最新2018年甘肃省中考数学试卷(附答案解析)
2018年全国中考数学-甘肃天水中考数学(解析版)
2018年甘肃省天水市初中毕业、升学考试数学(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题4分,共40分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018甘肃天水,T1,F4)下列各数中,绝对值最大的数是()A.-2B.3C.0D.-4【答案】D.【解析】因为|−2|=2,|3|=3,|0|=0,|−4|=4,可知0<2<3<4,所以-4的绝对值最大.故选D.【知识点】绝对值2.(2018甘肃天水,T2,F4)近三年,国家投入了用于缓解群众“看病难,看病贵”的问题.将8450亿元用科学记数法表示应为()A.0.845×104亿元B.8.45×103亿元C.8.9.45×104亿元D.84.5×102亿元【答案】B.【解析】8450亿元=8.45×103亿元.【知识点】科学记数法3.(2018甘肃天水,T3,F4)一个几何体的三视图如图所示,则这个几何体是()A.三棱柱B.三棱锥C.圆柱 D 长方体【答案】A.【解析】由俯视图可知几何体的底面是三角形,则几何体是三棱锥或三棱柱,再根据主视图和左视图是长方形,可知该几何体是三棱柱.【知识点】三视图4.(2018甘肃天水,T4,F4)一组数据1,5,7,x 的众数与中位数相等,则这组数据的平均数是()A.6B.5C.4.5D.3.5【答案】C.【解析】当这组数据的众数为1时,则这组数据为1,1,5,7,可知中位数为1.5,不符合题意;当这组数据的众数为5时,则这组数据为1,5,5,7,可知中位数为5,符合题意;当这组数据的众数为7时,则这组数据为1,5,7,7,可知中位数为6,不符合题意.则这组数据的平均数为1+5+5+74=4.5.【知识点】平均数,中位数,众数5.(2018甘肃天水,T5,F4)已知圆锥的底面半径2cm ,母线长为10cm ,则这个圆锥的面积是()A.20πcm 2B.20cm 2C.40πcm 2D.40cm 2【答案】A.【解析】S 圆锥侧=12Rl=12×10×2×π×2=20π(cm 2).【知识点】圆锥侧面积6.(2018甘肃天水,T6,F4)如图所示,点O 是矩形ABCD 对角线AC 的中点,OE ∥AB 交AD 于点E.若OE=3,BC=8,则OB 的长为( )A.4B.5C.√342D.√34【答案】B.【解析】∵四边形ABCD 是矩形,∴∠ABC=90°,AB ∥CD ,AB=CD ,点O 是AC 的中点.∵OE ∥AB ,∴OE ∥CD ,∴OE 是△ACD 的中位线,∴CD=2OE=6,∴AB=6.在Rt △ABC 中,AB=6,BC=8,∴AC=10.∵OB 是Rt △ABC 斜边的中线,∴OB=12AC=5. 【知识点】矩形的性质,中位线的性质7.(2018甘肃天水,T7,F4)如图所示,点A 、B 、C 在⊙O 上.若∠BAC=45°,OB=2,则图中阴影部分的面积为( )A.π-4B.23π-1C.π-2D.23π-2【答案】C.【解析】∵∠BAC=45°,∴∠BOC=90°.则S 扇形BOC =90×π×22360=π, S Rt △BOC =12BO ·CO=12×2×2=2.则阴影部分的面积为S 扇形BOC -S Rt △BOC =π-2.【知识点】扇形面积,圆周角定理8.(2018甘肃天水,T8,F4)在同一平面直角坐标系中,函数y=x+1与函数y=1x 的图像可能是()第8题图【答案】B.【思路分析】首先根据一次函数y=x+1的系数可知其经过的象限,反比例函数y=1x位于的象限,再判断即可.【解题过程】一次函数y=x+1经过一,二,三象限,反比例函数y=1x位于一,三象限,所以B符合题意. 【知识点】反比例函数图像,一次函数图像9.(2018甘肃天水,T9,F4)按一定的规律排列的一组数:12,16,112,120…1a,190,1b…(其中a,b为整数),则a+b的值为()A.182B.172C.242D.200【答案】A.【思路分析】首先根据题意得出分母变化的规律,求出a,b的值,即可得出答案.【解题过程】由题意可知12=11×2,16=12×3,112=13×4,120=14×5…1a=18×9,190=19×10,1b=110×11…可知a=72,b=110,则a+b=182.【知识点】探究规律10.(2018甘肃天水,T10,F4)某学校组织团员举行“伏羲文化旅游节”宣传活动,从学校骑自行车出发。
2018年甘肃省兰州市中考数学试卷(A卷)(含解析答案)
2018年甘肃省兰州市中考数学试卷(A卷)一、选择题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)﹣2018的绝对值是()A.B.﹣2018 C.2018 D.﹣2.(4分)如图是由5个完全相同的小正方体组成的几何体,则该几何体的主视图是()A.B.C.D.3.(4分)据中国电子商务研究中心(100EC.CN)发布《2017年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为()A.1159.56×108元B.11.5956×1010元C.1.15956×1011元D.1.15956×108元4.(4分)下列二次根式中,是最简二次根式的是()A. B. C. D.5.(4分)如图,AB∥CD,AD=CD,∠1=65°,则∠2的度数是()A.50°B.60°C.65°D.70°6.(4分)下列计算正确的是()A.2a•3b=5ab B.a3•a4=a12C.(﹣3a2b)2=6a4b2D.a4÷a2+a2=2a27.(4分)如图,边长为4的等边△ABC中,D、E分别为AB,AC的中点,则△ADE的面积是()A.B.C.D.28.(4分)如图,矩形ABCD中,AB=3,BC=4,EF∥DF且BE与DF之间的距离为3,则AE的长是()A.B.C.D.9.(4分)如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F,若∠ABD=48°,∠CFD=40°,则∠E为()A.102°B.112°C.122° D.92°10.(4分)关于x的分式方程=1的解为负数,则a的取值范围是()A.a>1 B.a<1 C.a<1且a≠﹣2 D.a>1且a≠211.(4分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论()①abc>0;②b﹣a>c;③4a+2b+c>0;④3a>﹣c;⑤a+b>m (am+b)(m≠1的实数).其中正确结论的有()A.①②③B.②③⑤C.②③④D.③④⑤12.(4分)如图,抛物线y=x2﹣7x+与x轴交于点A、B,把抛物线在x轴及其下方的部分记作C1,将C1向左平移得到C2,C2与x轴交于点B、D,若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣<m<﹣ B.﹣<m<﹣ C.﹣<m<﹣ D.﹣<m<﹣二、填空题:本大题共4小题,每小题4分,共16分13.(4分)因式分解:x2y﹣y3=.14.(4分)不等式组的解集为15.(4分)如图,△ABC的外接圆O的半径为3,∠C=55°,则劣弧的长是.(结果保留π)16.(4分)如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF的最小值是.三、简答题:本大题共12小题,共86分,解答时写出必要的文字说明,证明过程或演算步骤17.(5分)计算:(﹣)﹣1+(π﹣3)0+|1﹣|+tan45°18.(5分)解方程:3x2﹣2x﹣2=0.19.(5分)先化简,再求值:(x ﹣)÷,其中x=.20.(6分)如图,在Rt△ABC中.(1)利用尺规作图,在BC边上求作一点P,使得点P到AB的距离(PD的长)等于PC的长;(2)利用尺规作图,作出(1)中的线段PD.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)21.(7分)学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数713a103请你根据统计图表中的信息,解答下列问题:(1)a=,b=.(2)该调查统计数据的中位数是,众数是.(3)请计算扇形统计图中“3次”所对应扇形的圆心角的度数;(4)若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.22.(7分)在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点M的坐标(x,y)(1)画树状图或列表,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=x+1的图象上的概率.23.(7分)如图,斜坡BE,坡顶B到水平地面的距离AB为3米,坡底AE为18米,在B处,E处分别测得CD顶部点D的仰角为30°,60°,求CD的高度.(结果保留根号)24.(7分)某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第x天(1≤x≤30且x为整数)的销售量为y件.(1)直接写出y与x的函数关系式;(2)设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?25.(8分)如图,在平面直角坐标系中,一次函数y1=ax+b的图象与反比例函数y2=的图象交于点A(1,2)和B(﹣2,m).(1)求一次函数和反比例函数的表达式;(2)请直接写出y1>y2时,x的取值范围;(3)过点B作BE∥x轴,AD⊥BE于点D,点C是直线BE上一点,若AC=2CD,求点C的坐标.26.(8分)如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.27.(9分)如图,AB为⊙O的直径,C为⊙O上一点,D为BA延长线上一点,∠ACD=∠B.(1)求证:DC为⊙O的切线;(2)线段DF分别交AC,BC于点E,F且∠CEF=45°,⊙O的半径为5,sinB=,求CF的长.28.(12分)如图,抛物线y=ax2+bx﹣4经过A(﹣3,0),B(5,﹣4)两点,与y轴交于点C,连接AB,AC,BC.(1)求抛物线的表达式;(2)求证:AB平分∠CAO;(3)抛物线的对称轴上是否存在点M,使得△ABM是以AB为直角边的直角三角形,若存在,求出点M的坐标;若不存在,请说明理由.2018年甘肃省兰州市中考数学试卷(A卷)参考答案与试题解析一、选择题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)﹣2018的绝对值是()A.B.﹣2018 C.2018 D.﹣【分析】直接利用绝对值的性质得出答案.【解答】解:﹣2018的绝对值是:2018.故选:C.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.(4分)如图是由5个完全相同的小正方体组成的几何体,则该几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的视图是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.3.(4分)据中国电子商务研究中心(100EC.CN)发布《2017年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为()A.1159.56×108元B.11.5956×1010元C.1.15956×1011元D.1.15956×108元【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:1159.56亿元=1.15956×1011元,故选:C.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.(4分)下列二次根式中,是最简二次根式的是()A. B. C. D.【分析】根据最简二次根式的定义对各选项分析判断利用排除法求解.【解答】解:A、不是最简二次根式,错误;B、是最简二次根式,正确;C、不是最简二次根式,错误;D、不是最简二次根式,错误;故选:B.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.5.(4分)如图,AB∥CD,AD=CD,∠1=65°,则∠2的度数是()A.50°B.60°C.65°D.70°【分析】直接利用平行线的性质结合等腰三角形的性质得出∠2的度数.【解答】解:∵AB∥CD,∴∠1=∠ACD=65°,∵AD=CD,∴∠DCA=∠CAD=65°,∴∠2的度数是:180°﹣65°﹣65°=50°.故选:A.【点评】此题主要考查了平行线的性质和等腰三角形的性质,正确得出∠CAD的度数是解题关键.6.(4分)下列计算正确的是()A.2a•3b=5ab B.a3•a4=a12C.(﹣3a2b)2=6a4b2D.a4÷a2+a2=2a2【分析】直接利用单项式乘以单项式以及积的乘方运算法则和合并同类项法则分别计算得出答案.【解答】解:A、2a•3b=6ab,故此选项错误;B、a3•a4=a7,故此选项错误;C、(﹣3a2b)2=9a4b2,故此选项错误;D、a4÷a2+a2=2a2,正确.故选:D.【点评】此题主要考查了单项式乘以单项式以及积的乘方运算和合并同类项,正确掌握相关运算法则是解题关键.7.(4分)如图,边长为4的等边△ABC中,D、E分别为AB,AC的中点,则△ADE的面积是()A.B.C.D.2【分析】由于D、E是AB、AC的中点,因此DE是△ABC的中位线,由此可得△ADE和△ABC相似,且相似比为1:2;根据相似三角形的面积比等于相似比的平方,可求出△ABC的面积.【解答】解:∵等边△ABC的边长为4,∴S△ABC=×42=4,∵点D,E分别是△ABC的边AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,AD=AB,AE=AC,即===,∴△ADE∽△ABC,相似比为,故S△ADE :S△ABC=1:4,即S△ADE =S△ABC=×=,故选:A.【点评】本题主要考查等边三角形的性质、相似三角形性质及三角形的中位线定理,解题的关键是掌握等边三角形的面积公式、相似三角形的判定与性质及中位线定理.8.(4分)如图,矩形ABCD中,AB=3,BC=4,EF∥DF且BE与DF之间的距离为3,则AE的长是()A.B.C.D.【分析】过点D作DG⊥BE,垂足为G,则GD=3,首先证明△AEB≌△GED,由全等三角形的性质可得到AE=EG,设AE=EG=x,则ED=4﹣x,在Rt△DEG中依据勾股定理列方程求解即可.【解答】解:如图所示:过点D作DG⊥BE,垂足为G,则GD=3.∵∠A=∠G,∠AEB=∠GED,AB=GD=3,∴△AEB≌△GED.∴AE=EG.设AE=EG=x,则ED=4﹣x,在Rt△DEG中,ED2=GE2+GD2,x2+32=(4﹣x)2,解得:x=.故选:C.【点评】本题主要考查的是矩形的性质、勾股定理的应用,依据题意列出关于x 的方程是解题的关键.9.(4分)如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F,若∠ABD=48°,∠CFD=40°,则∠E为()A.102°B.112°C.122° D.92°【分析】由平行四边形的性质和折叠的性质,得出∠ADB=∠BDF=∠DBC,由三角形的外角性质求出∠BDF=∠DBC=∠DFC=20°,再由三角形内角和定理求出∠A,即可得到结果.【解答】解:∵AD∥BC,∴∠ADB=∠DBC,由折叠可得∠ADB=∠BDF,∴∠DBC=∠BDF,又∵∠DFC=40°,∴∠DBC=∠BDF=∠ADB=20°,又∵∠ABD=48°,∴△ABD中,∠A=180°﹣20°﹣48°=112°,∴∠E=∠A=112°,故选:B.【点评】本题主要考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出∠ADB的度数是解决问题的关键.10.(4分)关于x的分式方程=1的解为负数,则a的取值范围是()A.a>1 B.a<1 C.a<1且a≠﹣2 D.a>1且a≠2【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a的不等式,求出不等式的解集即可确定出a的范围.【解答】解:分式方程去分母得:x+1=2x+a,即x=1﹣a,根据分式方程解为负数,得到1﹣a<0,且1﹣a≠﹣1,解得:a>1且a≠2.故选:D.【点评】此题考查了分式方程的解,注意在任何时候都要考虑分母不为0.11.(4分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论()①abc>0;②b﹣a>c;③4a+2b+c>0;④3a>﹣c;⑤a+b>m (am+b)(m≠1的实数).其中正确结论的有()A.①②③B.②③⑤C.②③④D.③④⑤【分析】由抛物线对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①∵对称轴在y轴的右侧,∴ab<0,由图象可知:c>0,∴abc<0,故①不正确;②当x=﹣1时,y=a﹣b+c<0,∴b﹣a>c,故②正确;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故③正确;④∵x=﹣=1,∴b=﹣2a,∵a﹣b+c<0,∴a+2a+c<0,3a<﹣c,故④不正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c(m≠1),故a+b>am2+bm,即a+b>m(am+b),故⑤正确.故②③⑤正确.故选:B.【点评】本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c 系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定,熟练掌握二次函数的性质是关键.12.(4分)如图,抛物线y=x2﹣7x+与x轴交于点A、B,把抛物线在x轴及其下方的部分记作C1,将C1向左平移得到C2,C2与x轴交于点B、D,若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣<m<﹣ B.﹣<m<﹣ C.﹣<m<﹣ D.﹣<m<﹣【分析】首先求出点A和点B的坐标,然后求出C2解析式,分别求出直线y=x+m 与抛物线C2相切时m的值以及直线y=x+m过点B时m的值,结合图形即可得到答案【解答】解:∵抛物线y=x2﹣7x+与x轴交于点A、B∴B(5,0),A(9,0)∴抛物线向左平移4个单位长度∴平移后解析式y=(x﹣3)2﹣2当直线y=x+m过B点,有2个交点∴0=+mm=﹣当直线y=x+m与抛物线C2相切时,有2个交点∴x+m=(x﹣3)2﹣2x2﹣7x+5﹣2m=0∵相切∴△=49﹣20+8m=0∴m=﹣如图∵若直线y=x+m与C1、C2共有3个不同的交点,∴﹣﹣<m<﹣故选:C.【点评】本题主要考查抛物线与x轴交点以及二次函数图象与几何变换的知识,解答本题的关键是正确地画出图形,利用数形结合进行解题,此题有一定的难度.二、填空题:本大题共4小题,每小题4分,共16分13.(4分)因式分解:x2y﹣y3=y(x+y)(x﹣y).【分析】先提公因式,再利用平方差公式分解因式即可;【解答】解:x2y﹣y3=y(x2﹣y2)=y(x+y)(x﹣y).故答案为y(x+y)(x﹣y)【点评】本题考查因式分解﹣提公因式法,解题的关键是熟练掌握因式分解的方法,属于中考常考题型、14.(4分)不等式组的解集为﹣1<x≤3【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≤3,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤3,故答案为:﹣1<x≤3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.15.(4分)如图,△ABC的外接圆O的半径为3,∠C=55°,则劣弧的长是.(结果保留π)【分析】根据同弧所对的圆心角是圆周角的2倍,可求∠AOB=110°,根据弧长公式可求劣弧的长.【解答】解:∵∠AOB=2∠C且∠C=55°∴∠AOB=110°根据弧长公式的长==故答案为【点评】本题考查了三角形的外接圆与外心,同弧所对的圆心角是圆周角的2倍,弧长公式,关键是熟练运用弧长公式解决问题.16.(4分)如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF的最小值是3﹣3.【分析】先判断出Rt△ADM≌Rt△BCN(HL),得出∠DAM=∠CBN,进而判断出△DCE≌△BCE(SAS),得出∠CDE=∠CBE,即可判断出∠AFD=90°,根据直角三角形斜边上的中线等于斜边的一半可得OF=AD=3,利用勾股定理列式求出OC,然后根据三角形的三边关系可知当O、F、C三点共线时,CF的长度最小.【解答】解:如图,在正方形ABCD中,AD=BC=CD,∠ADC=∠BCD,∠DCE=∠BCE,在Rt△ADM和Rt△BCN中,,∴Rt△ADM≌Rt△BCN(HL),∴∠DAM=∠CBN,在△DCE和△BCE中,,∴△DCE≌△BCE(SAS),∴∠CDE=∠CBE∴∠DCM=∠CDE,∵∠ADF+∠CDE=∠ADC=90°,∴∠DAM+∠ADF=90°,∴∠AFD=180°﹣90°=90°,取AD的中点O,连接OF、OC,则OF=DO=AD=3,在Rt△ODC中,OC==3根据三角形的三边关系,OF+CF>OC,∴当O、F、C三点共线时,CF的长度最小,最小值=OC﹣OF=3﹣3.故答案为:3﹣3.【点评】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,确定出CF最小时点F的位置是解题关键.三、简答题:本大题共12小题,共86分,解答时写出必要的文字说明,证明过程或演算步骤17.(5分)计算:(﹣)﹣1+(π﹣3)0+|1﹣|+tan45°【分析】第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项去绝对值,最后一项利用特殊角的三角函数值计算,最后合并即可得出结论.【解答】解:(﹣)﹣1+(π﹣3)0+|1﹣|+tan45°=﹣2+1+﹣1+1=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(5分)解方程:3x2﹣2x﹣2=0.【分析】先找出a,b,c,再求出b2﹣4ac=28,根据公式即可求出答案.【解答】解:=即,∴原方程的解为,【点评】本题主要考查对解一元二次方程﹣提公因式法、公式法,因式分解等知识点的理解和掌握,能熟练地运用公式法解一元二次方程是解此题的关键.19.(5分)先化简,再求值:(x﹣)÷,其中x=.【分析】根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:(x﹣)÷====x﹣2,当x=时,原式=﹣2=﹣.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.(6分)如图,在Rt△ABC中.(1)利用尺规作图,在BC边上求作一点P,使得点P到AB的距离(PD的长)等于PC的长;(2)利用尺规作图,作出(1)中的线段PD.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【分析】(1)由点P到AB的距离(PD的长)等于PC的长知点P在∠BAC平分线上,再根据角平分线的尺规作图即可得;(2)根据过直线外一点作已知直线的垂线的尺规作图即可得.【解答】解:(1)如图,点P即为所求;(2)如图,线段PD即为所求.【点评】本题考查作图﹣复杂作图、角平分线的性质定理等知识,解题的关键是熟练掌握基本作图,灵活运用所学知识解决问题,属于中考常考题型.21.(7分)学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数713a103请你根据统计图表中的信息,解答下列问题:(1)a=17,b=20.(2)该调查统计数据的中位数是2次,众数是2次.(3)请计算扇形统计图中“3次”所对应扇形的圆心角的度数;(4)若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.【分析】(1)先由1次的人数及其所占百分比求得总人数,总人数减去其他次数的人数求得a的值,用3次的人数除以总人数求得b的值;(2)根据中位数和众数的定义求解;(3)用360°乘以“3次”对应的百分比即可得;(4)用总人数乘以样本中“4次及以上”的人数所占比例即可得.【解答】解:(1)∵被调查的总人数为13÷26%=50人,∴a=50﹣(7+13+10+3)=17,b%=×100%=20%,即b=20,故答案为:17、20;(2)由于共有50个数据,其中位数为第25、26个数据的平均数,而第25、26个数据均为2次,所以中位数为2次,出现次数最多的是2次,所以众数为2次,故答案为:2次、2次;(3)扇形统计图中“3次”所对应扇形的圆心角的度数为360°×20%=72°;(4)估计该校学生在一周内借阅图书“4次及以上”的人数为2000×=120人.【点评】本题考查的是扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.22.(7分)在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点M的坐标(x,y)(1)画树状图或列表,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=x+1的图象上的概率.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)找到点(x,y)在函数y=x+1的图象上的情况,利用概率公式即可求得答案.【解答】解:(1)画树状图得:共有12种等可能的结果(1,2)、(1,3)、(1,4)、(2,1)、(2,3)、(2,4)、(3,1)、(3,2)、(3,4)、(4,1)、(4,2)、(4,3);(2)∵在所有12种等可能结果中,在函数y=x+1的图象上的有(1,2)、(2,3)、(3,4)这3种结果,∴点M(x,y)在函数y=x+1的图象上的概率为=.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.23.(7分)如图,斜坡BE,坡顶B到水平地面的距离AB为3米,坡底AE为18米,在B处,E处分别测得CD顶部点D的仰角为30°,60°,求CD的高度.(结果保留根号)【分析】作BF⊥CD于点F,设DF=x米,在直角△DBF中利用三角函数用x表示出BF的长,在直角△DCE中表示出CE的长,然后根据BF﹣CE=AE即可列方程求得x的值,进而求得CD的长.【解答】解:作BF⊥CD于点F,设DF=x米,在Rt△DBF中,tan∠DBF=,则BF===x,在直角△DCE中,DC=x+CF=3+x(米),在直角△ABF中,tan∠DEC=,则EC===(x+3)米.∵BF﹣CE=AE,即x﹣(x+3)=18.解得:x=9+,则CD=9++3=9+(米).答:CD的高度是(9+)米.【点评】本题考查了解直角三角形的应用,解答本题关键是构造直角三角形,利用三角函数的知识表示出相关线段的长度.24.(7分)某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第x天(1≤x≤30且x为整数)的销售量为y件.(1)直接写出y与x的函数关系式;(2)设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?【分析】(1)根据销量=原价的销量+增加的销量即可得到y与x的函数关系式;(2)根据每天售出的件数×每件盈利=利润即可得到的W与x之间的函数关系式,即可得出结论.【解答】解:(1)由题意可知y=2x+40;(2)根据题意可得:w=(145﹣x﹣80﹣5)(2x+40),=﹣2x2+80x+2400,=﹣2(x﹣20)2+3200,∴函数有最大值,∴当x=20时,w有最大值为3200元,∴第20天的利润最大,最大利润是3200元.【点评】此题主要考查了二次函数的应用,此题找到关键描述语,找到等量关系准确的列出方程或函数关系式是解决问题的关键.25.(8分)如图,在平面直角坐标系中,一次函数y1=ax+b的图象与反比例函数y2=的图象交于点A(1,2)和B(﹣2,m).(1)求一次函数和反比例函数的表达式;(2)请直接写出y1>y2时,x的取值范围;(3)过点B作BE∥x轴,AD⊥BE于点D,点C是直线BE上一点,若AC=2CD,求点C的坐标.【分析】(1)利用待定系数法求出k,求出点B的坐标,再利用待定系数法求出一次函数解析式;(2)利用数形结合思想解答;(3)根据直角三角形的性质得到∠DAC=30°,根据正切的定义求出CD,分点C 在点D的左侧、点C在点D的右侧两种情况解答.【解答】解:(1)∵点A(1,2)在反比例函数y2=的图象上,∴k=1×2=2,∴反比例函数的解析式为y2=,∵点B(﹣2,m)在反比例函数y2=的图象上,则点B的坐标为(﹣2,﹣1),由题意得,,解得,,则一次函数解析式为:y1=x+1;(2)由函数图象可知,当﹣2<x<0或x>1时,y1>y2;(3)∵AD⊥BE,AC=2CD,∴∠DAC=30°,由题意得,AD=2+1=3,在Rt△ADC中,tan∠DAC=,即=,解得,CD=,当点C在点D的左侧时,点C的坐标为(1﹣,﹣1),当点C在点D的右侧时,点C的坐标为(+1,﹣1),∴当点C的坐标为(1﹣,﹣1)或(+1,﹣1)时,AC=2CD.【点评】本题考查的是一次函数和反比例函数的知识,掌握待定系数法求函数解析式的一般步骤、灵活运用分情况讨论思想、数形结合思想是解题的关键.26.(8分)如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.【分析】(1)由E是AC的中点知AE=CE,由AB∥CD知∠AFE=∠CDE,据此根据“AAS”即可证△AEF≌△CED,从而得AF=CD,结合AB∥CD即可得证;(2)证△GBF∽△GCD得=,据此求得CD=,由AF=CD及AB=AF+BF可得答案.【解答】解:(1)∵E是AC的中点,∴AE=CE,∵AB∥CD,∴∠AFE=∠CDE,在△AEF和△CED中,∵,∴△AEF≌△CED(AAS),∴AF=CD,又AB∥CD,即AF∥CD,∴四边形AFCD是平行四边形;(2)∵AB∥CD,∴△GBF∽△GCD,∴=,即=,解得:CD=,∵四边形AFCD是平行四边形,∴AF=CD=,∴AB=AF+BF=+=6.【点评】本题主要考查平行四边形的判定与性质,解题的关键是掌握全等三角形、相似三角形及平行四边形的判定与性质.27.(9分)如图,AB为⊙O的直径,C为⊙O上一点,D为BA延长线上一点,∠ACD=∠B.(1)求证:DC为⊙O的切线;(2)线段DF分别交AC,BC于点E,F且∠CEF=45°,⊙O的半径为5,sinB=,求CF的长.【分析】(1)根据圆周角定理得:∠ACB=∠BCO+∠OCA=90°,根据同圆的半径相等和已知相等的角代换可得:∠OCD=90°,可得结论;(2)先根据三角函数计算AC=6,BC=8,证明△CAD∽△BCD,得,设AD=3x,CD=4x,利用勾股定理列方程可得x的值,证明△CED∽△BFD,列比例式可得CF的长.【解答】(1)证明:连接OC,∵AB为⊙O的直径,∴∠ACB=∠BCO+∠OCA=90°,∵OB=OC,∴∠B=∠BCO,∵∠ACD=∠B,∴∠ACD=∠BCO,∴∠ACD+∠OCA=90°,即∠OCD=90°,∴DC为⊙O的切线;(2)解:Rt△ACB中,AB=10,sinB=,∴AC=6,BC=8,∵∠ACD=∠B,∠ADC=∠CDB,∴△CAD∽△BCD,∴,设AD=3x,CD=4x,Rt△OCD中,OC2+CD2=OD2,52+(4x)2=(5+3x)2,x=0(舍)或,∵∠CEF=45°,∠ACB=90°,∴CE=CF,设CF=a,∵∠CEF=∠ACD+∠CDE,∠CFE=∠B+∠BDF,∴∠CDE=∠BDF,∵∠ACD=∠B,∴△CED∽△BFD,∴,∴,a=,∴CF=.【点评】本题考查切线的判定和性质、相似三角形的判定和性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,正确寻找相似三角形解决问题,属于中考常考题型.28.(12分)如图,抛物线y=ax2+bx﹣4经过A(﹣3,0),B(5,﹣4)两点,与y轴交于点C,连接AB,AC,BC.(1)求抛物线的表达式;(2)求证:AB平分∠CAO;(3)抛物线的对称轴上是否存在点M,使得△ABM是以AB为直角边的直角三角形,若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)将A(﹣3,0),B(5,﹣4)代入抛物线的解析式得到关于a、b 的方程组,从而可求得a、b的值;(2)先求得AC的长,然后取D(2,0),则AD=AC,连接BD,接下来,证明BC=BD,然后依据SSS可证明△ABC≌△ABD,接下来,依据全等三角形的性质可得到∠CAB=∠BAD;(3)作抛物线的对称轴交x轴与点E,交BC与点F,作点A作AM′⊥AB,作BM ⊥AB,分别交抛物线的对称轴与M′、M,依据点A和点B的坐标可得到tan∠BAE=,从而可得到tan∠M′AE=2或tan∠MBF=2,从而可得到FM和M′E的长,故此可得到点M′和点M的坐标.【解答】解:(1)将A(﹣3,0),B(5,﹣4)代入得:,解得:a=,b=﹣.∴抛物线的解析式为y=x2﹣x﹣4.(2)∵AO=3,OC=4,∴AC=5.取D(2,0),则AD=AC=5.由两点间的距离公式可知BD==5.∵C(0,﹣4),B(5,﹣4),∴BC=5.∴BD=BC.在△ABC和△ABD中,AD=AC,AB=AB,BD=BC,∴△ABC≌△ABD,∴∠CAB=∠BAD,∴AB平分∠CAO;(3)如图所示:抛物线的对称轴交x轴与点E,交BC与点F.抛物线的对称轴为x=,则AE=.∵A(﹣3,0),B(5,﹣4),∴tan∠EAB=.∵∠M′AB=90°.∴tan∠M′AE=2.∴M′E=2AE=11,∴M′(,11).同理:tan∠MMF=2.又∵BF=,∴FM=5,∴M(,﹣9).∴点M的坐标为(,11)或(,﹣9).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式,全等三角形的性质和判定、锐角三角函数的定义,求得FM和M′E的长是解题的关键.。
2018年甘肃省定西市、白银市、张掖市、武威市、平凉市、酒泉市、临夏中考数学试卷(带解析答案)
∴Rt△ADE 中,AE=
=.
故选:D.
9.(3 分)如图,⊙A 过点 O(0,0),C( ,0),D(0,1),点 B 是 x 轴下方 ⊙A 上的一点,连接 BO,BD,则∠OBD 的度数是( )
A.15° B.30° C.45° D.60° 【解答】解:连接 DC,
第 3页(共 18页)
∵C( ,0),D(0,1), ∴∠DOC=90°,OD=1,OC= , ∴∠DCO=30°, ∴∠OBD=30°, 故选:B.
四、解答题(二):本大题共 5 小题,满分 40 分.解答应写出必要的文宇说明、 证明过程或演算步骤. 24.(7 分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年 级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为 一个样本,按 A,B,C,D 四个等级进行统计,制成了如下不完整的统计图.(说 明:A 级:8 分﹣10 分,B 级:7 分﹣7.9 分,C 级:6 分﹣6.9 分,D 级:1 分﹣ 5.9 分) 根据所给信息,解答以下问题: (1)在扇形统计图中,C 对应的扇形的圆心角是 117 度; (2)补全条形统计图; (3)所抽取学生的足球运球测试成绩的中位数会落在 B 等级; (4)该校九年级有 300 名学生,请估计足球运球测试成绩达到 A 级的学生有多 少人?
t ∴ 体的长=体t的长=t 的长= t = , ∴勒洛三角形的周长为 ×3=πa. 故答案为πa.
18.(3 分)如图,是一个运算程序的示意图,若开始输入 x 的值为 625,则第 2018 次输出的结果为 1 .
2018年甘肃省定西市中考数学试卷含答案解析,供大家考前复习备用
2018年甘肃省定西市中考数学试卷含答案解析,供大家考前复习备用临近中考,在今后一个月的复习中,要提高数学的复习效益,必须加强复习课模式的研究,使在有限的时间内最大限度地提高学生的效益,课堂上既要讲题,又要讲法,注意知识的梳理,形成条理、系统。
尤其是分析典型例题时,要讲出题目的价值,讲出思维过程,甚至是思考中的弯路和教训。
根据学生的实际情况,从资料中筛选出典型题目供学生练习,及时批改认真讲评。
在解题教学中加强解题策略的培养和解题思维的培养,加强“变式”教学,注意“一题多解”和“多题一解”的训练,使学生养成回顾和反思的习惯。
复习中要重视学生每一次测试,通过严格训练让学生过好四关,形成良好的思维品质和学习习惯,做到卷面规范、整洁。
(一)审题关审题要慢,答题要快,找出关键条件,挖掘隐含条件,寻找解题的突破口;(二)运算关准字当先,争取准又快。
为此,平时让同学们熟记的一些常用的中间结论非常重要;(三)书写关要一步一步答题,重视解题过程的语言表达,培养学生条理清晰,步步有据,规范简洁,优美整洁的答题习惯。
2018年甘肃省定西市中考数学试卷含答案解析(word版)2018年甘肃省定西市中考数学试卷含答案解析(word版)2018年甘肃省定西市中考数学试卷含答案解析(word版)2018年甘肃省定西市中考数学试卷含答案解析(word版)2018年甘肃省定西市中考数学试卷含答案解析(word版)2018年甘肃省定西市中考数学试卷含答案解析(word版)2018年甘肃省定西市中考数学试卷含答案解析(word版)2018年甘肃省定西市中考数学试卷含答案解析(word版)2018年甘肃省定西市中考数学试卷含答案解析(word版)2018年甘肃省定西市中考数学试卷含答案解析(word版)2018年甘肃省定西市中考数学试卷含答案解析(word版)2018年甘肃省定西市中考数学试卷含答案解析(word版)2018年甘肃省定西市中考数学试卷含答案解析(word版)2018年甘肃省定西市中考数学试卷含答案解析(word版)2018年甘肃省定西市中考数学试卷含答案解析(word版)由于片幅较长在这不将一一展示了,如需要完整版可以私我,免费赠送哦!。
2018年甘肃省中考数学试卷.docx
2018 年甘肃省(全省统考)中考数学试卷一、选择题:本大题共 10 小题,每小题 2018 年甘肃省定西市,共 30 分,每小题只有一个正确1. -2018 的相反数是( )A .-2018B .2018C .1 D .12018 20182. 下列计算结果等于 x 3 的是()A . x 6 x 2B . x 4x C . x x 2D . x 2 x3.若一个角为 65°,则它的补角的度数为()A .25°B .35°C .115°D .125°4. 已知ab(a 0,b0) ,下列变形错误的是()2 3A .a 2B. 2a 3bC .b 3D . 3a 2bb3a25. 若分式x 24的值为 0,则的值是()xA. 2 或 -2B. 2C. -2D. 06.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷 10次,他们成绩的平均数与方差s 2 如下表:甲乙丙 丁平均数(环)方差 s 2若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择( )A .甲B .乙C .丙D .丁7.关于 x 的一元二次方程 x 2 +4x+k=0 有两个实数根,则 k 的取值范围是( )A .k ≤﹣ 4B .k <﹣ 4C .k ≤4D .k <48.如图,点 E 是正方形 ABCD 的边 DC 上一点,把△ ADE 绕点 A 顺时针旋转 90°到△ ABF 的位置,若四边形 AECF 的面积为 25,DE=2,则 AE 的长为( )A. 5B.C. 7D.9.如图,⊙A过点 O( 0,0), C(, 0), D(0,1),点 B 是 x 轴下方⊙A 上的一点,连接 BO,BD,则∠ OBD的度数是()A.15°B.30°C.45°D.60°10.如图是二次函数 y=ax2+bx+c(a,b,c 是常数, a≠0)图象的一部分,与 x 轴的交点 A 在点( 2, 0)和( 3,0)之间,对称轴是 x=1.对于下列说法:① ab<0;② 2a+b=0;③ 3a+c> 0;④ a+b≥m( am+b)( m 为实数);⑤当﹣ 1<x<3时, y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤二、填空题:本大题共8 小题,每小题 2018 年甘肃省定西市,共32 分11.计算: 2sin 30o(1)2018( 1)1.212.使得代数式1有意义的 x 的取值范围是.x313.若正多边形的内角和是 1080°,则该正多边形的边数是.14.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为.15.已知 a ,b, c 是ABC的三边长, a ,b满足a 7 (b 1)20,c为奇数,则 c.16.如图,一次函数 y x 2 与 y2x m 的图象相交于点 P(n,4) ,则关于 x 的不等式组2xm x2 的解集为.x2017.如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为 a,则勒洛三角形的周长为.18.如图,是一个运算程序的示意图,若开始输入x 的值为 625,则第 2018 次输出的结果为.三、解答题(一);本大题共 5 小题,共 32018 年甘肃省定西市,解答应写出必要的文字说明,证明过程或演算步骤19. 计算:a2bb2(aa b1) .20.如图,在△ ABC中,∠ ABC=90°.(1)作∠ ACB的平分线交 AB边于点 O,再以点 O为圆心, OB的长为半径作⊙ O;(要求:不写做法,保留作图痕迹)(2)判断( 1)中 AC与⊙O的位置关系,直接写出结果.21.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何译文为:现有若干人合伙出钱买鸡,如果每人出 9 文钱,就会多 11 文钱;如果每人出 6 文钱,又会缺 16 文钱.问买鸡的人数、鸡的价格各是多少请解答上述问题.22.随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图, A,B 两地被大山阻隔,由A 地到B 地需要绕行C 地,若打通穿山隧道,建成 A,B 两地的直达高铁可以缩短从 A 地到 B 地的路程.已知:∠ CAB=30°,∠ CBA=45°, AC=640公里,求隧道打通后与打通前相比,从 A 地到 B 地的路程将约缩短多少公里(参考数据:3 1.7 ,2 1.4 )23.如图,在正方形方格中,阴影部分是涂黑 3 个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少(2)现将方格内空白的小正方形( A, B, C, D, E,F)中任取 2 个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.四、解答题(二):本大题共 5 小题,共 50 分。
2018年甘肃省兰州市中考数学试卷含答案
甘肃省兰州市2018年中考数学试卷一、选择题<共15小题,每小题4分,共60分)1.<4分)<2018•兰州)在以下绿色食品、回收、节能、节水四个标志中,是轴C本题主要考查轴对称图形的知识点.确定轴对称图形的关键是=2,=4.了解一批电视机的使用寿命,具有破坏性,适合用抽样调)数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映处的统计,那么cosA的值等于< )p1EanqFDPwB..∴cosA=,解答:解:∵两个圆的半径分别是3cm和2cm,圆心距为2cm,又∵3+2=5,3﹣2=1,1<2<5,∴这两个圆的位置关系是相交.故选B.点评:此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.9.<4分)<2018•兰州)若反比例函数的图象位于第二、四象限,则k的A .0B.1C.2D.以上都不是考点:反比例函数的性质.专题:计算题.分析:反比例函数的图象位于第二、四象限,比例系数k﹣1<0,即k<1,根据k的取值范围进行选择.解答:解:∵反比例函数的图象位于第二、四象限,∴k﹣1<0,即k<1.故选A.点评:本题考查了反比例函数的性质.对于反比例函数<k≠0),<1)k>0,反比例函数图象在一、三象限;<2)k<0,反比例函数图象在第二、四象限内.A .b2﹣4ac=0B.b2﹣4ac>0C.b2﹣4ac<0D.b2﹣4ac≥0考点:根的判别式.分析:已知一元二次方程的根的情况,就可知根的判别式△=b2﹣4ac 值的符号.解答:解:∵一元二次方程有两个不相等的实数根,∴△=b2﹣4ac>0.故选B.点评:总结:一元二次方程根的情况与判别式△的关系:<1)△>0⇔方程有两个不相等的实数根;<2)△=0⇔方程有两个相等的实数根;<3)△<0⇔方程没有实数根.A .y=﹣2<x+1)2+2B.y=﹣2<x+1)2﹣2C.y=﹣2<x﹣1)2+2D.y=﹣2<x﹣1)2﹣2考点:二次函数图象与几何变换分析:根据图象右移减,上移加,可得答案.解答:解:把抛物线y=﹣2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为y=﹣2<x﹣1)2+2,故选:C.点评:本题考查了二次函数图象与几何变换,图象的平移规律是:左加右减,上加下减.•兰州)如图,在△AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C′,则点B转过的路径长为< )jLBHrnAILgA .B.C.D.π考点:旋转的性质;弧长的计算.分析:利用锐角三角函数关系得出BC的长,进而利用旋转的性质得出∠BCB′=60°,再利用弧长公式求出即可.解答:解:∵在△ABC中,∠ACB=90°,∠ABC=30°,AB=2,∴cos30°=,∴BC=ABcos30°=2×=,∵将△ABC绕直角顶点C逆时针旋转60°得△A′B′C′,∴∠BCB′=60°,∴点B转过的路径长为:=π.故选:B.点评:此题主要考查了旋转的性质以及弧长公式应用,得出点B转过的路径形状是解题关键.BC、BD,下列结论中不一定正确的是< )xHAQX74J0XA AE=BE B=C OE=DE D∠DBC=90°DE,=是直线x=1,则下列四个结论错误的是< )LDAYtRyKfE﹣殊点的关系,也要掌握在图象上表示一元二次方程4的正方形,平行于对角线BD的直线l从O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动到直线l与正方形没有交点为止.设直线l扫过正方形OBCD的面积为S,直线l运动的时间为t<秒),下列能反映S与t之间函数关系的图象是< )Zzz6ZB2LtkA .B.C.D.考点:动点问题的函数图象.分析:根据三角形的面积即可求出S与t的函数关系式,根据函数关系式选择图象.解答:解:①当0≤t≤4时,S=×t×t=t2,即S=t2.该函数图象是开口向上的抛物线的一部分.故B、C错误;②当4<t≤8时,S=16﹣×<t﹣4)×<t﹣4)=t2,即S=﹣t2+4t+8.该函数图象是开口向下的抛物线的一部分.故A错误.故选:D.点评:本题考查了动点问题的函数图象.本题以动态的形式考查了分类讨论的思想,函数的知识和等腰直角三角形,具有很强的综合性.16.<4分)<2018•兰州)在四个完全相同的小球上分别写上1,2,3,4四个数字,然后装入一个不透明的口袋内搅匀,从口袋内取出一个球记下数字后作为点P的横坐标x,放回袋中搅匀,然后再从袋中取出一个球记下数字后作为点P的纵坐标y,则点P<x,y)落在直线y=﹣x+5上的概率是.dvzfvkwMI1考点:列表法与树状图法;一次函数图象上点的坐标特征分析:首先根据题意画出表格,然后由表格求得所有等可能的结果与数字x、y满足y=﹣x+5的情况,再利用概率公式求解即可求得答案.答: 1 2 3 41 <1,1)<1,2)<1,3)<1,4)2 <2,1)<2,2)<2,3)<2,4)3 <3,1)<3,2)<3,3)<3,4)4 <4,1)<4,2)<4,3)<4,4)∴数字x、y满足y﹣x+5的概率为:.故答案为:.b满足<a﹣1)2+=0,那么菱形的面积等于2.rqyn14ZNXI×1×4=2.O的直径,点D在⊙O上,∠ADC=54°,则∠BAC的度数等于36°.EmxvxOtOco是所对的圆周角,建同样宽的两条互相垂直的道路<两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方M.若设道路宽为xM,则根据题意可列出方程为<22﹣x)<17﹣x)=300.SixE2yXPq5S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+32018的值是.6ewMyirQFL根据等式的性质,可得和的M=故答案为:21.<10分)<2018•兰州)<1)计算:<﹣1)2﹣2cos30°++<﹣2018)0;+﹣++1x2=AD交BC于点D,再以AC边上的一点O为圆心,过A、D两点作⊙O<用尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)kavU42VRUs总量控制,规定每天完成家庭作业的时间不超过1.5小时,该校数学课外兴趣小组对本校初中学生回家完成作业的时间做了一次随机抽样调查,并绘制出频数分<2)补全频数分布直方图;<3)请估计该校1400名初中学生中,约有多少学生在1.5小时以内完成了家庭作业.解:<1)抽查的总的人数是:=40<人),b=<3)根据题意得:×1400=910<名),拉线CE和地面成60°角,在离电线杆6M的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5M,求拉线CE的长<结果保留根号).M2ub6vSTnPCAH=,∠CAH=6tan30°=6×<MCD=2+1.5CED=,∴CE==<4+)<M),<4+25.<9分)<2018•兰州)如图,直线y=mx与双曲线y=相交于A、B两点,A点的坐标为<1,2)0YujCfmUCw<1)求反比例函数的表达式;<2)根据图象直接写出当mx>时,x的取值范围;<3)计算线段AB的长.。
2018年甘肃省兰州市中考数学试卷(A卷)(含解析答案)
2018年甘肃省兰州市中考数学试卷(A卷)一、选择题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)﹣2018的绝对值是()A.B.﹣2018 C.2018 D.﹣2.(4分)如图是由5个完全相同的小正方体组成的几何体,则该几何体的主视图是()A.B.C.D.3.(4分)据中国电子商务研究中心(100EC.CN)发布《2017年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为()A.1159.56×108元B.11.5956×1010元C.1.15956×1011元D.1.15956×108元4.(4分)下列二次根式中,是最简二次根式的是()A. B. C. D.5.(4分)如图,AB∥CD,AD=CD,∠1=65°,则∠2的度数是()A.50°B.60°C.65°D.70°6.(4分)下列计算正确的是()A.2a•3b=5ab B.a3•a4=a12C.(﹣3a2b)2=6a4b2D.a4÷a2+a2=2a27.(4分)如图,边长为4的等边△ABC中,D、E分别为AB,AC的中点,则△ADE的面积是()A.B.C.D.28.(4分)如图,矩形ABCD中,AB=3,BC=4,EF∥DF且BE与DF之间的距离为3,则AE的长是()A.B.C.D.9.(4分)如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F,若∠ABD=48°,∠CFD=40°,则∠E为()A.102°B.112°C.122° D.92°10.(4分)关于x的分式方程=1的解为负数,则a的取值范围是()A.a>1 B.a<1 C.a<1且a≠﹣2 D.a>1且a≠211.(4分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论()①abc>0;②b﹣a>c;③4a+2b+c>0;④3a>﹣c;⑤a+b>m (am+b)(m≠1的实数).其中正确结论的有()A.①②③B.②③⑤C.②③④D.③④⑤12.(4分)如图,抛物线y=x2﹣7x+与x轴交于点A、B,把抛物线在x轴及其下方的部分记作C1,将C1向左平移得到C2,C2与x轴交于点B、D,若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣<m<﹣ B.﹣<m<﹣ C.﹣<m<﹣ D.﹣<m<﹣二、填空题:本大题共4小题,每小题4分,共16分13.(4分)因式分解:x2y﹣y3=.14.(4分)不等式组的解集为15.(4分)如图,△ABC的外接圆O的半径为3,∠C=55°,则劣弧的长是.(结果保留π)16.(4分)如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF的最小值是.三、简答题:本大题共12小题,共86分,解答时写出必要的文字说明,证明过程或演算步骤17.(5分)计算:(﹣)﹣1+(π﹣3)0+|1﹣|+tan45°18.(5分)解方程:3x2﹣2x﹣2=0.19.(5分)先化简,再求值:(x ﹣)÷,其中x=.20.(6分)如图,在Rt△ABC中.(1)利用尺规作图,在BC边上求作一点P,使得点P到AB的距离(PD的长)等于PC的长;(2)利用尺规作图,作出(1)中的线段PD.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)21.(7分)学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数713a103请你根据统计图表中的信息,解答下列问题:(1)a=,b=.(2)该调查统计数据的中位数是,众数是.(3)请计算扇形统计图中“3次”所对应扇形的圆心角的度数;(4)若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.22.(7分)在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点M的坐标(x,y)(1)画树状图或列表,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=x+1的图象上的概率.23.(7分)如图,斜坡BE,坡顶B到水平地面的距离AB为3米,坡底AE为18米,在B处,E处分别测得CD顶部点D的仰角为30°,60°,求CD的高度.(结果保留根号)24.(7分)某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第x天(1≤x≤30且x为整数)的销售量为y件.(1)直接写出y与x的函数关系式;(2)设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?25.(8分)如图,在平面直角坐标系中,一次函数y1=ax+b的图象与反比例函数y2=的图象交于点A(1,2)和B(﹣2,m).(1)求一次函数和反比例函数的表达式;(2)请直接写出y1>y2时,x的取值范围;(3)过点B作BE∥x轴,AD⊥BE于点D,点C是直线BE上一点,若AC=2CD,求点C的坐标.26.(8分)如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.27.(9分)如图,AB为⊙O的直径,C为⊙O上一点,D为BA延长线上一点,∠ACD=∠B.(1)求证:DC为⊙O的切线;(2)线段DF分别交AC,BC于点E,F且∠CEF=45°,⊙O的半径为5,sinB=,求CF的长.28.(12分)如图,抛物线y=ax2+bx﹣4经过A(﹣3,0),B(5,﹣4)两点,与y轴交于点C,连接AB,AC,BC.(1)求抛物线的表达式;(2)求证:AB平分∠CAO;(3)抛物线的对称轴上是否存在点M,使得△ABM是以AB为直角边的直角三角形,若存在,求出点M的坐标;若不存在,请说明理由.2018年甘肃省兰州市中考数学试卷(A卷)参考答案与试题解析一、选择题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)﹣2018的绝对值是()A.B.﹣2018 C.2018 D.﹣【分析】直接利用绝对值的性质得出答案.【解答】解:﹣2018的绝对值是:2018.故选:C.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.(4分)如图是由5个完全相同的小正方体组成的几何体,则该几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的视图是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.3.(4分)据中国电子商务研究中心(100EC.CN)发布《2017年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为()A.1159.56×108元B.11.5956×1010元C.1.15956×1011元D.1.15956×108元【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:1159.56亿元=1.15956×1011元,故选:C.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.(4分)下列二次根式中,是最简二次根式的是()A. B. C. D.【分析】根据最简二次根式的定义对各选项分析判断利用排除法求解.【解答】解:A、不是最简二次根式,错误;B、是最简二次根式,正确;C、不是最简二次根式,错误;D、不是最简二次根式,错误;故选:B.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.5.(4分)如图,AB∥CD,AD=CD,∠1=65°,则∠2的度数是()A.50°B.60°C.65°D.70°【分析】直接利用平行线的性质结合等腰三角形的性质得出∠2的度数.【解答】解:∵AB∥CD,∴∠1=∠ACD=65°,∵AD=CD,∴∠DCA=∠CAD=65°,∴∠2的度数是:180°﹣65°﹣65°=50°.故选:A.【点评】此题主要考查了平行线的性质和等腰三角形的性质,正确得出∠CAD的度数是解题关键.6.(4分)下列计算正确的是()A.2a•3b=5ab B.a3•a4=a12C.(﹣3a2b)2=6a4b2D.a4÷a2+a2=2a2【分析】直接利用单项式乘以单项式以及积的乘方运算法则和合并同类项法则分别计算得出答案.【解答】解:A、2a•3b=6ab,故此选项错误;B、a3•a4=a7,故此选项错误;C、(﹣3a2b)2=9a4b2,故此选项错误;D、a4÷a2+a2=2a2,正确.故选:D.【点评】此题主要考查了单项式乘以单项式以及积的乘方运算和合并同类项,正确掌握相关运算法则是解题关键.7.(4分)如图,边长为4的等边△ABC中,D、E分别为AB,AC的中点,则△ADE的面积是()A.B.C.D.2【分析】由于D、E是AB、AC的中点,因此DE是△ABC的中位线,由此可得△ADE和△ABC相似,且相似比为1:2;根据相似三角形的面积比等于相似比的平方,可求出△ABC的面积.【解答】解:∵等边△ABC的边长为4,∴S△ABC=×42=4,∵点D,E分别是△ABC的边AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,AD=AB,AE=AC,即===,∴△ADE∽△ABC,相似比为,故S△ADE :S△ABC=1:4,即S△ADE =S△ABC=×=,故选:A.【点评】本题主要考查等边三角形的性质、相似三角形性质及三角形的中位线定理,解题的关键是掌握等边三角形的面积公式、相似三角形的判定与性质及中位线定理.8.(4分)如图,矩形ABCD中,AB=3,BC=4,EF∥DF且BE与DF之间的距离为3,则AE的长是()A.B.C.D.【分析】过点D作DG⊥BE,垂足为G,则GD=3,首先证明△AEB≌△GED,由全等三角形的性质可得到AE=EG,设AE=EG=x,则ED=4﹣x,在Rt△DEG中依据勾股定理列方程求解即可.【解答】解:如图所示:过点D作DG⊥BE,垂足为G,则GD=3.∵∠A=∠G,∠AEB=∠GED,AB=GD=3,∴△AEB≌△GED.∴AE=EG.设AE=EG=x,则ED=4﹣x,在Rt△DEG中,ED2=GE2+GD2,x2+32=(4﹣x)2,解得:x=.故选:C.【点评】本题主要考查的是矩形的性质、勾股定理的应用,依据题意列出关于x 的方程是解题的关键.9.(4分)如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F,若∠ABD=48°,∠CFD=40°,则∠E为()A.102°B.112°C.122° D.92°【分析】由平行四边形的性质和折叠的性质,得出∠ADB=∠BDF=∠DBC,由三角形的外角性质求出∠BDF=∠DBC=∠DFC=20°,再由三角形内角和定理求出∠A,即可得到结果.【解答】解:∵AD∥BC,∴∠ADB=∠DBC,由折叠可得∠ADB=∠BDF,∴∠DBC=∠BDF,又∵∠DFC=40°,∴∠DBC=∠BDF=∠ADB=20°,又∵∠ABD=48°,∴△ABD中,∠A=180°﹣20°﹣48°=112°,∴∠E=∠A=112°,故选:B.【点评】本题主要考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出∠ADB的度数是解决问题的关键.10.(4分)关于x的分式方程=1的解为负数,则a的取值范围是()A.a>1 B.a<1 C.a<1且a≠﹣2 D.a>1且a≠2【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a的不等式,求出不等式的解集即可确定出a的范围.【解答】解:分式方程去分母得:x+1=2x+a,即x=1﹣a,根据分式方程解为负数,得到1﹣a<0,且1﹣a≠﹣1,解得:a>1且a≠2.故选:D.【点评】此题考查了分式方程的解,注意在任何时候都要考虑分母不为0.11.(4分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论()①abc>0;②b﹣a>c;③4a+2b+c>0;④3a>﹣c;⑤a+b>m (am+b)(m≠1的实数).其中正确结论的有()A.①②③B.②③⑤C.②③④D.③④⑤【分析】由抛物线对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①∵对称轴在y轴的右侧,∴ab<0,由图象可知:c>0,∴abc<0,故①不正确;②当x=﹣1时,y=a﹣b+c<0,∴b﹣a>c,故②正确;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故③正确;④∵x=﹣=1,∴b=﹣2a,∵a﹣b+c<0,∴a+2a+c<0,3a<﹣c,故④不正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c(m≠1),故a+b>am2+bm,即a+b>m(am+b),故⑤正确.故②③⑤正确.故选:B.【点评】本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c 系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定,熟练掌握二次函数的性质是关键.12.(4分)如图,抛物线y=x2﹣7x+与x轴交于点A、B,把抛物线在x轴及其下方的部分记作C1,将C1向左平移得到C2,C2与x轴交于点B、D,若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣<m<﹣ B.﹣<m<﹣ C.﹣<m<﹣ D.﹣<m<﹣【分析】首先求出点A和点B的坐标,然后求出C2解析式,分别求出直线y=x+m 与抛物线C2相切时m的值以及直线y=x+m过点B时m的值,结合图形即可得到答案【解答】解:∵抛物线y=x2﹣7x+与x轴交于点A、B∴B(5,0),A(9,0)∴抛物线向左平移4个单位长度∴平移后解析式y=(x﹣3)2﹣2当直线y=x+m过B点,有2个交点∴0=+mm=﹣当直线y=x+m与抛物线C2相切时,有2个交点∴x+m=(x﹣3)2﹣2x2﹣7x+5﹣2m=0∵相切∴△=49﹣20+8m=0∴m=﹣如图∵若直线y=x+m与C1、C2共有3个不同的交点,∴﹣﹣<m<﹣故选:C.【点评】本题主要考查抛物线与x轴交点以及二次函数图象与几何变换的知识,解答本题的关键是正确地画出图形,利用数形结合进行解题,此题有一定的难度.二、填空题:本大题共4小题,每小题4分,共16分13.(4分)因式分解:x2y﹣y3=y(x+y)(x﹣y).【分析】先提公因式,再利用平方差公式分解因式即可;【解答】解:x2y﹣y3=y(x2﹣y2)=y(x+y)(x﹣y).故答案为y(x+y)(x﹣y)【点评】本题考查因式分解﹣提公因式法,解题的关键是熟练掌握因式分解的方法,属于中考常考题型、14.(4分)不等式组的解集为﹣1<x≤3【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≤3,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤3,故答案为:﹣1<x≤3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.15.(4分)如图,△ABC的外接圆O的半径为3,∠C=55°,则劣弧的长是.(结果保留π)【分析】根据同弧所对的圆心角是圆周角的2倍,可求∠AOB=110°,根据弧长公式可求劣弧的长.【解答】解:∵∠AOB=2∠C且∠C=55°∴∠AOB=110°根据弧长公式的长==故答案为【点评】本题考查了三角形的外接圆与外心,同弧所对的圆心角是圆周角的2倍,弧长公式,关键是熟练运用弧长公式解决问题.16.(4分)如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF的最小值是3﹣3.【分析】先判断出Rt△ADM≌Rt△BCN(HL),得出∠DAM=∠CBN,进而判断出△DCE≌△BCE(SAS),得出∠CDE=∠CBE,即可判断出∠AFD=90°,根据直角三角形斜边上的中线等于斜边的一半可得OF=AD=3,利用勾股定理列式求出OC,然后根据三角形的三边关系可知当O、F、C三点共线时,CF的长度最小.【解答】解:如图,在正方形ABCD中,AD=BC=CD,∠ADC=∠BCD,∠DCE=∠BCE,在Rt△ADM和Rt△BCN中,,∴Rt△ADM≌Rt△BCN(HL),∴∠DAM=∠CBN,在△DCE和△BCE中,,∴△DCE≌△BCE(SAS),∴∠CDE=∠CBE∴∠DCM=∠CDE,∵∠ADF+∠CDE=∠ADC=90°,∴∠DAM+∠ADF=90°,∴∠AFD=180°﹣90°=90°,取AD的中点O,连接OF、OC,则OF=DO=AD=3,在Rt△ODC中,OC==3根据三角形的三边关系,OF+CF>OC,∴当O、F、C三点共线时,CF的长度最小,最小值=OC﹣OF=3﹣3.故答案为:3﹣3.【点评】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,确定出CF最小时点F的位置是解题关键.三、简答题:本大题共12小题,共86分,解答时写出必要的文字说明,证明过程或演算步骤17.(5分)计算:(﹣)﹣1+(π﹣3)0+|1﹣|+tan45°【分析】第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项去绝对值,最后一项利用特殊角的三角函数值计算,最后合并即可得出结论.【解答】解:(﹣)﹣1+(π﹣3)0+|1﹣|+tan45°=﹣2+1+﹣1+1=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(5分)解方程:3x2﹣2x﹣2=0.【分析】先找出a,b,c,再求出b2﹣4ac=28,根据公式即可求出答案.【解答】解:=即,∴原方程的解为,【点评】本题主要考查对解一元二次方程﹣提公因式法、公式法,因式分解等知识点的理解和掌握,能熟练地运用公式法解一元二次方程是解此题的关键.19.(5分)先化简,再求值:(x﹣)÷,其中x=.【分析】根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:(x﹣)÷====x﹣2,当x=时,原式=﹣2=﹣.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.20.(6分)如图,在Rt△ABC中.(1)利用尺规作图,在BC边上求作一点P,使得点P到AB的距离(PD的长)等于PC的长;(2)利用尺规作图,作出(1)中的线段PD.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【分析】(1)由点P到AB的距离(PD的长)等于PC的长知点P在∠BAC平分线上,再根据角平分线的尺规作图即可得;(2)根据过直线外一点作已知直线的垂线的尺规作图即可得.【解答】解:(1)如图,点P即为所求;(2)如图,线段PD即为所求.【点评】本题考查作图﹣复杂作图、角平分线的性质定理等知识,解题的关键是熟练掌握基本作图,灵活运用所学知识解决问题,属于中考常考题型.21.(7分)学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数713a103请你根据统计图表中的信息,解答下列问题:(1)a=17,b=20.(2)该调查统计数据的中位数是2次,众数是2次.(3)请计算扇形统计图中“3次”所对应扇形的圆心角的度数;(4)若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.【分析】(1)先由1次的人数及其所占百分比求得总人数,总人数减去其他次数的人数求得a的值,用3次的人数除以总人数求得b的值;(2)根据中位数和众数的定义求解;(3)用360°乘以“3次”对应的百分比即可得;(4)用总人数乘以样本中“4次及以上”的人数所占比例即可得.【解答】解:(1)∵被调查的总人数为13÷26%=50人,∴a=50﹣(7+13+10+3)=17,b%=×100%=20%,即b=20,故答案为:17、20;(2)由于共有50个数据,其中位数为第25、26个数据的平均数,而第25、26个数据均为2次,所以中位数为2次,出现次数最多的是2次,所以众数为2次,故答案为:2次、2次;(3)扇形统计图中“3次”所对应扇形的圆心角的度数为360°×20%=72°;(4)估计该校学生在一周内借阅图书“4次及以上”的人数为2000×=120人.【点评】本题考查的是扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.22.(7分)在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点M的坐标(x,y)(1)画树状图或列表,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=x+1的图象上的概率.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)找到点(x,y)在函数y=x+1的图象上的情况,利用概率公式即可求得答案.【解答】解:(1)画树状图得:共有12种等可能的结果(1,2)、(1,3)、(1,4)、(2,1)、(2,3)、(2,4)、(3,1)、(3,2)、(3,4)、(4,1)、(4,2)、(4,3);(2)∵在所有12种等可能结果中,在函数y=x+1的图象上的有(1,2)、(2,3)、(3,4)这3种结果,∴点M(x,y)在函数y=x+1的图象上的概率为=.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.23.(7分)如图,斜坡BE,坡顶B到水平地面的距离AB为3米,坡底AE为18米,在B处,E处分别测得CD顶部点D的仰角为30°,60°,求CD的高度.(结果保留根号)【分析】作BF⊥CD于点F,设DF=x米,在直角△DBF中利用三角函数用x表示出BF的长,在直角△DCE中表示出CE的长,然后根据BF﹣CE=AE即可列方程求得x的值,进而求得CD的长.【解答】解:作BF⊥CD于点F,设DF=x米,在Rt△DBF中,tan∠DBF=,则BF===x,在直角△DCE中,DC=x+CF=3+x(米),在直角△ABF中,tan∠DEC=,则EC===(x+3)米.∵BF﹣CE=AE,即x﹣(x+3)=18.解得:x=9+,则CD=9++3=9+(米).答:CD的高度是(9+)米.【点评】本题考查了解直角三角形的应用,解答本题关键是构造直角三角形,利用三角函数的知识表示出相关线段的长度.24.(7分)某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第x天(1≤x≤30且x为整数)的销售量为y件.(1)直接写出y与x的函数关系式;(2)设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?【分析】(1)根据销量=原价的销量+增加的销量即可得到y与x的函数关系式;(2)根据每天售出的件数×每件盈利=利润即可得到的W与x之间的函数关系式,即可得出结论.【解答】解:(1)由题意可知y=2x+40;(2)根据题意可得:w=(145﹣x﹣80﹣5)(2x+40),=﹣2x2+80x+2400,=﹣2(x﹣20)2+3200,∴函数有最大值,∴当x=20时,w有最大值为3200元,∴第20天的利润最大,最大利润是3200元.【点评】此题主要考查了二次函数的应用,此题找到关键描述语,找到等量关系准确的列出方程或函数关系式是解决问题的关键.25.(8分)如图,在平面直角坐标系中,一次函数y1=ax+b的图象与反比例函数y2=的图象交于点A(1,2)和B(﹣2,m).(1)求一次函数和反比例函数的表达式;(2)请直接写出y1>y2时,x的取值范围;(3)过点B作BE∥x轴,AD⊥BE于点D,点C是直线BE上一点,若AC=2CD,求点C的坐标.【分析】(1)利用待定系数法求出k,求出点B的坐标,再利用待定系数法求出一次函数解析式;(2)利用数形结合思想解答;(3)根据直角三角形的性质得到∠DAC=30°,根据正切的定义求出CD,分点C 在点D的左侧、点C在点D的右侧两种情况解答.【解答】解:(1)∵点A(1,2)在反比例函数y2=的图象上,∴k=1×2=2,∴反比例函数的解析式为y2=,∵点B(﹣2,m)在反比例函数y2=的图象上,则点B的坐标为(﹣2,﹣1),由题意得,,解得,,则一次函数解析式为:y1=x+1;(2)由函数图象可知,当﹣2<x<0或x>1时,y1>y2;(3)∵AD⊥BE,AC=2CD,∴∠DAC=30°,由题意得,AD=2+1=3,在Rt△ADC中,tan∠DAC=,即=,解得,CD=,当点C在点D的左侧时,点C的坐标为(1﹣,﹣1),当点C在点D的右侧时,点C的坐标为(+1,﹣1),∴当点C的坐标为(1﹣,﹣1)或(+1,﹣1)时,AC=2CD.【点评】本题考查的是一次函数和反比例函数的知识,掌握待定系数法求函数解析式的一般步骤、灵活运用分情况讨论思想、数形结合思想是解题的关键.26.(8分)如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.【分析】(1)由E是AC的中点知AE=CE,由AB∥CD知∠AFE=∠CDE,据此根据“AAS”即可证△AEF≌△CED,从而得AF=CD,结合AB∥CD即可得证;(2)证△GBF∽△GCD得=,据此求得CD=,由AF=CD及AB=AF+BF可得答案.【解答】解:(1)∵E是AC的中点,∴AE=CE,∵AB∥CD,∴∠AFE=∠CDE,在△AEF和△CED中,∵,∴△AEF≌△CED(AAS),∴AF=CD,又AB∥CD,即AF∥CD,∴四边形AFCD是平行四边形;(2)∵AB∥CD,∴△GBF∽△GCD,∴=,即=,解得:CD=,∵四边形AFCD是平行四边形,∴AF=CD=,∴AB=AF+BF=+=6.【点评】本题主要考查平行四边形的判定与性质,解题的关键是掌握全等三角形、相似三角形及平行四边形的判定与性质.27.(9分)如图,AB为⊙O的直径,C为⊙O上一点,D为BA延长线上一点,∠ACD=∠B.(1)求证:DC为⊙O的切线;(2)线段DF分别交AC,BC于点E,F且∠CEF=45°,⊙O的半径为5,sinB=,求CF的长.【分析】(1)根据圆周角定理得:∠ACB=∠BCO+∠OCA=90°,根据同圆的半径相等和已知相等的角代换可得:∠OCD=90°,可得结论;(2)先根据三角函数计算AC=6,BC=8,证明△CAD∽△BCD,得,设AD=3x,CD=4x,利用勾股定理列方程可得x的值,证明△CED∽△BFD,列比例式可得CF的长.【解答】(1)证明:连接OC,∵AB为⊙O的直径,∴∠ACB=∠BCO+∠OCA=90°,∵OB=OC,∴∠B=∠BCO,∵∠ACD=∠B,∴∠ACD=∠BCO,∴∠ACD+∠OCA=90°,即∠OCD=90°,∴DC为⊙O的切线;(2)解:Rt△ACB中,AB=10,sinB=,∴AC=6,BC=8,∵∠ACD=∠B,∠ADC=∠CDB,∴△CAD∽△BCD,∴,设AD=3x,CD=4x,Rt△OCD中,OC2+CD2=OD2,52+(4x)2=(5+3x)2,x=0(舍)或,∵∠CEF=45°,∠ACB=90°,∴CE=CF,设CF=a,∵∠CEF=∠ACD+∠CDE,∠CFE=∠B+∠BDF,∴∠CDE=∠BDF,∵∠ACD=∠B,∴△CED∽△BFD,∴,∴,a=,∴CF=.【点评】本题考查切线的判定和性质、相似三角形的判定和性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,正确寻找相似三角形解决问题,属于中考常考题型.28.(12分)如图,抛物线y=ax2+bx﹣4经过A(﹣3,0),B(5,﹣4)两点,与y轴交于点C,连接AB,AC,BC.(1)求抛物线的表达式;(2)求证:AB平分∠CAO;(3)抛物线的对称轴上是否存在点M,使得△ABM是以AB为直角边的直角三角形,若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)将A(﹣3,0),B(5,﹣4)代入抛物线的解析式得到关于a、b 的方程组,从而可求得a、b的值;(2)先求得AC的长,然后取D(2,0),则AD=AC,连接BD,接下来,证明BC=BD,然后依据SSS可证明△ABC≌△ABD,接下来,依据全等三角形的性质可得到∠CAB=∠BAD;(3)作抛物线的对称轴交x轴与点E,交BC与点F,作点A作AM′⊥AB,作BM ⊥AB,分别交抛物线的对称轴与M′、M,依据点A和点B的坐标可得到tan∠BAE=,从而可得到tan∠M′AE=2或tan∠MBF=2,从而可得到FM和M′E的长,故此可得到点M′和点M的坐标.【解答】解:(1)将A(﹣3,0),B(5,﹣4)代入得:,解得:a=,b=﹣.∴抛物线的解析式为y=x2﹣x﹣4.(2)∵AO=3,OC=4,∴AC=5.取D(2,0),则AD=AC=5.由两点间的距离公式可知BD==5.∵C(0,﹣4),B(5,﹣4),∴BC=5.∴BD=BC.在△ABC和△ABD中,AD=AC,AB=AB,BD=BC,∴△ABC≌△ABD,∴∠CAB=∠BAD,∴AB平分∠CAO;(3)如图所示:抛物线的对称轴交x轴与点E,交BC与点F.抛物线的对称轴为x=,则AE=.∵A(﹣3,0),B(5,﹣4),∴tan∠EAB=.∵∠M′AB=90°.∴tan∠M′AE=2.∴M′E=2AE=11,∴M′(,11).同理:tan∠MMF=2.又∵BF=,∴FM=5,∴M(,﹣9).∴点M的坐标为(,11)或(,﹣9).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式,全等三角形的性质和判定、锐角三角函数的定义,求得FM和M′E的长是解题的关键.。
2018年甘肃省兰州市中考数学试卷-答案
兰州市2018年初中学业水平考试 数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】2018-的绝对值是:2018.故选:C.【考点】绝对值2.【答案】A【解析】从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:A .【考点】简单组合体的三视图3.【答案】C【解析】1 159.56亿元=111.1595610⨯元,故选:C .【考点】用科学记数法表示较大的数. 4.【答案】B【解析】A ,错误;B 是最简二次根式,正确;C =,错误;D =,错误;故选:B .【考点】最简二次根式的定义.5.【答案】A【解析】解:∵AB CD ∥,∴165ACD ∠=∠=o ,∵AD CD =,∴65DCA CAD ∠=∠=o ,∴∠2的度数是:180656550--=o o o o .故选:A .【考点】平行线的性质和等腰三角形的性质.6.【答案】D【解析】解:A 、236a b ab ⋅=,故此选项错误;B 、347a a a ⋅=,故此选项错误;C 、2242(3)9a b a b -=,故此选项错误;D 、42222a a a a ÷+=,正确.故选:D .【考点】单项式乘以单项式以及积的乘方运算和合并同类项.7.【答案】A【解析】解:∵等边ABC △的边长为4,∴24ABC S ==△ ∵点D ,E 分别是△ABC 的边AB ,AC 的中点,∴DE 是△ABC 的中位线,∴DE//BC ,1 2DE BC =,1 2AD AB =,12AE AC =, 即12AD AE DE AB AC BC ===, ∴△ADE ∽△ABC ,相似比为12, 故ADE S △:ABC △=1:4,即11 44ADE ABC S S ==⨯=△△, 故选:A . 【考点】等边三角形的性质、相似三角形性质及三角形的中位线定理.8.【答案】C【解析】解:如图所示:过点D 作DG BE ⊥,垂足为G ,则3GD =.∵A G AEB GED AB GD 3∠∠∠∠====,,,∴AEB GED △≌△.∴AE EG =.设AE EG x ==,则4ED x =-,在Rt DEG △中,2222223(4)ED GE GD x x =++=-,,解得:78x =.故选:C .【考点】矩形的性质、勾股定理的应用9.【答案】B【解析】解:∵AD//BC ,∴∠ADB=∠DBC ,由折叠可得∠ADB=∠BDF ,∴∠DBC=∠BDF ,又∵40DFC ∠=o ,∴20DBC BDF ADB ∠=∠=∠=o ,又∵48ABD ∠=o ,∴△ABD 中,1802048112A =--=o o o o ,∴112E A ∠=∠=o ,故选:B .【考点】平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用.10.【答案】D【解析】解:分式方程去分母得:12x x a +=+,即1x a =-,根据分式方程解为负数,得到10a -<,且11a -≠-,解得:a >1且a ≠2.故选:D .【考点】分式方程的解11.【答案】B【解析】解:①∵对称轴在y 轴的右侧,∴0ab <,由图象可知:0c >,∴0abc <,故①不正确;②当1x =-时,0y a b c =-+<,∴b a c ->,故②正确;③由对称知,当x =2时,函数值大于0,即420y a b c =++>,故③正确; ④∵12b x a=-=, ∴2b a =-,∵0a b c -+<,∴20a a c ++<,3a c <-,故④不正确;⑤当x =1时,y 的值最大。
(完整版)2018年甘肃省中考数学试卷(含答案解析)
2018年甘肃省(全省统考)中考数学试卷一、选择题:本大题共10小题,每小题2018年甘肃省定西市,共30分,每小题只有一个正确1. -2018的相反数是( ) A .-2018 B .2018 C .12018- D .120182.下列计算结果等于3x 的是( )A .62x x ÷B .4x x -C .2x x +D .2x x ⋅ 3.若一个角为65°,则它的补角的度数为( ) A .25° B .35° C .115° D .125°4.已知(0,0)23a ba b =≠≠,下列变形错误的是( ) A .23a b = B .23a b = C .32b a = D .32a b =5. 若分式24x x-的值为0,则的值是( )A. 2或-2B. 2C. -2D. 06.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s 2如下表:甲 乙 丙 丁 平均数(环) 11.1 11.1 10.9 10.9 方差s 21.11.21.31.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择( ) A .甲 B .乙 C .丙 D .丁7.关于x 的一元二次方程x 2+4x+k=0有两个实数根,则k 的取值范围是( ) A .k≤﹣4 B .k <﹣4 C .k≤4 D .k <48.如图,点E 是正方形ABCD 的边DC 上一点,把△ADE 绕点A 顺时针旋转90°到△ABF 的位置,若四边形AECF 的面积为25,DE=2,则AE 的长为( )A. 5B.C. 7D.9.如图,⊙A 过点O (0,0),C (,0),D (0,1),点B 是x 轴下方⊙A上的一点,连接BO ,BD ,则∠OBD 的度数是( )A .15°B .30°C .45°D .60°10.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤二、填空题:本大题共8小题,每小题2018年甘肃省定西市,共32分11.计算:2018112sin 30(1)()2-+--= .12.3x -有意义的x 的取值范围是 . 13.若正多边形的内角和是1080°,则该正多边形的边数是 .14.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为 .15.已知a ,b ,c 是ABC ∆的三边长,a ,b 满足27(1)0a b -+-=,c 为奇数,则c = .16.如图,一次函数2y x =--与2y x m =+的图象相交于点(,4)P n -,则关于x 的不等式组2220x m x x +<--⎧⎨--<⎩的解集为 .17.如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a ,则勒洛三角形的周长为 .18.如图,是一个运算程序的示意图,若开始输入x 的值为625,则第2018次输出的结果为 .三、解答题(一);本大题共5小题,共32018年甘肃省定西市,解答应写出必要的文字说明,证明过程或演算步骤 19.计算:22(1)b aa b a b÷---.20.如图,在△ABC 中,∠ABC=90°.(1)作∠ACB 的平分线交AB 边于点O ,再以点O 为圆心,OB 的长为半径作⊙O ;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC 与⊙O 的位置关系,直接写出结果.21.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.22.随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A ,B 两地被大山阻隔,由A 地到B 地需要绕行C 地,若打通穿山隧道,建成A ,B 两地的直达高铁可以缩短从A 地到B 地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A 地到B 地的路程将约缩短多少公里?(参考数据:3 1.7≈,2 1.4≈)23.如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案. (1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A ,B ,C ,D ,E ,F )中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.四、解答题(二):本大题共5小题,共50分。
2018年全国中考数学真题试题甘肃白银中考数学(解析版-精品文档)
2018年甘肃省白银市初中毕业、升学考试数学学科(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018甘肃白银,1,3) -2018的相反数是( )A.-2018B.2018C. 12018-D. 12018 【答案】B.【解析】:-2018的相反数为2018. 即求一个实数的相反数就在它前面添一个“—”号。
故选B【知识点】相反数2.(2018甘肃白银,2,3)下列计算结果为3x 的是( )A.62x x ÷B. 4x x -C. 2x x +D.2x x【答案】D【解析】:选项A 考查的是同底数幂相除,底数不变,指数相减应为4x ,B 与C 都是整式加减即合并同类项,但B 与C 中都不是同类项,不能合并。
D 选项考查的是同底数的幂相乘,底数不变,指数相乘。
因此D 选项正确。
故选D【知识点】整式的运算(加减乘除),幂的运算法则如同底数的幂相乘除及幂的乘方和积的乘方等。
3.(2018甘肃白银,3,3) 若一个角为65°,则它的补角的度数为( )A.25°B.35°C.115°D.125°【答案】C【解析】因为一个角为65°,则它的补角=180°-65°=115°。
故选C【知识点】补角的概念.4.(2018甘肃白银,4,3)已知23a b =(00,a b ≠≠),下列变形错误的是( ) A. 23a b = B.23a b = C. 32b a = D.32a b =【答案】B.【解析】:由已知比例式23a b =进行变形,然后对照选项逐一检查可知B 选项错误。
故选B【知识点】比例式的变形。
比例式的变形一定要满足比例的基本性质,比例内项之积等于比例外项之积。
5.(2018甘肃白银,5,3) 若分式24x x -的值为0,则x 的值是( ) A.2或-2 B.2 C.-2 D. 0【答案】A【解析】由分式的值为0,可得:2400x x ⎧-=⎨≠⎩,解得x=2或x=-2,0x ≠.所以x=2或x=-2。
2018年甘肃省兰州市中考数学试卷(a卷)(word解析版)
2018年甘肃省兰州市中考数学试卷(A卷)一、选择题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)﹣2018的绝对值是()A.B.﹣2018C.2018D.﹣2.(4分)如图是由5个完全相同的小正方体组成的几何体,则该几何体的主视图是()A.B.C.D.3.(4分)据中国电子商务研究中心(100EC.CN)发布《2017年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为()A.1159.56×108元B.11.5956×1010元C.1.15956×1011元D.1.15956×108元4.(4分)下列二次根式中,是最简二次根式的是()A.B.C.D.5.(4分)如图,AB∥CD,AD=CD,∠1=65°,则∠2的度数是()A.50°B.60°C.65°D.70°6.(4分)下列计算正确的是()A.2a•3b=5ab B.a3•a4=a12C.(﹣3a2b)2=6a4b2D.a4÷a2+a2=2a27.(4分)如图,边长为4的等边△ABC中,D、E分别为AB,AC的中点,则△ADE的面积是()A.B.C.D.28.(4分)如图,矩形ABCD中,AB=3,BC=4,EB∥DF且BE与DF之间的距离为3,则AE的长是()A.B.C.D.9.(4分)如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F,若∠ABD=48°,∠CFD=40°,则∠E为()A.102°B.112°C.122°D.92°10.(4分)关于x的分式方程=1的解为负数,则a的取值范围是()A.a>1B.a<1C.a<1且a≠﹣2D.a>1且a≠2 11.(4分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b﹣a>c;③4a+2b+c>0;④3a>﹣c;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有()A.①②③B.②③⑤C.②③④D.③④⑤12.(4分)如图,抛物线y=x2﹣7x+与x轴交于点A、B,把抛物线在x轴及其下方的部分记作C1,将C1向左平移得到C2,C2与x轴交于点B、D,若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣<m<﹣B.﹣<m<﹣C.﹣<m<﹣D.﹣<m<﹣二、填空题:本大题共4小题,每小题4分,共16分13.(4分)因式分解:x2y﹣y3=.14.(4分)不等式组的解集为15.(4分)如图,△ABC的外接圆O的半径为3,∠C=55°,则劣弧的长是.(结果保留π)16.(4分)如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF的最小值是.三、简答题:本大题共12小题,共86分,解答时写出必要的文字说明,证明过程或演算步骤17.(5分)计算:(﹣)﹣2+(π﹣3)0+|1﹣|+tan45°18.(5分)解方程:3x2﹣2x﹣2=0.19.(5分)先化简,再求值:(x ﹣)÷,其中x=.20.(6分)如图,在Rt△ABC中.(1)利用尺规作图,在BC边上求作一点P,使得点P到AB的距离(PD的长)等于PC的长;(2)利用尺规作图,作出(1)中的线段PD.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)21.(7分)学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表请你根据统计图表中的信息,解答下列问题:(1)a=,b=.(2)该调查统计数据的中位数是,众数是.(3)请计算扇形统计图中“3次”所对应扇形的圆心角的度数;(4)若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.22.(7分)在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点M的坐标(x,y)(1)画树状图或列表,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=x+1的图象上的概率.23.(7分)如图,斜坡BE,坡顶B到水平地面的距离AB为3米,坡底AE为18米,在B处,E处分别测得CD顶部点D的仰角为30°,60°,求CD的高度.(结果保留根号)24.(7分)某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第x天(1≤x≤30且x为整数)的销售量为y件.(1)直接写出y与x的函数关系式;(2)设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?25.(8分)如图,在平面直角坐标系中,一次函数y1=ax+b的图象与反比例函数y2=的图象交于点A(1,2)和B(﹣2,m).(1)求一次函数和反比例函数的表达式;(2)请直接写出y1>y2时,x的取值范围;(3)过点B作BE∥x轴,AD⊥BE于点D,点C是直线BE上一点,若AC=2CD,求点C的坐标.26.(8分)如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.27.(9分)如图,AB为⊙O的直径,C为⊙O上一点,D为BA延长线上一点,∠ACD=∠B.(1)求证:DC为⊙O的切线;(2)线段DF分别交AC,BC于点E,F且∠CEF=45°,⊙O的半径为5,sinB=,求CF的长.28.(12分)如图,抛物线y=ax2+bx﹣4经过A(﹣3,0),B(5,﹣4)两点,与y轴交于点C,连接AB,AC,BC.(1)求抛物线的表达式;(2)求证:AB平分∠CAO;(3)抛物线的对称轴上是否存在点M,使得△ABM是以AB为直角边的直角三角形,若存在,求出点M的坐标;若不存在,请说明理由.2018年甘肃省兰州市中考数学试卷(A卷)参考答案与试题解析一、选择题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)﹣2018的绝对值是()A.B.﹣2018C.2018D.﹣【解答】解:﹣2018的绝对值是:2018.故选:C.2.(4分)如图是由5个完全相同的小正方体组成的几何体,则该几何体的主视图是()A.B.C.D.【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:A.3.(4分)据中国电子商务研究中心(100EC.CN)发布《2017年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为()A.1159.56×108元B.11.5956×1010元C.1.15956×1011元D.1.15956×108元【解答】解:1159.56亿元=1.15956×1011元,故选:C.4.(4分)下列二次根式中,是最简二次根式的是()A.B.C.D.【解答】解:A、不是最简二次根式,错误;B、是最简二次根式,正确;C、不是最简二次根式,错误;D、不是最简二次根式,错误;故选:B.5.(4分)如图,AB∥CD,AD=CD,∠1=65°,则∠2的度数是()A.50°B.60°C.65°D.70°【解答】解:∵AB∥CD,∴∠1=∠ACD=65°,∵AD=CD,∴∠DCA=∠CAD=65°,∴∠2的度数是:180°﹣65°﹣65°=50°.故选:A.6.(4分)下列计算正确的是()A.2a•3b=5ab B.a3•a4=a12C.(﹣3a2b)2=6a4b2D.a4÷a2+a2=2a2【解答】解:A、2a•3b=6ab,故此选项错误;B、a3•a4=a7,故此选项错误;C、(﹣3a2b)2=9a4b2,故此选项错误;D、a4÷a2+a2=2a2,正确.故选:D.7.(4分)如图,边长为4的等边△ABC中,D、E分别为AB,AC的中点,则△ADE的面积是()A.B.C.D.2【解答】解:∵等边△ABC的边长为4,∴S△ABC=×42=4,∵点D,E分别是△ABC的边AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,AD=AB,AE=AC,即===,∴△ADE∽△ABC,相似比为,故S△ADE :S△ABC=1:4,即S△ADE=S△ABC=×=,故选:A.8.(4分)如图,矩形ABCD中,AB=3,BC=4,EB∥DF且BE与DF之间的距离为3,则AE的长是()A.B.C.D.【解答】解:如图所示:过点D作DG⊥BE,垂足为G,则GD=3.∵∠A=∠G,∠AEB=∠GED,AB=GD=3,∴△AEB≌△GED.∴AE=EG.设AE=EG=x,则ED=4﹣x,在Rt△DEG中,ED2=GE2+GD2,x2+32=(4﹣x)2,解得:x=.故选:C.9.(4分)如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F,若∠ABD=48°,∠CFD=40°,则∠E为()A.102°B.112°C.122°D.92°【解答】解:∵AD∥BC,∴∠ADB=∠DBC,由折叠可得∠ADB=∠BDF,∴∠DBC=∠BDF,又∵∠DFC=40°,∴∠DBC=∠BDF=∠ADB=20°,又∵∠ABD=48°,∴△ABD中,∠A=180°﹣20°﹣48°=112°,∴∠E=∠A=112°,故选:B.10.(4分)关于x的分式方程=1的解为负数,则a的取值范围是()A.a>1B.a<1C.a<1且a≠﹣2D.a>1且a≠2【解答】解:分式方程去分母得:x+1=2x+a,即x=1﹣a,根据分式方程解为负数,得到1﹣a<0,且1﹣a≠﹣1,解得:a>1且a≠2.故选:D.11.(4分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b﹣a>c;③4a+2b+c>0;④3a>﹣c;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有()A.①②③B.②③⑤C.②③④D.③④⑤【解答】解:①∵对称轴在y轴的右侧,∴ab<0,由图象可知:c>0,∴abc<0,故①不正确;②当x=﹣1时,y=a﹣b+c<0,∴b﹣a>c,故②正确;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故③正确;④∵x=﹣=1,∴b=﹣2a,∵a﹣b+c<0,∴a+2a+c<0,3a<﹣c,故④不正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c(m≠1),故a+b>am2+bm,即a+b>m(am+b),故⑤正确.故②③⑤正确.故选:B.12.(4分)如图,抛物线y=x2﹣7x+与x轴交于点A、B,把抛物线在x轴及其下方的部分记作C1,将C1向左平移得到C2,C2与x轴交于点B、D,若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣<m<﹣B.﹣<m<﹣C.﹣<m<﹣D.﹣<m<﹣【解答】解:∵抛物线y=x2﹣7x+与x轴交于点A、B∴B(5,0),A(9,0)∴抛物线向左平移4个单位长度∴平移后解析式y=(x﹣3)2﹣2当直线y=x+m过B点,有2个交点∴0=+mm=﹣当直线y=x+m与抛物线C2相切时,有2个交点∴x+m=(x﹣3)2﹣2x2﹣7x+5﹣2m=0∵相切∴△=49﹣20+8m=0∴m=﹣如图∵若直线y=x+m与C1、C2共有3个不同的交点,∴﹣﹣<m<﹣故选:C.二、填空题:本大题共4小题,每小题4分,共16分13.(4分)因式分解:x2y﹣y3=y(x+y)(x﹣y).【解答】解:x2y﹣y3=y(x2﹣y2)=y(x+y)(x﹣y).故答案为y(x+y)(x﹣y)14.(4分)不等式组的解集为﹣1<x<3【解答】解:∵解不等式①得:x<3,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x<3,故答案为:﹣1<x<3.15.(4分)如图,△ABC的外接圆O的半径为3,∠C=55°,则劣弧的长是.(结果保留π)【解答】解:∵∠AOB=2∠C且∠C=55°∴∠AOB=110°根据弧长公式的长==故答案为16.(4分)如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF的最小值是3﹣3.【解答】解:如图,在正方形ABCD中,AD=BC=CD,∠ADC=∠BCD,∠DCE=∠BCE,在Rt△ADM和Rt△BCN中,,∴Rt△ADM≌Rt△BCN(HL),∴∠DAM=∠CBN,在△DCE和△BCE中,,∴△DCE≌△BCE(SAS),∴∠CDE=∠CBE∴∠DCM=∠CDE,∵∠ADF+∠CDE=∠ADC=90°,∴∠DAM+∠ADF=90°,∴∠AFD=180°﹣90°=90°,取AD的中点O,连接OF、OC,则OF=DO=AD=3,在Rt△ODC中,OC==3根据三角形的三边关系,OF+CF>OC,∴当O、F、C三点共线时,CF的长度最小,最小值=OC﹣OF=3﹣3.故答案为:3﹣3.三、简答题:本大题共12小题,共86分,解答时写出必要的文字说明,证明过程或演算步骤17.(5分)计算:(﹣)﹣2+(π﹣3)0+|1﹣|+tan45°【解答】解:(﹣)﹣2+(π﹣3)0+|1﹣|+tan45°=4+1+﹣1+1=+5.18.(5分)解方程:3x2﹣2x﹣2=0.【解答】解:=即,∴原方程的解为,19.(5分)先化简,再求值:(x﹣)÷,其中x=.【解答】解:(x﹣)÷====x﹣2,当x=时,原式=﹣2=﹣.20.(6分)如图,在Rt△ABC中.(1)利用尺规作图,在BC边上求作一点P,使得点P到AB的距离(PD的长)等于PC的长;(2)利用尺规作图,作出(1)中的线段PD.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【解答】解:(1)如图,点P即为所求;(2)如图,线段PD即为所求.21.(7分)学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表请你根据统计图表中的信息,解答下列问题:(1)a=17,b=20.(2)该调查统计数据的中位数是2次,众数是2次.(3)请计算扇形统计图中“3次”所对应扇形的圆心角的度数;(4)若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.【解答】解:(1)∵被调查的总人数为13÷26%=50人,∴a=50﹣(7+13+10+3)=17,b%=×100%=20%,即b=20,故答案为:17、20;(2)由于共有50个数据,其中位数为第25、26个数据的平均数,而第25、26个数据均为2次,所以中位数为2次,出现次数最多的是2次,所以众数为2次,故答案为:2次、2次;(3)扇形统计图中“3次”所对应扇形的圆心角的度数为360°×20%=72°;(4)估计该校学生在一周内借阅图书“4次及以上”的人数为2000×=120人.22.(7分)在一个不透明的布袋里装有4个标有1、2、3、4的小球,它们的形状、大小完全相同,李强从布袋中随机取出一个小球,记下数字为x,王芳在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点M的坐标(x,y)(1)画树状图或列表,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=x+1的图象上的概率.【解答】解:(1)画树状图得:共有12种等可能的结果(1,2)、(1,3)、(1,4)、(2,1)、(2,3)、(2,4)、(3,1)、(3,2)、(3,4)、(4,1)、(4,2)、(4,3);(2)∵在所有12种等可能结果中,在函数y=x+1的图象上的有(1,2)、(2,3)、(3,4)这3种结果,∴点M(x,y)在函数y=x+1的图象上的概率为=.23.(7分)如图,斜坡BE,坡顶B到水平地面的距离AB为3米,坡底AE为18米,在B处,E处分别测得CD顶部点D的仰角为30°,60°,求CD的高度.(结果保留根号)【解答】解:作BF⊥CD于点F,设DF=x米,在Rt△DBF中,tan∠DBF=,则BF===x,在直角△DCE中,DC=x+CF=3+x(米),在直角△ABF中,tan∠DEC=,则EC===(x+3)米.∵BF﹣CE=AE,即x﹣(x+3)=18.解得:x=9+,则CD=9++3=9+(米).答:CD的高度是(9+)米.24.(7分)某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商场管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天开始每天的单价均比前一天降低1元,通过市场调查发现,该商品单价每降1元,每天销售量增加2件,设第x天(1≤x≤30且x为整数)的销售量为y件.(1)直接写出y与x的函数关系式;(2)设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?【解答】解:(1)由题意可知y=2x+40;(2)根据题意可得:w=(145﹣x﹣80﹣5)(2x+40),=﹣2x2+80x+2400,=﹣2(x﹣20)2+3200,∵a=﹣2<0,∴函数有最大值,∴当x=20时,w有最大值为3200元,∴第20天的利润最大,最大利润是3200元.25.(8分)如图,在平面直角坐标系中,一次函数y1=ax+b的图象与反比例函数y2=的图象交于点A(1,2)和B(﹣2,m).(1)求一次函数和反比例函数的表达式;(2)请直接写出y1>y2时,x的取值范围;(3)过点B作BE∥x轴,AD⊥BE于点D,点C是直线BE上一点,若AC=2CD,求点C的坐标.【解答】解:(1)∵点A(1,2)在反比例函数y2=的图象上,∴k=1×2=2,∴反比例函数的解析式为y2=,∵点B(﹣2,m)在反比例函数y2=的图象上,∴m==﹣1,则点B的坐标为(﹣2,﹣1),由题意得,,解得,,则一次函数解析式为:y1=x+1;(2)由函数图象可知,当﹣2<x<0或x>1时,y1>y2;(3)∵AD⊥BE,AC=2CD,∴∠DAC=30°,由题意得,AD=2+1=3,在Rt△ADC中,tan∠DAC=,即=,解得,CD=,当点C在点D的左侧时,点C的坐标为(1﹣,﹣1),当点C在点D的右侧时,点C的坐标为(+1,﹣1),∴当点C的坐标为(1﹣,﹣1)或(+1,﹣1)时,AC=2CD.26.(8分)如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.【解答】解:(1)∵E是AC的中点,∴AE=CE,∵AB∥CD,∴∠AFE=∠CDE,在△AEF和△CED中,∵,∴△AEF≌△CED(AAS),∴AF=CD,又AB∥CD,即AF∥CD,∴四边形AFCD是平行四边形;(2)∵AB∥CD,∴△GBF∽△GCD,∴=,即=,解得:CD=,∵四边形AFCD是平行四边形,∴AF=CD=,∴AB=AF+BF=+=6.27.(9分)如图,AB为⊙O的直径,C为⊙O上一点,D为BA延长线上一点,∠ACD=∠B.(1)求证:DC为⊙O的切线;(2)线段DF分别交AC,BC于点E,F且∠CEF=45°,⊙O的半径为5,sinB=,求CF的长.【解答】(1)证明:连接OC,∵AB为⊙O的直径,∴∠ACB=∠BCO+∠OCA=90°,∵OB=OC,∴∠B=∠BCO,∵∠ACD=∠B,∴∠ACD=∠BCO,∴∠ACD+∠OCA=90°,即∠OCD=90°,∴DC为⊙O的切线;(2)解:Rt△ACB中,AB=10,sinB=,∴AC=6,BC=8,∵∠ACD=∠B,∠ADC=∠CDB,∴△CAD∽△BCD,∴,设AD=3x,CD=4x,Rt△OCD中,OC2+CD2=OD2,52+(4x)2=(5+3x)2,x=0(舍)或,∵∠CEF=45°,∠ACB=90°,∴CE=CF,设CF=a,∵∠CEF=∠ACD+∠CDE,∠CFE=∠B+∠BDF,∴∠CDE=∠BDF,∵∠ACD=∠B,∴△CED∽△BFD,∴,∴,a=,∴CF=.28.(12分)如图,抛物线y=ax2+bx﹣4经过A(﹣3,0),B(5,﹣4)两点,与y轴交于点C,连接AB,AC,BC.(1)求抛物线的表达式;(2)求证:AB平分∠CAO;(3)抛物线的对称轴上是否存在点M,使得△ABM是以AB为直角边的直角三角形,若存在,求出点M的坐标;若不存在,请说明理由.【解答】解:(1)将A(﹣3,0),B(5,﹣4)代入得:,解得:a=,b=﹣.∴抛物线的解析式为y=x2﹣x﹣4.(2)∵AO=3,OC=4,∴AC=5.取D(2,0),则AD=AC=5.由两点间的距离公式可知BD==5.∵C(0,﹣4),B(5,﹣4),∴BC=5.∴BD=BC.在△ABC和△ABD中,AD=AC,AB=AB,BD=BC,∴△ABC≌△ABD,∴∠CAB=∠BAD,∴AB平分∠CAO;(3)如图所示:抛物线的对称轴交x轴与点E,交BC与点F.抛物线的对称轴为x=,则AE=.∵A(﹣3,0),B(5,﹣4),∴tan∠EAB=.∵∠M′AB=90°.∴tan∠M′AE=2.∴M′E=2AE=11,∴M′(,11).同理:tan∠MMF=2.又∵BF=,∴FM=5,∴M(,﹣9).∴点M的坐标为(,11)或(,﹣9).。
2018年甘肃省天水市中考数学试题及参考答案(word解析版)
2018年甘肃省天水市中考数学试题及参考答案与解析一、选择题(本大题共10小题每小题4分,共40分,每小题给出的四个选项中只有一个选项是正确的,请把正确的选项选出来)1.下列各数中,绝对值最大的数是()A.﹣2 B.3 C.0 D.﹣42.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()A.0.845×104亿元B.8.45×103亿元C.8.45×104亿元D.84.5×102亿元3.一个几何体的三视图如图所示,则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.长方体4.一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是()A.6 B.5 C.4.5 D.3.55.已知圆锥的底面半径为2cm,母线长为10cm,则这个圆锥的侧面积是()A.20πcm2B.20cm2C.40πcm2D.40cm26.如图所示,点O是矩形ABCD对角线AC的中点,OE∥AB交AD于点E.若OE=3,BC=8,则OB的长为()A.4 B.5 C.D.7.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣4 B.C.π﹣2 D.8.在同一平面直角坐标系中,函数y=x+1与函数y=的图象可能是()A.B.C.D.9.按一定规律排列的一组数:,,,,…,,,(其中a,b为整数),则a+b 的值为()A.182 B.172 C.242 D.20010.某学校组织团员举行“伏羲文化旅游节”宣传活动,从学校骑自行车出发,先上坡到达甲地后,宣传了8分钟,然后下坡到乙地又宣传了8分钟返回,行程情况如图所示.若返回时,上、下坡速度保持不变,在甲地仍要宣传8分钟,那么他们从乙地返回学校所用的时间是()A.33分钟B.46分钟C.48分钟D.45.2分钟二、填空题(本大题共8小题,每小题4分,共32分,只要求填写最后结果)11.不等式组的所有整数解的和是.12.已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为.13.甲、乙、丙三人进行射击测试,每人射击10次的平均成绩都是9.1环,方差分别是S甲2=0.51、S乙2=0.50、S丙2=0.41,则三人中成绩最稳定的是(填“甲”或“乙”或“丙”).14.若点A(a,b)在反比例函数y=的图象上,则代数式ab﹣1的值为.15.关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k的值是.16.如图所示,菱形ABCD的对角线AC、BD相交于点O.若AC=6,BD=8,AE⊥BC,垂足为E,则AE的长为.17.将平行四边形OABC放置在如图所示的平面直角坐标系中,点O为坐标原点.若点A的坐标为(3,0),点C的坐标为(1,2),则点B的坐标为.18.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数.例如:[2.3]=2,(2.3)=3,[2.3)=2.按此规定:[1.7]+(1.7)+[1.7)=.三、解答题(本大题共3小题共28分,解答时写出必要的文字说明及演算过程)19.(8分)(1)计算:4+(﹣3)2+20180×|1﹣|+tan45°﹣2sin60°.(2)先化简,再求值:÷(1+),其中x=﹣1.20.(10分)超速行驶是引发交通事故的主要原因之一.小明等三名同学运用自己所学的知识检测车速,他们将观测点设在距成纪大道100米的点C处,如图所示,直线l表示成纪大道.这时一辆小汽车由成纪大道上的A处向B处匀速行驶,用时5秒.经测量,点A在点C的北偏西60°方向上,点B在点C的北偏西45°方向上.(1)求A、B之间的路程(精确到0.1米);(2)请判断此车是否超过了成纪大道60千米/小时的限制速度?(参考数据:≈1.414,≈1.732)21.(10分)如图所示,在平面直角坐标系中,直线y=x﹣1与y轴相交于点A与反比例函数y=(k≠0)在第一象限内相交于点B(m,1)(1)求反比例函数的解析式;(2)将直线y=x﹣1向上平行移动后与反比例函数在第一象限内相交于点C,且△ABC的面积为4,求平行移动后的直线的解析式.四、解答题(本大题共50分,解答时写出必要的演算步骤及推理过程)22.(8分)天水市“最美女教师”刘英为抢救两名学生,身负重伤.社会各界纷纷为她捐款,某校2000名学生也积极参加了此捐款活动.捐款金额有5元、10元、15元、20元、25元共五种.为了了解捐款情况,学校随机抽样调查了部分学生的捐款情况,并根据捐款金额和人数绘制了如下统计图(图①和图②).请根据所给信息解答下列问题.(1)本次接受随机抽样调查的学生人数为人,图①中m的值是.(2)根据样本数据,请估计该校在本次活动中捐款金额为10元的学生人数.23.(8分)如图所示,AB是⊙O的直径,点P是AB延长线上的一点,过点P作⊙O的切线,切点为C,连接AC,BC.(1)求证:∠BAC=∠BCP.(2)若点P在AB的延长线上运动,∠CPA的平分线交AC于点D,你认为∠CDP的大小是否发生变化?若变化,请说明理由;若没有变化,求出∠CDP的大小.24.(10分)麦积山石窟是世界文化遗产,国家AAAAA级旅游景区,中国四大石窟之一.在2018年中国西北旅游营销大会暨旅游装备展上,商家按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.(1)该工艺品每件的进价、标价分别是多少元?(2)若每件工艺品按此进价进货、标价销售,商家每天可售出该工艺品100件;若每件工艺品降价1元,则每天可多售出该工艺品4件.问:每件工艺品降价多少元销售,每天获得的利润最大?获得的最大利润是多少元?25.(12分)如图所示,在正方形ABCD和△EFG中,AB=EF=EG=5cm,FG=8cm,点B、C、F、G在同一直线l上.当点C、F重合时,△EFG以1cm/s的速度沿直线l向左开始运动,t秒后正方形ABCD与△EFG重合部分的面积为Scm2.请解答下列问题:(1)当t=3秒时,求S的值;(2)当t=5秒时,求S的值;(3)当5秒<t≤8秒时,求S与t的函数关系式,并求出S的最大值.26.(12分)已知:抛物线y=ax2+4ax+m(a>0)与x轴的一个交点为A(﹣1,0)(1)求抛物线与x轴的另一个交点B的坐标;(2)点D是抛物线与y轴的交点,点C是抛物线上的一个点,且以AB为一底的梯形ABCD的面积为9,求此抛物线的解析式;(3)点E是第二象限内到x轴、y轴的距离比为5:2的点,如果点E在(2)中的抛物线上且点E与点A在此抛物线对称轴的同侧.问:在抛物线的对称轴上是否存在点P,使△APE的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.参考答案与解析一、选择题(本大题共10小题每小题4分,共40分,每小题给出的四个选项中只有一个选项是正确的,请把正确的选项选出来)1.下列各数中,绝对值最大的数是()A.﹣2 B.3 C.0 D.﹣4【知识考点】绝对值;有理数大小比较.【思路分析】根据绝对值的性质来判断即可,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值还是0.【解题过程】解:∵|﹣2|=2,|3|=3,|0|=0,|﹣4|=4∴4>3>2>0故选:D.【总结归纳】本题主要考查绝对值的性质,牢记绝对值的性质是解题的关键2.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()A.0.845×104亿元B.8.45×103亿元C.8.45×104亿元D.84.5×102亿元【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解题过程】解:将8450亿元用科学记数法表示为8.45×103亿元.故选:B.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.一个几何体的三视图如图所示,则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.长方体【知识考点】由三视图判断几何体.【思路分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解题过程】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选:A.【总结归纳】此题主要考查了由三视图判断几何体.主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为几边形就是几棱柱.4.一组数据1,5,7,x的众数与中位数相等,则这组数据的平均数是()A.6 B.5 C.4.5 D.3.5【知识考点】算术平均数;中位数;众数.【思路分析】分别假设众数为1、5、7,分类讨论、找到符合题意得x的值,再根据平均数的定义求解可得.【解题过程】解:若众数为1,则数据为1、1、5、7,此时中位数为3,不符合题意;若众数为5,则数据为1、5、5、7,中位数为5,符合题意,此时平均数为=4.5;若众数为7,则数据为1、5、7、7,中位数为6,不符合题意;故选:C.【总结归纳】本题主要考查众数、中位数及平均数,根据众数的可能情况分类讨论求解是解题的关键.5.已知圆锥的底面半径为2cm,母线长为10cm,则这个圆锥的侧面积是()A.20πcm2B.20cm2C.40πcm2D.40cm2【知识考点】圆锥的计算.【思路分析】圆锥的侧面积=π×底面半径×母线长.【解题过程】解:圆锥侧面积=π×2×10=20πcm2;故选:A.【总结归纳】考查圆锥的侧面展开图公式;用到的知识点为:圆锥的侧面积=π×底面半径×母线长.6.如图所示,点O是矩形ABCD对角线AC的中点,OE∥AB交AD于点E.若OE=3,BC=8,则OB的长为()A.4 B.5 C.D.【知识考点】三角形中位线定理;矩形的性质.【思路分析】由平行线分线段成比例可得CD=6,由勾股定理可得AC=10,由直角三角形的性质可得OB的长.【解题过程】解:∵四边形ABCD是矩形∴AB∥CD,AD=BC=8,∵OE∥AB∴OE∥CD∴,且AO=AC,OE=3∴CD=6,在Rt△ADC中,AC==10∵点O是斜边AC上的中点,∴BO=AC=5故选:B.【总结归纳】本题考查了矩形的性质,勾股定理,直角三角形的性质,求CD的长度是本题的关键.7.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣4 B.C.π﹣2 D.【知识考点】扇形面积的计算.【思路分析】先证得三角形OBC是等腰直角三角形,通过解直角三角形求得BC和BC边上的高,然后根据S阴影=S扇形OBC﹣S△OBC即可求得.【解题过程】解:∵∠BAC=45°,∴∠BOC=90°,∴△OBC是等腰直角三角形,∵OB=2,∴△OBC的BC边上的高为:OB=,∴BC=2∴S阴影=S扇形OBC﹣S△OBC=﹣×2×=π﹣2,故选:C.【总结归纳】本题考查了扇形的面积公式:S=(n为圆心角的度数,R为圆的半径).也考查了等腰直角三角形三边的关系和三角形的面积公式.8.在同一平面直角坐标系中,函数y=x+1与函数y=的图象可能是()A.B.C.D.【知识考点】一次函数的图象;反比例函数的图象.【思路分析】利用一次函数与反比例函数的图象与性质判断即可.【解题过程】解:在同一平面直角坐标系中,函数y=x+1与函数y=的图象可能是故选:B.【总结归纳】此题考查了反比例函数的图象,以及一次函数的图象,熟练掌握各函数的图象与性质是解本题的关键.9.按一定规律排列的一组数:,,,,…,,,(其中a,b为整数),则a+b 的值为()A.182 B.172 C.242 D.200【知识考点】规律型:数字的变化类.【思路分析】观察各数据得到,即每个分数的分母可以分解为两个连续正整数的积,由于,所以,即可得到a与b的值.【解题过程】解:∵,∵,∴,∴a=72,b=110,∴a+b=72+110=182.故选:A.【总结归纳】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.10.某学校组织团员举行“伏羲文化旅游节”宣传活动,从学校骑自行车出发,先上坡到达甲地后,宣传了8分钟,然后下坡到乙地又宣传了8分钟返回,行程情况如图所示.若返回时,上、下坡速度保持不变,在甲地仍要宣传8分钟,那么他们从乙地返回学校所用的时间是()A.33分钟B.46分钟C.48分钟D.45.2分钟【知识考点】函数的图象.【思路分析】由图象可知上坡路程和下坡路程,上坡速度和下坡速度问题即可求解.【解题过程】解:观察图象可知上坡路程为36百米,下坡路程为96﹣36=60百米,上坡时间为18分,下坡时间为46﹣18﹣8﹣8=12分,∴v上坡==2百米,v下坡==5百米,∴返回的时间=++8=45.2分钟.故选:D.【总结归纳】本题运用了函数的图象的性质和路程、时间、速度的关系等知识点,体现了数形结合的数学思想.二、填空题(本大题共8小题,每小题4分,共32分,只要求填写最后结果)11.不等式组的所有整数解的和是.【知识考点】一元一次不等式组的整数解.【思路分析】首先解每个不等式,两个不等式的解集的公共部分就是解集的公共部分,然后确定整数解即可.【解题过程】解:解不等式4x+8≥0,得:x≥﹣2,解不等式6﹣3x>0,得:x<2,则不等式组的解集为﹣2≤x<2,所以不等式组的所有整数解的和为﹣2﹣1+0+1=﹣2,故答案为:﹣2.【总结归纳】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为.【知识考点】互余两角三角函数的关系.【思路分析】根据sinA=,假设BC=12x,AB=13x,得出AC=5x,再利用锐角三角函数的定义得出tanB的值.【解题过程】解:如图,∵在Rt△ABC中,∠C=90°,sinA=,∴假设BC=12x,AB=13x,∴AC=5x.∴tanB==.故答案为:.【总结归纳】此题考查的是锐角三角函数的定义及勾股定理的应用,正确得出各边之间的关系是解决问题的关键.13.甲、乙、丙三人进行射击测试,每人射击10次的平均成绩都是9.1环,方差分别是S甲2=0.51、S乙2=0.50、S丙2=0.41,则三人中成绩最稳定的是(填“甲”或“乙”或“丙”).【知识考点】算术平均数;方差.【思路分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【解题过程】解:∵S甲2=0.51,S乙2=0.50,S丙2=0.41,∴S甲2>S乙2>S丙2,∴三人中成绩最稳定的是丙;故答案为:丙.【总结归纳】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.若点A(a,b)在反比例函数y=的图象上,则代数式ab﹣1的值为.【知识考点】反比例函数图象上点的坐标特征.【思路分析】根据点A(a,b)在反比例函数y=的图象上,可以求得ab的值,从而可以得到所求式子的值.【解题过程】解:∵点A(a,b)在反比例函数y=的图象上,∴b=,得ab=3,∴ab﹣1=3﹣1=2,故答案为:2【总结归纳】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.15.关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k的值是.【知识考点】一元二次方程的解.【思路分析】由于方程的一个根是0,把x=0代入方程,求出k的值.因为方程是关于x的二次方程,所以未知数的二次项系数不能是0.【解题过程】解:由于关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,把x=0代入方程,得k2﹣k=0,解得,k1=1,k2=0当k=1时,由于二次项系数k﹣1=0,方程(k﹣1)x2+6x+k2﹣k=0不是关于x的二次方程,故k≠1.所以k的值是0.故答案为:0【总结归纳】本题考查了一元二次方程的解法、一元二次方程的定义.解决本题的关键是解一元二次方程确定k的值,过程中容易忽略一元二次方程的二次项系数不等于0这个条件.16.如图所示,菱形ABCD的对角线AC、BD相交于点O.若AC=6,BD=8,AE⊥BC,垂足为E,则AE的长为.【知识考点】菱形的性质.【思路分析】利用菱形的面积公式:•AC•BD=•BC•AE,即可解决问题;【解题过程】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=3,OB=OD=4,∴AB=BC=5,∵•AC•BD=•BC•AE,∴AE=,故答案为:,【总结归纳】本题考查菱形的性质、勾股定理等知识,解题的关键是学会利用面积法求线段的长,属于中考常考题型.17.将平行四边形OABC放置在如图所示的平面直角坐标系中,点O为坐标原点.若点A的坐标为(3,0),点C的坐标为(1,2),则点B的坐标为.【知识考点】坐标与图形性质;平行四边形的性质.【思路分析】根据平行四边形的性质及A点和C的坐标求出点B的坐标即可.【解题过程】解:∵四边形ABCO是平行四边形,O为坐标原点,点A的坐标是(3,0),点C 的坐标是(1,2),∴BC=OA=3,3+1=4,∴点B的坐标是(4,2);故答案为:(4,2).【总结归纳】本题考查了平行四边形的性质、坐标与图形性质;熟练掌握平行四边形的性质是解决问题的关键.18.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数.例如:[2.3]=2,(2.3)=3,[2.3)=2.按此规定:[1.7]+(1.7)+[1.7)=.【知识考点】有理数大小比较.【思路分析】根据题意,[1.7]中不大于1.7的最大整数为1,(1.7)中不小于1.7的最小整数为2,[1.7)最接近的整数为2,则可解答【解题过程】解:依题意:[1.7]+(1.7)+[1.7)=1+2+2=5故答案为5【总结归纳】此题主要考查有理数大小的比较,读懂题意,即可解答,本题比较简单.三、解答题(本大题共3小题共28分,解答时写出必要的文字说明及演算过程)19.(8分)(1)计算:4+(﹣3)2+20180×|1﹣|+tan45°﹣2sin60°.(2)先化简,再求值:÷(1+),其中x=﹣1.【知识考点】实数的运算;分式的化简求值;零指数幂;特殊角的三角函数值.【思路分析】(1)先计算乘方、零指数幂、取绝对值符号、代入三角函数值,再计算乘法,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解题过程】解:(1)原式=4+9+1×(﹣1)+1﹣2×=4+9+﹣1+1﹣=13;(2)原式=÷(+)=•=,当x=﹣1时,原式==.【总结归纳】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及实数的运算能力.20.(10分)超速行驶是引发交通事故的主要原因之一.小明等三名同学运用自己所学的知识检测车速,他们将观测点设在距成纪大道100米的点C处,如图所示,直线l表示成纪大道.这时一辆小汽车由成纪大道上的A处向B处匀速行驶,用时5秒.经测量,点A在点C的北偏西60°方向上,点B在点C的北偏西45°方向上.(1)求A、B之间的路程(精确到0.1米);(2)请判断此车是否超过了成纪大道60千米/小时的限制速度?(参考数据:≈1.414,≈1.732)【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】(1)据已知和特殊角的三角函数值求得AD,BD的长,从而得出AB的长;(2)根据测得此车从A处行驶到B处所用的时间为5秒,求出小汽车的速度,即可得出答案.【解题过程】解:(1)过点C作CD⊥l于D,∵AB=AO﹣BO,∠BCD=45°,∴BD=CD=100米.又∵AD=CD×tan60°≈100×1.732=173.2米,∴AB=AD﹣BD=173.2﹣100=73.2米,(2)∵73.2米=0.0732千米,5秒=小时,∴0.0732÷=52.7千米/时.∵52.7<60,∴该小车没有超速.【总结归纳】此题考查了解直角三角形的应用,用到的知识点是特殊角的三角函数值、锐角三角函数,注意时间之间的换算.21.(10分)如图所示,在平面直角坐标系中,直线y=x﹣1与y轴相交于点A与反比例函数y=(k≠0)在第一象限内相交于点B(m,1)(1)求反比例函数的解析式;(2)将直线y=x﹣1向上平行移动后与反比例函数在第一象限内相交于点C,且△ABC的面积为4,求平行移动后的直线的解析式.【知识考点】反比例函数与一次函数的交点问题.【思路分析】(1)将B坐标代入直线y=x﹣1中求出m的值,确定出B坐标,将B的坐标代入反比例解析式中求出k的值,即可确定出反比例解析式;(2)设平移后的直线交y轴于H,根据两平行线间的距离相等,可得C到AB的距离与H到AB 的距离相等,根据等底等高的三角形的面积相等,可得b的值,根据待定系数法,可得答案.【解题过程】解:(1)将B(m,1)代入直线y=x﹣1中得:m﹣1=1,解得:m=2,则B(2,1),将B(2,1)代入y=,得k=2×1=2,则反比例解析式为y=;(2)设平移后的直线交y轴于H.∴S△ABH=S△ABC=4,∵S△ABH=×AH×2=4,∴AH=4,∵A(0,﹣1),∴H(0,3),∴平移后的直线的解析式为y=x+3.【总结归纳】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:一次函数与坐标轴的交点,待定系数法求函数解析式,三角形的面积求法,以及坐标与图形变化﹣平移,熟练掌握待定系数法是解本题的关键.四、解答题(本大题共50分,解答时写出必要的演算步骤及推理过程)22.(8分)天水市“最美女教师”刘英为抢救两名学生,身负重伤.社会各界纷纷为她捐款,某校2000名学生也积极参加了此捐款活动.捐款金额有5元、10元、15元、20元、25元共五种.为了了解捐款情况,学校随机抽样调查了部分学生的捐款情况,并根据捐款金额和人数绘制了如下统计图(图①和图②).请根据所给信息解答下列问题.(1)本次接受随机抽样调查的学生人数为人,图①中m的值是.(2)根据样本数据,请估计该校在本次活动中捐款金额为10元的学生人数.【知识考点】全面调查与抽样调查;用样本估计总体;扇形统计图;条形统计图.【思路分析】条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形图的特点:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.【解题过程】解:(1)调查的学生人数:4÷8%=50(人),,m=32,故答案为50,32;(2)该校在本次活动中捐款金额为10元的学生人数:2000×32%=640(人),答:该校在本次活动中捐款金额为10元的学生人数为640人.【总结归纳】本题考查了统计图,正确理解条形统计图和扇形统计图的意义是解题的关键.23.(8分)如图所示,AB是⊙O的直径,点P是AB延长线上的一点,过点P作⊙O的切线,切点为C,连接AC,BC.(1)求证:∠BAC=∠BCP.(2)若点P在AB的延长线上运动,∠CPA的平分线交AC于点D,你认为∠CDP的大小是否发生变化?若变化,请说明理由;若没有变化,求出∠CDP的大小.【知识考点】圆周角定理;切线的性质.【思路分析】(1)连接OC,有切线的性质可知∠PCO=∠OCB+∠PCB=90°,再有圆周角定理可得∠ACB=90°,又因为圆的半径相等即可证明∠PCB=∠CAB.(2)由PC为圆的切线,利用切线的性质得到PC与OC垂直,得到三角形OPC为直角三角形,利用直角三角形的两锐角互余列出等式,根据OA=OC,利用等边对等角得到一对角相等,利用外角性质得到∠A为∠COP的一半,由PD为角平分线得到∠APD为∠CPO的一半,利用外角性质及等式的性质即可,求出∠CDP的度数.【解题过程】(1)证明:连接OC,∵PC为⊙O的切线,∴∠PCO=∠OCB+∠PCB=90°又∵AB为⊙O的直径,∴∠ACB=90°,∠CAB+∠ABC=90°,∴∠PCB+∠OCB=∠CAB+∠ABC=90°又∵OB=OC,∴∠OCB=∠ABC,∴∠BAC=∠BCP.(2)解:∵PC为圆O的切线,∴PC⊥OC,即∠PCO=90°,∴∠CPO+∠COP=90°,∵OA=OC,∴∠A=∠ACO=∠COP,∵PD为∠APC的平分线,∴∠APD=∠CPD=∠CPO,∴∠CDP=∠APD+∠A=(∠CPO+∠COP)=45°.【总结归纳】此题考查了切线的性质,外角性质,以及等腰三角形的性质,熟练掌握切线的性质是解本题的关键.24.(10分)麦积山石窟是世界文化遗产,国家AAAAA级旅游景区,中国四大石窟之一.在2018年中国西北旅游营销大会暨旅游装备展上,商家按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.(1)该工艺品每件的进价、标价分别是多少元?(2)若每件工艺品按此进价进货、标价销售,商家每天可售出该工艺品100件;若每件工艺品降价1元,则每天可多售出该工艺品4件.问:每件工艺品降价多少元销售,每天获得的利润最大?获得的最大利润是多少元?【知识考点】二元一次方程组的应用;HE:二次函数的应用.【思路分析】(1)依题意,可设标价为x元,进价为y元,可列方程,解出x,y的值即可(2)设利润为w元,降价为m元,再根据利润=(标价﹣成本)×数量,列出函数关系式即可计算【解题过程】解:(1)依题意,设标价为x元,进价为y元,则有,解得故工艺品每件的进价为155元,标价是200元(2)设利润为w元,降价为m元,则依题意得w=(200﹣m﹣155)(100+4m)=﹣4m2+80m+4500整理得w=﹣4(m﹣10)2+4900故每件工艺品降价10元销售,每天获得的利润最大,获得的最大利润是4900元【总结归纳】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.25.(12分)如图所示,在正方形ABCD和△EFG中,AB=EF=EG=5cm,FG=8cm,点B、C、F、G在同一直线l上.当点C、F重合时,△EFG以1cm/s的速度沿直线l向左开始运动,t秒后正方形ABCD与△EFG重合部分的面积为Scm2.请解答下列问题:(1)当t=3秒时,求S的值;(2)当t=5秒时,求S的值;(3)当5秒<t≤8秒时,求S与t的函数关系式,并求出S的最大值.【知识考点】四边形综合题.【思路分析】(1)作EP⊥FG于点P,由EF=EG,得出PF=PC=FG=4,由勾股定理得出EP ==3,当t=3时,FC=3,设EF与DC交于点H,证明△FCH∽△FEP,由相似三角形的性质即可得出结果;(2)当t=5时,CG=3.设EG与DC交于H,由相似三角形的性质得出=,求出CH =,S△GCH=(cm2)即可得出结果;(3)当5≤t≤8时,FB=t﹣5,GC=8﹣t,设EF交AB于点N,由△FBN∽△FPE,PF=4,得出BF:PF=(t﹣5):4,得出S△FBN=(t﹣5)2,同理得S△GCH=(8﹣t)2,得出S=﹣t2+t﹣,再把二次函数化成顶点式,即可得出结果.【解题过程】解:(1)作EP⊥FG于点P,∵EF=EG,∴PF=PC=FG=4,在Rt△EPF中,EP===3,当t=3时,FC=3,设EF与DC交于点H,∵四边形ABCD是正方形,∴DC⊥BC,∴PE∥DC,∴△FCH∽△FEP.∴=()2,∵S△FPE=×4×3=6,∴S=()2×6=(cm2).(2)当t=5时,CG=3.设EG与DC交于H,如图2所示:由△GCH∽△GPE,∴=,即=,∴CH=,∴S△GCH=×3×=(cm2),S=12﹣=(cm2).(3)当5≤t≤8时,FB=t﹣5,GC=8﹣t,设EF交AB于点N,如图3所示:∵△FBN∽△FPE,PF=4,∴BF:PF=(t﹣5):4,∴S△FBN:S△FPE=(t﹣5)2:42,又∵S△FPE=6,∴S△FBN=(t﹣5)2,由△GCH∽△GPE,同理得S△GCH=(8﹣t)2,。
年甘肃省中考数学试卷(含答案解析)
2018年甘肃省(全省统考)中考数学试卷一、选择题:本大题共10小题,每小题2018年甘肃省定西市,共30分,每小题只有一个正确1. -2018的相反数是( )A.-2018 B.2018 C.12018- D.120182.下列计算结果等于3x 的是( )A.62x x ÷B.4x x -C.2x x + D .2x x ⋅ 3.若一个角为65°,则它的补角的度数为( ) A.25°ﻩB.35° C.115°ﻩD .125° 4.已知(0,0)23a ba b =≠≠,下列变形错误的是( ) A.23a b = B .23a b = C.32b a = D.32a b = 5. 若分式24x x-的值为0,则的值是( )A. 2或-2 B. 2 C . -2 D . 06.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s 2如下表:甲 乙 丙 丁 平均数(环) 11.1 11.1 10.9 10.9 方差s21.11.21.31.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择( ) A.甲ﻩB .乙 C .丙 D.丁7.关于x 的一元二次方程x 2+4x+k=0有两个实数根,则k 的取值范围是( ) A.k≤﹣4B .k<﹣4ﻩC .k≤4ﻩD.k<48.如图,点E 是正方形A BCD 的边DC 上一点,把△ADE 绕点A 顺时针旋转90°到△ABF 的位置,若四边形A EC F的面积为25,DE=2,则AE 的长为( )A. 5B. C. 7 D.9.如图,⊙A 过点O(0,0),C(,0),D (0,1),点B 是x轴下方⊙A 上的一点,连接BO ,BD,则∠OBD 的度数是( )A.15°ﻩB .30° C.45° D .60°10.如图是二次函数y=ax 2+bx+c (a ,b,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am +b )(m 为实数);⑤当﹣1<x<3时,y>0,其中正确的是( )A.①②④ B .①②⑤ C .②③④ﻩD .③④⑤二、填空题:本大题共8小题,每小题2018年甘肃省定西市,共32分11.计算:2018112sin 30(1)()2-+--= .12.3x -有意义的x 的取值范围是 . 13.若正多边形的内角和是1080°,则该正多边形的边数是 .14.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为 .15.已知a ,b ,c 是ABC ∆的三边长,a ,b 满足27(1)0a b -+-=,c 为奇数,则c = .16.如图,一次函数2y x =--与2y x m =+的图象相交于点(,4)P n -,则关于x 的不等式组2220x m x x +<--⎧⎨--<⎩的解集为 .17.如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a ,则勒洛三角形的周长为 .18.如图,是一个运算程序的示意图,若开始输入x 的值为625,则第2018次输出的结果为 .三、解答题(一);本大题共5小题,共32018年甘肃省定西市,解答应写出必要的文字说明,证明过程或演算步骤 19.计算:22(1)b aa b a b÷---.20.如图,在△A BC 中,∠ABC=90°. (1)作∠ACB 的平分线交A B边于点O ,再以点O 为圆心,OB 的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O 的位置关系,直接写出结果.21.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.22.随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A ,B两地被大山阻隔,由A 地到B 地需要绕行C地,若打通穿山隧道,建成A ,B 两地的直达高铁可以缩短从A地到B 地的路程.已知:∠CAB=30°,∠CBA =45°,AC=640公里,求隧道打通后与打通前相比,从A地到B 地的路程将约缩短多少公里?(参考数据:3 1.7≈,2 1.4≈)23.如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案. (1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B ,C,D,E,F )中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.四、解答题(二):本大题共5小题,共50分。
2018年甘肃省白银市、定西市、平凉市、酒泉市、临夏州中考数学试卷含答案
2018年甘肃省白银市中考数学试卷参考答案与试卷解读一、选择题:本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填涂在答题卡上.b5E2RGbCAP分)<2018﹣国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数的,它的主视图是< )C.•=+=C÷=2=2、•=、+、÷==2、=2,计算正确.尺平行,那么,在形成的这个图中与∠α互余的角共有< )DXDiTa9E3dC.,则直线与圆相6平方M.若设它的一条边长为xM,则根据题意可列出关于x的方程为< )b+c=0上,连接ED交AB于点F,AF=x<0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之闻函数关系的是< )jLBHrnAILgC.=,从而得到则=,即=,<0.2横线上.考点:提公因式法与公式法的综合运用.专题:计算题.分析:先提公因式2,再利用完全平方公式分解因式即可.解答:解:2a2﹣4a+2,=2<a2﹣2a+1),=2<a﹣1)2.点评:本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.<4分)<2018•白银)化简:= x+2 .考点:分式的加减法.专题:计算题.分析:先转化为同分母<x﹣2)的分式相加减,然后约分即可得解.解答:解:+=﹣==x+2.故答案为:x+2.点评:本题考查了分式的加减法,把互为相反数的分母化为同分母是解题的关键.考点:勾股定理;等腰三角形的性质.分析:利用等腰三角形的“三线合一”的性质得到BD=BC=6cm,然后在直角△ABD中,利用勾股定理求得高线AD的长度.解答:解:如图,AD是BC边上的高线.∵AB=AC=10cm,BC=12cm,∴BD=CD=6cm,∴在直角△ABD中,由勾股定理得到:AD===<8cm).故答案是:8.0,则根据一元二次方程的定义和一元二次方程的解的定义得到15.<4分)<2018•白银)△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,cosB=,﹣y=根据一对相反数同时为二次根式的被开方数,那么被开方数为答:解得x=±3,∴y=4,∴x﹣y=﹣1或﹣7.故答案为﹣1或﹣7.点评:考查二次根式有意义的相关计算;得到x可能的值是解决本题的关键;用到的知识点为:一对相反数同时为二次根式的被开方数,那么被开方数为0.ABCDO点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为12 .dvzfvkwMI1考点:中心对称;菱形的性质.分析:根据菱形的面积等于对角线乘积的一半求出面积,再根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半解答.解答:解:∵菱形的两条对角线的长分别为6和8,∴菱形的面积=×6×8=24,∵O是菱形两条对角线的交点,∴阴影部分的面积=×24=12.故答案为:12.点评:本题考查了中心对称,菱形的性质,熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键.13=1213+23=3213+23+33=6213+23+33+43=102…考点:规律型:数字的变化类.专题:压轴题;规律型.分析:13=1213+23=<1+2)2=3213+23+33=<1+2+3)2=6213+23+33+43=<1+2+3+4)2=10213+23+33+…+103=<1+2+3…+10)2=552.解答:解:根据数据可分析出规律为从1开始,连续n个数的立方和=<1+2+…+n)2所以13+23+33+…+103=<1+2+3…+10)2=552.点评:本题的规律为:从1开始,连续n个数的立方和=<1+2+…+n)2.明、证明过程或演算步骤.19.<6分)<2018•白银)计算:<﹣2)3+×<2018+π)0﹣|﹣|+tan260°.考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用乘方的意义化简,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=﹣8+﹣+3=﹣5.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.我们把称作二阶行列式,规定他的运算法则为=ad﹣bc.如=2×5﹣3×4=﹣2.如果有>0,求x的解集.考点:解一元一次不等式.专题:阅读型.分析:首先看懂题目所给的运算法则,再根据法则得到2x﹣<3﹣x)>0,然后去括号、移项、合并同类项,再把x的系数化为1即可.解答:解:由题意得2x﹣<3﹣x)>0,去括号得:2x﹣3+x>0,移项合并同类项得:3x>3,把x的系数化为1得:x>1.点评:此题主要考查了一元一次不等式的解法,关键是看懂题目所给的运算法则,根据题意列出不等式.<1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.<保留作图痕迹,不要求写作法和证明);rqyn14ZNXI<2)连接BD,求证:BD平分∠CBA.为圆心,以大于ABABD=60具、图<1)所示的是一辆自行车的实物图.图<2)是这辆自行车的部分几何示意图,其中车架档AC与CD的长分别为45cm和60cm,且它们互相垂直,座杆CE的长为20cm.点A、C、E在同一条只显示,且∠CAB=75°.<参考数据:sin75°=0.966,cos75°=0.259,tan75°=3.732)EmxvxOtOco<1)求车架档AD的长;=75<cm23.<10分)<2018•白银)如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A<﹣1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.SixE2yXPq5<1)求m、n的值;<2)求直线AC的解读式.y=相交于将A<﹣1,2)代入y=mx,y=可得m=﹣2,n=﹣2;∴明、证明过程或演算步骤.24.<8分)<2018•白银)在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标<x,y).6ewMyirQFL<1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;P=的喜欢程度,抽取部分学生进行调查,被调查的每个学生按A<非常喜欢)、B<比较喜欢)、C<一般)、D<不喜欢)四个等级对活动评价,图1和图2是该小组采集数据后绘制的两幅统计图,经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息.解答下列问题:kavU42VRUs<1)此次调查的学生人数为200 ;<2)条形统计图中存在错误的是 C <填A、B、C、D中的一个),并在图中加以改正;<3)在图2中补画条形统计图中不完整的部分;<4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据;扇形统计图直接反映部分占总体的百分比大小.AB、AC的中点.O是△ABC所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.y6v3ALoS89<1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;<2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?<直接写出答案,不需要说明理由.)。
2018年甘肃省兰州市中考数学试卷(a卷)(带解析答案)
参考答案与试题解析
一、选择题:本大题共 12 小题,每小题 4 分,共 48 分.在每小题给出的四个选 项中,只有一项是符合题目要求的. 1.(4 分)﹣2018 的绝对值是( )
A.
B.﹣2018 C.2018 D.﹣
【考点】15:绝对值.菁优网版权所有 【解答】解:﹣2018 的绝对值是:2018. 故选:C.
成如图不完整的统计表. 学生借阅图书的次数统计表
借阅图 0 次 1 次 2 次 3 次 4 次及
书的次
以上
数
人数
7
13
a
10
3
请你根据统计图表中的信息,解答下列问题:
(1)a= 17 ,b= 20 .
(2)该调查统计数据的中位数是 2 次 ,众数是 2 次 .
(3)请计算扇形统计图中“3 次”所对应扇形的圆心角的度数;
A.①②③ B.②③⑤ C.②③④ D.③④⑤
【考点】H4
:二次函数图象与系数的关系. 菁优网版
权所有
【解答】解:①∵对称轴在 y 轴的右侧,
∴ab<0,
第 5页(共 21页)
由图象可知:c>0, ∴abc<0, 故①不正确; ②当 x=﹣1 时,y=a﹣b+c<0, ∴b﹣a>c, 故②正确; ③由对称知,当 x=2 时,函数值大于 0,即 y=4a+2b+c>0, 故③正确; ④∵x=﹣ =1, ∴b=﹣2a, ∵a﹣b+c<0, ∴a+2a+c<0, 3a<﹣c, 故④不正确; ⑤当 x=1 时,y 的值最大.此时,y=a+b+c, 而当 x=m 时,y=am2+bm+c, 所以 a+b+c>am2+bm+c(m≠1), 故 a+b>am2+bm,即 a+b>m(am+b), 故⑤正确. 故②③⑤正确. 故选:B.
2018甘肃兰州中考数学解析
2018年山东省日照市初中毕业、升学考试数学(满分120分,时间120分钟)一、选择题(本大题共12小题,每小题4分,满分48分)1.(2018甘肃省兰州市,1,4分) -2018的绝对值是____________.A.12018B.-2018C.2018D.-12018【答案】C【解析】负数的绝对值是其相反数,所以|-2018|=2018,故选择C.【知识点】绝对值2.(2018甘肃省兰州市,2,4分)如图是有5个完全相同的小正方形组成的几何体,则该几何体的主视图是( ).A. B. C. D.【答案】A【解析】从正面看第一列有2个正方体,第二列有1个正方体,第三列有1个正方体.故选A.【知识点】三视图3.(2018甘肃省兰州市,3,4分)据中国电子商务研究中心()发布《2017年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资.数据1159.56亿元用科学计数法可表示为( )A.1159.56×108元B. 11.5956×1010元C.1.15956×1011元D.1.15956×108元【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.故1159.56亿=1.15956×1011. 【知识点】科学记数法4.(2018甘肃省兰州市,4,4分)下列二次根式中,是最简二次根式的是( )18B.13C.27D.12【答案】B【解析】因为18=32,27=33,12=23由最简二次根式需要同时满足两个条件:(1)被开方数中各因数或因式的指数都为1;(2)被开方数不含分母知,13为最简二次根式.【知识点】最简二次根式5.(2018甘肃省兰州市,5,4分)如图,AB//CD,AD=CD,∠1=65°则∠2的度数是( )A.50°B.60°C.65°D.70°【答案】A【解析】由两直线平行,内错角相等,因为AB //CD ,所以∠2=∠BAD ,由三角形内角和公式且AD =CD ,可知,∠CAD =22-180∠︒,又∠2+∠1+∠CAD =180°,可知∠2=50°. 【知识点】平行线的性质 平角的概念 等腰三角形的性质6.(2018甘肃省兰州市,6,4分)下列计算正确的是( ) A .ab a a 532=⋅ B .1243a a a =⋅C .24226)3-b a b a =( D . a 2+a 2+a 2=3a 2【答案】D【解析】因为2a 2·3a =6a 2,所以选项A 错误;因为a 3·a 4=a 7,所以选项B 错误;因为,所以24229)3-b a b a =(选项C 错误;a 2+a 2+a 2=3a 2,所以选项D 正确.故选D .【知识点】同底数幂的运算 同底数幂的乘法 积的乘方7.(2018甘肃省兰州市,7,4分) 如图,边长为4的等边△ABC 中,D 、E 分别是AB 、AC 的中点,则△ADE 的面积是( )A .3B .23 C .433 D .32【答案】A【解析】边长为4的等边三角形的面积为12×433,因为D ,E 分别为AB ,AC 的中点,所以△ADE ∽△ABC ,所以S △ADE :S △ABC =1:4,所以S △ADE =1433故选A 。 【知识点】三角形中位线 相似三角形的判定和性质8.(2018甘肃省兰州市,8,4分) 如图,矩形ABCD 中,AB =3,BC =4,BE //DF 且BE 与DF 之间的距离为3,则AE 的长度是AB CD EF第8题图(第7题)CAE D BA.7 B .83 C .87 D .85【答案】C【解析】作EG ⊥DF 于G ,,因为BE ∥DF ,所以∠BEG =90°, 所以∠AEB +∠DEG =90°,又∠AEB +∠ABE =90°,所以∠DEG =∠ABE ,因为AB =EG =3,所以△ABE ≌△GED ,所以ED =BE ,在Rt △ABE 中,AE 2+AB 2=BE 2=(4-AE )2,解得AE =78,故选C 。设AE =x ,则BE =29x +,由3×BE =3×DE ,所以BE =DE .即29x +=4-x ,解得x =87.【知识点】平行四边形的性质 全等三角形的判定和性质 勾股定理9.(2018甘肃省兰州市,9,4分)如图,将口ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F .若∠ABD =48°,∠CFD =40°,则∠E 为A .102°B .112°C .122°D .92° 【答案】B【解析】因为∠DFC =∠BFE =40°,由折叠的性质知△ABD ≌△CBD ≌△CDB ,所以∠FBD =∠FDB =20°,∠ABD =∠EBD=48°,所以∠EBF =28°,所以∠E =180°-∠EBF -∠EFB =180°-28°-40°=112°,故选B 。 【知识点】平行四边形的性质 折叠的性质 全等三角形的判定和性质10.(2018甘肃省兰州市,10,4分) 关于x 的分式方程112=++x ax 的解为负数,则a 的取值范围为 A. a >1 B .a <1 C .a <1且a ≠-2 D .a >1且a ≠2【答案】D【解析】解分式方程得x =1-a ,因为分式方程的解为负数,所以1-a <0,所以a >1,又x +1≠0,所以1-a ≠-1,a ≠2,故选D 。【知识点】分式方程的解法 字母系数值的确定11.(2018甘肃省兰州市,11,4分) 如图,已知二次函数)0(2≠++=a c bx ax y 的图像如图所示,有下列5个结论:①0>abc ;②b -a >c ;③)1)((b a ;a 3024的实数>⑤>;④>≠++-++m b am m c c b a .其中正确的结论有AEBDCF第9题图A. ①②③B. ②③⑤C. ②③④D. ③④⑤ 【答案】C 【解析】因为二次函数开口向下,所以a <0,因为对称轴在x 轴正半轴,所以b >0,因为二次函数与y 轴交于正半轴,所以c >0,所以abc <0,①错误;当x =-1时,a -b +c <0,所以b -a >c ,②正确;由图象知当x =2时,4a +2b +c >0, ③正确;由对称轴为x =1得-2ba=-1,所以b =2a , 当x =1时,a +b +c >0,所以3a >-c ,④正确; 当x =m 时,am 2+bm +c <24ac b 4a -=c -2b 4a=c -a >0,a +b =-c <0,所以⑤不一定正确,所以正确的结论是②③④,故选C 。【知识点】二次函数的图象和性质12.(2018甘肃省兰州市,12,4分)如图,抛物线2457212+-=x x y 与x 轴的交于点A 、B ,把抛物线在x 轴即其下方的部分记作C 1,将C 1向左平移得C 2,C 2与x 轴的交于点B 、D .若直线m x y +=21与C 1、C 2共有三个不同的交点,则m 的取值范围是A. 25-m 845<<-B. 21-m 829<<-C. 25-m829<<-D. 21-m 845<<-x【答案】C【解析】由抛物线C 1的解析式得C 2的解析式为y =12(x -3)2-2=12x 2-3x +52,由于y =12x +m 与两抛物线有3个不同交点,所以至少于两个抛物线有两个不同的交点,令y =12x +m 与y =12x 2-7x +452有两个不同交点,解得m >-458;令y =12x +m 与y =12x 2-3x +52有两个不同交点,解得m >-298;当直线y =12x +m 经过(5,0)时,解得m =-52,由图像观察直线与两抛物线有三个交点必与y =12x 2-3x +52有两个交点且m <-52,所以m 的取值范围是-298<m <-52,故选C 。【知识点】二次函数的性质二、填空题:本大题共4小题,每小题4分,共16分.13.(2018甘肃省兰州市,13,4分)因式分解:32y y x -= . 【答案】y (x +y )(x -y )【解析】x 2y -y 3=y (x 2-y 2)=y (x +y )(x -y ).【知识点】因式分解14.(2018甘肃省兰州市,14,4分) 不等式组⎪⎩⎪⎨⎧>+->+x x x x 32-133475)1(2的解集为 .【答案】-1<x <3【解析】不等式(1)得到:x <3, 不等式(2)得到:x >-1, 所以,不等式组的解集是:-1<x <3. 【知识点】不等式组的解法15.(2018甘肃省兰州市,15,4分) 如图,△ABC 的外接圆O 的半径为3,∠C =55°,则劣弧AB 的长是 . 【答案】116π【解析】因为∠C =55°,所以∠AOB =110°,所以弧AB =1103180π⨯=116π。【知识点】圆周角 圆心角 弧长计算16.(2018甘肃省兰州市,16,4分) 如图,M 、N 是正方形ABCD 的边CD 上的两个动点,满足AM =BN ,连接AB 交BN 于点E ,连接DE 交AM 于点F ,连接CF ,若正方形的边长为6,则线段CF 的最小值是. 【答案】25-2【解析】连接BD 交AC 于O ,取AD 中点P ,由于AM =BN , ∠ADM =∠BCN =90°,AD =BC ,所以△ADM ≌△BCN ,所以DM =CN ,当点M 与点D 重合时CF =CD =6,当点M 与点C 重合时CF =CO 2, 观察图形可以确定点F 在以AD 为直径的圆弧上运动,CF 的最小值为CP 与圆弧的交点。由勾股定理得CP 5CF 的最小值为5【知识点】正方形 动点问题三、解答题(本大题共12小题,满分86分,解答应写出文字说明、证明过程或演算步骤17.(2018甘肃省兰州市,17,5分) (5分)计算:()︒+++⎪⎭⎫ ⎝⎛--45tan 2-13-2102π.【思路分析】根据负整数指数幂的性质,零指数幂的运算法则,绝对值的化简法则进行运算。 【解题过程】2-71)12(14=+--+=原式. 【知识点】实数的计算18.(2018甘肃省兰州市,18,5分) 解方程:02232=--x x . 【思路分析】根据配方法或求根公式法求解。 【解题过程】解法一:移项,得3x 2-2x =2, 配方,得3(x -31)2=37, (3分) N第16题图M FEDB AC解得x 1=371+,x 2=371- . (5分) 解法二:因为a =3,b =-2,c =-2,所以△=(-2)2-4×3×(-2)=4+24=28。所以x =227±,所以x 1=17+,x 2=17-。【知识点】一元二次方程解法19.(2018甘肃省兰州市,19,5分) 先化简,再求值:12)143(--÷---x x x x x ,其中21=x . 【思路分析】【解题过程】原式=2x 3x+41x x ---÷21x x --=221x x --()·12x x --=x -2.当x =12时,原式=12-2=-32。【知识点】分式化简求值20.(2018甘肃省兰州市,20,6分)如图,在Rt △ABC 中.(1)利用尺度作图,在BC 边上求作一点P ,使得点P 到AB 的距离(PD 的长)等于PC 的长; (2)利用尺规作图,作出(1)中的线段PD .(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【思路分析】PC ⊥AC ,要使P 到AB 的距离(PD 的长)等于PC 的长,即求∠A 的角平分线与BC 的交点. 【解题过程】(1)作∠A 的平分线AD ,交BC 于P ; (2)过点P 作直线AB 的垂线,垂中为D 。【知识点】尺规作图21.(2018甘肃省兰州市,21,7分)学校开展“书香校园”活动以来,受到同学们的广泛帮助,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计图表. 学生借阅图书的次数统计表 借阅图书的次数0次 1次 2次3次 4次及以上人数713a103学生借阅图书的次数统计图请你根据统计图表中的信息,解答下列问题: (1)a = ,b = ;(2)该调查统计数据的中位数是 ,众数是 ; (3)请计算扇形统计图中的“3次”所对应的圆心角的度数;(4)若该校共有2000名学生,根据调查结果,统计该校学生在一周内借阅图书“4次及以上”的人数.【思路分析】(1)由借阅图书1次的统计表得借阅图书1次的人数为13,由学生借阅次数统计图得借阅图书1次的人数占总人数的26%,所以调查总人数为13÷26%=50人;a =50-7-13-10-3=17人;10÷50=20%,所以b =20; (2)该调查统计数据中的中位数是2次,众数是2次; (3)“3次”所对的圆心角度数是360°×20%=72°; (4)一周内借阅图书“4次及以上”的人数为2000×350=120人。 【解题过程】 (1)17,20, (2)2,2(3)360°⨯20%=72°; (4)1205032000=⨯(人) 【知识点】统计的应用 中位数 众数 样本估计总体22.(2018甘肃省兰州市,22,7分)在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状是、大小完全相同.李强从布袋里随机取出一个小球,记下数字为x ,王芳在剩下的3个小球中随机取出一个小球,记下数字为y ,这样就确定了点M 的坐标(x ,y ).(1)画树状图或列表,写出点M 所有可能的坐标; (2)求点M (x ,y )在函数y =x +1的图像上的概率.【思路分析】(1)把所有可能的情况列出来即可;(2)找出符合的点坐标,即可求出概率. 【解题过程】(1)画树状图如下:,所以点M 所有可能的坐标为(1,4),(1,2),(1,3),(2,1),(2,4),(2,3),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),共12个. x 1 1 1 2 2 2 3 3 3 4 4 4 y234134124123(2)点(1,2),(2,3),(3,4)在函数y =x +1的图象上,所以点M 在函数y =x +1的图象上的概率是12=14。、 【知识点】统计 概率23.(2018甘肃省兰州市,23,7分) (7分)如图,斜坡BE ,坡顶B 到水平地面的距离AB 为3米,坡底AE 为18米,在B 处,E 处分别测得CD 顶部点D 的仰角为30°,60°.求CD 的高度.(结果保留根号)2次0次1次 263次 b%4次及以【思路分析】作BF ⊥CD 于F ,然后在两个直角三角形中分别表示出BF ,CE ,然后利用BF 和CE 相等即可求解. 【解题过程】作BF ⊥CD 于F ,设CE =x 米,因为∠DEC =60°,所以DC 米。DF x -2)米,因为∠FBD =30°,所以BF =(x -2)米。因为BA ⊥AC ,DC ⊥AC ,所以四边形BACF 为矩形,所以BF =AC ,(x -2)=x +18,解得x .答:CD 的高度是米。【知识点】解直角三角形 三角函数24.(2018甘肃省兰州市,24,7分) 7分)某商家销售一款商品,进价每件80元,售价每件145元,每天销售40件,每销售一件需支付给商家管理费5元,未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天起每天的单价均比前一天降1元,通过市场调查发现,该商品单价每降1元,每天的销售量增加2件,设第x 天(1≤x ≤30,且x 为整数)的销量为y 件. (1)直接写出y 与x 的函数关系式;(2)设第x 天的利润为w 元,试求出w 与x 之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元? 【思路分析】(1)从第一天起单价均比前一天降1元,销售量每天增加2件,故y =40+2(x -1)=2x +38;(2)利润(w )=销量(y )×单位利润(单位价格-单位成本). 利润=销量×单位利润,将单位利润表示出来,再求二次函数的最大值即可.【解题过程】(1)y =38+2x ;【解析】:(2)()()[]1580145382----+=x x w =-2(x-21)2+3200故x =21时,w 值最大,为2041元,即第21天时,利润最大,最大利润为3200元. 【知识点】一次函数 二次函数 最大利润25.(2018甘肃省兰州市,25,8分)如图,在平面直角坐标系中,一次函数y 1=ax +b 的图像与反比例函数xk y =2的图像交于点A (1,2)和B (-2,m ).(1)求一次函数和反比例函数的表达式(2)请直接写出21y >y 时,x 的取值范围;(3)过点B 做BE //x 轴,BE AD ⊥于点D ,点C 是直线BE 上一点,若AC =2CD ,求点C 的坐标.【思路分析】(1)将点A 坐标代入反比例函数解析式求得反比例函数解析式,将点B坐标代入反比函数解析式求得点B 坐标,由A,B 两点坐标代入一次函数解析式求得一次函数解析式;(2)看图中y 1图像在y 2图像上面的部分,写出横坐标集合即可;(3)用两点间的距离公式,表示出两段线段的距离,求解方程,即可求出. 【解题过程】(1)将 A (1,2)代入x k y =2,得k=2,所以反比例函数的解析式为22y x =。
2018年甘肃省陇南市中考数学试卷和答案解析
2018年甘肃省陇南市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确1.-2018的相反数是()A.-2018B.2018C.-1D.1201820182.下列计算结果等于x3的是()A.x64-x2B.x4-xC.x+x2D.x2«x3.若一个角为65。
,则它的补角的度数为()A.25°B.35°C.115°D.125°4.已知旦=_L(aUO,b尹0),下列变形错误的是()23A. B.2a=3b C.—D.3a=2bb3a22.5.若分式土二1的值为0,则x的值是()XA.2或-2B.2C.-2D.06.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数三与方差S2如下表:甲乙丙T平均数三(环)11.111.110.910.9方差S2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁7.关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.kW-4B.k<-4C.kW4D.k<48.如图,点E是正方形ABCD的边DC上一点,把^ADE绕点A顺时针旋转90。
到AABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5B.V23C.7D.^29_9.如图,G)A过点O(0,0),C(福,0),D 的一点,连接BO,BD,贝IJZOBD的度数是((0,1),点B是x轴下方©A±)A.15°B.30°C.45°D.60°10.如图是二次函数y=ax2+bx+c(a,b,c是常数,aUO)图象的一部分,与x 轴的交点A在点(2,0)和(3,0)之间,对称轴是x=l.对于下列说法:①ab <0;②2a+b=0;③3a+c>0;④a+b^m(am+b)(m为实数);⑤当-l<x<3时,y>0,其中正确的是()二、填空题:本大题共8小题,每小题4分,共32分11.(4分)计算:2sin30°+(-1)2018-(1)212.(4分)使得代数式有意义的x的取值范围是_______.V x~313.(4分)若正多边形的内角和是1080%则该正多边形的边数是.14.(4分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为.俯视图15.(4分)巳知a,b,c是^ABC的三边长,a,b满足|a-7|+(b-1)2=0,c 为奇数,贝!J c=.16.(4分)如图,一次函数y=-x-2与y=2x+m的图象相交于点P(n,-4),则关于x的不等式组(2x+m?x-2的解集为-x-2<017.(4分)如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为.18.(4分)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2018次输出的结果为.三、解答题(一);本大题共5小题,共38分,解答应写出必要的文字说明,证明过程或演算步骤19.(6分)计算:——:(—-1)a2-b2a-b20.(6分)如图,在ZXABC中,ZABC=90°.(1)作ZACB的平分线交AB边于点0,再以点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
仅供学习与交流,如有侵权请联系网站删除 谢谢1
精品好文档,推荐学习交流
A. 5 B.
C. 7 D.
9.如图,⊙A 过点 O(0,0),C( ,0),D(0,1),点 B 是 x 轴下方⊙A
上的一点,连接 BO,BD,则∠OBD 的度数是( )
A.15°B.30°C.45°D.60° 10.如图是二次函数 y=ax2+bx+c(a,b,c 是常数,a≠0)图象的一部分,与 x 轴的交点 A 在点(2,0)和(3,0)之间,对称轴是 x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m 为实数);⑤当﹣1<x<3 时,y>0,其中正确的是( )
A.①②④ B.①②⑤ C.②③④ D.③④⑤
二、填空题:本大题共 8 小题,每小题 2018 年甘肃省定西市,共 32 分
11.计算: 2sin 30 (1)2018 (1)1
.
2
12.使得代数式 1 有意义的 x 的取值范围是
.
x3
13.若正多边形的内角和是 1080°,则该正多边形的边数是 .
仅供学习与交流,如有侵权请联系网站删除 谢谢4
精品好文档,推荐学习交流
22.随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高 铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B 两地被大山阻隔, 由 A 地到 B 地需要绕行 C 地,若打通穿山隧道,建成 A,B 两地的直达高铁可 以缩短从 A 地到 B 地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640 公里, 求隧道打通后与打通前相比,从 A 地到 B 地的路程将约缩短多少公里?(参考 数据: 3 1.7 , 2 1.4)
不等式组
2x x
m 20
x
2
的解集为
.
17.如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间
作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长
为 a,则勒洛三角形的周长为
.
18.如图,是一个运算程序的示意图,若开始输入 x 的值为 625,则第 2018 次 输出的结果为 .
仅供学习与交流,如有侵权请联系网站删除 谢谢3
精品好文档,推荐学习交流
三、解答题(一);本大题共 5 小题,共 32018 年甘肃省定西市,解答应写出
必要的文字说明,证明过程或演算步骤
19.计算:
a2
b b2
( a
a b
1)
.
20.如图,在△ ABC 中,∠ABC=90°. (1)作∠ACB 的平分线交 AB 边于点 O,再以点 O 为圆心,OB 的长为半径作 ⊙O;(要求:不写做法,保留作图痕迹) (2)判断(1)中 AC 与⊙O 的位置关系,直接写出结果.
精品好文档,推荐学习交流
2018 年甘肃省(全省统考)中考数学试卷
一、选择题:本大题共 10 小题,每小题 2018 年甘肃省定西市,共 30 分,每小 题只有一个正确
1. -2018 的相反数是( )
A.-2018 B.2018
C. 1 2018
2.下列计3.如图,在正方形方格中,阴影部分是涂黑 3 个小正方形所形成的图案. (1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概 率是多少? (2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取 2 个涂黑,得 到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.
仅供学习与交流,如有侵权请联系网站删除 谢谢5
精品好文档,推荐学习交流
四、解答题(二):本大题共 5 小题,共 50 分。解答应写出必要的文字说明, 证明过程或演算步骤 24.“足球运球”是中考体育必考项目之一兰州市某学校为了解今年九年级学生足 球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样 本,按 A,B,C,D 四个等级进行统计,制成了如下不完整的统计图.
D. 3a 2b
A. 2 或-2 B. 2 C. -2 D. 0
6.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷 10
次,他们成绩的平均数 与方差 s2 如下表:
甲
乙
丙
丁
平均数 (环) 11.1
11.1
10.9
10.9
方差 s2
1.1
1.2
1.3
1.4
若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择( )
仅供学习与交流,如有侵权请联系网站删除 谢谢2
精品好文档,推荐学习交流
14.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧
面积为
.
15.已知 a , b , c 是 ABC 的三边长, a , b 满足 a 7 (b 1)2 0, c 为奇数,
则c
.
16.如图,一次函数 y x 2 与 y 2x m 的图象相交于点 P(n, 4) ,则关于 x 的
A.甲 B.乙 C.丙 D.丁 7.关于 x 的一元二次方程 x2+4x+k=0 有两个实数根,则 k 的取值范围是( ) A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<4 8.如图,点 E 是正方形 ABCD 的边 DC 上一点,把△ ADE 绕点 A 顺时针旋转 90°到△ ABF 的位置,若四边形 AECF 的面积为 25,DE=2,则 AE 的长为( )
A. x6 x2
B. x4 x
C. x x2
D. x2 x
3.若一个角为 65°,则它的补角的度数为( )
A.25°B.35°C.115° D.125°
4.已知 a b (a 0,b 0) ,下列变形错误的是( ) 23
A. a 2 b3
B. 2a 3b
C. b 3 a2
5. 若分式 x2 4 的值为 0,则 的值是( ) x
21.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提 到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题, 原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各 几何?译文为:现有若干人合伙出钱买鸡,如果每人出 9 文钱,就会多 11 文钱; 如果每人出 6 文钱,又会缺 16 文钱.问买鸡的人数、鸡的价格各是多少?请解 答上述问题.