
2、 广播式传输结构 (1)总线型
以一条共用的通道来连接所有节点,所有节点地位平等。
l介质访问控制方式。
为了避免“冲突”产生,就有一个解决“争用”总线问题的方式,以使 各节点充分利用总线的信道空间和时间来传送数据并不会发生相互冲突。
l优点:成本低廉和布线简单。
l缺点:故障查找困难。
计算机网络的组成与 结构
一、计算机网络的基本组成
1、资源子网
资源子网一般由主计算机系统、终端和终端控制器、联网外围设备等与通 信子网的接口设备以及各种软件资源、数据资源等组成。负责全网的数据 处理和向网络用户提供网络资源及网络服务等。
(1)主计算机:在计算机网络中,主机负责数据处理和网络控制,它与其他模块
拓扑结构有总线形、树形、环形 和无线通信等。
二、计算机网络的拓扑结构
1、 点对点传输结构
(1)、星型结构
以中央节点为中心向外成放射状。一般是由集线器(HUB)或交换机来承 担中央节点功能,传输介质一般为双绞线。
Hub(集线器)
l优点:故障容易检查;新增或减少计算机时,不会造成网络中断。 l缺点:当中心节点设备出现故障时,会引起整个网络瘫痪,所以可靠性较差。

计算机网络第3章 计算机网络体系结构

计算机网络第3章 计算机网络体系结构
• 上层使用下层提供的服务——Service user; • 下层向上层提供服务——Service provider。
第n+1层是第n层的服务用户,第n-1层是第n层的服务 提供者 第n层的服务也依赖于第n-1层以及以下各层的服务
例:邮政通信
16
对等通信例:两个人收发信件
发信人 邮局 运输系统
17
对等层通信的实质
对等层实体之间实现的是 虚拟的逻辑通信; 下层向上层提供服务; 上层依赖下层提供的服务 来与其他主机上的对等层 通信; 实际通信在最底层完成。
18
源进程传送消息到 目标进程的过程:
• 消息送到源系统的 最高层; • 从最高层开始,自 上而下逐层封装; • 经物理线路传输到 目标系统; • 目标系统将收到的 信息自下而上逐层 处理并拆封; • 由最高层将消息提 交给目标进程。
6
分层的空中旅行组织: 服务
柜台-to-柜台:“旅客+行李” 票务服务 行李托运-to-行李认领:行李服务
登机入口-to-到达出口:旅客乘务服务
跑道-to-跑道:飞机“航运”服务 从出发地到目的地的航线:导航服务
7
层次功能的分布式实现
机票 (购买) 机票 (投诉) 行李 (认领) 旅客 (到达) 飞机 (着陆)
飞行航线
一系列的步骤
5
空中旅行的组织: 从另一种不同的角度观察
机票 (购买) 行李 (托运) 机票 (投诉) 行李 (认领) 旅客 (到达) 飞机 (着陆) 飞行航线 飞行航线 层次的观点: 每层实现一种特定的服务 – 通过自己内部的功能 – 依赖自己的下层提供的服务
旅客 (出发)
飞机 (起飞) 飞行航线
PDU由协议控制信息(协议头)和数据(SDU)组成:

计算机网络体系结构和拓扑结构课件

计算机网络体系结构和拓扑结构课件

网状拓扑
总结词
网状拓扑是一种复杂的网络拓扑结构,其中任意两个节点之间都可能存在通信路径。
详细描述
网状拓扑提供了高度的灵活性和可靠性,因为多个路径可用于数据传输和故障恢复。然而,网状拓扑 结构的实现和维护成本较高,且需要复杂的路由协议来管理通信路径。
03 网络设备与互联技术
路由器
路由器是用于连接不同网络的 设备,能够根据IP地址将数据 包从一个网络转发到另一个网络。
交换机是一种基于MAC地址识别数据交换的设 备,能够根据MAC地址将数据帧从一个端口转 发到另一个端口。
交换机的主要功能包括数据帧的过滤和转发、 VLAN划分等。
网关
01
网关是用于连接不同协议网络的 设备,能够实现不同协议之间的 转换和数据交换。
02
网关可以用于实现局域网与广域 网之间的连接、不同协议之间的
计算机网络体系结构 和拓扑结构课件
目录
CONTENTS
• 计算机网络体系结构 • 计算机网络拓扑结构 • 网络设备与互联技术 • 网络协议与网络安全
01 计算机网络体系结构
OSI参考模型
• OSI简介:OSI(Open Systems Interconnection)参考模型 是国际标准化组织(ISO)制定的一个用于描述计算机网络协 议的分层模型。它定义了网络协议的七个层次,从上到下分别 是:应用层、表示层、会话层、传输层、网络层、数据链路层 和物理层。
DNS协议
01
02
03
DNS(域名系统)协议用于将域 名转换为IP地址。
通过DNS协议,用户可以在浏览 器中输入域名,系统会自动将其 转换为相应的IP地址,从而实现 网页的访问。
DNS协议采用分布式数据库系统, 将域名和IP地址映射关系分散存 储在多个DNS服务器中,提高了 系统的可靠性和可扩展性。

计算机网络体系结构

计算机网络体系结构

计算机网络体系结构计算机网络体系结构是指计算机网络中各个组件和层次之间的关系和组织方式。

它提供了一种方法来组织和管理计算机网络中的各个部分,以确保网络的可靠性和性能。

计算机网络体系结构的设计和选择对于网络的正常运行和扩展能力具有重要影响。

计算机网络体系结构通常分为两种主要类型:集中式和分布式。

集中式体系结构是指网络中的所有资源和控制都集中在一个中心节点或服务器上。

在这种体系结构中,所有的计算机终端都通过中心节点进行通信和数据交换。

这种体系结构的优点是管理和维护相对简单,因为只需要关注中心节点的运行和管理。

然而,集中式体系结构的缺点是中心节点的故障会导致整个网络的瘫痪,而且随着网络规模的扩大,中心节点的负载也会越来越大。

分布式体系结构是指网络中的资源和控制在多个节点上分布。

在这种体系结构中,每个节点都可以相互通信和交换数据,而不需要通过中心节点。

这种体系结构的优点是具有很高的容错性和可扩展性,因为网络中的节点可以相互协作,即使某个节点发生故障,其他节点仍然可以继续工作。

然而,分布式体系结构的缺点是管理和维护相对复杂,因为需要管理多个节点和相互之间的通信。

除了集中式和分布式体系结构之外,还有一些其他的计算机网络体系结构,如主从体系结构、对等体系结构和混合体系结构等。

每种体系结构都有自己的特点和适用场景,可以根据实际需求和网络规模选择合适的体系结构。

总结起来,计算机网络体系结构是计算机网络中各个组件和层次之间的关系和组织方式。

它对于网络的正常运行和扩展能力具有重要影响。

常见的体系结构包括集中式体系结构和分布式体系结构,每种体系结构都有自己的优点和缺点。

选择适合的体系结构可以提高网络的可靠性和性能。

【后续分析】:在计算机网络体系结构的深入分析中,我们将对集中式体系结构和分布式体系结构进行详细讨论,并介绍一些实际的例子。

首先,集中式体系结构的主要优点是管理和维护相对简单。

由于所有的资源和控制都集中在一个中心节点或服务器上,网络管理员只需要关注中心节点的运行和管理,从而简化了管理过程。

第3章 计算机网络体系结构

第3章 计算机网络体系结构

第3章计算机网络的体系结构学习要点1.理解网络体系的概念2.理解网络协议的概念3.掌握ISO/OSI参考模型的层次结构和各层功能4.掌握TCP/IP体系结构的各层功能5.了解OSI与TCP/IP参考模型的区别6.了解TCP/IP主要的功能及特点3.1 网络体系结构的基本概念1.网络体系结构的形成计算机网络的体系结构采用了层次结构的方法来描述复杂的计算机网络,把复杂的网络互连问题划分为若干个较小的、单一的问题,并在不同层次上予以解决。

2.网络体系的分层结构图3-1 网络体系的层次结构模型3.层次结构中的相关概念(1)实体(2)协议:一个网络协议主要由以下3个要素组成:<1>语法(Syntax):指数据与控制信息的结构或格式,如数据格式、编码及信号电平等;<2>语义(Semantics):指用于协调与差错处理的控制信息,如需要发出何种控制信息,完成何种动作以及做出何种应答<3>定时(Timing):指事件的实现顺序,如速度匹配、排序等。

(3)接口(4)服务(5)层间通信图3-2对等实体通信实例实际上,每一层必须依靠相邻层提供的服务来与另一台主机的对应层通信,这包含了下面两方面的通信:<1>相邻层之间通信<2>对等层之间通信3.2 开放系统互连参考模型1.OSI参考模型OSI参考模型采用了层次结构,将整个网络的通信功能划分成七个层次,每个层次完成不同的功能。

这七层由低层至高层分别是物理层、数据链路层、网络层、运输层、会话层、表示层和应用层,如图所示。

2.OSI/RM各层的主要功能(1)物理层物理层(Physical Layer)处于OSI参考模型的最低层。

物理层的主要功能是利用物理传输介质为数据链路层提供物理连接,以便透明地传送“比特”流。

物理层传输的单位是比特(Bit),不去考虑比特流的意义和结构。

(2)数据链路层在物理层提供比特流传输服务的基础上,数据链路层(Data Link Layer)通过在通信的实体之间建立数据链路连接,传送以“帧”为单位的数据,使有差错的物理线路变成无差错的数据链路,保证点到点(point-to-point)可靠的数据传输。

计算机网络体系结构与协议

计算机网络体系结构与协议

计算机网络体系结构与协议计算机网络体系结构是指计算机网络中各个层次之间的关系和功能划分,它是计算机网络的基础框架。

而协议则是计算机网络中用于实现通信的规则和约定。

本文将探讨计算机网络体系结构与协议的基本概念、分类以及重要协议的作用。

一、计算机网络体系结构的概念计算机网络体系结构是指计算机网络中各个层次之间的关系和功能划分。

通常情况下,计算机网络体系结构可以分为两大类:OSI参考模型和TCP/IP参考模型。

1. OSI参考模型OSI参考模型是国际标准化组织(ISO)为了统一计算机网络的设计而提出的一种体系结构方法。

它将计算机网络通信划分为七个层次:物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。

每个层次都有自己的功能和任务。

- 物理层:负责传输比特流,以传输数字信号。

- 数据链路层:负责进行节点之间的可靠数据传输。

- 网络层:负责数据在整个网络中的路由和转发。

- 传输层:负责提供端到端的可靠数据传输服务。

- 会话层:负责建立、维护和终止会话连接。

- 表示层:负责数据的格式化、加密和压缩等。

- 应用层:负责为用户提供特定的网络应用服务。

2. TCP/IP参考模型TCP/IP参考模型是互联网所采用的一种网络体系结构,它是由传输控制协议(TCP)和网络互联协议(IP)构成的。

TCP/IP参考模型将计算机网络划分为四个层次:网络接口层、网络层、传输层和应用层。

- 网络接口层:负责将数据帧按照特定的协议传输到物理网络上。

- 网络层:负责数据在网络中的路由和转发。

- 传输层:负责提供端到端的可靠数据传输服务。

- 应用层:负责为用户提供特定的网络应用服务。

二、协议的分类协议是计算机网络中用于实现通信的规则和约定。

根据网络体系结构的不同,协议可以分为两种类型:传输层协议和应用层协议。

1. 传输层协议传输层协议位于网络体系结构的传输层,负责提供端到端的可靠数据传输服务。

常见的传输层协议有TCP和UDP。

计算机网络的体系结构

计算机网络的体系结构

计算机网络的体系结构计算机网络的体系结构是指计算机网络的分层结构或组织结构,它将网络功能划分为多个层次,在每个层次上实现特定的功能,并通过不同层次之间的接口进行通信和协作。

常见的计算机网络体系结构包括TCP/IP参考模型和OSI参考模型。

下面我将详细介绍这两种体系结构。

1.TCP/IP参考模型TCP/IP(Transmission Control Protocol/Internet Protocol)参考模型是最常用的计算机网络体系结构之一,它有四个层次:物理层、数据链路层、网络层和传输层。

-物理层:物理层负责比特流的传输,它定义了电器、光学和无线信号等在传输媒介中的传输规范,如电压、编码和信号时钟等。

-数据链路层:数据链路层在物理层之上建立了可靠的数据传输通道,它将比特流划分为数据帧,并进行错误检测和错误纠正。

常见的数据链路层协议有以太网和Wi-Fi。

- 网络层:网络层负责将数据分组从发送端传输到接收端,它使用IP地址来标识网络设备和路径,也负责路由选择和拥塞控制。

常见的网络层协议有IP(Internet Protocol)。

-传输层:传输层提供端到端的可靠传输和数据分组的重组,它使用端口号标识不同的应用程序,并提供传输控制协议(TCP)和用户数据报协议(UDP)等协议。

2.OSI参考模型OSI(Open Systems Interconnection)参考模型是一种通用的计算机网络体系结构,它有七个层次:物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。

-物理层:物理层在OSI模型中的作用与TCP/IP模型中类似。

-数据链路层:数据链路层在OSI模型中的作用与TCP/IP模型中类似。

-网络层:网络层在OSI模型中的作用与TCP/IP模型中类似。

-传输层:传输层在OSI模型中的作用与TCP/IP模型中类似。

-会话层:会话层在OSI模型中提供了在网络中建立、管理和终止会话的功能。

它允许不同计算机应用程序之间的通信,并提供了可靠性和错误恢复机制。

计算机网络体系结构基本概念

计算机网络体系结构基本概念

网络协议与层次结构
网络协议是计算机网络中进行数据交换而建立的规则、 标准或约定的集合。
层次结构是网络协议的一种组织方式,它将复杂的网 络协议划分为多个层次,每个层次负责完成一部分功
能,各层之间相互独立又相互协作。
常见的网络协议层次结构包括OSI七层模型和TCP/IP 四层模型。
常见网络体系结构
OSI七层模型
由于距离远,信号衰减和 干扰较大,导致传输速度 相对较慢。
长距离传输容易受到各种 干扰,导致误码率增加。
需要借助各种中间设备( 如路由器、交换机等)来 实现数据传输。
互联网发展历程及现状
ARPANET阶段
20世纪60年代末至80年代初,以美国国防部高级研究计划局(ARPA)为主导,建 立了最初的计算机网络ARPANET。
公用网、专用网。
按不同作用范围分类
企业网、校园网、政府网等。
02
网络体系结构基本概念
网络体系结构的定义
网络体系结构是指计算机网络层 次结构模型和各层协议的集合。
它将计算机网络及其部件所应完 成的功能精确定义,并规定了功
能的实现方式。
网络体系结构是抽象的,而实现 是具体的,是运行在计算机上的
软件或硬件。
01
物理层、数据链路层、网络层、传输层、会话层、表示层、应
用层。
TCP/IP四层模型
02
网络接口层、网络层、传输层、应用层。
五层协议体系结构
03
物理层、数据链路层、网络层、传输层、应用层。
03
OSI七层模型详解
物理层
01
物理层的主要功能是提供传输数据的物理媒介,为数据通信提 供可靠的环境。
02
它定义了电气、机械、过程和功能的接口标准,用于激活、维

计算机网络五层体系结构

计算机网络五层体系结构

计算机网络五层体系结构计算机网络是现代信息技术的基础,它可以让计算机互相连接,进行通信和数据交换。

为了能够更好地组织和管理计算机网络中各个部分的功能和协议,计算机网络被分为五层体系结构,被称为OSI(Open System Interconnection,开放系统互联)参考模型。

OSI参考模型由国际标准化组织(ISO)在20世纪80年代初制定,它将计算机网络分为物理层、数据链路层、网络层、传输层和应用层五个层次进行描述和划分。

每一层都具有各自的功能和任务,它们协同工作,以保证网络的正常运行和数据的可靠传输。

1. 物理层(Physical Layer):物理层是计算机网络的底层,主要负责将网络中的数据转换为比特流,通过物理媒体进行传输。

在这一层次中,数据的传输是以二进制形式进行的,物理层主要负责发送和接收数据,以及控制电流、电压、时钟等物理参数。

2. 数据链路层(Data Link Layer):数据链路层建立在物理层之上,主要负责将网络中的比特流转换为有意义的数据帧,并进行传输错误的检测和纠正。

数据链路层通过帧同步、流量控制和差错检测等技术,保证数据的可靠传输,同时还负责对物理层的传输进行抽象和协调。

3. 网络层(Network Layer):网络层是计算机网络的关键,它负责将数据包从源主机传输到目标主机,并选择合适的路径进行传输。

网络层通过路由算法、寻址和分组转发等技术,实现了跨网络的数据传输,为上层提供了无差别的网络服务。

4. 传输层(Transport Layer):传输层位于网络层和应用层之间,主要负责为两个网络节点之间的通信建立端到端的连接。

传输层通过端口号和协议,实现了数据的可靠传输和分段重组,为上层应用提供了端到端的通信服务。

5. 应用层(Application Layer):应用层是计算机网络的顶层,它为用户提供了各种网络应用和服务。

应用层通过各种应用协议(如HTTP、FTP、SMTP等),支持不同类型的网络应用,例如网页浏览、文件传输、电子邮件等。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• Network layer来自 packet• Data-link layer: Frame
• Physical layer: bit
封装与解封装
封装 ( encapsulate/encapsulation):数据要通过网 络进行传输,要从高层一层一层的向下传送,如果一 个主机要传送数据到别的主机,先把数据装到一个特 殊协议报头中,这个过程叫-----封装
表示层协议 会话层协议 传输层协议
网络层
数据连路层
物理层


端系统B
应用层 表示层 会话层 传输层 网络层 数据连路层 物理层 信介质
在20世纪70年代,各大计算机生产商的产品都拥有自己的 网络通信协议。但是不同的厂家生产的计算机系统就难以 连接,为了实现不同厂商生产的计算机系统之间以及不同 网络之间的数据通信,国际标准化组织ISO(开放系统互 连参考模型)即OSI/RM也称为ISO/OSI,该系统称为开放 系统。
2.2标准化组织ISO
网络分层的优点
层 layer:描述了所有需求的有效的通讯过程,并 把这些过程逻辑上的组叫做层。
分层的优点: 1.促进标准化工作,允许各个供应商进行开发. 2.各层间相互独立,把网络操作分成低复杂性单元. 3.灵活性好,某一层变化不会影响到别层,设计者
可专心设计和开发模块功能. 4.各层间通过一个接口在相邻层上下通信
EIA/TIA-232 V.35
数据流层的作用
应用层 表示层 会话层
传输层
• 可靠或不可靠的数据传输 • 数据重传前的错误纠正
网络层
提供路由器用来决定路径的逻辑寻址
• 将比特组合成字节进而组合成帧
数据链路层
• 用MAC地址访问介质 • 错误发现但不能纠正
物理层
• 设备间接收或发送比特流 • 说明电压、线速和线缆等
解封装过程
应用层 表示层 会话层
传输层 网络层
数据链路层
物理层
上层数据 上层数据
TCP+上层数据 IP + TCP +上层数据 LLC 头 + IP + TCP + 上层数据
0101110101001000010
数据传输过程
端系统A
应用层 表示层 会话层 传输层
网络层 数据连路层
物理层 通信介
应用层协议
数据流层的作用
例子
网络层
提供路由器用来决定路径的逻辑寻址
• 将比特组合成字节进而组合成帧
数据链路层
• 用MAC地址访问介质 • 错误发现但不能纠正
物理层
• 设备间接收或发送比特流 • 说明电压、线速和线缆等
IP IPX
802.3 / 802.2 HDLC
EIA/TIA-232 V.35
数据流层的作用
ISO:国际标准化组织 ( International Organization for Standardization )
OSI:开放系统互联 ( open system interconnection ) 20世纪70年代后期,ISO创建OSI参考模型,希望不同
供应商的网络能够相互协同工作,但迄今为止,这仍 然是一个伟大的目标!
封装分为:切片和加控制信息 解封装:上述的逆向过程
封装过程
应用层 表示层 会话层
传输层
网络层
数据链路层
物理层
TCP 头 IP 头 LLLLCC 头头 MAC 头
上层数据 上层数据
TCP+上层数据
IP + TCP +上层数据
FCS
LLC 头 + IP + TCP + 上层数据
FCS
0101110101001000010
OSI 模式 概述
应用层 (高)
应用层 表示层 会话层
OSI 模式
应用层 (高)
应用层 表示层 会话层 传输层 网络层 数据链路层 物理层
数据流层
应用层作用
应用层
用户接口
例子
Telnet SMTP HTTP FTP
应用层作用
应用层 表示层
用户接口
• 数据表示 • 加密等特殊处理过程
例子
Telnet SMTP HTTP FTP
例子
TCP UDP SPX
IP IPX
802.3 / 802.2 HDLC
EIA/TIA-232 V.35
PDU
• PDU(protocol data unit):每一层使用自己层的协 议和别的系统的对应层相互通信,协议层的协议 在对等层之间交换的信息叫协议数据单元。
• 上层
: message
• transport layer : segment
应用层
表示层
会话层
传输层 网络层 数据链路层 物理层
用户接口
• 数据表示 • 加密等特殊处理过程
保证不同应用间的数据区 分
例子
Telnet HTTP
ASCII EBCDIC JPEG
Operating System/ Application Access Scheduling
数据流层的作用
例子
物理层
ASCII EBCDIC JPEG
应用层作用
应用层 表示层 会话层
用户接口
• 数据表示 • 加密等特殊处理过程
保证不同应用间的数据区 分
例子
Telnet HTTP
ASCII EBCDIC JPEG
Operating System/ Application Access Scheduling
应用层作用
本章内容
2.1网络体系结构的概念 2.2OSI参考模型 2.3TCP/IP工业模型 2.4局域网体系结构
2.1网络体系结构
所谓网络体系就是为了完成计算机之间的通信合作,把每 台计算机的功能划分成有明确定义的层次,并固定了同层 次的进程通信的协议及相邻之间的接口及服务,将对应层 次进程通讯的协议及相邻层的接口统称为网络体系结构。
• 设备间接收或发送比特流 • 说明电压、线速和线缆等
EIA/TIA-232 V.35
数据流层的作用
例子
• 将比特组合成字节进而组合成帧
数据链路层
• 用MAC地址访问介质 • 错误发现但不能纠正
物理层
• 设备间接收或发送比特流 • 说明电压、线速和线缆等
802.3 / 802.2 HDLC
EIA/TIA-232 V.35
传输层
• 可靠或不可靠的数据传输 • 数据重传前的错误纠正
网络层
提供路由器用来决定路径的逻辑寻址
• 将比特组合成字节进而组合成帧
数据链路层
• 用MAC地址访问介质 • 错误发现但不能纠正
物理层
• 设备间接收或发送比特流 • 说明电压、线速和线缆等
例子
TCP UDP SPX IP IPX
802.3 / 802.2 HDLC
相关文档
最新文档