2018年中考数学试卷及答案
2018重庆中考数学试题及答案
2018重庆中考数学试题及答案2018年重庆中考数学试题及答案一、选择题1. 设直线l1过点A(-2,-3),斜率为k1,直线l2过点B(1,4),斜率为k2,且k1k2=3,则k1+k2的值为多少?A. 2/3B. 4/3C. 3/2D. 5/2【答案】A. 2/32. 已知直线l过点(3,4),斜率为3/4,点P在l上,且OP:OQ=1:3。
若点P的坐标为(x,y),则点Q的坐标为多少?A. (3,6)B. (4,7)C. (9/2,11/2)D. (5/2,9/2)【答案】C. (9/2,11/2)3. 设数列{an}满足a1=2,an+1=(an+3)/2,(n≥1),则a3的值为多少?A. 4/3B. 7/3C. 8/3D. 11/3【答案】B. 7/34. 已知函数f(x)=x^2+ax+b在点(1,1)处的函数值与导数值相等,则a与b的值分别为:A. a=-2,b=0B. a=0,b=-1C. a=1,b=-2D. a=2,b=1【答案】C. a=1,b=-25. 若x^log2(0.5)+2^log0.5(x^2)=2,则x的值为多少?A. 1B. -1/4C. 1/4D. 4【答案】C. 1/4二、填空题6. 在△ABC中,∠ABC=90°,AC=6,BC=8,则AB的长度为______。
【答案】107. 设2π/3<θ<π,且sinθ=3/5,则cos(π-θ)的值为______。
【答案】-3/58. 将125g的白醋与75g的水混合,得到质量分数为40%的溶液,白醋的浓度为______。
【答案】62.5%9. 在长方体中,一个顶点被任意选定,则与它相邻的顶点个数为______。
【答案】310. 若点P是对称点(-1,4)关于抛物线y=x^2的焦点,则点P的坐标为______。
【答案】(1,0)三、解答题11. 如图,矩形ABCD的边长分别为a和2a,直线l1经过点C,且与AB平行,直线l2经过点D,且与BC平行。
2018年中考数学试卷(有答案)
2018年中考数学试卷(有答案)2018年中考数学试卷(有答案)全卷满分120分,考试时间120分钟)一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分)1.一元二次方程 x^2-4=0 的解是()A。
x=2B。
x=-2C。
x1=2,x2=-2D。
x1=-2,x2=22.二次三项式 x^2-4x+3 配方的结果是()A。
(x-2)^2+7B。
(x-2)^2-1C。
(x+2)^2+7D。
(x+2)^2-13.XXX从上面观察下图所示的两个物体,看到的是(删除该段)4.人离窗子越远,向外眺望时此人的盲区是()A。
变小B。
变大C。
不变D。
以上都有可能5.函数 y=kx 的图象经过 (1,-1),则函数 y=kx-2 的图象是(删除该段)6.在直角三角形 ABC 中,∠C=90°,a=4,b=3,则 sinA 的值是()A。
5/4B。
4/5C。
3/5D。
4/37.下列性质中正方形具有而矩形没有的是()A。
对角线互相平分B。
对角线相等C。
对角线互相垂直D。
四个角都是直角8.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是(删除该段)二、填空题(本大题共7个小题,每小题3分,满分21分)9.计算tan60°=√3.10.已知函数 y=(m-1)x^(m-2) 是反比例函数,则 m 的值为3.11.若反比例函数 y=k/x^2 的图象经过点 (3,-4),则此函数在每一个象限内 y 随 x 的增大而减小。
12.命题“直角三角形两条直角边的平方和等于斜边的平方”的逆命题是“如果两条直角边的平方和不等于斜边的平方,则三角形不是直角三角形”。
13.有两组扑克牌各三张,牌面数字分别为 2,3,4,随意从每组中牌中抽取一张,数字和是 6 的概率是 1/9.14.依次连接矩形各边中点所得到的四边形是长方形。
15.如图,在△ABC中,BC=8 cm,AB 的垂直平分线交AB 于点 D,交边 AC 于点 E,△BCE 的周长等于 18 cm,则AC 的长等于 10 cm。
2018年云南中考数学试卷(含解析)
2018年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(2018云南,1,3分)-1的绝对值是________.【答案】1.【解析】根据“负数的绝对值等于它的相反数”知,-1的绝对值是1.2.(2018云南,2,3分)已知点P (a ,b )在反比例函数y =2x的图象上,则ab =________. 【答案】2.【解析】因为点P (a ,b )在反比例函数y =2x 的图象上,所以b =2a,即ab =2. 3.(2018云南,3,3分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员有3 451人.将3 451用科学记数法表示为________.【答案】3.451×310.【解析】用科学记数法表示3 451,就是将3 451写成a ×10n (其中1≤a <10,n 为整数)的形式.因为1≤a <10,所以a =3.541;因为3 451一共有4位整数数位,所以n =3.所以3 451用科学记数法表示为3.541×310.4.(2018云南,4,3分)分解因式:24x -=________.【答案】(2)(2)x x +-.【解析】多项式24x -可运算平方公式分解,即24x -=(2)(2)x x +-,而因式2x +与2x -不能再分解,所以(2)(2)x x +-就是因式分解的结果.5.(2018云南,5,3分)如图,已知AB ∥CD ,若AB CD =14,则OA OC=________. 【答案】14. 【解析】因为AB ∥CD ,所以△OAB ∽△OCD ,所以OA OC =AB CD =14. 6.(2018云南,6,3分)在△ABC 中,AB =34,AC =5.若BC 边上的高等于3,则BC 边的长为________.【答案】1或9.【解析】设边BC 上的高为AD .当边BC 上的高AD 在△ABC 的内部时,如答图1所示,在Rt △ABD 中,由勾股定理得BD =22AB AD -=22(34)3-=5,在Rt △ACD 中,由勾股定理得CD =22AC AD -=2253-=4,所以BC =5+4=9.在边BC 上的高AD 在△ABC 的外部时,如答图2所示,同理BD =5,CD =4,所以BC =5-4=1.(第5题图) C DAB O(第6题答图1) CD A B (第6题答图2) CDA B二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共计32分)7.(2018云南,7,4分)函数y =1x -的自变量x 取值范围为 ········································ ( )A .x ≤0B .x ≤1C .x ≥0D .x ≥1【答案】B .【解析】函数y =1x -自变量x 满足1x -≥0,解得x ≤1..8.(2018云南,8,4分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图)。
2018年黑龙江齐齐哈尔市中考数学试卷(含解析)
2018年黑龙江省齐齐哈尔市初中毕业、升学考试数学学科(满分120分,考试时间120分钟)一、选择题(每小题3分,满分30分)2. (2018黑龙江省齐齐哈尔市,题号2,分值3)下列计算正确的是( )A. 236a a a =gB.224()a a =C.842a a a ÷=D.33()ab ab = 【答案】B 【解析】选项A ,根据同底数幂的乘法可知,23235a a a a +==g,此选项错误;选项B ,根据幂的乘方可知,22224()a a a ⨯==,故此选项正确;选项C,根据同底数幂的除法可知,84844a a a a -÷==,故此选项错误;选项D ,根据积的乘方可知,333()ab a b =,故此选项错误.故选B. 【知识点】同底数幂的乘法,幂的乘方,同底数幂的除法,积的乘方.3. (2018黑龙江省齐齐哈尔市,题号3,分值3)“厉害了,我的国!” 2018年1月18日,国家统计周对外公布,全年国内生产总值(GDP)首次站上82万亿元的历史新台阶.把82万亿用科学记数法表示为 ( )A. 8.2xlO 13B. 8.2xl012C. 118.210⨯ D. 8.2xlO9 【答案】A【解析】由科学记数法的定义可知,82万亿=82000000000000= 8.2xlO 13 .【知识点】科学记数法.4. (2018黑龙江省齐齐哈尔市,题号4,分值3)一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A. 10°B. 15°C. 18°D. 30°【答案】B【解析】由图可知,∠EDF=45°,∠ABC=30°,∵AB ∥CF ,∠EDF 是△BCD 的外角,∴∠ABC=∠BCD=30°,∠EDF=∠DBC+∠BCD ,解得∠DBC=15°.故选B.【知识点】平行线的性质,三角板各角的度数,互为补角的性质,三角形内角和定理,三角形外角的性质.5. (2018黑龙江省齐齐哈尔市,题号5,分值3)如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某1. (2018黑龙江省齐齐哈尔市,题号1,分值3)下列“数字图形”中,既是轴对称图形,又是中心对称图形的有( )A.1个B.2个C.3个D.4个【答案】C【解析】由轴对称图形的定义可知,图形0,1,8有对称轴所以是轴对称图形,由中心对称图形的定义可知,4个图形均有对称中心,均是中心对称图形,∴既是轴对称图形,又是中心对称图形是图形0,1,8,即有3个,故选C .【知识点】轴对称图形的性质,中心对称图形的性质.天气温T 如何随时间t 的变化而变化.下列从图象中得到的信息正确的是( )A. 0点时气温达到最低B.最低气温是零下4℃C. 0点到14点之间气温持续上升D.最高气温是8℃ 【答案】D【解析】选项A ,由图象可知,最低点在4点时出现,故此选项错误;选项B ,由图象可知,最低点表示的是4点时,气温是-3℃,故此选项错误;选项C ,由图象可知,0点到14点气温的变化是先降温到-3℃再升温,故此选项错误;选项D ,由图可知,图象的最高点在14点时出现,此时气温是8℃,故此选项正确. 故选D.【知识点】折现统计图的应用.6. (2018黑龙江省齐齐哈尔市,题号6,分值3)我们家乡的黑土地全国特有,肥沃的土壤、绿色的水源是优质大米得天独厚的生长条件,因此黑龙江的大米在全国受到广泛欢迎.小明在平价米店记录了一周中不同包装(10 kg, 20 kg, 50 kg)的大米的销售量(单位:袋)如下:10 kg 装100袋;2kg 装 220袋;50 kg 装80袋.如果每千克大米的进价和销售价都相同,则米店老板最应该关注的是这呰数据(袋数)中的 ( )A.众数B.平均数C.中位数D.方差【答案】A【解析】此题考查的是数据分析的能力,在每千克大米的进价和销售价都相同的情况下,作为米店老板最应该关注的是哪种包装的大米销售量最高,即众数.平均数表示销售的平均情况,不能凸显应该多进哪种包装的大米.中位数只能表示销售情况的中间量,不能帮米店老板分析多进哪种包装的大米.方差表示数据的离散程度,在此问题中不适用.故答案选A.【知识点】数据的集中趋势,数据的离散程度.7. (2018黑龙江省齐齐哈尔市,题号6,分值3)我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不.正确..的是 ( ) A. 若葡萄的价格是3元/千克,则3a 表示买a 千克葡萄的金额B. 若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C. 将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a 表示桌面受 到的压强,则3a 表示小木块对桌面的压力D.若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数【答案】D【解析】选项A ,根据“单价×数量=总价”可知3a 表示买a 千克葡萄的金额,此选项不符合题意;选项B ,由等边三角形周长公式可得3a 表示这个等边三角形的周长,此选项不符合题意;选项C ,由压强=压力接触面积得压力=压强×接触面积,可知3a 表示小木块对桌面的压力,此选项不符合题意;选项D ,由题可知,这个两位数用字母表示为10×3+a=30+a ,此选项符合题意.故选D.【知识点】用字母表示数的实际应用.8. (2018黑龙江省齐齐哈尔市,题号8,分值3)某抗战纪念馆馆长找到大学生团干部小张,联系青年志愿者在周日参与活动,活动累计56个小时的工作时间,需要每名男生工作5个小时,每名女生工作4个小时,小张可以安排学生参加活动的方案共有 ( )A, 1种 B. 2种 C. 3种 D. 4种【答案】C【解析】由题可知,设参加活动的男生有a 人,参加活动的女生有b 人,可得5a+4b=56,解得4(14)5b b a -==56-45,∵a ,b 均为非负整数,∴b 只能被5整除,即为4,9,14.∴小张可以安排学生参加活动的方案共有3种.故选C.【知识点】二元一次方程的应用,能被5整除的数的特点.9.(2018黑龙江省齐齐哈尔市,题号9,分值3)下列成语中,表示不可能事件的是 ( )A.缘木求鱼B.杀鸡取卵C.探囊取物D.日月经天,江河行地【答案】A【解析】不可能事件表示在生活中不可能出现的情况,即概率为0的事件,选项B 、C 、D 在生活中都能出现,只有选项A 在生活中不可能出现。
湖南省长沙市2018年中考数学试题(解析版)
2018年湖南省长沙市中考数学试卷一、选择题(在下列各题的四个选项中,只有一项是符合要求的,请在答题卡中填涂符合题意的选项,本大题共12个小题,每小题3分,共36分)1. ﹣2的相反数是()A. ﹣2B. ﹣C. 2D.【答案】C【解析】试题分析:根据只有符号不同的两个数互为相反数,可得:-2的相反数是2,故选C.考点:相反数.2. 据统计,2017年长沙市地区生产总值约为10200亿元,经济总量迈入“万亿俱乐部”,数据10200用科学记数法表示为()A. 0.102×105B. 10.2×103C. 1.02×104D. 1.02×103【答案】C【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.详解:10200=1.02×104,故选:C.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3. 下列计算正确的是()A. a2+a3=a5B.C. (x2)3=x5D. m5÷m3=m2【答案】D【解析】分析:直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.详解:A、a2与a3不是同类项,无法计算,故此选项错误;B、3-=2,故此选项错误;C、(x2)3=x6,故此选项错误;D、m5÷m3=m2,正确.故选:D.点睛:此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.4. 下列长度的三条线段,能组成三角形的是()A. 4cm,5cm,9cmB. 8cm,8cm,15cmC. 5cm,5cm,10cmD. 6cm,7cm,14cm 【答案】B【解析】分析:结合“三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论.详解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.点睛:本题考查了三角形的三边关系,解题的关键是:用较短的两边长相交与第三边作比较.本题属于基础题,难度不大,解决该题型题目时,结合三角形三边关系,代入数据来验证即可.5. 下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】A【解析】试题分析:将一个图形沿着某条直线对折,如果直线两边的图形能够完全重叠,则这个图形就是轴对称图形;将一个图形围绕某一点旋转180°之后,如果能够与原图形完全重合,则这个图形就是中心对称图形.考点:(1)、轴对称图形;(2)、中心对称图形视频6. 不等式组的解集在数轴上表示正确的是()A. B.C.D.【答案】C 【解析】分析:先求出各不等式的解集,再求出其公共解集即可.详解:解不等式x+2>0,得:x >-2,解不等式2x-4≤0,得:x≤2,则不等式组的解集为-2<x≤2,将解集表示在数轴上如下:故选:C .点睛:本题主要考查解一元一次不等式组,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7. 将下列如图的平面图形绕轴l 旋转一周,可以得到的立体图形是( )A. B. C. D.【答案】D【解析】分析:根据面动成体以及圆台的特点进行逐一分析,能求出结果.详解:绕直线l 旋转一周,可以得到圆台,故选:D .点睛:本题考查立体图形的判断,关键是根据面动成体以及圆台的特点解答.8. 下列说法正确的是( )A. 任意掷一枚质地均匀的硬币10次,一定有5次正面向上B. 天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C. “篮球队员在罚球线上投篮一次,投中”为随机事件D. “a是实数,|a|≥0”是不可能事件【答案】C【解析】分析:直接利用概率的意义以及随机事件的定义分别分析得出答案.详解:A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|≥0”是必然事件,故此选项错误.故选:C.点睛:此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.9. 估计+1的值是()A. 在2和3之间B. 在3和4之间C. 在4和5之间D. 在5和6之间【答案】C【解析】∵9<10<16,故选:C.10. 小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A. 小明吃早餐用了25minB. 小明读报用了30minC. 食堂到图书馆的距离为0.8kmD. 小明从图书馆回家的速度为0.8km/min【答案】B【解析】分析:根据函数图象判断即可.详解:小明吃早餐用了(25-8)=17min,A错误;小明读报用了(58-28)=30min,B正确;食堂到图书馆的距离为(0.8-0.6)=0.2km,C错误;小明从图书馆回家的速度为0.8÷10=0.08km/min,D错误;故选:B.点睛:本题考查的是函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合题意正确计算是解题的关键.11. 我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为()A. 7.5平方千米B. 15平方千米C. 75平方千米D. 750平方千米【答案】A【解析】分析:直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案.详解:∵52+122=132,∴三条边长分别为5里,12里,13里,构成了直角三角形,∴这块沙田面积为:×5×500×12×500=7500000(平方米)=7.5(平方千米).故选:A.点睛:此题主要考查了勾股定理的应用,正确得出三角形的形状是解题关键.12. 若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件的点P()A. 有且只有1个B. 有且只有2个C. 有且只有3个D. 有无穷多个【答案】B【解析】分析:根据题意可以得到相应的不等式,然后根据对于任意非零实数a,抛物线y=ax2+ax-2a 总不经过点P(x0-3,x02-16),即可求得点P的坐标,从而可以解答本题.详解:∵对于任意非零实数a,抛物线y=ax2+ax-2a总不经过点P(x0-3,x02-16),∴x02-16≠a(x0-3)2+a(x0-3)-2a∴(x0-4)(x0+4)≠a(x0-1)(x0-4)∴(x0+4)≠a(x0-1)∴x0=-4或x0=1,∴点P的坐标为(-7,0)或(-2,-15)故选:B.点睛:本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题(本大题共6个小题,每小题3分,共18分)13. 化简:=_____.【答案】1【解析】试题分析:根据分式加减法运算法则直接计算:.考点:分式加减法.14. 某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为_____度.【答案】90【解析】分析:根据圆心角=360°×百分比计算即可;详解:“世界之窗”对应扇形的圆心角=360°×(1-10%-30%-20%-15%)=90°,故答案为90.点睛:本题考查的是扇形统计图的综合运用,读懂统计图是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.15. 在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.【答案】(1,1)【解析】分析:直接利用平移的性质分别得出平移后点的坐标得出答案.详解:∵将点A′(-2,3)向右平移3个单位长度,∴得到(1,3),∵再向下平移2个单位长度,∴平移后对应的点A′的坐标是:(1,1).故答案为:(1,1).点睛:此题主要考查了平移,正确掌握平移规律:上加下减,左加右减,是解题关键.16. 掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是_____.【答案】【解析】分析:先统计出偶数点的个数,再根据概率公式解答.详解:正方体骰子共六个面,点数为1,2,3,4,5,6,偶数为2,4,6,故点数为偶数的概率为,故答案为:.点睛:此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17. 已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.【答案】2学。
山东泰安市2018年中考数学试题(含答案)
泰安市2018年初中学业水平考试数学试题一、选择题(本大题共12个小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对3分,选错、不选或选出的答案超过一个,均记零分)1. 计算:的结果是()A. -3B. 0C. -1D. 3【答案】D【解析】分析:根据相反数的概念、零指数幂的运算法则计算即可.详解:原式=2+1=3.故选D.点睛:本题考查的是零指数幂的运算,掌握任何非零数的零次幂等于1是解题的关键.2. 下列运算正确的是()A. B. C. D.【答案】D【解析】分析:根据合并同类项法则、同底数幂的乘、除法法则、积的乘方法则计算,判断即可.详解:2y3+y3=3y3,故A错误;y2•y3=y5,故B错误;(3y2)3=27y6,故C错误;y3÷y﹣2=y3﹣(﹣2)=y5.故D正确.故选D.点睛:本题考查的是合并同类项、同底数幂的乘法、积的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.3. 如图是下列哪个几何体的主视图与俯视图()A. B. C. D.【答案】C【解析】分析:直接利用主视图以及俯视图的观察角度结合结合几何体的形状得出答案.详解:由已知主视图和俯视图可得到该几何体是圆柱体的一半,只有选项C符合题意.故选C.点睛:本题主要考查了由三视图判断几何体,正确掌握常见几何体的形状是解题的关键.4. 如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为()A. B. C. D.【答案】A【解析】分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.5. 某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A. 42、42B. 43、42C. 43、43D. 44、43【答案】B【解析】分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.详解:把这组数据排列顺序得:3538404244454547,则这组数据的中位数为:=43,=(35+38+42+44+40+47+45+45)=42.故选B.点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.6. 夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.【答案】C【解析】分析:直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案.详解:设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为:.故选C.点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键.7. 二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系内的大致图象是()A. B. C. D.【答案】C【解析】分析:首先利用二次函数图象得出a,b的取值范围,进而结合反比例函数以及一次函数的性质得出答案.详解:由二次函数开口向上可得:a>0,对称轴在y轴左侧,故a,b同号,则b>0,故反比例函数y=图象分布在第一、三象限,一次函数y=ax+b经过第一、二、三象限.故选C.点睛:本题主要考查了二次函数、一次函数、反比例函数的图象,正确得出a,b的取值范围是解题的关键.8. 不等式组有3个整数解,则的取值范围是()A. B. C. D.【答案】B【解析】分析:解不等式组,可得不等式组的解,根据不等式组有3个整数解,可得答案.详解:不等式组,由﹣x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x的不等式组有3个整数解,得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故选B.点睛:本题考查了解一元一次不等式组,利用不等式的解得出关于a的不等式是解题的关键.9. 如图,与相切于点,若,则的度数为()A. B. C. D.【答案】A【解析】分析:连接OA、OB,由切线的性质知∠OBM=90°,从而得∠ABO=∠BAO=50°,由三角形内角和定理知∠AOB=80°,根据圆周角定理可得答案.详解:如图,连接OA、OB.∵BM是⊙O的切线,∴∠OBM=90°.∵∠MBA=140°,∴∠ABO=50°.∵OA=OB,∴∠ABO=∠BAO=50°,∴∠AOB=80°,∴∠ACB=∠AOB=40°.故选A.10. 一元二次方程根的情况是()A. 无实数根B. 有一个正根,一个负根C. 有两个正根,且都小于3D. 有两个正根,且有一根大于3【答案】D【解析】分析:直接整理原方程,进而解方程得出x的值.详解:(x+1)(x﹣3)=2x﹣5整理得:x2﹣2x﹣3=2x﹣5,则x2﹣4x+2=0,(x﹣2)2=2,解得:x1=2+>3,x2=2﹣,故有两个正根,且有一根大于3.故选D.点睛:本题主要考查了一元二次方程的解法,正确解方程是解题的关键.11. 如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为()A. B. C. D.【答案】A【解析】分析:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,再根据P1与P2关于原点对称,即可解决问题.详解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1.∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6).∵P1与P2关于原点对称,∴P2(2.8,3.6).故选A.12. 如图,的半径为2,圆心的坐标为,点是上的任意一点,,且、与轴分别交于、两点,若点、点关于原点对称,则的最小值为()A. 3B. 4C. 6D. 8【答案】C【解析】分析:连接OP.由直角三角形斜边上的中线等于斜边的一半,得到OP=AB,当OP最短时,AB最短.连接OM交⊙M于点P,则此时OP最短,且OP=OM-PM,计算即可得到结论.详解:连接OP.∵P A⊥PB,OA=OB,∴OP=AB,当OP最短时,AB最短.连接OM交⊙M于点P,则此时OP最短,且OP=OM-PM==3,∴AB的最小值为2OP=6.故选C.点睛:本题考查了直角三角形斜边上中线的性质以及两点间的距离公式.解题的关键是利用直角三角形斜边上中线等于斜边的一半把AB的长转化为2OP.二、填空题(本大题共6小题,满分18分.只要求填写最后结果,每小题填对得3分)13. 一个铁原子的质量是,将这个数据用科学记数法表示为__________.【答案】【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值<1时,n是负数;n的绝对值等于第一个非零数前零的个数.详解:0.000000000000000000000000093=9.3×10﹣26.故答案为:9.3×10﹣26.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14. 如图,是的外接圆,,,则的直径..为__________.【答案】【解析】分析:连接OB,OC,依据△BOC是等腰直角三角形,即可得到BO=CO=BC•cos45°=2,进而得出⊙O的直径为4.详解:如图,连接OB,OC.∵∠A=45°,∴∠BOC=90°,∴△BOC是等腰直角三角形.又∵BC=4,∴BO=CO=BC•cos45°=2,∴⊙O的直径为4.故答案为:4.点睛:本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.15. 如图,在矩形中,,,将矩形沿折叠,点落在处,若的延长线恰好过点,则的值为__________.【答案】【解析】分析:先利用勾股定理求出A'C,进而利用勾股定理建立方程求出AE,即可求出BE,最后用三角函数即可得出结论.详解:由折叠知,A'E=AE,A'B=AB=6,∠BA'E=90°,∴∠BA'C=90°.在Rt△A'CB 中,A'C==8,设AE=x,则A'E=x,∴DE=10﹣x,CE=A'C+A'E=8+x.在Rt△CDE中,根据勾股定理得:(10﹣x)2+36=(8+x)2,∴x=2,∴AE=2.在Rt△ABE 中,根据勾股定理得:BE==2,∴sin∠ABE==.故答案为:.点睛:本题主要考查了折叠的性质,勾股定理,锐角三角函数,充分利用勾股定理求出线段AE是解答本题的关键.16. 如图,在中,,,,点是边上的动点(不与点重合),过作,垂足为,点是的中点,连接,设,的面积为,则与之间的函数关系式为__________.【答案】【解析】分析:由=,CD=x,得到DE=,CE=,则BE=10-,由ΔDEB 的面积S等于△BDE面积的一半,即可得出结论.详解:∵DE⊥BC,垂足为E,∴tan∠C==,CD=x,∴DE=,CE=,则BE=10-,∴S=S△BED=(10-)•化简得:.故答案为:.点睛:本题考查了动点问题的函数解析式,解题的关键是设法将BE与DE都用含有x的代数式表示.17. 《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.【答案】【解析】分析:由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论.详解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.∵∠C+∠KDC=90°,∴∠C=∠HDA.∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,∴CK:KD=HD:HA,∴CK:100=100:15,解得:CK=.故答案为:.点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD∽△DHA.三、解答题(本大题共7小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)18. 先化简,再求值:,其中.【答案】.【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m的值代入计算可得.详解:原式=÷(﹣)=÷=•=﹣=当m=﹣2时,原式=﹣=﹣=﹣1+2=.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.19. 文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)【答案】(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.【解析】分析:(1)乙种图书售价每本元,则甲种图书售价为每本元,根据“用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本”列出方程求解即可;(2)设甲种图书进货本,总利润元,根据题意列出不等式及一次函数,解不等式求出解集,从而确定方案,进而求出利润最大的方案.详解:(1)设乙种图书售价每本元,则甲种图书售价为每本元.由题意得:,解得:.经检验,是原方程的解.所以,甲种图书售价为每本元,答:甲种图书售价每本28元,乙种图书售价每本20元.(2)设甲种图书进货本,总利润元,则.又∵,解得:.∵随的增大而增大,∴当最大时最大,∴当本时最大,此时,乙种图书进货本数为(本).答:甲种图书进货533本,乙种图书进货667本时利润最大.点睛:本题考查了一次函数的应用,分式方程的应用,一元一次不等式的应用,理解题意找到题目蕴含的相等关系或不等关系是解应用题的关键.20. 为增强学生的安全意识,我市某中学组织初三年级1000名学生参加了“校园安全知识竞赛”,随机抽取了一个班学生的成绩进行整理,分为,,,四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:(1)请估计本校初三年级等级为的学生人数;(2)学校决定从得满分的3名女生和2名男生中随机抽取3人参加市级比赛,请求出恰好抽到2名女生和1名男生的概率.【答案】(1)估计该校初三等级为的学生人数约为125人;(2)恰有2名女生,1名男生的概率为.【解析】分析:(1)先根据C等级人数及其所占百分比求得总人数,用总人数减去B、C、D的人数求得A等级人数,再用总人数乘以样本中A等级人数所占比例;(2)列出从3名女生和2名男生中随机抽取3人的所有等可能结果,再从中找到恰好抽到2名女生和1名男生的结果数,根据概率公式计算可得.详解:(1)∵所抽取学生的总数为8÷20%=40人,∴该班级等级为A的学生人数为40﹣(25+8+2)=5人,则估计本校初三年级等级为A的学生人数为1000×=125人;(2)设两位满分的男生记为A1、A2、三位满分的女生记为B1、B2、B3,从这5名同学中选3人的所有等可能结果为:(B1,B2,B3)、(A2,B2,B3)、(A2,B1,B3)、(A2,B1,B2)、(A1,B2,B3)、(A1,B1,B3)、(A1,B1,B2)、(A1,A2,B3)、(A1,A2,B2)、(A1,A2,B1),其中恰好有2名女生、1名男生的结果有6种,所以恰好抽到2名女生和1名男生的概率为=.点睛:本题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.21. 如图,矩形的两边、的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.(1)若点坐标为,求的值及图象经过、两点的一次函数的表达式;(2)若,求反比例函数的表达式.【答案】(1),;(2).【解析】分析:(1)由已知求出A、E的坐标,即可得出m的值和一次函数函数的解析式;(2)由,得到,由,得到.设点坐标为,则点坐标为,代入反比例函数解析式即可得到结论.详解:(1)∵为的中点,∴.∵反比例函数图象过点,∴.设图象经过、两点的一次函数表达式为:,∴,解得,∴.(2)∵,∴.∵,∴,∴.设点坐标为,则点坐标为.∵两点在图象上,∴,解得:,∴,∴,∴.点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A、E、F的坐标.22. 如图,中,是上一点,于点,是的中点,于点,与交于点,若,平分,连接,.(1)求证:;(2)小亮同学经过探究发现:.请你帮助小亮同学证明这一结论.(3)若,判定四边形是否为菱形,并说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)四边形是菱形,理由见解析. 【解析】分析:(1)由条件得出∠C=∠DHG=90°,∠CGE=∠GED,由F是AD的中点,FG∥AE,即可得到FG是线段ED的垂直平分线,进而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD;(2)过点G作GP⊥AB于P,判定△CAG≌△P AG,可得AC=AP,由(1)可得EG=DG,即可得到Rt△ECG≌Rt△GPD,依据EC=PD,即可得出AD=AP+PD=AC+EC;(3)由∠B=30°,可得∠ADE=30°,进而得到AE=AD,故AE=AF=FG,再根据四边形AECF是平行四边形,即可得到四边形AEGF是菱形.详解:(1)∵AF=FG,∴∠F AG=∠FGA.∵AG平分∠CAB,∴∠CAG=∠FGA,∴∠CAG=∠FGA,∴AC∥FG.∵DE⊥AC,∴FG⊥DE.∵FG⊥BC,∴DE∥BC,∴AC⊥BC,∴∠C=∠DHG=90°,∠CGE=∠GED.∵F是AD的中点,FG∥AE,∴H是ED的中点,∴FG是线段ED的垂直平分线,∴GE=GD,∠GDE=∠GED,∴∠CGE=∠GDE,∴△ECG≌△GHD;(2)过点G作GP⊥AB于P,∴GC=GP,而AG=AG,∴△CAG≌△P AG,∴AC=AP,由(1)可得EG=DG,∴Rt△ECG≌Rt△GPD,∴EC=PD,∴AD=AP+PD=AC+EC;(3)四边形AEGF是菱形.证明如下:∵∠B=30°,∴∠ADE=30°,∴AE=AD,∴AE=AF=FG,由(1)得AE∥FG,∴四边形AECF是平行四边形,∴四边形AEGF是菱形.点睛:本题属于四边形综合题,主要考查了菱形的判定、全等三角形的判定和性质,线段垂直平分线的判定与性质以及含30°角的直角三角形的性质的综合运用,利用全等三角形的对应边相等,对应角相等是解决问题的关键.23. 如图,在平面直角坐标系中,二次函数交轴于点、,交轴于点,在轴上有一点,连接.(1)求二次函数的表达式;(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为;(2)当时,的面积取得最大值;(3)点的坐标为,,.【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D坐标,过点D作DG⊥x轴,交AE于点F,表示△ADE的面积,运用二次函数分析最值即可;(3)设出点P坐标,分P A=PE,P A=AE,PE=AE三种情况讨论分析即可.详解:(1)∵二次函数y=ax2+bx+c经过点A(﹣4,0)、B(2,0),C(0,6),∴,解得:,所以二次函数的解析式为:y=;(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=,过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图,设D(m,),则点F(m,),∴DF=﹣()=,∴S△ADE=S△ADF+S△EDF=×DF×AG+DF×EH=×DF×AG+×DF×EH=×4×DF=2×()=,∴当m=时,△ADE的面积取得最大值为.(3)y=的对称轴为x=﹣1,设P(﹣1,n),又E(0,﹣2),A(﹣4,0),可求P A=,PE=,AE=,分三种情况讨论:当P A=PE时,=,解得:n=1,此时P(﹣1,1);当P A=AE时,=,解得:n=,此时点P坐标为(﹣1,);当PE=AE时,=,解得:n=﹣2,此时点P坐标为:(﹣1,﹣2).综上所述:P点的坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2).点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.24. 如图,在菱形ABCD中,AC与BD交于点O,E是BD上一点,EF//AB,∠EAB=∠EBA,过点B作DA的垂线,交DA的延长线于点G.(1)∠DEF和∠AEF是否相等?若相等,请证明;若不相等,请说明理由;(2)找出图中与ΔAGB相似的三角形,并证明;(3)BF的延长线交CD的延长线于点H,交AC于点M.求证:BM2=MF⋅MH.【答案】(1),理由见解析;(2),证明见解析;(3)证明见解析.【解析】分析:(1)先判断出∠DEF=∠EBA,∠AEF=∠EAB,即可得出结论;(2)先判断出∠GAB=∠ABE+∠ADB=2∠ABE,进而得出∠GAB=∠AEO,即可得出结论;(3)先判断出BM=DM,∠ADM=∠ABM,进而得出∠ADM=∠H,判断出△MFD∽△MDH,即可得出结论.详解:(1)∠DEF=∠AEF,理由如下:∵EF∥AB,∴∠DEF=∠EBA,∠AEF=∠EAB.∵∠EAB=∠EBA,∴∠DEF=∠AEF;(2)△EOA∽△AGB,理由如下:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,∴∠GAB=∠ABE+∠ADB=2∠ABE.∵∠AEO=∠ABE+∠BAE=2∠ABE.∵∠GAB=∠AEO,∠GAB=∠AOE=90°,∴△EOA∽△AGB;(3)如图,连接DM.∵四边形ABCD是菱形,由对称性可知,BM=DM,∠ADM=∠ABM.∵AB∥CH,∴∠ABM=∠H,∴∠ADM=∠H.∵∠DMH=∠FMD,∴△MFD∽△MDH,∴,∴DM2=MF•MH,∴BM2=MF•MH.点睛:本题是相似形综合题,主要考查了菱形的性质,对称性,相似三角形的判定和性质,判断出△EOA∽△AGB是解答本题的关键.。
2018年中考数学试卷及答案
2018年中考数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形具有稳定性的是( )A .B .C .D .2.一个整数8155500 用科学记数法表示为108.155510 ,则原数中“0”的个数为( ) A .4 B .6 C .7 D .103.图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .1lB .2lC .3lD .4l 答案:C4.将29.5变形正确的是( ) A .2229.590.5=+B .29.5(100.5)(100.5)=+-C.2229.5102100.50.5=-⨯⨯+ D .2229.5990.50.5=+⨯+5.图2中三视图对应的几何体是( )A .B .C. D .6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.图3是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-Ⅲ B.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7.有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不.相等,则该组是()A. B.C. D..求证:点P在线段AB的垂直平分线上.8.已知:如图4,点P在线段AB外,且PA PB在证明该结论时,需添加辅助线,则作法不.正确的是( )A .作APB ∠的平分线PC 交AB 于点C B .过点P 作PC AB ⊥于点C 且AC BC = C.取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:13x x ==甲丙,15x x ==乙丁;22 3.6s s ==甲丁,22 6.3s s ==乙丙.则麦苗又高又整齐的是( )A .甲B .乙 C.丙 D .丁10.图5中的手机截屏内容是某同学完成的作业,他做对的题数是( )A.2个 B.3个 C. 4个 D.5个11.如图6,快艇从P处向正北航行到A处时,向左转50︒航行到B处,再向右转80︒继续航行,此时的航行方向为()A.北偏东30︒ B.北偏东80︒C.北偏西30︒ D.北偏西50︒12.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm ), 得到新的正方形,则这根铁丝需增加( )A .4cmB .8cm C.(4)a cm + D .(8)a cm +13.若22222nnnn+++=,则n =( ) A.-1B.-2C.0D.1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图8所示: 接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.如图9,点I 为ABC 的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为( )A.4.5B.4C.3D.216.对于题目“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( ) A.甲的结果正确 B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.= .18.若a ,b 互为相反数,则22a b -= .19.如图101-,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=︒,而90452︒=︒是360︒(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图102-所示.图102-中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .三、解答题 (本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. 嘉淇准备完成题目:化简: 2268)(652)x x x x ++-++发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21. 老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图111-)和不完整的扇形图(图112-),其中条形图被墨迹掩盖了一部分.(1)求条形图中被掩盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22. 如图12,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和.发现 试用k (k 为正整数)的式子表示出数“1”所在的台阶数.23. 如图13,50A B ∠=∠=︒,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN α∠=.(1)求证:APM BPN △△≌;(2)当2MN BN =时,求α的度数;(3)若BPN △的外心在该三角形的内部,直.接.写出α的取值范围.24. 如图14,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图像2l 与1l 交于点C (,4)m .(1)求m 的值及2l 的解析式;(2)求AOC BOC S S -△△的值;(3)一次函数1y kx =+的图像为3l ,且1l ,2l ,3l 不能..围成三角形,直接..写出k 的值.25. 如图15,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧 AB ,使点B 在O 右下方,且4tan 3AOB ∠=.在优弧 AB 上任取一点P ,且能过P 作直线//l OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB 上一段 AP 的长为13π,求AOP ∠的度数及x 的值; (2)求x 的最小值,并指出此时直线与AB 所在圆的位置关系; (3)若线段PQ 的长为12.5,直接..写出这时x 的值.26.图16是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)k y x x=≥交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间(秒)的平方成正比,且1t =时5h =;M ,A 的水平距离是vt 米.(1)求k ,并用表示h ;v=.用表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范(2)设5y=时运动员与正下方滑道的竖直距离;围),及13米/秒.当甲距x轴1.8米,(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙且乙位于甲右侧超过4.5米的位置时,直接..写出的值及v乙的范围.。
山东省济南市2018年中考数学试卷(含答案解析)
山东省济南市2018年中考数学试卷一、选择题1.4的算术平方根为( )A. 2B. -2C. ±2D. 162.如图,点O在直线AB上,若∠1=40°,则∠2的度数是()A. 50°B. 60°C. 140°D. 150°3.下列运算中,结果是的是( )A. B. a10÷a2 C. (a2)3 D. (-a)54.我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家,嫦娥三号探测器的发射总质量约为3700千克,3700用科学记数法表示为()A. 3.7×102B. 3.7×103C. 37×102D. 0.37×1045.下列图案既是轴对称图形又是中心对称图形的是()A. B. C. D.6.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A. 从前面看到的形状图的面积为5B. 从左面看到的形状图的面积为3C. 从上面看到的形状图的面积为3D. 三种视图的面积都是47.化简的结果是()A. B. C. D.8.下列命题中,真命题是()A. 两对角线相等的四边形是矩形B. 两对角线互相平分的四边形是平行四边形C. 两对角线互相垂直的四边形是菱形D. 两对角线相等的四边形是等腰梯形9.若一次函数的函数值随的增大而增大,则()A. B. C. D.10.在▱ABCD中,延长AB到E,使BE=AB,连结DE交BC于F,则下列结论不一定成立的是( )A. ∠E=∠CDFB. EF=DFC. AD=2BFD. BE=2CF11.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是()A. B. C. D.12.如图,直线与x轴、y轴分别交于A、B两点,把△AOB沿直线AB翻折后得到△AO′B,则点O′的坐标是()A. (,3)B. (,)C. (2,)D. (,4)13.如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D、E在圆上,四边形BCDE为矩形,这个矩形的面积是()A. 2B.C.D.14.现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2),若S0可以为任意序列,则下面的序列可作为S1的是()A. (1,2,1,2,2)B. (2,2,2,3,3)C. (1,1,2,2,3)D. (1,2,1,1,2)15.二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()A. t≥﹣1B. ﹣1≤t<3C. ﹣1≤t<8D. 3<t<8二、填空题16.|﹣7﹣3|=________.17.分解因式:x2+2x+1=________18.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为,那么口袋中球的总个数为________.19.若和的值相等,则________.20.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.21.如图,和都是等腰直角三角形,,反比例函数在第一象限的图象经过点B,若,则的值为________.三、解答题22.(1)化简:(a+3)(a-3)+a(4-a)(2)解不等式组:.23.(1)如图,在四边形ABCD是矩形,点E是AD的中点,求证:EB=EC.(2)如图,AB与相切于C,,⊙O的半径为6,AB=16,求OA的长.24. 2014年世界杯足球赛在巴西举行,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元,其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?25.在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如图所示:(1)统计表中的x=________,y=________;(2)被调查同学劳动时间的中位数是________时;(3)请将频数分布直方图补充完整;(4)求所有被调查同学的平均劳动时间.26.如图1,反比例函数的图象经过点A(,1),射线AB与反比例函数图象交与另一点B(1,),射线AC与轴交于点C,轴,垂足为D.(1)求和a的值;(2)直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线轴,与AC相交于N,连接CM,求面积的最大值.27.如图1,有一组平行线,正方形的四个顶点分别在上,过点D且垂直于于点E,分别交于点F,G,.(1)AE=________,正方形ABCD的边长=________;(2)如图2,将绕点A顺时针旋转得到,旋转角为,点在直线上,以为边在的左侧作菱形,使点分别在直线上.①写出与的函数关系并给出证明;②若=30°,求菱形的边长.28.如图1,抛物线平移后过点A(8,,0)和原点,顶点为B,对称轴与轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积 ;(2)如图2,直线AB 与 轴相交于点P ,点M 为线段OA 上一动点, 为直角,边MN 与AP 相交于点N ,设 ,试探求: ① 为何值时为等腰三角形;② 为何值时线段PN 的长度最小,最小长度是多少.答案解析部分一、选择题1.【答案】A【解析】【解答】解:4的平方根是±2,所以4的算术平方根是2.【分析】一个正数有两个平方根,其中正的平方根是算术平方根。
2018年山西省中考数学试卷(答案+解析)
2018年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3分)下面有理数比较大小,正确的是( ) A .0<﹣2B .﹣5<3C .﹣2<﹣3D .1<﹣42.(3分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是( )A .B .C .D .《九章算术》《几何原本》《海岛算经》《周髀算经》3.(3分)下列运算正确的是( ) A .(﹣a 3)2=﹣a 6 B .2a 2+3a 2=6a 2C .2a 2•a 3=2a 6D .(−b 22a )3=−b68a34.(3分)下列一元二次方程中,没有实数根的是( )A .x 2﹣2x =0B .x 2+4x ﹣1=0C .2x 2﹣4x +3=0D .3x 2=5x ﹣2 5.(3分)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):太原市 大同市 长治市 晋中市 运城市 临汾市 吕梁市 3303.78 332.68302.34319.79 725.86416.01338.871~3月份我省这七个地市邮政快递业务量的中位数是( )A .319.79万件B .332.68万件C .338.87万件D .416.01万件6.(3分)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( )A .6.06×104立方米/时B .3.136×106立方米/时C .3.636×106立方米/时D .36.36×105立方米/时7.(3分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A .49B .13C .29D .198.(3分)如图,在Rt △ABC 中,∠ACB =90°,∠A =60°,AC =6,将△ABC 绕点C 按逆时针方向旋转得到△A 'B 'C ,此时点A '恰好在AB 边上,则点B '与点B 之间的距离为( )A .12B .6C .6√2D .6√39.(3分)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣2510.(3分)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣8二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:(3√2+1)(3√2﹣1)=.12.(3分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=度.13.(3分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.14.(3分)如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于1CD长为半径作弧,两弧在∠NAB2内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为.15.(3分)如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点D 是AB 的中点,以CD 为直径作⊙O ,⊙O 分别与AC ,BC 交于点E ,F ,过点F 作⊙O 的切线FG ,交AB 于点G ,则FG 的长为 .三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.计算:(1)(2√2)2﹣|﹣4|+3﹣1×6+20. (2)x−2x−1•x 2−1x 2−4x+4﹣1x−2.17.如图,一次函数y 1=k 1x +b (k 1≠0)的图象分别与x 轴,y 轴相交于点A ,B ,与反比例函数y 2=k 2x(k 2≠0)的图象相交于点C (﹣4,﹣2),D (2,4).(1)求一次函数和反比例函数的表达式; (2)当x 为何值时,y 1>0;(3)当x 为何值时,y 1<y 2,请直接写出x 的取值范围.18.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目 内容课题 测量斜拉索顶端到桥面的距离测量示意图说明:两侧最长斜拉索AC ,BC 相交于点C ,分别与桥面交于A ,B 两点,且点A ,B ,C 在同一竖直平面内.测量数据 ∠A 的度数∠B 的度数AB 的长度 38°28° 234米……(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C 到AB 的距离(参考数据:sin 38°≈0.6,cos 38°≈0.8,tan 38°≈0.8,sin 28°≈0.5,cos 28°≈0.9,tan 28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).20.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G 92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的45(两列车中途停留时间均除外).经查询,“复兴号”G 92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G 92次列车从太原南到北京西需要多长时间.21.请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形ABC的AC和BC两边上分别取一点X和Y,使得AX=BY=XY.(如图)解决这个问题的操作步骤如下:第一步,在CA上作出一点D,使得CD=CB,连接BD.第二步,在CB上取一点Y',作Y'Z'∥CA,交BD于点Z',并在AB 上取一点A',使Z'A'=Y'Z'.第三步,过点A作AZ∥A'Z',交BD于点Z.第四步,过点Z作ZY∥AC,交BC于点Y,再过点Y作YX∥ZA,交AC于点X.则有AX=BY=XY.下面是该结论的部分证明:证明:∵AZ∥A'Z',∴∠BA'Z'=∠BAZ,又∵∠A'BZ'=∠ABZ.∴△BA'Z'~△BAZ.∴Z′A′ZA=BZ′BZ.同理可得Y′Z′YZ =BZ′BZ.∴Z′A′ZA=Y′Z′YZ.∵Z'A'=Y'Z',∴ZA=YZ.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX=BY=XY的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是.A.平移B.旋转C.轴对称D.位似问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC.∴EMDM=EBAB.(依据1)∵BE=AB,∴EMDM=1.∴EM=DM.即AM是△ADE的DE边上的中线,又∵AD=AE,∴AM⊥DE.(依据2)∴AM垂直平分DE.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE,以CE为一边在CE的右上方作正方形CEFG,可以发现点C,点B都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.如图,抛物线y=13x2−13x﹣4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE∥AC交x 轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.2018年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑)1.(3分)下面有理数比较大小,正确的是()A.0<﹣2 B.﹣5<3 C.﹣2<﹣3 D.1<﹣4【分析】直接利用有理数比较大小的方法分别比较得出答案.【解答】解:A、0>﹣2,故此选项错误;B、﹣5<3,正确;C、﹣2>﹣3,故此选项错误;D、1>﹣4,故此选项错误;故选:B.2.(3分)“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》【分析】根据数学常识逐一判别即可得.【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选:B.3.(3分)下列运算正确的是( ) A .(﹣a 3)2=﹣a 6 B .2a 2+3a 2=6a 2 C .2a 2•a 3=2a 6 D .(−b 22a )3=−b 68a3 【分析】分别根据幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方逐一计算即可判断. 【解答】解:A 、(﹣a 3)2=a 6,此选项错误; B 、2a 2+3a 2=5a 2,此选项错误; C 、2a 2•a 3=2a 5,此选项错误;D 、(−b 22a )3=−b68a3,此选项正确;故选:D .4.(3分)下列一元二次方程中,没有实数根的是( ) A .x 2﹣2x =0B .x 2+4x ﹣1=0C .2x 2﹣4x +3=0D .3x 2=5x ﹣2【分析】利用根的判别式△=b 2﹣4ac 分别进行判定即可.【解答】解:A 、△=4>0,有两个不相等的实数根,故此选项不合题意; B 、△=16+4=20>0,有两个不相等的实数根,故此选项不合题意; C 、△=16﹣4×2×3<0,没有实数根,故此选项符合题意;D 、△=25﹣4×3×2=25﹣24=1>0,有两个不相等的实数根,故此选项不合题意;故选:C .5.(3分)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):太原市 大同市 长治市 晋中市 运城市 临汾市 吕梁市 3303.78332.68302.34319.79725.86416.01338.871~3月份我省这七个地市邮政快递业务量的中位数是( ) A .319.79万件 B .332.68万件 C .338.87万件 D .416.01万件【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数. 【解答】解:首先按从小到大排列数据:302.34,319.79,332.68,338.87,416.01,725.86,3303.78 由于这组数据有奇数个,中间的数据是338.87 所以这组数据的中位数是338.87故选:C . 6.(3分)黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( )A .6.06×104立方米/时B .3.136×106立方米/时C .3.636×106立方米/时D .36.36×105立方米/时【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【解答】解:1010×3600=3.636×106立方米/时,故选:C .7.(3分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )A.49B.13C.29D.19【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【解答】解:画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选:A.8.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C,此时点A'恰好在AB边上,则点B'与点B之间的距离为()A.12 B.6 C.6√2D.6√3【分析】连接B'B,利用旋转的性质和直角三角形的性质解答即可.【解答】解:连接B'B,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C,∴AC=A'C,AB=A'B,∠A=∠CA'B'=60°,∴△AA'C是等边三角形,∴∠AA'C=60°,∴∠B'A'B=180°﹣60°﹣60°=60°,∵将△ABC绕点C按逆时针方向旋转得到△A'B'C,∴∠ACA'=∠BAB'=60°,BC=B'C,∠CB'A'=∠CBA=90°﹣60°=30°,∴△BCB'是等边三角形,∴∠CB'B=60°,∵∠CB'A'=30°,∴∠A'B'B=30°,∴∠B'BA'=180°﹣60°﹣30°=90°,∵∠ACB=90°,∠A=60°,AC=6,∴AB=12,∴A'B=AB﹣AA'=AB﹣AC=6,∴B'B=6√3,故选:D.9.(3分)用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣25【分析】直接利用配方法进而将原式变形得出答案.【解答】解:y=x2﹣8x﹣9=x2﹣8x+16﹣25=(x﹣4)2﹣25.故选:B.10.(3分)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣8【分析】利用对称性可知:阴影部分的面积=扇形AEF的面积﹣△ABD的面积.【解答】解:利用对称性可知:阴影部分的面积=扇形AEF的面积﹣△ABD的面积=90⋅π⋅42360﹣12×4×2=4π﹣4,故选:A.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:(3√2+1)(3√2﹣1)=17.【分析】根据平方差公式计算即可.【解答】解:原式=(3√2)2﹣12=18﹣1=17故答案为:17.12.(3分)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=360度.【分析】根据多边形的外角和等于360°解答即可.【解答】解:由多边形的外角和等于360°可知, ∠1+∠2+∠3+∠4+∠5=360°,故答案为:360°.13.(3分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 55 cm .【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm 得出不等式求出即可. 【解答】解:设长为8x ,高为11x , 由题意,得:19x +20≤115, 解得:x ≤5,故行李箱的高的最大值为:11x =55, 答:行李箱的高的最大值为55厘米.故答案为:5514.(3分)如图,直线MN ∥PQ ,直线AB 分别与MN ,PQ 相交于点A ,B .小宇同学利用尺规按以下步骤作图:①以点A 为圆心,以任意长为半径作弧交AN 于点C ,交AB 于点D ;②分别以C ,D 为圆心,以大于12CD 长为半径作弧,两弧在∠NAB内交于点E ;③作射线AE 交PQ 于点F .若AB =2,∠ABP =60°,则线段AF 的长为 2√3 .【分析】作高线BG ,根据直角三角形30度角的性质得:BG =1,AG =√3,可得AF 的长. 【解答】解:∵MN ∥PQ , ∴∠NAB =∠ABP =60°, 由题意得:AF 平分∠NAB , ∴∠1=∠2=30°, ∵∠ABP =∠1+∠3, ∴∠3=30°, ∴∠1=∠3=30°, ∴AB =BF ,AG =GF , ∵AB =2, ∴BG =12AB =1,∴AG =√3,∴AF =2AG =2√3,故答案为:2√3.15.(3分)如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点D 是AB 的中点,以CD 为直径作⊙O ,⊙O 分别与AC ,BC 交于点E ,F ,过点F 作⊙O 的切线FG ,交AB 于点G ,则FG 的长为125.【分析】先利用勾股定理求出AB =10,进而求出CD =BD =5,再求出CF =4,进而求出DF =3,再判断出FG ⊥BD ,利用面积即可得出结论. 【解答】解:如图,在Rt △ABC 中,根据勾股定理得,AB =10, ∴点D 是AB 中点, ∴CD =BD =12AB =5,连接DF ,∵CD 是⊙O 的直径, ∴∠CFD =90°, ∴BF =CF =12BC =4,∴DF =√CD 2−CF 2=3, 连接OF ,∵OC =OD ,CF =BF , ∴OF ∥AB , ∴∠OFC =∠B , ∵FG 是⊙O 的切线, ∴∠OFG =90°,∴∠OFC +∠BFG =90°, ∴∠BFG +∠B =90°, ∴FG ⊥AB ,∴S △BDF =12DF ×BF =12BD ×FG , ∴FG =DF×BF BD =3×45=125,故答案为125.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.计算:(1)(2√2)2﹣|﹣4|+3﹣1×6+20. (2)x−2x−1•x 2−1x 2−4x+4﹣1x−2.【分析】(1)先计算乘方、绝对值、负整数指数幂和零指数幂,再计算乘法,最后计算加减运算可得; (2)先将分子、分母因式分解,再计算乘法,最后计算减法即可得. 【解答】解:(1)原式=8﹣4+13×6+1=8﹣4+2+1 =7.(2)原式=x−2x−1⋅(x−1)(x+1)(x−2)2−1x−2=x+1x−2−1x−2 =x x−2.17.如图,一次函数y 1=k 1x +b (k 1≠0)的图象分别与x 轴,y 轴相交于点A ,B ,与反比例函数y 2=k 2x(k 2≠0)的图象相交于点C (﹣4,﹣2),D (2,4).(1)求一次函数和反比例函数的表达式; (2)当x 为何值时,y 1>0;(3)当x 为何值时,y 1<y 2,请直接写出x 的取值范围.【分析】(1)将C 、D 两点代入一次函数的解析式中即可求出一次函数的解析式,然后将点D 代入反比例函数的解析式即可求出反比例函数的解析式;(2)根据一元一次不等式的解法即可求出答案. (3)根据图象即可求出答案该不等式的解集.【解答】解:(1)∵一次函数y 1=k 1x +b 的图象经过点C (﹣4,﹣2),D (2,4),∴{−4k 1+b =−22k 1+b =4,解得{k 1=1b =2.∴一次函数的表达式为y 1=x +2.∵反比例函数y 2=k2x 的图象经过点D (2,4),∴4=k22.∴k2=8.∴反比例函数的表达式为y2=8x.(2)由y1>0,得x+2>0.∴x>﹣2.∴当x>﹣2时,y1>0.(3)x<﹣4或0<x<2.18.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?【分析】(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;(3)根据样本估计总体的方法计算即可;(4)利用概率公式即可得出结论.【解答】解:(1)由条形图知,男生共有:10+20+13+9=52人,∴女生人数为100﹣52=48人,∴参加武术的女生为48﹣15﹣8﹣15=10人,∴参加武术的人数为20+10=30人,∴30÷100=30%,参加器乐的人数为9+15=24人,∴24÷100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是1010+15×100%=40%.答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.(3)500×21%=105(人).答:估计其中参加“书法”项目活动的有105人.(4)1515+10+8+15=1548=516.答:正好抽到参加“器乐”活动项目的女生的概率为516.19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目内容课题测量斜拉索顶端到桥面的距离测量示意图说明:两侧最长斜拉索AC,BC相交于点C,分别与桥面交于A,B两点,且点A,B,C在同一竖直平面内.测量数据∠A的度数∠B的度数AB 的长度38°28° 234米……(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C 到AB 的距离(参考数据:sin 38°≈0.6,cos 38°≈0.8,tan 38°≈0.8,sin 28°≈0.5,cos 28°≈0.9,tan 28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【分析】(1)过点C 作CD ⊥AB 于点D .解直角三角形求出DC 即可;(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等 【解答】解:(1)过点C 作CD ⊥AB 于点D .设CD =x 米,在Rt △ADC 中,∠ADC =90°,∠A =38°. ∵tan38°=CD AD ,∴AD =CD tan38°=x 0.8=54x . 在Rt △BDC 中,∠BDC =90°,∠B =28°.∵tan28°=CD BD ,∴BD =CD tan28°=x 0.5=2x . ∵AD +BD =AB =234,∴54x +2x =234.解得x =72.答:斜拉索顶端点C 到AB 的距离为72米.(2)还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.(答案不唯一)20.2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G 92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的45(两列车中途停留时间均除外).经查询,“复兴号”G 92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G 92次列车从太原南到北京西需要多长时间.【分析】设“复兴号”G 92次列车从太原南到北京西的行驶时间需要x 小时,则“和谐号”列车的行驶时间需要54x 小时,根据速度=路程÷时间结合“复兴号”G 92次列车平均每小时比某列“和谐号”列车多行驶40千米,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设“复兴号”G 92次列车从太原南到北京西的行驶时间需要x 小时,则“和谐号”列车的行驶时间需要54x 小时,根据题意得:500x=50054x+40,解得:x =52,经检验,x =52是原分式方程的解, ∴x +16=83.答:乘坐“复兴号”G 92次列车从太原南到北京西需要83小时.21.请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形ABC 的AC 和BC 两边上分别取一点X 和Y ,使得AX =BY =XY .(如图)解决这个问题的操作步骤如下:第一步,在CA 上作出一点D ,使得CD =CB ,连接BD .第二步,在CB 上取一点Y ',作Y 'Z '∥CA ,交BD 于点Z ',并在AB 上取一点A ',使Z 'A '=Y 'Z '.第三步,过点A 作AZ ∥A 'Z ',交BD 于点Z .第四步,过点Z 作ZY ∥AC ,交BC 于点Y ,再过点Y作YX ∥ZA ,交AC 于点X .则有AX =BY =XY . 下面是该结论的部分证明:证明:∵AZ ∥A 'Z ',∴∠BA 'Z '=∠BAZ , 又∵∠A 'BZ '=∠ABZ .∴△BA 'Z '~△BAZ .∴Z′A′ZA =BZ′BZ .同理可得Y′Z′YZ=BZ′BZ.∴Z′A′ZA=Y′Z′YZ.∵Z 'A '=Y 'Z ',∴ZA =YZ .任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ 的形状,并加以证明; (2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX =BY =XY 的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA 'Z 'Y '放大得到四边形BAZY ,从而确定了点Z ,Y 的位置,这里运用了下面一种图形的变化是 D (或位似) .A .平移B .旋转C .轴对称D .位似【分析】(1)四边形AXYZ 是菱形.首先由“两组对边相互平行的四边形是平行四边形”推知四边形AXYZ 是平行四边形,再由“邻边相等的平行四边形是菱形”证得结论;(2)利用菱形的四条边相等推知AX =XY =YZ .根据等量代换得到AX =BY =XY . (3)根据位似变换的定义填空.【解答】解:(1)四边形AXYZ 是菱形. 证明:∵ZY ∥AC ,YX ∥ZA , ∴四边形AXYZ 是平行四边形. ∵ZA =YZ ,∴平行四边形AXYZ 是菱形.(2)证明:∵CD =CB , ∴∠1=∠3.∵ZY∥AC,∴∠1=∠2.∴∠2=∠3.∴YB=YZ.∵四边形AXYZ是菱形,∴AX=XY=YZ.∴AX=BY=XY.(3)通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,此时四边形BA'Z'Y'∽四边形BAZY,所以该变换形式是位似变换.故答案是:D(或位似).22.综合与实践问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC.∴EMDM=EBAB.(依据1)∵BE=AB,∴EMDM=1.∴EM=DM.即AM是△ADE的DE边上的中线,又∵AD=AE,∴AM⊥DE.(依据2)∴AM垂直平分DE.反思交流:(1)①上述证明过程中的“依据1”“依据2”分别是指什么?②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明;(2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;探索发现:(3)如图3,连接CE,以CE为一边在CE的右上方作正方形CEFG,可以发现点C,点B都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明.【分析】(1)①直接得出结论;②借助问题情景即可得出结论;(2)先判断出∠BCE+∠BEC=90°,进而判断出∠BEC=∠BCG,得出△GHC≌△CBE,判断出AD=BC,进而判断出HC=BH,即可得出结论;(3)先判断出四边形BENM为矩形,进而得出∠1+∠2=90°,再判断出∠1=∠3,得出△ENF≌△EBC,即可得出结论.【解答】解:(1)①依据1:两条直线被一组平行线所截,所得的对应线段成比例(或平行线分线段成比例).依据2:等腰三角形顶角的平分线,底边上的中线及底边上的高互相重合(或等腰三角形的“三线合一”).②答:点A在线段GF的垂直平分线上.理由:由问题情景知,AM⊥DE,∵四边形DEFG是正方形,∴DE∥FG,∴点A在线段GF的垂直平分线上.(2)证明:过点G作GH⊥BC于点H,∵四边形ABCD是矩形,点E在AB的延长线上,∴∠CBE=∠ABC=∠GHC=90°,∴∠BCE+∠BEC=90°.∵四边形CEFG为正方形,∴CG=CE,∠GCE=90°,∴∠BCE+∠BCG=90°.∴∠2BEC=∠BCG.∴△GHC≌△CBE.∴HC=BE,∵四边形ABCD是矩形,∴AD=BC.∵AD=2AB,BE=AB,∴BC=2BE=2HC,∴HC=BH.∴GH垂直平分BC.∴点G在BC的垂直平分线上.(3)答:点F在BC边的垂直平分线上(或点F在AD边的垂直平分线上).证法一:过点F作FM⊥BC于点M,过点E作EN⊥FM于点N.∴∠BMN=∠ENM=∠ENF=90°.∵四边形ABCD是矩形,点E在AB的延长线上,∴∠CBE=∠ABC=90°,。
2018年天津市中考数学试卷(答案+解析)
2018年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(3分)计算(﹣3)2的结果等于( ) A .5B .﹣5C .9D .﹣92.(3分)cos 30°的值等于( ) A .√22B .√32C .1D .√33.(3分)今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学记数法表示为( ) A .0.778×105B .7.78×104C .77.8×103D .778×1024.(3分)下列图形中,可以看作是中心对称图形的是( )A .B .C .D .5.(3分)如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .6.(3分)估计√65的值在( ) A .5和6之间B .6和7之间C .7和8之间D .8和9之间7.(3分)计算2x+3x+1−2x x+1的结果为( ) A .1B .3C .3x+1D .x+3x+18.(3分)方程组{x +y =102x +y =16的解是( )A .{x =6y =4B .{x =5y =6C .{x =3y =6D .{x =2y =89.(3分)若点A (x 1,﹣6),B (x 2,﹣2),C (x 3,2)在反比例函数y =12x的图象上,则x 1,x 2,x 3的大小关系是( ) A .x 1<x 2<x 3B .x 2<x 1<x 3C .x 2<x 3<x 1D .x 3<x 2<x 110.(3分)如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是( )A .AD =BDB .AE =AC C .ED +EB =DB D .AE +CB =AB11.(3分)如图,在正方形ABCD中,E,F分别为AD,BC的中点,P为对角线BD上的一个动点,则下列线段的长等于AP+EP 最小值的是()A.AB B.DE C.BD D.AF12.(3分)已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(﹣1,0),(0,3),其对称轴在y轴右侧.有下列结论:①抛物线经过点(1,0);②方程ax2+bx+c=2有两个不相等的实数根;③﹣3<a+b<3其中,正确结论的个数为()A.0 B.1 C.2 D.3二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算2x4•x3的结果等于.14.(3分)计算(√6+√3)(√6﹣√3)的结果等于.15.(3分)不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)将直线y=x向上平移2个单位长度,平移后直线的解析式为.17.(3分)如图,在边长为4的等边△ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为.18.(3分)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上,(I)∠ACB的大小为(度);(Ⅱ)在如图所示的网格中,P是BC边上任意一点,以A为中心,取旋转角等于∠BAC,把点P逆时针旋转,点P的对应点为P′,当CP′最短时,请用无刻度的直尺,画出点P′,并简要说明点P′的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分。
2018年山西省中考数学试卷(答案+解析)
2018年山西省中考数学试卷(答案+解析)好在BC上,且AB'=2AC,则AB的长度为()A.3B.6C.9D.129.(3分)___在一张长方形的纸片上剪去一个正方形,然后将剩下的部分固定在桌子上,如图所示.如果剪掉的正方形面积是整个纸片面积的1/5,那么剩下部分的周长是纸片周长的()A.1/5B.2/5C.3/5D.4/510.(3分)已知函数f(x)=x2+bx+c,其中b,c为常数,当x∈[0,2]时,f(x)的最大值为4,最小值为2.则b+c的值为() A.1B.2C.3D.42018年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请选出并在答题卡上将该项涂黑。
)1.(3分) 下面有理数比较大小,正确的是()A。
<﹣2B。
﹣5<3C。
﹣2<﹣3D。
1<﹣42.(3分) “算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果。
下列四部著作中,不属于我国古代数学著作的是()A。
《九章算术》B。
《几何原本》C。
《海岛算经》D。
《周髀算经》3.(3分) 下列运算正确的是()A。
(﹣a3)2=﹣a6B。
2a2+3a2=6a2C。
2a2•a3=2a6D。
(−)3=−bb/32b8b4.(3分) 近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):城市。
| 邮政快递业务量太原市 | 3303.78大同市 | 332.68长治市 | 302.34运城市 | 725.86临汾市 | 416.01吕梁市 | 338.87晋中市 | 319.791~3月份我省这七个地市邮政快递业务量的中位数是()A。
319.79万件B。
332.68万件C。
338.87万件D。
416.01万件6.(3分) 黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观。
2018年成都市中考数学试题及答案详解
四川省成都市2018年中考数学试卷(解析版)一、选择题(A卷)1.实数在数轴上对应的点的位置如图所示,这四个数中最大的是()A. B. C. D.【答案】D【考点】数轴及有理数在数轴上的表示,有理数大小比较【解析】【解答】解:根据数轴可知a<b<0<c<d∴这四个数中最大的数是d故答案为:D【分析】根据数轴上右边的数总比左边的数大,即可得出结果。
2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:40万=4×105故答案为:B【分析】根据科学计数法的表示形式为:a×10n。
其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1,即可求解。
3.如图所示的正六棱柱的主视图是()A. B.C. D.【答案】A【考点】简单几何体的三视图【解析】【解答】解:∵从正面看是左右相邻的3个矩形,中间的矩形面积较大,两边的矩形面积相同,∴答案A符合题意故答案为:A【分析】根据主视图是从正面看到的平面图形,即可求解。
4.在平面直角坐标系中,点关于原点对称的点的坐标是()A.B.C.D.【答案】C【考点】关于原点对称的坐标特征【解析】【解答】解:点关于原点对称的点的坐标为(3,5)故答案为:C【分析】根据关于原点对称点的坐标特点是横纵坐标都互为相反数,就可得出答案。
5.下列计算正确的是()A. B. C. D.【答案】D【考点】同底数幂的乘法,完全平方公式及运用,合并同类项法则及应用,积的乘方【解析】【解答】解:A、x2+x2=2x2,因此A不符合题意;B、(x-y)2=x2-2xy+y2,因此B不符合题意;C、(x2y)3=x6y3,因此C不符合题意;D、,因此D符合题意;故答案为:D【分析】根据合并同类项的法则,可对A作出判断;根据完全平方公式,可对B作出判断;根据积的乘方运算法则及同底数幂的乘法,可对C、D作出判断;即可得出答案。
2018年滨州市中考数学试卷含答案解析
B、根据菱形的判定,应是对角线互相垂直的平行四边形,故本选项错误;
C、对角线相等且互相平分的平行四边形是矩形,故本选项错误;
D、一组邻边相等的矩形是正方形,故本选项正确.
故选:D.
【点评】本题主要考查平行四边形的判定与命题的真假区别.正确的命题叫真
命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定
③b2﹣4ac<0; ④当 y>0 时,﹣1<x<3,其中正确的个数是( )
A.1 B.2 C.3 D.4 【分析】直接利用二次函数的开口方向以及图象与 x 轴的交点,进而分别分析 得出答案. 【解答】解:①∵二次函数 y=ax2+bx+c(a≠0)图象的对称轴为 x=1,且开口 向式的解集,再利用数轴确定不等式组的解 集. 【解答】解:解不等式 x+1≥3,得:x≥2, 解不等式﹣2x﹣6>﹣4,得:x<﹣1, 将两不等式解集表示在数轴上如下:
故选:B. 【点评】本题考查了解一元一次不等式组,在数轴上表示不等式的解集解不等 式组时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大 小小无解了. 6.(3 分)在平面直角坐标系中,线段 AB 两个端点的坐标分别为 A(6,8), B(10,2),若以原点 O 为位似中心,在第一象限内将线段 AB 缩短为原来的
2]=4, 故选:A. 【点评】此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的 个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数. 10.(3 分)如图,若二次函数 y=ax2+bx+c(a≠0)图象的对称轴为 x=1,与 y 轴交于点 C,与 x 轴交于点 A、点 B(﹣1,0),则 ①二次函数的最大值为 a+b+c; ②a﹣b+c<0;
2018年山东省济宁市中考数学试卷(含答案解析)
山东省济宁市2018 年中考数学试卷一、选择题:本大题共10 小题,每小题 3 分,共30 分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.)A.1 B.﹣1 C.3 D.﹣3【解答】.故选B.2.为贯彻落实觉中央、国务院关于推进城乡义务教育一体化发展的部署,教育部会同有关部门近五年来共新建、改扩建校舍 186000000 平方米,其中数据 186000000 用科学记数法表示是()A.1.86×107 B.186×106 C.1.86×108 D.0.186×109【解答】解:将 186000000 用科学记数法表示为:1.86×108.故选:C.3.下列运算正确的是()A.a8÷a4=a2 B.(a2)2=a4 C.a2•a3=a6 D.a2+a2=2a4【解答】解:A、a8÷a6=a4,故此选项错误;B、(a2)2=a4,故原题计算正确;C、a2•a3=a5,故此选项错误;D、a2+a2=2a2,故此选项错误;故选:B.4.如图,点 B,C,D 在⊙O 上,若∠BCD=130°,则∠BOD 的度数是()A.50° B.60° C.80° D.100°【解答】解:圆上取一点 A,连接 AB,AD,∵点 A、B,C,D 在⊙O 上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°,故选:D.5.多项式 4a﹣a3 分解因式的结果是()A.a(4﹣a2) B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)2【解答】解:4a﹣a3=a(4﹣a2)=a(2-a)(2+a).故选:B.6..如图,在平面直角坐标系中,点 A,C 在 x 轴上,点 C 的坐标为(﹣1,0),AC=2.将 Rt△ABC 先绕点 C 顺时针旋转90°,再向右平移 3 个单位长度,则变换后点 A 的对应点坐标是()A.(2,2) B.(1,2) C.(﹣1,2)D.(2,﹣1)【解答】解:∵点 C 的坐标为(﹣1,0),AC=2,∴点 A 的坐标为(﹣3,0),如图所示,将 Rt△ABC 先绕点 C 顺时针旋转90°,则点A′的坐标为(﹣1,2),再向右平移 3 个单位长度,则变换后点A′的对应点坐标为(2,2),故选:A.7.在一次数学答题比赛中,五位同学答对题目的个数分别为 7,5,3,5,10,则关于这组数据的说法不正确的是()A.众数是 5 B.中位数是 5 C.平均数是 6 D.方差是 3.6【解答】解:A、数据中 5 出现 2 次,所以众数为 5,此选项正确; B、数据重新排列为3、5、5、7、10,则中位数为 5,此选项正确; C、平均数为(7+5+3+5+10)÷5=6,此选项正确; D、方差为15×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;故选:D.8.如图,在五边形 ABCDE 中,∠A+∠B+∠E=300°,DP、CP 分别平分∠EDC、∠BCD,则∠P=()A.50° B.55° C.60° D.65°【解答】解:∵在五边形 ABCDE 中,∠A+∠B+∠E=300°,∴∠ECD+∠BCD=240°,又∵DP、CP 分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP 中,∠P=180°﹣(∠PDC+∠PCD)=180°﹣120°=60°.故选:C.9.一个几何体的三视图如图所示,则该几何体的表面积是()A.24+2πB.16+4πC.16+8πD.16+12π【解答】解:该几何体的表面积为 2×12•π•22+4×4+12×2π•2×4=12π+16,故选:D.10.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()【解答】解:由题意知,原图形中各行、各列中点数之和为 10,符合此要求的只有故选:C.二、填空题:本大题共 5 小题,每小题3 分,共15 分。
2018年山西省中考数学试卷(附详细答案)
数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前山西省2018年高中阶段教育学校招生统一考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算12-+的结果是 ( )A .3-B .1-C .1D .32.如图,直线,a b 被直线c 所截,下列条件不能判定直线a 与b 平行的是( )A .13∠=∠B .24180∠+∠=oC .14∠=∠D .34∠=∠3.在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的 ( )A .众数B .平均数C .中位数D .方差4.将不等式组260,40x x -⎧⎨+>⎩≤的解集表示在数轴上,下面表示正确的是( )ABAB 5.下列运算错误的是( )A.0(31)1-=B .291(3)44-÷= C .22256x x x -=-D .3224(2)(2)m m m ÷=6.如图,将矩形纸片ABCD 沿BD 折叠,得到BC D '△,C D '与AB 交于点E .若135∠=o ,则2∠的度数为( )A .20oB .30oC .35oD .55o 7.化简2442x xx x ---的结果是 ( )A .22x x -+B .26x x -+C .2xx -+ D .2x x - 8.2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为 ( ) A .818610⨯吨 B .918.610⨯吨 C .101.8610⨯吨 D .110.18610⨯吨9.公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数2,导致了第一次数学危机.2是无理数的证明如下:假设2是有理数,那么它可以表示成qp(p 与q 是互质的两个正整数).于是22()(2)2qp==,所以,222q p =.于是2q 是偶数,进而q 是偶数.从而可设2q m =,所以22(2)2m p =,222p m =,于是可得p 也是偶数.这与“p 与q 是互质的两个正整数”矛盾,从而可知“2是有理数”的假设不成立,所以,2是无理数.这种证明“2是无理数”的方法是 ( ) A .综合法 B .反证法 C .举反例法 D .数学归纳法 10.如图是某商品的标志图案.AC 与BD 是O e 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD .若10cm AC =,36BAC ∠=o ,则图中阴影部分的面积为( )A .25cm πB .210cm π C .215cm πD .220cm π第Ⅱ卷(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,共15分.请把答案填在题中的横线上)11.计算:41892-= .12.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 元.毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页) 数学试卷 第4页(共28页)13.如图,已知ABC △三个顶点的坐标分别为(0,4)A ,(1,1)B -,(2,2)C -.将ABC △向右平移4个单位,得到A B C '''△,点,,A B C 的对应点分别为,,A B C ''',再将A B C '''∆绕点B '顺时针旋转90o ,得到A B C ''''''△,点,,A B C '''的对应点分别为''A ,''B ,''C ,则点''A 的坐标为 .14.如图,创新小组要测量公园内一棵树的高度AB ,其中一名小组成员站在距离树10米的点E 处,测得树顶A 的仰角为54o .已知测角仪的架高 1.5CE =米,则这颗树的高度为 米(结果保留一位小数.参考数据:sin 540.8090=o,cos540.5878=o,tan 54 1.3764=o ).15.一副三角板按如图方式摆放,得到ABD △和BCD △,其中90ADB BCD ∠=∠=o ,60A ∠=o ,45CBD ∠=o .E 为AB 的中点,过点E 作EF CD ⊥于点F .若4cm AD =,则EF 的长为 cm .三、解答题(本大题共8小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤) 16.(本小题满分10分,每题5分)(1)计算:231(2)8sin 453-⎛⎫-+- ⎪⎝⎭o g .(2)分解因式:22(2)(2)y x x y +-+.17.(本小题满分6分)已知:如图,在ABCD Y 中,延长AB 至点E ,延长CD 至点F ,使得BE DF =.连接EF ,与对角线AC 交于点O .求证:OE OF =.18.(本小题满分7分)如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,其边长为2,点A ,点C 分别在x 轴,y 轴的正半轴上.函数2y x =的图象与CB 交于点D ,函数ky x=(k 为常数,0k ≠)的图象经过点D ,与AB 交于点E ,与函数2y x =的图象在第三象限内交于点F ,连接AF ,EF . (1)求函数ky x=的表达式,并直接写出E ,F 两点的坐标; (2)求AEF △的面积.19.(本小题满分7分)“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.山西省有着“小杂粮王国”的美誉,谷子作为山西省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2 000万亩,年总产量为150万吨,山西省谷子平均亩产量为160 kg ,国内其他地区谷子的平均亩产量为60 kg .请解答下列问题: (1)求山西省2016年谷子的种植面积是多少万亩.(2)2017年,若山西省谷子的平均亩产量仍保持160 kg 不变,要使山西省谷子的年总产量不低于52万吨,那么,2017年山西省至少应再多种植多少万亩的谷子?20.(本小题满分12分)从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34 520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.下图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是 亿元;毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第5页(共28页) 数学试卷 第6页(共28页)②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为,,,A B C D 的四张卡片(除编号和内容外,其余完全相同).他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号,,,A B C D 表示).21.(本小题满分7分)如图,ABC △内接于O e ,且AB 为O e 的直径,OD AB ⊥,与AC 交于点E ,与过点C 的O e 的切线交于点D . (1)若4AC =,2BC =,求OE 的长;(2)试判断A ∠与CDE ∠的数量关系,并说明理由.22.(本小题满分12分) 综合与实践背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三,股四,弦五”.它被记载于我国古代著名数学著作《周髀算经》中.为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形.例如:三边长分别为9,12,15或,形就是(3,4,5)型三角形.用矩形纸片按下面的操作方法可以折出这种类型的三角形. 实践操作 如图1,在矩形纸片ABCD 中,8cm AD =,12cm AB =.第一步:如图2,将图1中的矩形纸片ABCD 沿过点A 的直线折叠,使点D 落在AB 上的点E 处,折痕为AF ,再沿EF 折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D 与点F 重合,折痕为GH ,然后展平,隐去AF .第三步:如图4,将图3中的矩形纸片沿AH 折叠,得到AD H '△,再沿AD '折叠,折痕为AM ,AM 与折痕EF 交于点N ,然后展平.问题解决(1)请在图2中证明四边形AEFD 是正方形;(2)请在图4中判断NF 与ND '的数量关系,并加以证明; (3)请在图4中证明AEN △是(3,4,5)型三角形.探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称. 23.(本小题满分14分) 综合与探究如图,抛物线2y x x =+x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC ,BC .点P 沿AC 以每秒1个单位长度的速度由点A 向点C 运动,同时,点Q 沿BO 以每秒2个单位长度的速度由点B 向点O 运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ ,过点Q 作QD x ⊥轴,与抛物线交于点D ,与BC 交于点E .连接PD ,与BC 交于点F .设点P 的运动时间为t秒(0t >).(1)求直线BC 的函数表达式;(2)①直接写出,P D 两点的坐标(用含t 的代数式表示,结果需化简); ②在点P ,Q 运动的过程中,当PQ PD =时,求t 的值.(3)试探究在点P ,Q 运动的过程中,是否存在某一时刻,使得点F 为PD 的中点.若存在,请直接写出此时t 的值与点F 的坐标;若不存在,请说明理由.数学试卷 第7页(共28页)数学试卷 第8页(共28页)山西省2017年高中阶段教育学校招生统一考试数学答案解析第Ⅰ卷一、选择题 1.【答案】C 【解析】121-+=.【提示】直接利用有理数加减运算法则得出答案. 【考点】有理数的加法 2.【答案】D【解析】由13∠=∠,可得直线a 与b 平行,故A 能判定;由24180∠+∠=o ,25∠=∠,43∠=∠,可得35180∠+∠=o ,故直线a 与b 平行,故B 能判定;由14∠=∠,43∠=∠,可得13∠=∠,故直线a与b 平行,故C 能判定;由34∠=∠,不能判定直线a 与b 平行,故选D .【提示】根据同位角相等,两直线平行;同旁内角互补,两直线平行进行判断即可. 【考点】平行线的判定 3.【答案】D【解析】因为方差是反映一组数据的波动大小的一个量,方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好;所以要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的方差.【提示】方差是反映一组数据的波动大小的一个量,方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好. 【考点】数据的集中趋势和离散程度 4.【答案】A 【解析】26040x x -≤⎧⎨+>⎩①②,解不等式①得,3x ≤;解不等式②得,4x >-.在数轴上表示为:5/ 14则点A''的坐标为(6,0).数学试卷第11页(共28页)数学试卷第12页(共28页)13.8 1.515.3mAB AD BD∴=+=+=.27/ 14数学试卷第15页(共28页)数学试卷第16页(共28页)(2)画树状图为:9/ 14数学试卷 第19页(共28页)数学试卷 第20页(共28页)312A A ∠=∠+∠=∠Q ,2CDE A ∴∠=∠.(2)连接OC ,由等腰三角形的性质得出1A ∠=∠,由切线的性质得出OC CD ⊥,得出290CDE ∠+∠=o ,证出3CDE ∠=∠,再由三角形的外角性质即可得出结论.【考点】圆的有关性质,切线的性质,相似三角形的判定和性质22.【答案】(1)证明:Q 四边形ABCD 是矩形,90D DAE ∴∠=∠=o ,由折叠的性质得,AE AD =,90AEF D ∠=∠=o ,90D DAE AEF ∴∠=∠=∠=o ,∴四边形AEFD 是矩形,AE AD =Q ,∴矩形AEFD 是正方形;(2)NF ND '=,理由:连接HN ,由折叠得,90AD H D '∠=∠=o ,HF HD HD '==,Q 四边形AEFD 是正方形,90EFD ∴∠=o ,90AD H ∠'=o Q ,90HD N '∴∠=o ,在Rt HNF △与Rt HND '△中,HN HN HF HD =⎧⎨'=⎩, Rt Rt HNF HND ∴'△≌△,NF ND ∴=';(3)Q 四边形AEFD 是正方形,8cm AE EF AD ∴===,由折叠得,8AD AD cm '==,设cm NF x =,则cm ND x '=,在Rt AEN △中,222AN AE EN =+Q ,222(8)8(8)x x ∴+=+-,解得2x =,810cm AN x ∴=+=,6cm EN =,:3:4:5EN AE AN ∴=:,AEN ∴△是(345),,型三角形; (4)图4中还有MFN △,MD H '△,MDA △是(345),,型三角形, CF AE Q ∥,MFN AEN ∴△∽△,:3:4:5EN AE AN =Q :,:34:5FN MF CN ∴=::,MFN ∴△是(345),,型三角形; 同理,MD H '△,MDA △是(345),,型三角形.【解析】(1)根据矩形的性质得到90D DAE ∠=∠=o ,由折叠的性质得到AE AD =,90AEF D ∠=∠=o ,。
2018年四川成都中考数学试卷(含解析)
2018年四川省成都市初中毕业、升学考试数学(满分150分,考试时间120分钟)A卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)1.(2018四川省成都市,1,3)实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d【答案】D【解析】解:数轴上表示的实数,右边的数总比左边的大,d在最右边,所以d最大,故选择D.【知识点】数轴;2.(2018四川省成都市,2,3)2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.4×104B.4×105C.4×106D.0.4×106【答案】B【解析】解:40万=400000=4×105.故选择B.【知识点】科学计数法3.(2018四川省成都市,3,3)如图所示的正六棱柱的主视图是()【答案】A【解析】解:因为主视图是从正面看物体,如图所示的正六棱柱从正面可以看到中间一个大的矩形和两侧的两个等大的小矩形.故选择A.【知识点】三视图;主视图4.(2018四川省成都市,4,3)在平面直角坐标系中,点P(-3,-5)关于原点对称的点的坐标是()A.(3,-5)B.(-3,5)C.(3,5)D.(-3,-5)【答案】C【解析】解:因为关于原点对称的点的坐标特点是横纵坐标均为互为相反数,即P(x,y)关于原点对称的点P’(-x,-y),所以P(-3,-5)关于原点对称的点坐标为(3,5),故选择C.【知识点】中心对称;关于原点对称的点的坐标5.(2018四川省成都市,5,3)下列计算正确的是()A.2x+2x=4x B.()2x y-=2x-2y C.()32x y=6x y D.()23x x-g=5x【答案】D【解析】解:因为2x+2x=22x,故A错误;()2x y-=2x-2xy+2y,故B错误;()32x y=63x y,故C错误;()23x x-g=5x,D正确.故选择D.【知识点】整式乘法;乘法公式;合并同类项6.(2018四川省成都市,6,3)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC【答案】C【解析】解:因为∠ABC=∠DCB,加上题中的隐含条件BC=BC,所以可以添加一组角或是添加夹角的另一组边,可以证明两个三角形全等,故添加A、B、D均可以使△ABC≌△DCB.故选择C.【知识点】三角形全等的判定;7.(2018四川省城都市,7,3)如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃【答案】B【解析】解:∵由图象提供的信息可知最高气温为30℃,最低气温为20℃,温差为10℃,A错误;一周中有两天日最高气温都是28℃,出现次数最多,所以众数是28℃,B正确;将20℃,28℃,28℃,24℃,26℃,30℃,22℃按从小到大排列后,居中的是26℃,所以中位数是26℃,C错误;七个数据的平均数是(20+28+28+24+26+30+22)÷7≈25.4℃,D错误.故选择B.【知识点】众数;中位数;极差;平均数8.(2018四川省成都市,8,3)分式方程1xx++12x-=1的解是()A.x=1 B.x=-1 C.x=3 D.x=-3【答案】A【解题过程】解:1x x ++12x -=1,去分母(x -2)(x +1)+x =x (x -2),解得x =1,检验:把x =1代入x (x -2)≠0,∴x =1是原方程的解.故选择A .【知识点】分式方程;分式方程的解法 9.(2018四川省成都市,9,3)如图,在 ABCD 中,∠B =60°,⊙C 的半径为3,则图中阴影部分的面积是( ) A .π B .2π C .3π D .6π【答案】C【解题过程】解:∵四边形ABCD 为平行四边形,AB ∥CD ,∴∠B +∠C =180°,∵∠B =60°,∴∠C =120°,∴阴影部分的面积=21203360π⨯=3π.故选择C .【知识点】平行四边形的性质;扇形面积10.(2018四川省成都市,10,3)关于二次函数y =22x +4x -1,下列说法正确的是( )A .图像与y 轴的交点坐标为(0,1)B .图像的对称轴在y 轴的右侧C .当x <0时,y 的值随x 值的增大而减小D .y 的最小值为-3 【答案】D【解题过程】解:因为当x =0时,y =-1,所以图像与y 轴的交点坐标为(0,-1),故A 错误;图像的对称轴为x =2ba-=-1,在y 轴的左侧,故B 错误;因为-1<x <0时,在对称轴的右侧,开口向上,y 的值随x 值的增大而增大,故C 错误;y =22x +4x -1=()221x +-3,开口向上,所以有最小值-3,D 正确.故此选择D . 【知识点】二次函数的性质第Ⅱ卷(非选择题,共70分)二、填空题(每小题4分,共16分) 11.(2018四川省成都市,11,4)等腰三角形的一个底角为50° ,则它的顶角的度数为 . 【答案】80° 【解析】解:∵等腰三角形的一个底角为50° ,且两个底角相等,∴顶角为180°-2×50°=80°. 【知识点】等腰三角形性质,三角形的内角和 12.(2018四川省成都市,12,4)在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色乒乓球的个数是 .【答案】6【解析】解:设盒子中装有黄色乒乓球的个数为a 个,因为摸到黄色乒乓球的概率为38,所以16a =38,得a =6.【知识点】概率13.(2018四川省成都市,13,4)已知6a =5b =4c,且a +b -2c =6.则a 的值为 . 【答案】12 【解析】解:设6a =5b =4c=k ,则a =6k ,b =5k ,c =4k ,∵a +b -2c =6,∴6k +5k -8k =6,3k =6,解得k=2,∴a =6k =12.【知识点】比例;一元一次方程 14.(2018四川省成都市,14,4)如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E ,若DE =2,CE =3,则矩形的对角线AC 的长为 .【答案】30【思路分析】因为由作图可知MN 为线段AC 的垂直平分线,则有AE =CE =3,在Rt △ADE 中,由勾股定理可以求出AD 的长,然后再在Rt △ADC 中用勾股定理求出AC 即可.【解析】解:连接AE ,由作图可知MN 为线段AC 的垂直平分线,∴AE =CE =3,在Rt △ADE 中,2AE =2AD +2DE ,∴AD =22AE DE -=5,在Rt △ADC 中,2AC =2AD +2CD ,∵CD =DE +CE =5,∴AC =()2255+=30.【知识点】尺规作图;线段垂直平分线的性质;勾股定理三、解答题(本大题共6个小题,满分54分,解答应写出文字说明、证明过程或演算步骤) 15.(2018四川省成都市,15,6)(1)22-+38-2sin60°+|-3|【思路分析】结合负整数指数幂的运算法则、立方根、特殊角的三角形函数值,以及绝对值的性质进行运算, 【解析】解:22-+38-2sin60°+|-3|=14+2-2×32+3=94【知识点】幂的运算;立方根;特殊角三角形函数值;绝对值;15.(2018四川省成都市,15,6)(2)(1-11x +)÷21x x - 【思路分析】根据运算法则,先算括号内的,通分变成同分母的分式进行加减运算,然后再算乘除法.最后利用因式分解进行约分化成最简的形式.【解题过程】解:(1-11x +)÷21x x -=(111x x +-+)×21x x -=1xx +×()()11x x x +-=x -1. 【知识点】;分式的通分和约分; 因式分解;分式的混合运算;16.(2018四川省成都市,16,6)若关于x 的一元二次方程:2x -(2a +1)x +2a =0有两个不相等的实数根, 求a 的取值范围.【思路分析】利用根的判别式△=24b ac -,当△>0时方程有两个不相等的实数根,代入得到关于a 的不等式,解这个不等式便可求出a 的取值范围.【解题过程】解:由题意可知,△=()221a -+⎡⎤⎣⎦-4×1×2a =()221a +-42a =4a +1.∵方程有两个不相等的实数根,∴△>0,即4a +1>0,解得a >-14. 【知识点】一元二次方程;根的判别式; 17.(2018四川省成都市,17,8)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度” 的调查,并根据调查结果绘制成如下不完整的统计图表.6541260544842363024181260人数满意度不满意比较满意满意非常满意n m 5%40%10%65412不满意比较满意满意非常满意人数满意度所占百分比根据图表信息,解答下列问题:(1)本次调查的总人数为 ,表中m 的值为 ; (2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定. 【思路分析】(1)根据非常满意的人数和它所占的百分比,就可以求出调查的总人数;用满意的人数除以总人数就可以求出所占的百分比;(2)用总人数减去表中已知的数据,就可以得出比较满意的人数;或者用比较满意人数所占的百分比乘以总人数也可以得出比较满意的人数,然后在图中画出即可;(3)根据表格信息,能够知道“非常满意”和“满意”的人数之和,用它去除以总人数便可以得出所占的百分比,然后用每天接待的游客数乘以这个百分比,就可以知道每天得到多少游客的肯定了. 【解题过程】解:(1)∵12÷总人数×100%=10%,∴总人数=120(人);m =54÷120×100%=45%.(2)比较满意人数为:120×40%=48(人),图如下.486541260544842363024181260人数满意度不满意比较满意满意非常满意(3)3600×12+54120=1980(人). 答:该景区服务工作平均每天得到1980人的肯定. 【知识点】条形统计图 18.(2018四川省成都市,18,8)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务,如图,航母由西向东航行,到达A 处时,测得小岛C 位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B 处,测得小岛C 位于它的北偏东37°方向,如果航母继续航行至小岛C 的正南方向的D 处,求还需航行的距离BD 的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75) 东北37°70°CDBA【思路分析】在Rt ΔADC 中已知一个锐角和斜边,可以利用锐角三角函数中的余弦函数求出CD 的长,然后在Rt ΔBDC 中,已知直角边CD 和锐角∠BCD ,利用三角形函数中的正切函数求出BD 的长. 【解题过程】解:由题意得,∠ACD =70°,∠BCD =37°,AC =80.在Rt ΔADC 中,cos ∠ACD =CDAC,∴CD =AC ·cos70°≈80×0.34=27.2(海里).在Rt ΔBDC 中,tan ∠BCD =BDCD,∴BD =CD ·tan37°≈27.2×0.75=20.4(海里).答:还需航行的距离BD 的长为20.4海里. 【知识点】方向角;锐角三角函数; 19.(2018四川省成都市,19,10)如图,在平面直角坐标系xOy 中,一次函数y =x +b 的图象经过点A (-2,0),与反比例函数y =kx(x >0)的图象交于B (a ,4). (1)求一次函数和反比例函数的表达式;(2)设M 是直线AB 上一点,过M 作MN ∥x 轴,交反比例函数y =kx(x >0)的图象于点N ,若A ,O ,M ,N 为顶点的四边形为平行四边形,求点M 的坐标.yxO BA【思路分析】(1)因为一次函数y =x +b 的图象经过点A (-2,0),所以把A 点坐标代入就可求出b ,即可得到一次函数解析式,因为B (a ,4)是一次函数和反比例函数y =kx (x >0)的交点,所以把y =4代入一次函数中可以求B 点坐标,代入到y =kx求出k 得到反比例函数解析式;(2)因为MN ∥x 轴,A ,O ,M ,N 为顶点的四边形为平行四边形,则有MN =AO =2,又M 在直线AB 上,所以可以设M 的横坐标为m ,纵坐标用m 的代数式表示出来,由MN ∥x 轴可知M 与N 的纵坐标相等,代入y =kx,又可以将N 的横坐标也用m 的代数式表示出来,然后|M N x x -|=2,可以求出m 的值,即可求出M 的坐标. 【解题过程】解:设M (m ,m +2),N (82m +,m +2),∵MN ∥x 轴,∴当MN =OA 时,A ,O ,M ,N 为顶点的四边形为平行四边形.∵MN =|M N x x -|,∴|m -82m +|=2,当m -82m +=2时,解得1m =23,2m =-23,经检验都是方程的根,因为m >0,∴m =23;当m -82m +=-2时,解得1m =-2+22,2m =-2-22,经检验都是方程的根,因为m >0,∴m =-2+22,∴M 的坐标为(23,23+2)或(-2+22,22).NMNMyxO BA【知识点】一次函数;反比例函数;平行四边形的性质 20.(2018四川省成都市,21,10)如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,O 为AB 上一点,经过点A ,D 的⊙O 分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G . (1)求证:BC 是⊙O 的切线;(2)设AB =x ,AF =y ,试用含x ,y 的代数式表示线段AD 的长; (3)若BE =8,sin B =513,求DG 的长.F ABCDEGO【思路分析】(1)连接OD ,根据同圆半径相等,及角平分线条件得到∠DAC =∠ODA ,得OD ∥AC ,切线得证;(2)连接EF ,DF ,根据直径所对圆周角为直角,证明∠AFE =90°,可得EF ∥BC ,因此∠B =∠AEF ,再利用同弧所对圆周角相等可得∠B =∠ADF ,从而证明△ABD ∽△ADF ,可得AD 与AB 、AF 关系;(3)根据∠AEF =∠B ,利用三角函数,分别在Rt △DOB 和Rt △AFE 中求出半径和AF ,代入(2)的结论中,求出AD ,在利用两角对应相等,证明△OGD ∽△FGA ,再利用对应边成比例,求出DG :AG 的值,即可求得DG 的长. 【解题过程】解:(1)连接OD ,∵OA =OD ,∴∠OAD =∠ODA ,∵AD 平分∠BAC ,∴∠OAD =∠DAC ,∴∠DAC =∠ODA ,∴OD ∥AC ,∴∠ODB =∠C =90°,∴OD ⊥BC ,∵OD 为⊙O 半径,BC 是⊙O 的切线. (2)连接EF ,DF .∵AE 为⊙O 直径,∴∠AFE =90°,∴∠AFE =∠C =90°,∴EF ∥BC ,∴∠B =∠AEF ,又∵∠ADF =∠AEF ,∴∠B =∠ADF ,又∠OAD =∠DAC ,∴△ABD ∽△ADF ,∴AB AD =ADAF,∴AD 2=AB ·AF ,∴AD =xy .(3)设⊙O 半径为r ,在Rt △DOB 中sin B =OD OB =513,∴8r r +=513,解得r =5,∴AE =10,在Rt △AFE 中sin ∠AEF =sin B =AF AE,∴AF =10×513=5013,∴AD =xy =501813⨯=301313.∵∠ODA =∠DAC ,∠DGO =∠AGF ,∴△OGD ∽△FGA ,∴DG AG =OD AF =1310,∴DG =301323.OGEDCBAF【知识点】切线的判定;相似三角形;圆的有关性质;锐角三角函数B 卷(共50分)四、填空题(本大题共4小题,每小题6分,共24分) 21.(2018四川省成都市,21,4)x +y =0.2,x +3y =1,则代数式x 2+4xy +4y 2的值为 . 【答案】0.36【思路分析】将已知x +y =0.2,x +3y =1,相加化简求出x +2y 的值,利用完全平方公式即可求值.【解题过程】解:∵x +y =0.2①,x +3y =1②,①+②得:2x +4y =1.2,∴x +2y =0.6,∴x 2+4xy +4y 2=(x +2y )2=0.36.【知识点】完全平方公式;整式加减 22.(2018四川省成都市,22,4)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为 .【答案】1213【思路分析】利用四个直角三角形面积的和除以正方形面积即可求解.【解题过程】解:∵两直角边之比均为2:3,∴直角三角形的斜边平方=正方形的面积=22+32=13,∵四个直 角三角形面积和=4×12×2×3=12,∴针尖落在阴影区域的概率=1213. 【知识点】概率23.(2018四川省成都市,23,4)已知a >0,S 1=1a,S 2=-S 1-1,S 3=21S ,S 4=-S 3-1,S 5=41S ,…(即当n 为大于1的奇数时,S n =11n S -;当n 为大于1的偶数时,S n =-S n -1-1),按此规律S 2018= .(用含a 的代数式表示 )【答案】-1aa+ 【思路分析】分别用a 表示出S 1、S 2、S 3、…、直到发现循环规律,即可求解.【解题过程】解:∵S 1=1a ,∴S 2=-S 1-1=-1a -1=-1aa +,∴S 3=21S =-1a a +,∴S 4=-S 3-1=1a a+-1=-11a +,∴S 5=41S =-1-a ,∴S 6=-S 5-1=a ,∴S 7=61S =1a =S 1,故此规律为7个一循环,∵2018÷7=336余2,∴S 2018=-1aa+. 【知识点】整式运算;规律题 24.(2018四川省成都市,24,4) 如图,在菱形ABCD 的中,tan A =43,M ,N 分别在边AD ,BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段AB 的对应线段EF 经过顶点D .当EF ⊥AD 时,BNCN的值为 .M NCF DB EA A EBDF CNHM【答案】27【思路分析】延长NF 交DC 于H .根据翻折得∠A =∠E ,∠B =∠DFN ,利用菱形中邻角互补,可得到∠A =∠DFH ,且∠DHF =90°,在Rt △EDM 中,根据tan A =tan E =43,得到△EDM 三边的关系,求出菱形边长,在解Rt △DHF 和Rt △NHC ,求出CN ,BN ,即可求出BNCN的值. 【解题过程】解:∵四边形ABCD 为菱形,∴AD ∥BC ,∴∠A +∠B =180°,∵∠DFN +∠DFH =180°,又∵∠B =∠DFN ,∴∠A =∠DFH ,∵AB ∥CD ,∴∠A +∠ADC =180°,又∵∠ADF =90°,∴∠A +∠FDC =90°,∴∠DFH +∠FDC =90°,∴∠DHF =90°,∵∠A =∠E ,∴tan A =tan E =DM DE=43,设DM =4x ,DE =3x ,∴EM =22DE DM =5x ,∴AM =5x ,∴AD =AM +DM =9x ,∵EF =AB =AD =9x ,∴DF =EF -DE =6x ,在Rt △DFH 中∠A =∠DFH ,∴tan A =tan ∠DFH =DH FH =43,∴DH =45DF =245x ,∴CH =DC -DH =215x ,在Rt △CHN 中∠A =∠C ,∴tan A =tan C =HN HC =43,∴CN =53CH =7x ,∴BN =BC -CN =2x ,∴BNCN =27. 【知识点】菱形性质;锐角三角函数;翻折变换25.(2018四川省成都市,25,4) 设双曲线y =kx(k >0)与直线y =x 交于A 、B 两点(点A 在第三象限),将双曲线在第一象限的一支沿射线BA 的方向平移,使其经过点A ,将双曲线在第三象限的一支沿射线AB 的方向平移,使其经过点B ,平移后的两条曲线相交于P 、Q 两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ 为双曲线的“眸径”.当双曲线y =kx(k >0)的眸径为6时,k 的值为 . xyOQPBA【答案】32【思路分析】由眸径为6得OP =3,求得P 点坐标,根据y =kx与直线y =x 交于A 、B 两点,求出A 、B 两点坐标根据平移规律得到P 的对应点坐标,代入双曲线y =kx解析式中,即可求得k 的值. 【解题过程】解:连接P A ,作BP ´∥AP .则四边形P ABP ´为平行四边形,且P ´在双曲线y =k x 上.∵y =k x与直线y =x 交于A 、B 两点,∴x =kx,解得x =±k ,∴A (-k ,-k ),B (k ,k ),根据题意可得OP =3,∴P (-322,322),∵四边形P ABP ´为平行四边形,∴PP ´∥AB ,PP ´=AB ,∴P ´(-322+2k ,322+2k ),代入y =kx 中,得(-322+2k )(322+2k )=k ,解得k =32.yP´xO QPBA【知识点】反比例函数;平移;五、解答题(本大题共3小题,共30分) 26.(2018四川省成都市,26,8)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积x (m 2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x ≤300和x >300时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉种植面积共1200m 2,若甲种花卉的种植面积不少于200m 2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植面积总费用最少?最少费用为多少元?5500039000500300O (m 2)(元)y x【思路分析】(1)根据函数图象把(300,39000),(500,55000)分别代入y =k 1x 与y =k 2x +b 中即可求得解析式.(2)设甲种花卉的种植面积为a m 2,则乙种花卉的种植面积为(1200-a )m 2,结合(1)中的函数关系式,分别求出甲、乙两种花卉的费用求和,再结合函数的增减性进行讨论,即可求出最小值. 【解题过程】解:(1)当0≤x ≤300时,设函数关系式为y =k 1x ,过(300,39000),则39000=300k 1,解得k 1=130,∴当0≤x ≤300时,y =130x ,当x >300时,设函数关系式为y =k 2x +b ,过(300,39000)和(500,55000)两点,∴223900030055000500k b k b =+⎧⎨=+⎩,解得2801500k b =⎧⎨=⎩,y =80x +1500.综上y =130(0300)801500(300)x x x x ⎧⎨+⎩≤≤>.(2)设甲种花卉的种植面积为a m 2,则乙种花卉的种植面积为(1200-a )m 2. 根据题意得2002(1200)a a a ⎧⎨-⎩≥≤,解得200≤a ≤800.当200≤a ≤300时,总费用W 1=130a +100(1200-a )=30a +120000,当a =200时,总费用最少为W min =30×200+120000=126000(元); 当300≤a ≤800时,总费用W 2=80a +15000+100(1200-a )=-20a +135000,当a =800时,总费用最少为W min =-20×800+135000=119000,∵119000<126000,∴当a =800时,总费用最少为119000,此时1200-a =400, ∴当甲种、乙两种花卉面积分别为800 m 2和400 m 2时,种植面积总费用最少,最少费用为119000元. 【知识点】解不等式组;一次函数;一次函数图象的性质;27.(2018四川省成都市,27,10)在Rt △ABC 中,∠ACB =90°,AB =7,AC =2,过点B 作直线m ∥AC ,将△ABC 绕点C 顺时针旋转得到△A ´B ´C ´(点A 、B 的对应点分别为A ´、B ´),射线CA ´、CB ´分别交直线m 于点P ,Q .(1)如图1,当P 与A ´重合时,求∠ACA ´的度数;(2)如图2,设A ´B ´与BC 的交点为M ,当M 为A ´B ´的中点时,求线段PQ 的长; (3)在旋转过程中,当点P ,Q 分别在CA ´,CB ´的延长线上时,试探究四边形P A ´B ´Q 的面积是否存在最小值.若存在,求出四边形P A ´B ´Q 的最小面积;若不存在,请说明理由. 【思路分析】(1)当P 与A ´重合时,解Rt △A ´BC ,求出∠BA ´C 的度数,即为∠ACA ´的度数;(2)当M 为A ´B ´的中点时,利用直角三角形斜边中线等于斜边一半,得∠MA ´C =∠BCA ,解Rt △PBC 求出PB ,利用同角余角相等,得∠BQC =∠PCB ,解Rt △CBQ 求出BQ ,根据PQ =PB +BQ 即可求得PQ ;(3)作Rt △PCQ 斜边中线CM ,由S 四边形P A ´B ´Q =S △PCQ -S △P A ´B ´=12PQ ·BC -S △P A ´B ´=CM ·BC -S △P A ´B ´,根据垂线段最短,当CM ⊥PQ 时,S 四边形P A ´B ´Q 最小,求出其最小值即可. C 备用图mABBQAP A´m 图2B´C C B´图1MmA´(P )AQB【解题过程】解:(1)∵∠ACB =90°,AB =7,AC =2,∴BC =22AB AC -=3,当P 与A ´重合时,A ´C =AC =2,在Rt △A ´BC 中,sin ∠BA ´C =BCA C'=32,∴∠BA ´C =60°,∵m ∥AC ,∴∠ACA ´=∠BA ´C =60°.(2)∵∠A ´CB ´=90°,M 为A ´B ´的中点时,∴A ´M =CM ,∴∠MA ´C =∠A ´CM =∠A ,∵在Rt △ABC 中,tan ∠A =BC AC =32,∴在Rt △PBC 中,tan ∠A ´CB =PB BC =32,∴PB =32.∵∠PCB +∠BCQ =∠BCQ+∠BQC =90°,∴∠BQC =∠PCB ,∴tan ∠BQC =tan ∠A ´CB =32,∴BQ =tan BC BQC ∠=2,∴PQ =PB+BQ =72. (3)取PQ 的中点M ,连接CM .∵S △CA ´B ´=12A ´C ·B ´C =12×2×3=3,S △PCQ =12PQ ·BC =32PQ ,∴S 四边形P A ´B ´Q =S △PCQ -S △CA ´B ´=32PQ -3,∵M 为PQ 的中点,∠PCQ =90°,∴PQ =2CM ,∴S 四边形P A ´B ´Q=S △PCQ -Q -S △CA ´B ´=3CM -3,当CM 最小时,S 四边形P A ´B ´Q 最小.∵CM ≤BC =3,∴当CM =3时,S 四边形P A ´B ´Q 的最小值= 3CM -3=3-3.P Q M A´B´CmA B【知识点】解直角三角形;直角三角形斜边中线等于斜边一半;旋转28.(2018四川省成都市,28,12)如图,在平面直角坐标系中xOy 中,以直线x =52为对称轴的抛物线y =ax 2+bx +c 与直线l :y =kx +m (k >0)交于A (1,1),B 两点,与y 轴交于点C (0,5),直线l 交于点D . (1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F ,G 是抛物线上位于对称轴右侧的一点,若AF FB =34,且△BCG 与△BCD 的面积相等,求点G 的坐标;(3)若在x 轴上有且只有一点P ,使∠APB =90°,求k 的值.备用图lOCD BAx yFFyx ABD COl【思路分析】(1)设抛物线解析式为y =ax 2+bx +c ,结合对称轴,及A (1,1), C (0,5),即可求得抛物线解析式;(2)过点B 作BH ⊥x 轴于H ,过点A 作AM ⊥BH 轴于M ,交抛物线对称轴于N ,过点G 作GP ∥y 轴交直线BC 于点Q ,则BM =1.利用△AEN ∽△ABM ,求出B 的坐标,求出直线AB 、BC 的解析式,可求出S △BCD ,设 G (p ,p 2-5p +5) ,再利用铅锤底水平宽表示S △BCG ,根据S △BCG =S △BCD ,列出关于p 的一元二次方程,求解即可;(3)过点A 作AE ⊥x 轴于E ,过点B 作BT ⊥x 轴于T ,连接P A 、PB .设P (x ,0),根据直线AB 过点A (1,1),求出直线AB 的解析式y =kx +1-k ,根据∠APB =∠AEP =∠PTB =90°,通过证明△AEP ∽△PTB ,∴AEPT=EPBT,列出关于x 的一元二次方程,结合已知在x 轴上有且只有一点P ,可得△=0,即可求出k 的值. 【解题过程】(1)设抛物线解析式为y =ax 2+bx +c ,根据题意得52215b a a b c c⎧-=⎪⎪=++⎨⎪=⎪⎩,解得155a b c =⎧⎪=-⎨⎪=⎩,∴抛物线解析式为y =x 2-5x +5.(2)过点B 作BH ⊥x 轴于H ,过点A 作AM ⊥BH 轴于M ,交抛物线对称轴于N ,过点G 作GP ∥y 轴交直线BC 于点Q ,则BM =1.∵FN ∥BM ,∴△AEN ∽△ABM ,∴AF AB =AN AM ,∵AF FB =34,∴AFAB=AN AM =37,∵抛物线y =x 2-5x +5=(x -52)2-54,∴抛物线的对称轴为x =52,∴AN =52-1=32,AM =73×32=72,点B 的横坐标为72+1=92,代入y =x 2-5x +5中,得y =114,∴B (92,114),设直线AB 的解析式为y =kx +b ,则119421k b k b ⎧=+⎪⎨⎪=+⎩,解得1212k b ⎧=⎪⎪⎨⎪=⎪⎩,∴直线AB 的解析式为y =12x +12,∴D (0,12),设直线BC 的解析式为y =mx +n ,则511942n m n =⎧⎪⎨=+⎪⎩,解得125m n ⎧=-⎪⎨⎪=⎩,∴直线BC 的解析式为y =-12x +5,∴CD =5-12=92,∴S △BCD =12×92×92=818.设 G (p ,p 2-5p +5) ,则Q (p ,-12p +5),∴GQ =|p 2-5p +5-(-12p +5)|=|p 2-112p |,∵S △BCG =12QG ×92,又∵△BCG 与△BCD 的面积相等,∴12|p 2-112p |×92=818,当p 2-112p =92时,p 1=32,p 2=3,∵G 是抛物线上位于对称轴右侧的一点,∴p 2=3,∴G (3,-1);当p 2-112p =-92时,解得p 3=93174+,p 4=93174-,∵G 是抛物线上位于对称轴右侧的一点,∴p 3=93174+,∴G (93174+,673178-);综上G (3,-1) 或(93174+,673178-). Q GNHM FyxAB D COl(3)过点A 作AE ⊥x 轴于E ,过点B 作BT ⊥x 轴于T ,连接P A 、PB .直线AB 的解析式为y =kx +b ,过A (1,1),1=k +b ,∴b =1-k ,∴直线AB 的解析式为y =kx +1-k ,∴ kx +1-k =x 2-5x +5,整理得x 2-(5+k )x +4+k =0,x 1=1,x 2=4+k ,∴B (4+k ,k 2+3k +1),设p (x ,0),∵∠APB =90°,∠AEP =∠PTB =90°,∴∠APE +∠EAP =∠APE +∠BPT =90°,∴∠EAP =∠BPT ,∴△AEP ∽△PTB ,∴AE PT =EP BT ,∴14k x+-=2131x k k -++,∴x 2-(5+k )x +k 2+4k +5=0,∵在x 轴上有且只有一点P ,∴△=(5+k )2-4×1×(k 2+4k +5)=0,,即3 k 2+6k -5=0,解得k =3263-±,∵k >0,∴k = 3263-+. TE PlOCD BA x yF【知识点】二次函数的表达式;二次函数的性质;一次函数的表达式;三角形面积公式;相似三角形的判定与性质;。
2018年浙江省宁波市中考数学试卷真题含答案
2018年浙江省宁波市中考数学试卷真题含答案一、选择题(本大题共12小题,共48分)1.在,,0,1这四个数中,最小的数是A. B. C. 0 D. 1【答案】A【解析】解:由正数大于零,零大于负数,得,最小的数是,故选:A.根据正数大于零,零大于负数,可得答案.本题考查了有理数比较大小,利用正数大于零,零大于负数是解题关键.2.2018中国宁波特色文化产业博览会于4月16日在宁波国际会展中心闭幕本次博览会为期四天,参观总人数超55万人次,其中55万用科学记数法表示为A. B. C. D.【答案】B【解析】解:,故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.3. 下列计算正确的是A.B.C.D.【答案】A 【解析】解:,选项A 符合题意;,选项B 不符合题意;,选项C 不符合题意;,选项D 不符合题意. 故选:A .根据同底数幂的除法法则,同底数幂的乘法的运算方法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,解答此题的关键是要明确:底数,因为0不能做除数;单独的一个字母,其指数是1,而不是0;应用同底数幂除法的法则时,底数a 可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.4.有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为A. B. C. D.【答案】C【解析】解:从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,正面的数字是偶数的概率为,故选:C.让正面的数字是偶数的情况数除以总情况数5即为所求的概率.此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.5.已知正多边形的一个外角等于,那么这个正多边形的边数为A. 6B. 7C. 8D. 9【答案】D【解析】解:正多边形的一个外角等于,且外角和为,则这个正多边形的边数是:.故选:D.根据正多边形的外角和以及一个外角的度数,求得边数.本题主要考查了多边形的外角和定理,解决问题的关键是掌握多边形的外角和等于360度.6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是A. 主视图B. 左视图C. 俯视图D. 主视图和左视图【答案】C【解析】解:从上边看是一个田字, “田”字是中心对称图形, 故选:C .根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,又利用了中心对称图形.7. 如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,E 是边CD 的中点,连结若,,则的度数为A.B.C.D.【答案】B 【解析】解:,,,对角线AC 与BD 相交于点O ,E 是边CD 的中点,是的中位线,,.故选:B .直接利用三角形内角和定理得出的度数,再利用三角形中位线定理结合平行线的性质得出答案.此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO是的中位线是解题关键.8.若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为A. 7B. 5C. 4D. 3【答案】C【解析】解:数据4,1,7,x,5的平均数为4,,解得:,则将数据重新排列为1、3、4、5、7,所以这组数据的中位数为4,故选:C.先根据平均数为4求出x的值,然后根据中位数的概念求解.本题考查了中位数的概念:将一组数据按照从小到大或从大到小的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.如图,在中,,,,以点B为圆心,BC长为半径画弧,交边AB于点D,则的长为A. B. C. D.【答案】C【解析】解:,,,,的长为,故选:C . 先根据,,,得圆心角和半径的长,再根据弧长公式可得到弧CD 的长.本题主要考查了弧长公式的运用和直角三角形30度角的性质,解题时注意弧长公式为:弧长为l ,圆心角度数为n ,圆的半径为.10. 如图,平行于x 轴的直线与函数,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若的面积为4,则的值为A. 8B.C. 4D.【答案】A 【解析】解:轴,,B 两点纵坐标相同. 设,,则,.,.故选:A . 设,,根据反比例函数图象上点的坐标特征得出,根据三角形的面积公式得到,求出.本题考查了反比例函数图象上点的坐标特征,点在函数的图象上,则点的坐标满足函数的解析式也考查了三角形的面积.11.如图,二次函数的图象开口向下,且经过第三象限的点若点P的横坐标为,则一次函数的图象大致是A.B.C.D.【答案】D【解析】解:由二次函数的图象可知,,,当时,,的图象在第二、三、四象限,故选:D.根据二次函数的图象可以判断a、b、的正负情况,从而可以得到一次函数经过哪几个象限,本题得以解决.本题考查二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用函数的思想解答.12. 在矩形ABCD 内,将两张边长分别为a 和的正方形纸片按图1,图2两种方式放置图1,图2中两张正方形纸片均有部分重叠,矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为,图2中阴影部分的面积为当时,的值为A. 2aB. 2bC.D.【答案】B 【解析】解:,,.故选:B .利用面积的和差分别表示出和,然后利用整式的混合运算计算它们的差.本题考查了整式的混合运算:整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来也考查了正方形的性质.二、填空题(本大题共6小题,共24分) 13. 计算:______.【答案】2018【解析】解:.故答案为:2018.直接利用绝对值的性质得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.14.要使分式有意义,x的取值应满足______.【答案】【解析】解:要使分式有意义,则:.解得:,故x的取值应满足:.故答案为:.直接利用分式有意义则分母不能为零,进而得出答案.此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.15.已知x,y满足方程组,则的值为______.【答案】【解析】解:原式故答案为:根据平方差公式即可求出答案.本题考查因式分解,解题的关键是熟练运用平方差公式,本题属于基础题型.16. 如图,某高速公路建设中需要测量某条江的宽度AB ,飞机上的测量人员在C 处测得A ,B 两点的俯角分别为和若飞机离地面的高度CH 为1200米,且点H ,A ,B 在同一水平直线上,则这条江的宽度AB 为______米结果保留根号. 【答案】【解析】解:由于,,在中,米,在,米.米故答案为:在和中,利用锐角三角函数,用CH 表示出AH 、BH 的长,然后计算出AB 的长.本题考查了锐角三角函数的仰角、俯角问题题目难度不大,解决本题的关键是用含CH 的式子表示出AH 和BH .17.如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作当与正方形ABCD的边相切时,BP的长为______.【答案】3或【解析】解:如图1中,当与直线CD相切时,设.在中,,,,,.如图2中当与直线AD相切时设切点为K,连接PK,则,四边形PKDC是矩形.,,,在中,.综上所述,BP的长为3或.分两种情形分别求解:如图1中,当与直线CD相切时;如图2中当与直线AD相切时设切点为K,连接PK ,则,四边形PKDC是矩形;本题考查切线的性质、正方形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.中点,连结MD ,若,则的值为______.【答案】【解析】解:延长DM交CB的延长线于点H.四边形ABCD是菱形,,,,,,≌,,,,设,,,,,或舍弃,,故答案为.延长DM交CB的延长线于点首先证明,设,利用勾股定理构建方程求出x即可解决问题.本题考查菱形的性质、勾股定理、线段的垂直平分线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.三、计算题(本大题共1小题,共6分)19.已知抛物线经过点,求该抛物线的函数表达式;将抛物线平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函【答案】解:把,代入抛物线解析式得:,解得:,则抛物线解析式为;抛物线解析式为,将抛物线向右平移一个单位,向下平移2个单位,解析式变为.【解析】把已知点的坐标代入抛物线解析式求出b与c的值即可;指出满足题意的平移方法,并写出平移后的解析式即可.此题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.四、解答题(本大题共7小题,共72分)20.先化简,再求值:,其中.【答案】解:原式,当时,原式.【解析】首先计算完全平方,再计算单项式乘以多项式,再合并同类项,化简后再把x的值代入即可.此题主要考查了整式的混合运算--化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.21.在的方格纸中,的三个顶点都在格点上.在图1中画出线段BD,使,其中D是格点;在图2中画出线段BE,使,其中E是格点.【答案】解:如图所示,线段BD即为所求;如图所示,线段BE即为所求.【解析】将线段AC沿着AB方向平移2个单位,即可得到线段BD;利用的长方形的对角线,即可得到线段.本题主要考查了作图以及平行四边形的性质,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.22.在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间用t表示,单位:小时,采用随机抽样的方法进行问卷调查,调查结果按,,,分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:求本次调查的学生人数;求扇形统计图中等级B 所在扇形的圆心角度数,并把条形统计图补充完整;若该校共有学生1200人,试估计每周课外阅读时间满足的人数.【答案】解:由条形图知,A 级的人数为20人,由扇形图知:A 级人数占总调查人数的所以:人即本次调查的学生人数为200人;由条形图知:C 级的人数为60人 所以C 级所占的百分比为:,B 级所占的百分比为:,B 级的人数为人 D 级的人数为:人B 所在扇形的圆心角为:.因为C 级所占的百分比为,所以全校每周课外阅读时间满足的人数为:人答:全校每周课外阅读时间满足的约有360人.【解析】由条形图、扇形图中给出的级别A的数字,可计算出调查学生人数;先计算出C在扇形图中的百分比,用在扇形图中的百分比可计算出B在扇形图中的百分比,再计算出B在扇形的圆心角.总人数课外阅读时间满足的百分比即得所求.本题考查了扇形图和条形图的相关知识题目难度不大扇形图中某项的百分比,扇形图中某项圆心角的度数该项在扇形图中的百分比.23.如图,在中,,,D是AB边上一点点D与A,B不重合,连结CD,将线段CD绕点C按逆时针方向旋转得到线段CE,连结DE交BC于点F,连接BE.求证:≌;当时,求的度数.【答案】解:由题意可知:,,,,,,在与中,≌,,,由可知:,,,【解析】由题意可知:,,由于,所以,,所以,从而可证明≌由≌可知:,,从而可求出的度数.本题考查全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质,本题属于中等题型.24.某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.求甲、乙两种商品的每件进价;该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?【答案】解:设甲种商品的每件进价为x 元,则乙种商品的每件进价为元.根据题意,得,,解得.经检验,是原方程的解.答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲乙两种商品的销售量为.设甲种商品按原销售单价销售a件,则,解得.答:甲种商品按原销售单价至少销售20件.【解析】设甲种商品的每件进价为x元,乙种商品的每件进价为y元根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元购进的甲、乙两种商品件数相同”列出方程;设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式.本题考查了分式方程的应用,一元一次不等式的应用本题属于商品销售中的利润问题,对于此类问题,隐含着一个等量关系:利润售价进价.25.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.已知是比例三角形,,,请直接写出所有满足条件的AC的长;如图1,在四边形ABCD中,,对角线BD平分,求证:是比例三角形.如图2,在的条件下,当时,求的值.【答案】解:是比例三角形,且、,当时,得:,解得:;当时,得:,解得:;当时,得:,解得:负值舍去;所以当或或时,是比例三角形;,,又,∽,,即,,,平分,,,,,是比例三角形;如图,过点A 作于点H,,,,,又,∽,,即,,又,,.【解析】根据比例三角形的定义分、、三种情况分别代入计算可得;先证∽得,再由知即可得;作,由知,再证∽得,即,结合知,据此可得答案.本题主要考查相似三角形的综合问题,解题的关键是理解比例三角形的定义,并熟练掌握相似三角形的判定与性质.26.如图1,直线l:与x轴交于点,与y轴交于点B,点C是线段OA上一动点以点A为圆心,AC长为半径作交x轴于另一点D,交线段AB于点E,连结OE 并延长交于点F.求直线l的函数表达式和的值;如图2,连结CE,当时,求证:∽;求点E的坐标;当点C在线段OA 上运动时,求的最大值.【答案】解:直线l :与x 轴交于点,,,直线l 的函数表达式,,,,在中,;如图2,连接DF ,,,,,四边形CEFD 是的圆内接四边形,,,∽,过点于M,由知,,设,则,,,,,,由知,∽,,,,,,舍或,,,,如图,设的半径为r,过点O作于G,,,,,,,,,,连接FH,是直径,,,,∽,,,时,最大值为.【解析】利用待定系数法求出b即可得出直线l表达式,即可求出OA,OB,即可得出结论;先判断出,进而得出,即可得出结论;设出,,进而得出点E坐标,即可得出OE的平方,再根据的相似得出比例式得出OE的平方,建立方程即可得出结论;利用面积法求出OG,进而得出AG,HE,再构造相似三角形,即可得出结论.此题是圆的综合题,主要考查了待定系数法,相似三角形的判定和性质,锐角三角函数,勾股定理,正确作出辅助线是解本题的关键.。
2018年江西省中考数学试卷-答案
江西省2018年中等学校招生考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】2-的绝对值是2,故选B . 【考点】绝对值的概念 2.【答案】A 【解析】2222()b b a a b a a-==,故选A . 【考点】分式的运算 3.【答案】D【解析】从左面看该几何图,看到的是一个矩形,且看不到的棱用虚线表示,故选D . 【考点】几何体的左视图 4.【答案】C【解析】A 中,最喜欢足球的人数最多,故错误;B 中,最喜欢羽毛球的人数是最喜欢乒乓球人数的43,故错误;C 中,全班学生总人数为122084650++++=(名),故正确;D 中,最喜欢田径的人数占总数的4100%8%50⨯=,故错误,故选C . 【考点】频数分布直方图 5.【答案】C【解析】如图所示,正方形ABCD 可以向上、向下、向右以及沿AC 所在直线、沿BD 所在直线平移,且平移前后的两个正方形可组成轴对称图形,故选C . 【考点】利用轴对称设计图案,平移的性质 6.【答案】D【解析】A 中,因为双曲线3y x=的图象位于第一、三象限,且m 与2m +不全为0,所以直线1l 和2l 中总有一条与双曲线相交,故正确;B 中,当1m =时,直线1l 与双曲线交点为(1,3)2l 与双曲线交点为(3,1)1m =时两直线与双曲线的交点到原点的距离相等,故正确;C 中,当20m -<<时,直线2l 与双曲线的交点位于第三象限,在y 轴的左侧,直线2l 与双曲线的交点位于第一象限,在y 轴的右侧,故正确;D 中,反比例函数3y x=的图象是曲线,根据直角三角形中斜边长大于直角边长,故当两直线与双曲线都有交点时,这两交点的最短距离必大于2,故错误,故选D . 【考点】反比例函数的图象与性质第Ⅱ卷二.填空题 7.【答案】1x ≠【解析】依题意,10x -≠,解得1x ≠. 【考点】分式有意义的条件 8.【答案】4610⨯ 【解析】460000610=⨯. 【考点】科学记数法9.【答案】5210258x y x y +=⎧⎨+=⎩【解析】由5头牛、2只羊、值金10量可得5210x y +=,由2头牛、5只羊、值金8量可得258x y +=,可列出方程组5210258x y x y +=⎧⎨+=⎩,.【考点】二元一次方程组的应用10.【答案】【解析】∵四边形ABCD 为矩形, ∴AD BC =,o 90D ∠=由旋转的性质可知AB AE =,BC EF = ∴3EF AD ==. ∵DE EF = ∵3DE =.在Rt ADE △中,AE =∴AB =【考点】矩形的性质,旋转的性质,勾股定理 11.【答案】2【解析】把1x x =代入一元二次方程2420x x -+=中, 得211420x x -+=,∴21142x x -=- 根据根与系数的关系, 得122x x =,∴2222=-+⨯=原式.【考点】一元二次方程根与系数的关系,代数式求值12.【答案】2,【解析】(1)当点P 在正方形的边上时, ①当点P 在AD 边上时,如图1,11233AP AD AB ===; ②当点P 在AB 边上时,如图2,设AP x =,则2PD x =, ∴2226(2)x x +=解得x =③点P 不可能在BC ,CD 上.(2)当点P 在对角线上时,①当点P 在对角线BD 上时(不与点B 重合),如图3, ∵2PD OA <,AP OA ≥, ∴点P 在BD 上不存在2PD AP =;②当点P 在对角线AC 上时,如图4,设AP x =,则2PD x =,OP x =,OD =在Rt OPD △中,222)(2)x x +=,解得1x 2x =.综上所述,2AP =,.【考点】正方形的性质、勾股定理、分类讨论思想 三、解答题13.【答案】(1)45a - (2)6x ≥【解析】(1)221(44)45a a a a =---+=-原式.(2)去分母,得2226x x --+≥ 解得6x ≥.【考点】整式的混合运算,一元一次不等式的解法 14.【答案】4AE =【解析】∵BD 平分ABC ∠. ∴ABD CBD ∠=∠ ∵AB CD ∥,∴ABD D ∠=∠,ABE CDE ~△△. ∴CBD D ∠=∠,AB AECD EC=∴BC CD =∵8AB =,6CA =,4CD BC ==, ∴846AEAE=-. ∴4AE =.【考点】平分线的定义、平分线的性质、相似三角形的判定与性质 15.【答案】画法如图所示. (1)AF 即为所求(2)BF 即为所求【解析】画法如图所示. (1)AF 即为所求(2)BF 即为所求【考点】考查作图、全等三角形的判定与性质、三角形的重心. 16.【答案】(1)不可能,随机,14. (2)解法一:根据题意,可以画出如下的树状图:由树状图可以得出,所有可能出现的结果共有12种,这些结果出现的可能性相等,“小惠被抽中”的结果共有6种,小悦小悦 小惠小悦 小悦小艳 小倩 小艳 小艳小艳小悦 小悦 小惠小惠 小惠 小倩 小倩所以61()122P ==小惠被抽中.由上表可以得出,所有可能出现的结果共有12种,这些结果出现的可能性相等,“小惠被抽中”的结果共有6种,所以61()122P ==小惠被抽中. 【解析】(1)根据随机事件和不可能事件的概念及概率公式解答可得;(2)用列表法或树状图法得到所有等可能的结果,再找出符合条件的结果,根据概率公式求解即可。
浙江省温州市2018年中考数学试题(含解析)
浙江省温州市2018年中考数学试卷(解析版)一、选择题1. ( 2分) 给出四个实数,2,0,-1,其中负数是()A.B.2C.0D.-1【答案】D【考点】正数和负数的认识及应用【解析】【解答】解根据题意:负数是-1,故答案为:D。
【分析】根据负数的定义,负数小于0 即可得出答案。
2. ( 2分) 移动台阶如图所示,它的主视图是()A.B.C.D.【答案】B【考点】简单组合体的三视图【解析】【解答】解:A、是其俯视图,故不符合题意;B是其主视图,故符合题意;C是右视图,故不符合题意;D是其左视图,故不符合题意。
故答案为:B。
【分析】根据三视图的定义,其主视图,就是从前向后看得到的正投影,根据看的情况一一判断即可。
3. ( 2分) 计算的结果是()A. B. C. D.【答案】C【考点】同底数幂的乘法【解析】【解答】解: a 6 · a 2=a8故答案为:C。
【分析】根据同底数幂的乘法,底数不变,指数相加即可得出答案。
4. ( 2分) 某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A. 9分B. 8分C. 7分D. 6分【答案】C【考点】中位数【解析】【解答】解:将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C。
【分析】根据中位数的定义,首先将这组数据按从小到大的顺序排列起,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案。
5. ( 2分) 在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A. B. C. D.【答案】D【考点】概率公式【解析】【解答】解:根据题意:从袋中任意摸出一个球,是白球的概率为=故答案为:D。
【分析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①在点 , , 中, 的关联点是;
②点P在直线 上,若P为 的关联点,求点P的横坐标的取值范围;
(2) 的圆心在x轴上,半径为2,直线 与x轴、y轴分别交与点A,B.若线段AB上的所有点都是 的关联点,直接写出圆心C的横坐标的取值范围.
(以上材料来源于《古证复原的原则》、《吴文俊与中国》和《古代世界数学泰斗刘徽》)
请根据上图完成这个推论的证明过程。
证明: (+) .
易知, =,=.
可得: .
21.关于x的一元二次方程 .
(1)求证:方程总有两个实数根;
(2)若方程有一个根小于1,求k的取值范围.
22.如图在四边形ABCD中,BD为一条射线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,
3.右图是某几何体的展开图,该几何体是
A.三棱柱B.圆锥C.四棱柱D.圆柱
4.实数a,b,c,d在数轴上的点的位置如图所示,则正确的结论是
A. B. C. D.
5.下列图形中,是轴对称图形不是中心对称图形的是
6.若正多边形的一个内角是150°,则该正方形的边数是
A.6B. 12C. 16D.18
7.如果 ,那么代数式 的值是
2018四川高级中等学校招生考试
数学试卷
学校:姓名:准考证号:
考
生
须
知
1.本试卷共8页,共三道大题,29道小题,满分120分。考试时间120分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
18.解不等式组:
19.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC点D。
求证:AD=BC.
20.数学家吴文俊院士非常重视古代数学家贾宪提出大“从长方形对角线上任一点作两条分别平行于两领边的直线,则所容两长方形面积相等(如图所示)”这一结论,他从这一结论出发,利用“出入相补”原理复原了《海岛算经》九题古证.
5.考试结束,请将本试卷、答题卡一并交回。
一、选择题(本题共30分,每小题3分)
第1-10题均有四个选项,符合题意的选项只有一个.
1.如图所示,点P到直线 的距离是
A.线段PA的长度B.A线段PB的长度
C.线段PC的长度D.线段PD的长度
2.若代数式 有意义,则实数 的取值范围是
A. =0 B. =4 C. D.
整理、描述数据按如下分数段整理、描述这两组样本数据:
(说明:成绩80分及以上为生产技能优秀,70-79分为生产技能良好,60-69分为生产技能合格,60分以下为生产技能不合格)
分析数据两组样本数据的平均数、中位数、众数如下表所示:
部门
平均数
中位数
众数
甲
78.3
77.5
75
乙
78
80.5
81
得出结论a.估计乙部门生产技能优秀的员工人数为;
收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:
甲78 86 74 81 75 76 87 70 75 90
75 79 81 70 74 80 86 69 83 77
乙93 73 88 81 72 81 94 83 77 83
80 81 70 81 73 78 82 80 70 40
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.
下面是小东的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm
0
1
2
3
4ห้องสมุดไป่ตู้
5
6
y/cm
0
2.0
2.3
2.1
0.9
0
(说明:补全表格时相关数据保留一位小数)
(2)建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图像;
16.下面是“作已知直角三角形的外接圆”的尺规作图的过程.
请回答:该尺规作图的依据是.
三、解答题(本题共72分,第17~19题,每小题5分,第20题3分,第21-24题,每小题5分,第25,26题,每小题6分,第27、28题,每小题7分,第29题8分)
解答应写出文字说明,演算步骤或证明过程.
17计算:
28.在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B,C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.
(1)若∠PAC=α,求∠AMQ的大小(用含有α的式子表示);
(2)用等式表示线段MB与PQ之间的数量关系,并证明.
29.对于平面直角坐标系xOy中的点P和图形M,给出如下定义:若在图形M上存在一点Q,使得P,Q两点间的距离小于或等于1,则称P为图形M的关联点.
①当n=1时,判断线段PM与PN的数量关系,并述明理由;
②若 ,结合函数的图像的函数,直接写出n的取值范围.
24.如图,AB是 的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作 的切线交CE的延长线与点D.
(1)求证:DB=DE。
(2)若AB=12,BD=5,求 的半径。
25.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整。
连接BE。
(1)求证:四边形BCDE为菱形;
(2)连接AC,若AC平分∠BAD,BC=1,求AC的长.
23.如图,在平面直角坐标系xOy中,函数 (x>0)图像与直线y=x-2交于点A(3,m)。
(1)求k,m的值
(2)已知点P(m,n)(n>0),经过P作平行于x轴的直线,交直线y=x-2于点M,过P点做平行于y轴的直线,交函数 (x>0)的图像于点N.
(3)结合画出的函数图像,解决问题:当△PAN为等腰三角形时,AP的长度约为cm.
27.在平面直角坐标系xOy中,抛物线 与x轴相交于A,B(点A在点B的左边),与y轴相交于C.
(1)求直线BC的表达式。
(2)垂直于y轴的直线l与抛物线相交于点 ,与直线BC交于点 。若 ,结合函数图像,求 的取值范围.
C.小苏前15s跑过的路程大于小林15s跑过的路程
D.小林在跑最后100m的过程中,与小苏相遇2次
10.下图显示了用计算器模拟随机投掷一枚图钉的某次实验的结果.
下面有三个推断:
①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0616;
②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0618;
D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多
9.小苏和小林在右图的跑道上进行4×50米折返跑.在整个过程中,
跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的
对应关系如下图所示。下列叙述正确的是
A.两个人起跑线同时出发,同时到达终点
B.小苏跑全程的平均速度大于小林跑全程的平均速度
A.-3B. -1C. 1D.3
8.下面统计图反映了我国与“一带一路”沿线部分地区的贸易情况.
根据统计图提供的信息,下列推断不合理的是
A.与2015年相比,2016年我国与东欧地区的贸易额有所增长
B.2016—2016年,我国与东南亚地区的贸易额逐年增长
C. 2016—2016年,我国与东南亚地区的贸易额的平均值超过4 200亿美元
13.如图,在△ABC中,M,N分别是AC,BC的中点,若 ,则 .
14.如图,AB为 的直径,C,D为 上的点, 。若∠CAB=40°,则∠CAD=°.
15.如图,在平面直角坐标系xOy中,△AOB可以看成是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:.
③若再次用计算机模拟此实验,则当投掷次数为1 000时,“钉尖向上”的频率一定是0.620.
其中合理的是
A.①B.②C.①②D.①③
二、填空题(本题共18分,每小题3分)
11.写出一个比3大且比4小的无理数.
12.某活动小组购买了4个篮球和5个足球,一共花费435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.
b.可以推断出部门员工的生产技能水平较高,理由为
.(至少从两个不同的角度说明推断的合理性).
26.如图,P是 所对弦AB上一动点,过点P作PM⊥AB交 于点M,连接MB,过点P作PN⊥MB于点N。已知AB=6cm,设A,P两点间的距离为x cm,P,N两点间的距离为y cm.(当点P与点A或点B重合时,y的值为0)