(完整word版)2019年中考初中数学应用题经典练习题

合集下载

2019年福建省中考数学试题Word版,含答案)

2019年福建省中考数学试题Word版,含答案)

2019年福建省中考数学试题及答案一、选择题(每小题4分,共40分) 1.计算22+(-1)°的结果是( ).A.5B.4C.3D.22.北京故宫的占地面积约为720 000m 2,将720 000用科学记数法表示为( ). A.72×104 B.7.2×105 C.7.2×106 D. 0.72×1063.下列图形中,一定既是轴对称图形又是中心对称图形的是( ). A.等边三角形 B.直角三角形 C.平行四边形 D.正方形4.右图是由一个长方体和一个球组成的几何体,它的主视图是( ).5.已知正多边形的一个外角为36°,则该正多边形的边数为( ). A.12 B.10 C.8 D.66.如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是( ).A.甲的数学成绩高于班级平均分,且成绩比较稳定B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高D.就甲、乙、丙三个人而言,乙的数学成绩最不稳 7.下列运算正确的是( ).A.a ·a 3= a 3B.(2a )3=6a 3C. a 6÷a 3= a 2D.(a 2)3-(-a 3)2=08.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ).A. x +2x +4x =34 685B. x +2x +3x =34 685C. x +2x +2x =34 685D. x +21x +41x =34 685 9.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上, 且∠ACB =55°,则∠APB 等于( ). A.55° B.70° C.110° D.125°OPBA主视方向■▲■▲▲■▲■■▲■▲60708090100数学成绩/分班级平均分丙乙甲10.若二次函数y =|a |x 2+bx+c 的图象经过A(m ,n )、B(0,y 1)、C(3-m ,n )、D(2, y 2)、E(2,y 3),则y 1、y 2、y 3的大小关系是( ).A. y 1< y 2< y 3B. y 1 < y 3< y 2C. y 3< y 2< y 1D. y 2< y 3< y 1 二、填空题(每小题4分,共24分)11.因式分解:x 2-9=__( x +3)( x -3)_____.12.如图,数轴上A 、B 两点所表示的数分别是-4和2, 点C 是线段AB 的中点,则点C 所表示的数是__-1_____.13.某校征集校运会会徽,遴选出甲、乙、丙三种图案.为了解何种图案更受欢迎,随机调查了该校100名学生,其中60名同学喜欢甲图案,若该校共有2000人,根据所学的统计知识可以估计该校喜欢甲图案的学生有__1200_____人.14.中在平面直角坐标系xOy 中,□OABC 的三个顶点O (0,0)、A (3,0) 、 B (4,2),则其第四个顶点是是__(1,2)_____.15.如图,边长为2的正方形ABCD 中心与半径为2的⊙O 的圆心重合,E 、F 分别是AD 、BA 的延长与⊙O 的交点,则图中阴影部分的面积 是__π-1_____.(结果保留π)16.如图,菱形ABCD 顶点A 在例函数y =x3(x >0)的图象上,函数y =xk(k >3,x >0)的图象关于直线AC 对称,且经过点B 、D两点,若AB =2,∠DAB =30°,则k 的值为_6+23______. 三、解答题(共86分) 17. (本小题满分8分) 解方程组:⎩⎨⎧=+=-425y x y x解:⎩⎨⎧-==23y x18. (本小题满分8分)如图,点E 、F 分别是矩形ABCD 的边 AB 、CD 上的一点,且DF =BE . 求证:AF=CE .解:(略)(第15题)DCE F A BO FED CBA (第16题)yxDCBAO-4CB A (第12题)先化简,再求值:(x -1)÷(x -xx 12-),其中x =2+1 解:原式=1-x x, 1+2220. (本小题满分8分)如图,已知△ABC 为和点A'.(1)以点A'为顶点求作△A'B'C',使△A'B'C'∽△ABC ,S △A'B'C'=4S △ABC ; (尺规作图,保留作图痕迹,不写作法)(2)设D 、E 、F 分别是△ABC 三边AB 、BC 、AC 的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、A'C'的中点,求证:△DEF ∽△D'E'F'.(2)证明(略)21. (本小题满分8分)在Rt △ABC 中,∠ABC =90°,∠BAC =30°,将△ABC 绕点A 顺时针旋转一定的角度α得到△AED ,点B 、C 的对应点分别是E 、D .(1)如图1,当点E 恰好在AC 上时,求∠CDE 的度数; (2)如图2,若α=60°时,点F 是边AC 中点,求证:四边形BFDE 是平行四边形.A'CB A (图1)EDC B A (图2)F ED C BAC B A某工厂为贯彻落实“绿水青山就是金山银山“的发展理念,投资组建了日废水处理量为m 吨的废水处理车间,对该厂工业废水进行无害化处理. 但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理. 已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元.根据记录,5月21日,该厂产生工业废水35吨,共花费废水处理费370元. (1)求该车间的日废水处理量m ;(2)为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过10元/吨,试计算该厂一天产生的工业废水量的范围. 解:(1)∵处理废水35吨花费370,且3530370 =768>8,∴m <35, ∴30+8m +12(35-m )=370,m =20(2)设一天生产废水x 吨,则当0< x ≤20时,8x +30≤10 x , 15≤x ≤20当x >20时,12(x -20)+160+30≤10x , 20<x ≤25 综上所述,15≤x ≤20 23.(本小题满分10分)某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5000元,但无需支付工时费某公司计划购实1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在三年使用期内10”的概率;(2)试以这100机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务? 解: (1)0.6y 1=1001(24000×10+24500×20+25000×30+30000×30+35000×10)=27300y 2=1001(26000×10+26500×20+27000×30+27500×30+32500×10)=27500 所以,选择购买10次维修服务.如图,四边形ABCD 内接于⊙O ,AB=AC ,BD ⊥AC ,垂足为E ,点F 在BD 的延长线上,且DF =DC ,连接AF 、CF .(1)求证:∠BAC =2∠DAC ;(2)若AF =10,BC =45,求tan ∠BAD 的值. 解:(1)∵BD ⊥AC ,CD=CD , ∴∠BAC =2∠CBD =2∠CAD ; (2)∵DF =DC , ∴∠BFC =21∠BDC =21∠BAC =∠FBC , ∴CB=CF ,又BD ⊥AC ,∴AC 是线段BF 的中垂线,AB= AF =10, AC =10. 又BC =45,设AE =x , CE =10-x ,AB 2-AE 2=BC 2-CE 2, 100-x 2=80-(10-x )2, x =6 ∴AE =6,BE =8,CE =4,("1,2,5";"3,4,5";Rt △组合) ∴DE =BE CE AE ⋅=846⨯=3, 作DH ⊥AB ,垂足为H ,则 DH=BD ·sin ∠ABD =11×53=533, BH= BD ·cos ∠ABD =11×54=544∴AH =10-544=56∴tan ∠BAD =AH DH =633=21125.已知抛物y=ax 2+bx+c (b <0)与轴只有一个公共点. (1)若公共点坐标为(2,0),求a 、c 满足的关系式;(2)设A 为抛物线上的一定点,直线l :y=kx+1-k 与抛物线交于点B 、C 两点,直线BD 垂直于直线y =-1,垂足为点D .当k =0时,直线l 与抛物线的一个交点在 y 轴上,且△ABC 为等腰直角三角形. ①求点A 的坐标和抛物线的解析式;②证明:对于每个给定的实数 k ,都有A 、D 、C 三点共线.解:(1) y=a (x -2)2, c =4a ;(2) y=kx+1-k = k (x -1)+1过定点(1,1),且当k =0时,直线l 变为y =1平行x 轴,与轴的交点为(0,1)又△ABC 为等腰直角三角形,∴点A 为抛物线的顶点 ①c =1,顶点A (1,0)抛物线的解析式: y = x 2-2x +1. ②⎩⎨⎧-+=+-=kkx y x x y 1122 FEDCBA HFEDCBA福建省历年中考真题x 2-(2+k)x +k =0, x =21(2+k ±42+k ) x D =x B =21(2+k -42+k ), y D =-1; D ⎪⎪⎭⎫ ⎝⎛-+-+1,2412k k y C =21(2+k 2+k 42+k , C ⎪⎪⎭⎫ ⎝⎛++++++2)4(1,24122k k k k k , A (1,0) ∴直线AD 的斜率k AD =422+--k k =242++k k ,直线AC 的斜率k AC =242++k k∴k AD = k AC , 点A 、C 、D 三点共线.。

2019年云南省中考数学试题题(word版,含解析)

2019年云南省中考数学试题题(word版,含解析)

2019年云南省初中学业水平考试数学试题卷一、填空题(本大题共6小题,每小题3分,共18分)1.若零上8℃记作+8℃,则零下6℃记作 ℃。

2.分解因式:x 2-2x +1= 。

3.如图,若AB℃CD ,℃1=40度,则℃2= 度。

4.若点(3,5)在反比例函数)0(≠=k xky 的图象上,则k = 。

5.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考 试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如下:根据以上统计图提供的信息,则D 等级这一组人数较多的班是 。

6.在平行四边形ABCD 中,℃A =30°,AD =34,BD =4,则平行四边形ABCD 的面积等于。

二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分) 7.下列图形既是轴对称图形,又是中心对称图形的是( )8.2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记 数法表示为( )A.68.8×104B.0.688×106C.6.88×105D.6.88×1069.一个十二边形的内角和等于( )A.2160°B.2080°C.1980°D.1800°10.要使21+x 有意义,则x 的取值范围为( ) A.x≤0 B.x ≥-1 C.x ≥0 D.x≤-111.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( ) A.48π B.45π C.36π D.32π12.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( ) A.(-1)n -1x 2n -1 B.(-1)n x 2n -1 C.(-1)n -1x 2n+1 D.(-1)n x 2n +113.如图,℃ABC 的内切圆℃O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且AB =5,BC =13,CA =12,则阴影部分(即四边形AEOF )的面积是( ) A.4 B.6.25 C.7.5 D.914. 若关于x 的不等式组⎩⎨⎧--02)1(2<>x a x 的解集为x >a ,则a 的取值范围是( )A.a <2B. a ≤2C.a >2D.a ≥2 三、解答题(本大题共9小题,共70分) 15.(本小题满分6分)计算: 1021453--+---)()(π16.(本小题满分6分)如图,AB=AD,CB=CD.求证:℃B=℃D.17.(本小题满分8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件数177048022018012090人数113334(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.18.(本小题满分6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动,已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.19.(本小题满分7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.温馨提示:确定一个适当的月销售目标是一个关键问题,如果目标定得太高,多数营业员完不成任务,会使营业员失去信心;如果目标定得太低,不能发挥营业员的潜力。

2019年新疆中考数学试题(Word版,含解析)

2019年新疆中考数学试题(Word版,含解析)

2019年新疆中考数学试卷一、选择题(本大题共9小题,每小题5分,共45分,在每小题列出的四个选项中,只有一项符合题目要求,请按答题卷中的要求作答。

)1.(5分)﹣2的绝对值是()A.2B.﹣2C.±2D.2.(5分)下列四个几何体中,主视图为圆的是()A.B.C.D.3.(5分)如图,AB∥CD,∠A=50°,则∠1的度数是()A.40°B.50°C.130°D.150°4.(5分)下列计算正确的是()A.a2•a3=a6B.(﹣2ab)2=4a2b2C.x2+3x2=4x4D.﹣6a6÷2a2=﹣3a35.(5分)甲、乙两人连续5次射击成绩如图所示,下列说法中正确的是()A.甲的成绩更稳定B.乙的成绩更稳定C.甲、乙的成绩一样稳定D.无法判断谁的成绩更稳定6.(5分)若关于x的一元二次方程(k﹣1)x2+x+1=0有两个实数根,则k的取值范围是()A.k≤B.k>C.k<且k≠1D.k≤且k≠1 7.(5分)在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.设有x 个队参赛,根据题意,可列方程为()A.x(x﹣1)=36B.x(x+1)=36C.x(x﹣1)=36D.x(x+1)=368.(5分)如图,在△ABC中,∠C=90°,∠A=30°,以点B为圆心,适当长为半径画弧,分别交BA,BC于点M,N;再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.则下列说法中不正确的是()A.BP是∠ABC的平分线B.AD=BDC.S△CBD:S△ABD=1:3D.CD=BD9.(5分)如图,正方形ABCD的边长为2,点E是BC的中点,AE与BD交于点P,F是CD上一点,连接AF分别交BD,DE于点M,N,且AF⊥DE,连接PN,则以下结论中:①S△ABM=4S△FDM;②PN=;③tan∠EAF=;④△PMN∽△DPE,正确的是()A.①②③B.①②④C.①③④D.②③④二、填空题(本大题共6小题,每小题5分,共30分.)10.(5分)将数526000用科学记数法表示为.11.(5分)五边形的内角和为度.12.(5分)计算:﹣=.13.(5分)同时掷两枚质地均匀的骰子,两枚骰子点数之和小于5的概率是.14.(5分)如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为.15.(5分)如图,在平面直角坐标系xOy中,已知正比例函数y=﹣2x与反比例函数y=的图象交于A(a,﹣4),B两点,过原点O的另一条直线l与双曲线y=交于P,Q两点(P点在第二象限),若以点A,B,P,Q为顶点的四边形面积为24,则点P的坐标是.三、解答题(本大题共8小题,共75分.)16.(6分)计算:(﹣2)2﹣+(﹣1)0+()﹣1.17.(8分)解不等式组:并把解集在数轴上表示出来.18.(8分)某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):30 60 70 10 30 115 70 60 75 90 15 70 40 75 105 80 60 30 70 45对以上数据进行整理分析,得到下列表一和表二:表一时间t(单位:分钟)0≤t<3030≤t<6060≤t<9090≤t<120人数2a10b 表二平均数中位数众数60c d 根据以上提供的信息,解答下列问题:(1)填空①a=,b=;②c=,d=;(2)如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.19.(10分)如图,在菱形ABCD中,对角线AC,BD相交于点O,E是CD中点,连接OE.过点C作CF∥BD交OE的延长线于点F,连接DF.求证:(1)△ODE≌△FCE;(2)四边形OCFD是矩形.20.(10分)如图,一艘海轮位于灯塔P的东北方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处.(1)求海轮从A处到B处的途中与灯塔P之间的最短距离(结果保留根号);(2)若海轮以每小时30海里的速度从A处到B处,试判断海轮能否在5小时内到达B 处,并说明理由.(参考数据:≈1.41,≈1.73,≈2.45)21.(10分)某水果店以每千克8元的价格购进苹果若干千克,销售了部分苹果后,余下的苹果每千克降价4元销售,全部售完.销售金额y(元)与销售量x(千克)之间的关系如图所示,请根据图象提供的信息完成下列问题:(1)降价前苹果的销售单价是元/千克;(2)求降价后销售金额y(元)与销售量x(千克)之间的函数解析式,并写出自变量的取值范围;(3)该水果店这次销售苹果盈利了多少元?22.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,CE⊥AB于点E.(1)求证:∠BCE=∠BCD;(2)若AD=10,CE=2BE,求⊙O的半径.23.(13分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C(0,4)三点.(1)求抛物线的解析式及顶点D的坐标;(2)将(1)中的抛物线向下平移个单位长度,再向左平移h(h>0)个单位长度,得到新抛物线.若新抛物线的顶点D′在△ABC内,求h的取值范围;(3)点P为线段BC上一动点(点P不与点B,C重合),过点P作x轴的垂线交(1)中的抛物线于点Q,当△PQC与△ABC相似时,求△PQC的面积.2019年新疆中考数学试卷参考答案与试题解析一、选择题(本大题共9小题,每小题5分,共45分,在每小题列出的四个选项中,只有一项符合题目要求,请按答题卷中的要求作答。

2019年全国中考数学真题分类汇编:方程、不等式与函数的实际应用题

2019年全国中考数学真题分类汇编:方程、不等式与函数的实际应用题

(分类)专题复习(四)方程、不等式与函数的实际应用题类型1 多种函数的综合应用类型2 函数与方程或不等式的综合应用类型1 多种函数的综合应用(2019云南)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.(2019十堰)(2019毕节)(2019襄阳)(2019咸宁)某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x天的生产成本y(元/件)与x(天)之间的关系如图所示,第x 天该产品的生产量z(件)与x(天)满足关系式z=-2x+120.(1)第40天,该厂生产该产品的利润是元;(2)设第x天该厂生产该产品的利润为w圆.①求w与x之间的函数关系式,并指出第几天的利润最大.最大利润是多少?②在生产该产品的过程中,当天利润不低于2400元的共有多少天?(2019随州)(2019荆门)(2019黄冈)某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红。

经市场调研发现,草莓销售单价y(万元)与产量x(吨)之间的关系如图所示(0≤x≤100),已知草莓的产销投入总成本p(万元)与产量x(吨)之间满足p=x+1.(1)直接写出草莓销售单价y(万元)与产量x(吨)之间的函数关系式;(2)求该合作社所获利润w(万元)与产量x(吨)之间的函数关系式;(3)为提高农民种植草莓的积极性,合作社决定按0.3万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润w’(万元)不低于55万元,产量至少要达到多少吨?(2019鄂州)“互联网+”时代,网上购物备受消费者青睐. 某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施. 据市场调查反映:销售单价每降1元,则每月可多销售5条. 设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生. 为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?解:(1)y=100+5(80-x)或y=-5x+500 …………2′(2)由题意,得:W=(x-40)( -5x+500)=-5x2+700x-20000=-5(x-70)2+4500 …………4′∵a=-5<0 ∴w有最大值即当x=70时,w最大值=4500∴应降价80-70=10(元)答:当降价10元时,每月获得最大利润为4500元 …………6′(3)由题意,得:-5(x-70)2+4500=4220+200解得:x1=66 x2 =74 …………8′∵抛物线开口向下,对称轴为直线x=70,∴当66≤x≤74时,符合该网店要求而为了让顾客得到最大实惠,故x=66∴当销售单价定为66元时,即符合网店要求,又能让顾客得到最大实惠.…………10′(2019黔东南)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如下表:X(元)152030…y(袋)252010…若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?(2019广西北部湾)(2019天水)天水某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润w(元)与销售价x(元/件)之间的函数关系式,并求出没见销售价位多少元时,每天的销售利润最大?最大利润是多少?答案不完整……(2019武汉)某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如下表:售价x(元/件)506080周销售量y(件)1008040周销售利润w(元)100016001600注:周销售利润=周销售量×(售价-进价)(1) ①求y关于x的函数解析式(不要求写出自变量的取值范围)②该商品进价是_________元/件;当售价是________元/件时,周销售利润最大,最大利润是__________元(2) 由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值(2019攀枝花)攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/干克,且不超过40元/千克.根据销售情况,发现该芒果在一天内的销售量y(千克)与该天的售价x(元/千克)之间的数量满足如下表所示的一次函数关系.(1)某天这种芒果的售价为28元/千克,求当天该芒果的销售量;(2)设某天销售这种芒果获利m元,写出m与售价x之间的函数关系式.如果水果店该天获利400元,那么这天芒果的售价为多少元?(2019宿迁)(2019嘉兴)某农作物的生长率 与温度 ()有如下关系:如图 1,当10≤≤25 时可近似用函数p t C t 11505p t =-刻画;当25≤≤37 时可近似用函数 刻画.t 21()0.4160p t h =--+ (1)求 的值. (2)按照经验,该作物提前上市的天数(天)与生长率满足函数关系:h m p 生长率p0.20.250.30.35提前上市的天数 (天)m 051015①请运用已学的知识,求 关于 的函数表达式;m p ②请用含的代数式表示t m(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为 200元,该作物 30 天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加 600元.因此给大棚继续加温,加温后每天成本 (元)与大棚温度()之间的关系如图 2.问提前上市多少天时增加的利润最大?并求这个w t C 最大利润(农作物上市售出后大棚暂停使用).x y (2019临沂)汛期到来,山洪暴发,下表记录了某水库20h内水位的变化情况,其中表示时间(单位:h),x表示水位高度(单位:m),当=8(h)时,达到警戒水位,开始开闸放水。

(完整word版)初三(九年级)数学一元二次方程应用题专项练习(带答案)

(完整word版)初三(九年级)数学一元二次方程应用题专项练习(带答案)

一元二次方程应用题专项练习题(带答案)一、面积问题m的矩形苗圃,它的长比宽多2 m. 苗圃的长和宽各是多少?01、一个面积为120 2m的矩形?若能,则矩形02、有一条长为16 m的绳子,你能否用它围出一个面积为15 2的长、宽各是多少?03、如图,在一块长35 m、宽26 m的矩形地面上,修建同样宽的两条互相垂直的道路(两m,条道路各与矩形的一条边平行),剩余部分栽种花草,要使剩余部分的面积为850 2道路的宽应为多少?04、如图所示,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的总面积为570m2,道路应为多宽?05、一块四周镶有宽度相等的花边的地毯如图所示,它的长为8 m,宽为5 m. 如果地毯中m,那么花边有多宽?央长方形图案的面积为18 206、在一幅长90 cm、宽40 cm的风景画的四周外围镶上一条宽度相同的金色纸边,制成一幅挂图,如果要求风景画的面积是整个挂图面积的72%,那么金色纸边的宽应该是多少?m的长方形,将它的一边剪短5 m,另一边剪短2 m,恰好变成一个07、有一面积为54 2正方形,这个正方形的边长是多少?08、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17 cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.09、如图,在Rt△ACB中,∠C=90°,AC=8 m,BC=6 m,点P、Q同时由A、B两点出发分别沿AC、BC方向向点C匀速移动(到点C为止),它们的速度都是1 m/s. 经过几秒△PCQ的面积是Rt△ACB面积的一半?二、体积问题dm,求这个木箱的长和宽.10、长方体木箱的高是8 dm,长比宽多5 dm,体积是528 311、将一块正方形铁皮的四角各剪去一个边长为4 cm的小正方形,做成一个无盖的盒子.cm,求原铁皮的边长.已知盒子的容积是400 3三、数的问题12、两个数的差等于4,积等于45,求这两个数.13、三个连续整数两两相乘,再求和,结果为242,这三个数分别是多少?14、有五个连续整数,前三个数的平方和等于后两个数的平方和,求这五个数.15、若两个连续整数的积是56,则它们的和是 ( )A. 11B. 15C. -15 D .±1516、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长.四、变化率问题(增长或减少)17、某公司前年缴税40万元,今年缴税48.4万元,该公司缴税的年平均增长率为多少?18、某种型号的电脑,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______.19、某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A. 200(1+x)2=1000B. 200+200×2x=1000C. 200+200×3x=1000D. 200[1+(1+x)+(1+x)2]=100020、某商场今年1月份销售额为100万元,2月份销售额下降了10%,该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3、4月份月销售额的平均增长率.五、利润问题21、某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天要赢利1200元,每件衬衫应降价多少元?22、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。

2019中考数学应用题和证明题经典例题

2019中考数学应用题和证明题经典例题

2019应用题复习1.已知A、B两地相距80km ,甲、乙两人沿同一公路从A地出发到B地,甲骑摩托车,乙骑电动车,图中直线DE,OC分别表示甲、乙离开A地的路程s (km )与时间t (h )的函数关系的图象。

根据图象解答下列问题。

(1)甲比乙晚出发几个小时?乙的速度是多少?(2)乙到达终点B地用了多长时间?(3)在乙出发后几小时,两人相遇?2.某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。

根据经验估计,每多种一棵树,平均每棵果树就会少结5个橙子,假设果园多种x棵橙子树。

(1)直接写出平均每棵树结的橙子数y(个)与x之间的关系式。

(2)果园多种多少棵橙子树时,可以使橙子的总产量最大?最大为多少。

3.某宾馆有30个房间供游客住宿,当每个房间的房价为每天120元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于210元.设每个房间的房价增加x元(x为10的正整数倍).(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;(2)设宾馆一天的利润为w元,求w与x的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?4.把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度忽略不计).(1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子.①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少?②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况).5.某商店经销某玩具每个进价60元,每个玩具不低于80元出售,玩具的销售单价m(元/个)与销售数量n(个)之间的函数关系如图.(1)试求表示线段AB的函数的解析式,并求出当销售数量n=20时的单价m的值;(2)写出该店当一次销售n(n>10)个时,所获利润w(元)与n(个)之间的函数关系式:(3)店长小明经过一段时间的销售发现:卖27个赚的钱反而比卖30个赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他条件不变的情况下,店长应把最低价每个80元至少提高到________ 元?6.我市雷雷服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y1(百件)与时间 t (t为整数,单位:天)的部分对应值如下表所示,网上商店的日销售量 y(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映 y1与t的变化规律,并求出y1与t的函数关系式及自变量t的取值范围;(2)求 y2与t的函数关系式,并写出自变量t的取值范围;(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y(百件),求y与t的函数关系式;当t为何值时,日销售总量y达到最大,并求出此时的最大值.7.月电科技有限公司用160万元,作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售。

(完整word版)初中一次函数典型应用题

(完整word版)初中一次函数典型应用题

中考一次函数应用题近几年来,各地的中考题中越来越多地出现了与函数有关的经济型考试题,这种类型的试题,由于条件多,题目长,很多考生无法下手,打不开思路,在考场上出现了僵局,在这里,我特举几例,也许对你有所帮助。

例1已知雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M,N两种型号的时装共80套。

已知做一套M型号的时装需要A种布料0.6米,B种布料0.9米,可获利润45元;做一套N型号的时装需要A种布料1.1米,B种布料0.4米,可获利润50元。

若设生产N种型号的时装套数为x,用这批布料生产这两种型号的时装所获总利润为y元。

y与x的函数关系式,并求出自变量的取值范围;(1)求(2)雅美服装厂在生产这批服装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少?例2某市电话的月租费是20元,可打60次免费电话(每次3分钟),超过60次后,超过部分每次0.13元。

y(元)与通话次数x之间的函数关系式;(1)写出每月电话费(2)分别求出月通话50次、100次的电话费;(3)如果某月的电话费是27.8元,求该月通话的次数。

例3 荆门火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往广州,这列货车可挂A、B两种不同规格的货厢50节,已知用一节A型货厢的运费是0.5万元,用一节B型货厢的运费是0.8万元。

y(万元),用A型货厢的节数为x(节),试写出y与x之间的(1)设运输这批货物的总运费为函数关系式;(2)已知甲种货物35吨和乙种货物15吨,可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,有哪几种运输方案?请你设计出来。

(3)利用函数的性质说明,在这些方案中,哪种方案总运费最少?最少运费是多少万元?例4 某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A 、B 两种产品,共50件。

(完整word)初中数学行程问题应用题

(完整word)初中数学行程问题应用题

1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇,求东西两地的距离是多少千米?2、甲乙两辆汽车同时从东站开往西站。

甲车每小时比乙车多行12千米,甲车行驶四个半小时到达西站后,没有停留,立即从原路返回,在距离西站31.5千米的地方和乙车相遇,甲车每小时行多少千米?3、两人骑自行车沿着900米长的环形跑道行驶,他们从同一地点反向而行,那么经过18分钟后就相遇一次,若他们同向而行,那经过180分钟后快车追上慢车一次,求两人骑自行车的速度?4、甲、乙两地相距360千米,客车和货车同时从甲地出发驶向乙地。

货车速度每小时60千米,客车每小时40千米,货车到达乙地后停留0.5小时,又以原速返回甲地,问从甲地出发后几小时两车相遇?5、快车与慢车同时从甲、乙两地相对开出,经过12小时相遇。

相遇后快车又行了8小时到达乙地。

慢车还要行多少小时到达甲地?6、两地相距380千米。

有两辆汽车从两地同时相向开出。

原计划甲汽车每小时行36千米,乙汽车每小时行40千米,但开车时甲汽车改变了速度,以每小时40千米的速度开出,问在相遇时,乙汽车比原计划少行了多少千米?7、东、西两镇相距240千米,一辆客车在上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12时,两车恰好在两镇间的中点相遇。

如果两车都从上午8时由两镇相向开行,速度不变,到上午10时,两车还相距多少千米?8、“八一”节那天,某少先队以每小时4千米的速度从学校往相距17千米的解放军营房去慰问,出发0.5小时后,解放军闻讯前往迎接,每小时比少先队员快2千米,再过几小时,他们在途中相遇?9、甲、乙两站相距440千米,一辆大车和一辆小车从两站相对开出,大车每小时行35千米,小车每小时行45千米。

一只燕子以每小时50千米的速度和大车同时出发,向小车飞去,遇到小车后又折回向大车飞去,遇到大车又往回飞向小车,这样一直飞下去,燕子飞了多少千米,两车才能相遇?10、小刚和小勇两人骑自行车同时从两地相对出发,小刚跑完全程的5/8时与小勇相遇。

2019年四川省广安市中考数学试题及参考答案(word解析版)

2019年四川省广安市中考数学试题及参考答案(word解析版)

2019年四川省广安市中考数学试题及参考答案与解析(考试时间120分钟,满分120分)一、选择题(每小题只有一个选项符合题意,请将所选选项填涂在答题卡上.本大题共10个小题,每小题3分,共30分)1.﹣2019的绝对值是()A.﹣2019 B.2019 C.﹣D.2.下列运算正确的是()A.a2+a3=a5B.3a2•4a3=12a6C.5﹣=5 D.×=3.第二届“一带一路”国际合作高峰论坛于2019年4月25日至27日在北京召开,“一带一路”建设进行5年多来,中资金融机构为“一带一路”相关国家累计发放贷款250000000000元,重点支持了基础设施、社会民生等项目.数字250000000000用科学记数法表示,正确的是()A.0.25×1011B.2.5×1011C.2.5×1010D.25×10104.如图所示的几何体是由一个圆锥和一个长方体组成的,则它的俯视图是()A.B.C.D.5.下列说法正确的是()A.“367人中必有2人的生日是同一天”是必然事件B.了解一批灯泡的使用寿命采用全面调查C.一组数据6,5,3,5,4的众数是5,中位数是3D.一组数据10,11,12,9,8的平均数是10,方差是1.56.一次函数y=2x﹣3的图象经过的象限是()A.一、二、三B.二、三、四C.一、三、四D.一、二、四7.若m>n,下列不等式不一定成立的是()A.m+3>n+3 B.﹣3m<﹣3n C.>D.m2>n28.下列命题是假命题的是()A.函数y=3x+5的图象可以看作由函数y=3x﹣1的图象向上平移6个单位长度而得到B.抛物线y=x2﹣3x﹣4与x轴有两个交点C.对角线互相垂直且相等的四边形是正方形D.垂直于弦的直径平分这条弦9.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,以BC为直径的半圆O交斜边AB 于点D,则图中阴影部分的面积为()A.π﹣B.π﹣C.π﹣D.π﹣10.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:①abc<0②b<c③3a+c=0④当y>0时,﹣1<x<3其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(请把最简答案填写在答题卡相应位置.本大题共6个小题,每小题3分,共18分)11.点M(x﹣1,﹣3)在第四象限,则x的取值范围是.12.因式分解:3a4﹣3b4=.13.等腰三角形的两边长分别为6cm,13cm,其周长为cm.14.如图,正五边形ABCDE中,对角线AC与BE相交于点F,则∠AFE=度.15.在广安市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为y=﹣x2+x+,由此可知该生此次实心球训练的成绩为米.16.如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt△OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt△OA3A4,并使∠A3OA4=60°…按此规律进行下去,则点A2019的坐标为.三、解答题(本大题共4个小题,第17小题5分,第18、19、20小题各6分,共23分)17.(5分)计算:(﹣1)4﹣|1﹣|+6tan30°﹣(3﹣)0.18.(6分)解分式方程:﹣1=.19.(6分)如图,点E是▱ABCD的CD边的中点,AE、BC的延长线交于点F,CF=3,CE=2,求▱ABCD的周长.20.(6分)如图,已知A(n,﹣2),B(﹣1,4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.四、实践应用题(本大题共4个小题,第21题6分,第22、23、24题各8分,共30分)21.(6分)为了提高学生的阅读能力,我市某校开展了“读好书,助成长”的活动,并计划购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,请根据统计图回答下列问题:(1)本次调查共抽取了名学生,两幅统计图中的m=,n=.(2)已知该校共有3600名学生,请你估计该校喜欢阅读“A”类图书的学生约有多少人?(3)学校将举办读书知识竞赛,九年级1班要在本班3名优胜者(2男1女)中随机选送2人参赛,请用列表或画树状图的方法求被选送的两名参赛者为一男一女的概率.22.(8分)为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A型节能灯和5只B型节能灯共需50元,2只A型节能灯和3只B型节能灯共需31元.(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A型节能灯的数量不超过B型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.23.(8分)如图,某数学兴趣小组为测量一颗古树BH和教学楼CG的高,先在A处用高1.5米的测角仪AF测得古树顶端H的仰角∠HFE为45°,此时教学楼顶端G恰好在视线FH上,再向前走10米到达B处,又测得教学楼顶端G的仰角∠GED为60°,点A、B、C三点在同一水平线上.(1)求古树BH的高;(2)求教学楼CG的高.(参考数据:=1.4,=1.7)24.(8分)在数学活动课上,王老师要求学生将图1所示的3×3正方形方格纸,剪掉其中两个方格,使之成为轴对称图形.规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个3×3的正方形方格画一种,例图除外)五、推理论证题(9分)25.(9分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠BAC,AD交BC 于点D,ED⊥AD交AB于点E,△ADE的外接圆⊙O交AC于点F,连接EF.(1)求证:BC是⊙O的切线;(2)求⊙O的半径r及∠3的正切值.六、拓展探索题(10分)26.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=kx+n与y轴交于点C,与抛物线y=﹣x2+bx+c的另一个交点为D,已知A (﹣1,0),D(5,﹣6),P点为抛物线y=﹣x2+bx+c上一动点(不与A、D重合).(1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.参考答案与解析一、选择题(每小题只有一个选项符合题意,请将所选选项填涂在答题卡上.本大题共10个小题,每小题3分,共30分)1.﹣2019的绝对值是()A.﹣2019 B.2019 C.﹣D.【知识考点】绝对值.【思路分析】直接利用绝对值的定义进而得出答案.【解答过程】解:﹣2019的绝对值是:2019.故选:B.【总结归纳】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.下列运算正确的是()A.a2+a3=a5B.3a2•4a3=12a6C.5﹣=5 D.×=【知识考点】合并同类项;单项式乘单项式;二次根式的混合运算.【思路分析】根据合并同类项和二次根式混合运算的法则就是即可.【解答过程】解:A、a2+a3不是同类项不能合并;故A错误;B、3a2•4a3=12a5故B错误;C、5﹣=4,故C错误;D、,故D正确;故选:D.【总结归纳】本题考查了合并同类项和二次根式混合运算的法则,熟记法则是解题的关键.3.第二届“一带一路”国际合作高峰论坛于2019年4月25日至27日在北京召开,“一带一路”建设进行5年多来,中资金融机构为“一带一路”相关国家累计发放贷款250000000000元,重点支持了基础设施、社会民生等项目.数字250000000000用科学记数法表示,正确的是()A.0.25×1011B.2.5×1011C.2.5×1010D.25×1010【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:数字2500 0000 0000用科学记数法表示,正确的是2.5×1011.故选:B.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图所示的几何体是由一个圆锥和一个长方体组成的,则它的俯视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答过程】解:该组合体的俯视图为故选:A.【总结归纳】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.下列说法正确的是()A.“367人中必有2人的生日是同一天”是必然事件B.了解一批灯泡的使用寿命采用全面调查C.一组数据6,5,3,5,4的众数是5,中位数是3D.一组数据10,11,12,9,8的平均数是10,方差是1.5【知识考点】全面调查与抽样调查;算术平均数;中位数;众数;方差;随机事件.【思路分析】根据必然事件、抽样调查、众数、中位数以及方差的概念进行判断即可.【解答过程】解:A.“367人中必有2人的生日是同一天”是必然事件,故本选项正确;B.了解一批灯泡的使用寿命采用抽样调查,故本选项错误;C.一组数据6,5,3,5,4的众数是5,中位数是5,故本选项错误;D.一组数据10,11,12,9,8的平均数是10,方差是2,故本选项错误;故选:A.【总结归纳】本题主要考查了必然事件、抽样调查、众数、中位数以及方差,在一定条件下,可能发生也可能不发生的事件,称为随机事件.6.一次函数y=2x﹣3的图象经过的象限是()A.一、二、三B.二、三、四C.一、三、四D.一、二、四【知识考点】一次函数的性质.【思路分析】根据题目中的函数解析式和一次函数的性质可以解答本题.【解答过程】解:∵一次函数y=2x﹣3,∴该函数经过第一、三、四象限,故选:C.【总结归纳】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.7.若m>n,下列不等式不一定成立的是()A.m+3>n+3 B.﹣3m<﹣3n C.>D.m2>n2【知识考点】不等式的性质.【思路分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【解答过程】解:A、不等式的两边都加3,不等号的方向不变,故A错误;B、不等式的两边都乘以﹣3,不等号的方向改变,故B错误;C、不等式的两边都除以3,不等号的方向不变,故C错误;D、如m=2,n=﹣3,m>n,m2<n2;故D正确;故选:D.【总结归纳】主要考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.8.下列命题是假命题的是()A.函数y=3x+5的图象可以看作由函数y=3x﹣1的图象向上平移6个单位长度而得到B.抛物线y=x2﹣3x﹣4与x轴有两个交点C.对角线互相垂直且相等的四边形是正方形D.垂直于弦的直径平分这条弦【知识考点】命题与定理.【思路分析】利用一次函数的平移、抛物线与坐标轴的交点、正方形的判定及垂径定理分别判断后即可确定正确的选项.【解答过程】解:A、函数y=3x+5的图象可以看作由函数y=3x﹣1的图象向上平移6个单位长度而得到,正确,是真命题;B、抛物线y=x2﹣3x﹣4中△=b2﹣4ac=25>0,与x轴有两个交点,正确,是真命题;C、对角线互相垂直且相等的平行四边形是正方形,故错误,是假命题;D、垂直与弦的直径平分这条弦,正确,是真命题,故选:C.【总结归纳】本题考查了命题与定理的知识,解题的关键是了解一次函数的平移、抛物线与坐标轴的交点、正方形的判定及垂径定理的知识,难度不大.9.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,以BC为直径的半圆O交斜边AB 于点D,则图中阴影部分的面积为()A.π﹣B.π﹣C.π﹣D.π﹣【知识考点】含30度角的直角三角形;圆周角定理;扇形面积的计算.【思路分析】根据三角形的内角和得到∠B=60°,根据圆周角定理得到∠COD=120°,∠CDB =90°,根据扇形和三角形的面积公式即可得到结论.【解答过程】解:∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠B=60°,∴∠COD=120°,∵BC=4,BC为半圆O的直径,∴∠CDB=90°,∴OC=OD=2,∴CD=BC=2,图中阴影部分的面积=S扇形COD﹣S△COD=﹣2×1=﹣,故选:A.【总结归纳】本题考查扇形面积公式、直角三角形的性质、解题的关键是学会分割法求面积,属于中考常考题型.10.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:①abc<0②b<c③3a+c=0④当y>0时,﹣1<x<3其中正确的结论有()A.1个B.2个C.3个D.4个【知识考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点.【思路分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答过程】解:①对称轴位于x轴的右侧,则a,b异号,即ab<0.抛物线与y轴交于正半轴,则c>0.∴abc<0.故①正确;②∵抛物线开口向下,∴a<0.∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a.∵x=﹣1时,y=0,∴a﹣b+c=0,而b=﹣2a,∴c=﹣3a,∴b﹣c=﹣2a+3a=a<0,即b<c,故②正确;③∵x=﹣1时,y=0,∴a﹣b+c=0,而b=﹣2a,∴c=﹣3a,∴3a+c=0.故③正确;④由抛物线的对称性质得到:抛物线与x轴的另一交点坐标是(3,0).∴当y>0时,﹣1<x<3故④正确.综上所述,正确的结论有4个.故选:D.【总结归纳】考查了抛物线与x轴的交点,二次函数图象上点的坐标特征,二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号的确定由抛物线开口方向、对称轴、与y轴的交点有关.二、填空题(请把最简答案填写在答题卡相应位置.本大题共6个小题,每小题3分,共18分)11.点M(x﹣1,﹣3)在第四象限,则x的取值范围是.【知识考点】解一元一次不等式;点的坐标.【思路分析】根据第四象限的点的横坐标是正数列出不等式求解即可.【解答过程】解:∵点M(x﹣1,﹣3)在第四象限,∴x﹣1>0解得x>1,即x的取值范围是x>1.故答案为x>1.【总结归纳】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.因式分解:3a4﹣3b4=.【知识考点】提公因式法与公式法的综合运用.【思路分析】首先提取公因式3,进而利用平方差公式分解因式即可.【解答过程】解:3a4﹣3b4=3(a2+b2)(a2﹣b2)=3(a2+b2)(a+b)(a﹣b).故答案为:3(a2+b2)(a+b)(a﹣b).【总结归纳】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.13.等腰三角形的两边长分别为6cm,13cm,其周长为cm.【知识考点】三角形三边关系;等腰三角形的性质.【思路分析】题目给出等腰三角形有两条边长为6cm和13cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答过程】解:由题意知,应分两种情况:(1)当腰长为6cm时,三角形三边长为6,6,13,6+6<13,不能构成三角形;(2)当腰长为13cm时,三角形三边长为6,13,13,周长=2×13+6=32cm.故答案为32.【总结归纳】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.如图,正五边形ABCDE中,对角线AC与BE相交于点F,则∠AFE=度.【知识考点】多边形内角与外角.【思路分析】根据五边形的内角和公式求出∠EAB,根据等腰三角形的性质,三角形外角的性质计算即可.【解答过程】解:∵五边形ABCDE是正五边形,∴∠EAB=∠ABC=,∵BA=BC,∴∠BAC=∠BCA=36°,同理∠ABE=36°,∴∠AFE=∠ABF+∠BAF=36°+36°=72°.故答案为:72【总结归纳】本题考查的是正多边形的内角与外角,掌握正多边形的内角的计算公式、等腰三角形的性质是解题的关键.15.在广安市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为y=﹣x2+x+,由此可知该生此次实心球训练的成绩为米.【知识考点】二次函数的应用.【思路分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x的值即可.【解答过程】解:当y=0时,y=﹣x2+x+=0,解得,x=2(舍去),x=10.故答案为:10.【总结归纳】本题考查了二次函数的应用中函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.16.如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt△OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt△OA3A4,并使∠A3OA4=60°…按此规律进行下去,则点A2019的坐标为.【知识考点】规律型:点的坐标.【思路分析】通过解直角三角形,依次求A1,A2,A3,A4,…各点的坐标,再从其中找出规律,便可得结论.【解答过程】解:由题意得,A1的坐标为(1,0),A2的坐标为(1,),A3的坐标为(﹣2,2),A4的坐标为(﹣8,0),A5的坐标为(﹣8,﹣8),A6的坐标为(16,﹣16),A7的坐标为(64,0),…由上可知,A点的方位是每6个循环,与第一点方位相同的点在x正半轴上,其横坐标为2n﹣1,其纵坐标为0,与第二点方位相同的点在第一象限内,其横坐标为2n﹣2,纵坐标为2n﹣2,与第三点方位相同的点在第二象限内,其横坐标为﹣2n﹣2,纵坐标为2n﹣2,与第四点方位相同的点在x负半轴上,其横坐标为﹣2n﹣1,纵坐标为0,与第五点方位相同的点在第三象限内,其横坐标为﹣2n﹣2,纵坐标为﹣2n﹣2,与第六点方位相同的点在第四象限内,其横坐标为2n﹣2,纵坐标为﹣2n﹣2,∵2019÷6=336…3,∴点A2019的方位与点A23的方位相同,在第二象限内,其横坐标为﹣2n﹣2=﹣22017,纵坐标为22017,故答案为:(﹣22017,22017).【总结归纳】本题主点的坐标的规律题,主要考查了解直角三角形的知识,关键是求出前面7个点的坐标,找出其存在的规律.三、解答题(本大题共4个小题,第17小题5分,第18、19、20小题各6分,共23分)17.(5分)计算:(﹣1)4﹣|1﹣|+6tan30°﹣(3﹣)0.【知识考点】实数的运算;零指数幂;特殊角的三角函数值.【思路分析】直接利用特殊角的三角函数值以及零指数幂的性质、特殊角的三角函数值分别化简得出答案.【解答过程】解:原式=1﹣(﹣1)+6×﹣1=1﹣+1+2﹣1=1+.【总结归纳】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)解分式方程:﹣1=.【知识考点】解分式方程.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答过程】解:﹣1=,方程两边乘(x﹣2)2得:x(x﹣2)﹣(x﹣2)2=4,解得:x=4,检验:当x=4时,(x﹣2)2≠0.所以原方程的解为x=4.【总结归纳】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.(6分)如图,点E是▱ABCD的CD边的中点,AE、BC的延长线交于点F,CF=3,CE=2,求▱ABCD的周长.【知识考点】全等三角形的判定与性质;平行四边形的性质.【思路分析】先证明△ADE≌△FCE,得到AD=CF=3,DE=CE=2,从而可求平行四边形的面积.【解答过程】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠F,∠D=∠ECF.又ED=EC,∴△ADE≌△FCE(AAS).∴AD=CF=3,DE=CE=2.∴DC=4.∴平行四边形ABCD的周长为2(AD+DC)=14.【总结归纳】本题主要考查了平行四边形的性质、全等三角形的判定和性质,解题的关键是借助全等转化线段.20.(6分)如图,已知A(n,﹣2),B(﹣1,4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.【知识考点】反比例函数与一次函数的交点问题.【思路分析】(1)根据A(n,﹣2),B(﹣1,4)是一次函数y=kx+b的图象与反比例函数y=的图象的两个交点,可以求得m的值,进而求得n的值,即可解答本题;(2)根据函数图象和(1)中一次函数的解析式可以求得点C的坐标,从而根据S△AOB=S△AOC+S 可以求得△AOB的面积.△BOC【解答过程】解:(1)∵A(n,﹣2),B(﹣1,4)是一次函数y=kx+b的图象与反比例函数y =的图象的两个交点,∴4=,得m=﹣4,∴y=﹣,∴﹣2=﹣,得n=2,∴点A(2,﹣2),∴,解得,∴一函数解析式为y=﹣2x+2,即反比例函数解析式为y=﹣,一函数解析式为y=﹣2x+2;(2)设直线与y轴的交点为C,当x=0时,y=﹣2×0+2=2,∴点C的坐标是(0,2),∵点A(2,﹣2),点B(﹣1,4),∴S△AOB=S△AOC+S△BOC=×2×2+×2×1=3.【总结归纳】本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.四、实践应用题(本大题共4个小题,第21题6分,第22、23、24题各8分,共30分)21.(6分)为了提高学生的阅读能力,我市某校开展了“读好书,助成长”的活动,并计划购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,请根据统计图回答下列问题:(1)本次调查共抽取了名学生,两幅统计图中的m=,n=.(2)已知该校共有3600名学生,请你估计该校喜欢阅读“A”类图书的学生约有多少人?(3)学校将举办读书知识竞赛,九年级1班要在本班3名优胜者(2男1女)中随机选送2人参赛,请用列表或画树状图的方法求被选送的两名参赛者为一男一女的概率.【知识考点】用样本估计总体;扇形统计图;条形统计图;列表法与树状图法.【思路分析】(1)用喜欢阅读“A”类图书的学生数除以它所占的百分比得到调查的总人数;用喜欢阅读“B”类图书的学生数所占的百分比乘以调查的总人数得到m的值,然后用30除以调查的总人数可以得到n的值;(2)用3600乘以样本中喜欢阅读“A”类图书的学生数所占的百分比即可;(3)画树状图展示所有6种等可能的结果数,找出被选送的两名参赛者为一男一女的结果数,然后根据概率公式求解.【解答过程】解:(1)68÷34%=200,所以本次调查共抽取了200名学生,m=200×42%=84,n%=×100%=15%,即n=15;(2)3600×34%=1124,所以估计该校喜欢阅读“A”类图书的学生约有1124人;(3)画树状图为:共有6种等可能的结果数,其中被选送的两名参赛者为一男一女的结果数为4,所以被选送的两名参赛者为一男一女的概率==.【总结归纳】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.22.(8分)为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A型节能灯和5只B型节能灯共需50元,2只A型节能灯和3只B型节能灯共需31元.(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A型节能灯的数量不超过B型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.【知识考点】二元一次方程组的应用;一元一次不等式的应用;一次函数的应用.【思路分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到费用与购买A型号节能灯的关系式,然后根据一次函数的性质即可解答本题.【解答过程】解:(1)设1只A型节能灯的售价是x元,1只B型节能灯的售价是y元,,解得,,答:1只A型节能灯的售价是5元,1只B型节能灯的售价是7元;(2)设购买A型号的节能灯a只,则购买B型号的节能灯(200﹣a)只,费用为w元,w=5a+7(200﹣a)=﹣2a+1400,∵a≤3(200﹣a),∴a≤150,∴当a=150时,w取得最小值,此时w=1100,200﹣a=50,答:当购买A型号节能灯150只,B型号节能灯50只时最省钱.【总结归纳】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.23.(8分)如图,某数学兴趣小组为测量一颗古树BH和教学楼CG的高,先在A处用高1.5米的测角仪AF测得古树顶端H的仰角∠HFE为45°,此时教学楼顶端G恰好在视线FH上,再向前走10米到达B处,又测得教学楼顶端G的仰角∠GED为60°,点A、B、C三点在同一水平线上.(1)求古树BH的高;(2)求教学楼CG的高.(参考数据:=1.4,=1.7)【知识考点】解直角三角形的应用﹣仰角俯角问题.【思路分析】(1)由∠HFE=45°知HE=EF=10,据此得BH=BE+HE=1.5+10=11.5;(2)设DE=x米,则DG=x米,由∠GFD=45°知GD=DF=EF+DE,据此得x=10+x,解之求得x的值,代入CG=DG+DC=x+1.5计算可得.【解答过程】解:(1)在Rt△EFH中,∠HEF=90°,∠HFE=45°,∴HE=EF=10,∴BH=BE+HE=1.5+10=11.5,∴古树的高为11.5米;(2)在Rt△EDG中,∠GED=60°,∴DG=DEtan60°=DE,设DE=x米,则DG=x米,在Rt△GFD中,∠GDF=90°,∠GFD=45°,∴GD=DF=EF+DE,∴x=10+x,解得:x=5+5,∴CG=DG+DC=x+1.5=(5+5)+1.5=16.5+5≈25,答:教学楼CG的高约为25米.【总结归纳】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.24.(8分)在数学活动课上,王老师要求学生将图1所示的3×3正方形方格纸,剪掉其中两个方格,使之成为轴对称图形.规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个3×3的正方形方格画一种,例图除外)【知识考点】利用轴对称设计图案;利用旋转设计图案.【思路分析】根据轴对称图形和旋转对称图形的概念作图即可得.【解答过程】解:如图所示【总结归纳】本题主要考查利用旋转设计图案,解题的关键是掌握轴对称图形和旋转对称图形的概念.五、推理论证题(9分)25.(9分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠BAC,AD交BC 于点D,ED⊥AD交AB于点E,△ADE的外接圆⊙O交AC于点F,连接EF.(1)求证:BC是⊙O的切线;(2)求⊙O的半径r及∠3的正切值.【知识考点】勾股定理;切线的判定与性质;解直角三角形.【思路分析】(1)由垂直的定义得到∠EDA=90°,连接OD,则OA=OD,得到∠1=∠ODA,根据角平分线的定义得到∠2=∠1=∠ODA,根据平行线的性质得到∠BDO=∠ACB=90°,于是得到BC是⊙O的切线;(2)由勾股定理得到AB===10,推出△BDO∽△BCA,根据相似三角形的性质得到r=,解直角三角形即可得到结论.【解答过程】(1)证明:∵ED⊥AD,∴∠EDA=90°,∵AE是⊙O的直径,∴AE的中点是圆心O,连接OD,则OA=OD,∴∠1=∠ODA,∵AD平分∠BAC,∴∠2=∠1=∠ODA,∴OD∥AC,∴∠BDO=∠ACB=90°,∴BC是⊙O的切线;(2)解:在Rt△ABC中,由勾股定理得,AB===10,∵OD∥AC,∴△BDO∽△BCA,∴,即,。

2019年全国各地中考数学试题158份(含解析,Word版)

2019年全国各地中考数学试题158份(含解析,Word版)
中考题虽然年年创新但中考试卷的题型和考点相对固定都紧扣考试大纲和考试说明不出偏题怪题更不回避必考点遵循稳中求变的规律
2019年全国各地中考数学试题158份(含解析,Word版)
中考题虽然年年创新,但中考试卷的题型和考点相对固定,都紧扣《考试大纲》和《考试说明》,不出偏题、怪题,更不回避“必考点”,遵循Fra bibliotek中求变的规律。
为了更加直观的展现中考特点和命题规律,《2019年全国各地中考数学试题158份》收录了全国大部分各地试题,让您第一时间零距离感受中考真题。
资料包括(32个省市,共158份word文档)
部分内容截图

2019编辑2019年全国中考数学真题分类汇编:一元二次方程和应用(含答案).doc

2019编辑2019年全国中考数学真题分类汇编:一元二次方程和应用(含答案).doc

2019年全国中考数学真题分类汇编:一元二次方程及应用一、选择题1.(2019年山东省滨州市)用配方法解一元二次方程x2﹣4x+1=0时,下列变形正确的是()A.(x﹣2)2=1 B.(x﹣2)2=5 C.(x+2)2=3 D.(x﹣2)2=3【考点】解一元二次方程【解答】解:x2﹣4x+1=0,x2﹣4x=﹣1,x2﹣4x+4=﹣1+4,(x﹣2)2=3,故选:D.2. (2019年四川省达州市)某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A.2500(1+x)2=9100B.2500(1+x%)2=9100C.2500(1+x)+2500(1+x)2=9100D.2500+2500(1+x)+2500(1+x)2=9100【考点】一元二次方程的应用【解答】解:设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程得:2500+2500(1+x)+2500(1+x)2=9100.故选:D.3. (2019年广西贵港市)若α,β是关于x的一元二次方程x2-2x+m=0的两实根,且+=-,则m等于()A. B. C. 2 D. 3【考点】一元二次方程根与系数的关系【解答】解:α,β是关于x的一元二次方程x2-2x+m=0的两实根,∴α+β=2,αβ=m,∵+===-,∴m=-3;故选:B.4. (2019年江苏省泰州市)方程2x2+6x-1=0的两根为x1、x2,则x1+x2等于()A .-6B .6C .-3D . 3 【考点】一元二次方程根与系数的关系【解答】试题分析:∵一元二次方程2x 2+6x -1=0的两个实根分别为x 1,x 2,由两根之和可得; ∴x 1+x 2=﹣26=3, 故答案为:C .5. (2019年河南省)一元二次方程(x +1)(x ﹣1)=2x +3的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根D .没有实数根【考点】一元二次方程根的判别式【解答】解:原方程可化为:x 2﹣2x ﹣4=0, ∴a =1,b =﹣2,c =﹣4,∴△=(﹣2)2﹣4×1×(﹣4)=20>0, ∴方程由两个不相等的实数根. 故选:A .6. (2019年甘肃省天水市)中国“一带一路”给沿线国家和地区带来很大的经济效益,沿 线某地区居民2016年人均年收入20000元,到2018年人均年收入达到39200元.则该地区 居民年人均收入平均增长率为 .(用百分数表示) 【考点】一元二次方程的应用【解答】解:设该地区居民年人均收入平均增长率为x , 20000(1+x )2=39200,解得,x 1=0.4,x 2=﹣2.4(舍去),∴该地区居民年人均收入平均增长率为40%, 故答案为:40%.7. (2019年甘肃省)若一元二次方程x 2﹣2kx +k 2=0的一根为x =﹣1,则k 的值为( ) A .﹣1B .0C .1或﹣1D .2或0【考点】一元二次方程的解【解答】解:把x =﹣1代入方程得:1+2k +k 2=0, 解得:k =﹣1, 故选:A .8. (2019年湖北省鄂州市)关于x 的一元二次方程x 2﹣4x +m =0的两实数根分别为x 1、x 2,且x1+3x2=5,则m的值为()A.B.C.D.0【考点】一元二次方程根与系数的关系【解答】解:∵x1+x2=4,∴x1+3x2=x1+x2+2x2=4+2x2=5,∴x2=,把x2=代入x2﹣4x+m=0得:()2﹣4×+m=0,解得:m=,故选:A.9. (2019年湖北省荆州市)若一次函数y=kx+b的图象不经过第二象限,则关于x的方程x2+kx+b=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【考点】一元二次方程根的判别式【解答】解:∵一次函数y=kx+b的图象不经过第二象限,∴k>0,b≤0,∴△=k2﹣4b>0,∴方程有两个不相等的实数根.故选:A.10. (2019年黑龙江省伊春市)某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是()A.4 B.5 C.6 D.7【考点】一元二次方程的应用【解答】解:设这种植物每个支干长出x个小分支,依题意,得:1+x+x2=43,解得:x1=﹣7(舍去),x2=6.故选:C.11. (2019年内蒙古包头市)已知等腰三角形的三边长分别为a、b、4,且a、b是关于x的一元二次方程x2﹣12x+m+2=0的两根,则m的值是()A.34 B.30 C.30或34 D.30或36【考点】一元二次方程根与系数的关系【解答】解:当a=4时,b<8,∵a、b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+b=12,∴b=8不符合;当b=4时,a<8,∵a、b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴4+a=12,∴a=8不符合;当a=b时,∵a、b是关于x的一元二次方程x2﹣12x+m+2=0的两根,∴12=2a=2b,∴a=b=6,∴m+2=36,∴m=34;故选:A.12. (2019年内蒙古赤峰市)某品牌手机三月份销售400万部,四月份、五月份销售量连续增长,五月份销售量达到900万部,求月平均增长率.设月平均增长率为x,根据题意列方程为()A.400(1+x2)=900 B.400(1+2x)=900C.900(1﹣x)2=400 D.400(1+x)2=900【考点】一元二次方程的应用【解答】解:设月平均增长率为x,根据题意得:400(1+x)2=900.故选:D.13. (2019年内蒙古呼和浩特市)若x1,x2是一元二次方程x2+x﹣3=0的两个实数根,则x22﹣4x12+17的值为()A.﹣2 B.6 C.﹣4 D.4【考点】一元二次方程的根与系数的关系【解答】解:∵x1,x2是一元二次方程x2+x﹣3=0的两个实数根,∴x1+x2=﹣1,x1•x2=﹣3,x12+x1=3,∴x22﹣4x12+17=x12+x22﹣5x12+17=(x1+x2)2﹣2x1x2﹣5x12+17=(﹣1)2﹣2×(﹣3)﹣5x12+17=24﹣5x22=24﹣5(﹣1﹣x1)2=24﹣5(x12+x1+1)=24﹣5(3+1)=4,故选:D.14. (2019年内蒙古通辽市)一个菱形的边长是方程x2﹣8x+15=0的一个根,其中一条对角线长为8,则该菱形的面积为()A.48 B.24 C.24或40 D.48或80【考点】一元二次方程的应用【解答】解:(x﹣5)(x﹣3)=0,所以x1=5,x2=3,∵菱形一条对角线长为8,∴菱形的边长为5,∴菱形的另一条对角线为2=6,∴菱形的面积=×6×8=24.故选:B.15. (2019年新疆)若关于x的一元二次方程(k﹣1)x2+x+1=0有两个实数根,则k的取值范围是()A.k≤B.k>C.k<且k≠1D.k≤且k≠1【考点】一元二次方程根的判别式【解答】解:∵关于x的一元二次方程(k﹣1)x2+x+1=0有两个实数根,∴,解得:k≤且k≠1.故选:D.16.(2019年新疆)在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.设有x个队参赛,根据题意,可列方程为()A.x(x﹣1)=36 B.x(x+1)=36C.x(x﹣1)=36 D.x(x+1)=36【考点】一元二次方程的应用【解答】解:设有x个队参赛,根据题意,可列方程为:x(x﹣1)=36,故选:A.二、填空题1.(2019年上海市)如果关于x的方程x2﹣x+m=0没有实数根,那么实数m的取值范围是.【考点】一元二次方程根的判别式【解答】解:由题意知△=1﹣4m<0,∴m>.故填空答案:m>.2. (2019年山东省济宁市)已知x=1是方程x2+bx﹣2=0的一个根,则方程的另一个根是.【考点】一元二次方程的根与系数的关系【解答】解:∵x=1是方程x2+bx﹣2=0的一个根,∴x1x2==﹣2,∴1×x2=﹣2,则方程的另一个根是:﹣2,故答案为﹣2.3. (2019年山东省青岛市)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为.【考点】一元二次方程根的判别式【解答】解:根据题意得:△=1﹣4×2m=0,整理得:1﹣8m=0,解得:m=,故答案为:.4. (2019年山东省枣庄市)已知关于x的方程ax2+2x﹣3=0有两个不相等的实数根,则a的取值范围是.【考点】一元二次方程根的判别式【解答】解:由关于x的方程ax2+2x﹣3=0有两个不相等的实数根得△=b 2﹣4ac =4+4×3a >0, 解得a > 则a >且a ≠0故答案为a >且a ≠05. (2019年四川省资阳市)a 是方程2x 2=x +4的一个根,则代数式4a 2﹣2a 的值是 . 【考点】一元二次方程的解【解答】解:∵a 是方程2x 2=x +4的一个根, ∴2a 2﹣a =4,∴4a 2﹣2a =2(2a 2﹣a )=2×4=8. 故答案为:8.6. (2019年江苏省泰州市)若关于x 的方程x 2+2x +m =0有两个不相等的实数根,则m 的取值范围是 .【考点】一元二次方程根的判别式【解答】∵关于x 的方程x 2+2x +m =0有两个不相等的实数根,∴△=4﹣4m >0 解得:m <1,∴m 的取值范围是m <1. 故答案为:m <1.7. (2019年江苏省扬州市)一元二次方程()22-=-x x x 的根为___.【考点】一元二次方程的解法 【解答】解:()22-=-x x x()()021=--x x x 1=1, x 2=28. (2019年湖北省十堰市)对于实数a ,b ,定义运算“◎”如下:a ◎b =(a +b )2﹣(a ﹣b )2.若(m +2)◎(m ﹣3)=24,则m = .【考点】一元二次方程的解法【解答】解:根据题意得[(m +2)+(m ﹣3)]2﹣[(m +2)﹣(m ﹣3)]2=24, (2m ﹣1)2﹣49=0,(2m ﹣1+7)(2m ﹣1﹣7)=0, 2m ﹣1+7=0或2m ﹣1﹣7=0,所以m 1=﹣3,m 2=4. 故答案为﹣3或4.9. (2019年甘肃省武威市)关于x 的一元二次方程x 2+x +1=0有两个相等的实数根,则m 的取值为 .【考点】一元二次方程根的判别式 【解答】解:由题意,△=b 2﹣4ac =()2﹣4=0得m =4 故答案为410. (2019年辽宁省本溪市)如果关于x 的一元二次方程x 2﹣4x +k =0有实数根,那么k 的取值范围是 .【考点】一元二次方程根的判别式 【解答】解:根据题意得:△=16﹣4k ≥0, 解得:k ≤4. 故答案为:k ≤4.11. (2019年西藏)一元二次方程x 2﹣x ﹣1=0的根是 . 【考点】一元二次方程的解法【解答】解:△=(﹣1)2﹣4×(﹣1)=5, x =,所以x 1=,x 2=.故答案为x 1=,x 2=.三、解答题1.(2019年安徽省)解方程2x 1=4-()【考点】一元二次方程的解法【解答】利用直接开平方法:x-1=2或x-1=-2 ∴ , 2.(2019年北京市)关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.【考点】一元二次方程根的判别式、一元二次方程的解法【解答】∵01222=-+-m x x 有实数根,∴△≥0,即0)12(4)2(2≥---m ,∴1≤m∵m 为正整数,∴1=m ,故此时二次方程为,0122=+-x x 即0)1(2=-x∴121==x x ,∴1=m ,此时方程的根为121==x x3.(2019年乐山市)已知关于x 的一元二次方程04)4(2=++-k x k x . (1)求证:无论k 为任何实数,此方程总有两个实数根; (2)若方程的两个实数根为1x 、2x ,满足431121=+x x ,求k 的值; (3)若Rt △ABC 的斜边为5,另外两条边的长恰好是方程的两个根1x 、2x ,求∆Rt ABC的内切圆半径.【考点】一元二次方程根的判别式、一元二次方程的解法、一元二次方程根与系数关系、内切圆 【解答】(1)证明: 0)4(16816)4(222≥-=+-=-+=∆k k k k k ,∴无论k 为任何实数时,此方程总有两个实数根.(2)由题意得:421+=+k x x ,k x x 421=⋅, 431121=+x x,432121=⋅+∴x x x x ,即4344=+k k , 解得:2=k ;(3)解方程得:41=x ,k x =2,根据题意得:22254=+k ,即3=k , 设直角三角形ABC 的内切圆半径为r ,如图, 由切线长定理可得:5)4()3(=-+-r r ,∴直角三角形ABC 的内切圆半径r =12543=-+;4.(2019年重庆市)某文明小区50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍.物管公司月底按每平方米2元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90000元,问该小区共有多少套80平方米的住宅? (2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样,64月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2a%,每户物管费将会减少a%;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6a%,每户物管费将会减少a%.这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少a%,求a的值.【考点】一元一次方程的应用与解法、一元二次方程的应用与解法【解答】(1)解:设该小区有x套80平方米住宅,则50平方米住宅有2x套,由题意得:2(50×2x+80x)=90000,解得x=250答:该小区共有250套80平方米的住宅.(2)参与活动一:50平方米住宅每户所交物管费为100元,有500×40%=200户参与活动一,80平方米住宅每户所交物管费为160元,有250×20%=50户参与活动一;参与活动二:50平方米住宅每户所交物管费为100(1﹣%)元,有200(1+2a%)户参与活动二;80平方米住宅每户所交物管费为160(1﹣%)元,有50(1+6a%)户参与活动二.由题意得100(1﹣%)•200(1+2a%)+160(1﹣%)•50(1+6a%)=[200(1+2a%)×100+50(1+6a%)×160](1﹣a%)令t=a%,化简得t(2t﹣1)=0∴t1=0(舍),t2=,∴a=50.答:a的值为50.5. (2019年山东省德州市)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.【考点】一元二次方程的应用与解法【解答】解:(1)设进馆人次的月平均增长率为x,则由题意得:128+128(1+x )+128(1+x )2=608 化简得:4x 2+12x -7=0 ∴(2x -1)(2x +7)=0, ∴x =0.5=50%或x =-3.5(舍)答:进馆人次的月平均增长率为50%. (2)∵进馆人次的月平均增长率为50%,∴第四个月的进馆人次为:128(1+50%)3=128×=432<500答:校图书馆能接纳第四个月的进馆人次.6. (2019年四川省攀枝花市)攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚 熟芒果远销北上广等大城市。

2019年海南省中考数学试题(word版含答案)

2019年海南省中考数学试题(word版含答案)

海南省2019年初中学业考试数 学(考试时间100分钟,满分120分)一、选择题(本大题满分36分,每小题3分)在下列各题的四个备选签案中,有只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求...用2B 铅笔涂黑 1.如果收入100元记作+100元,那么支出100元记作 ( )A .﹣100元B .+100C .﹣200元D .+2002.当m=﹣1时,代数式2m+3的值是( )A .-1B .0C .1D . 2 3.下列运算正确的是( )A .a •a 2=a 3B .a 6 ÷a 2=a 3C . 2a 2-a 2=2D .(3a 2) 2=6a 4 4.分式方程121=+x 的解是( ) A . x=1 B .x=-1 C .x=2 D . x=-25.海口市首条越江隧道------文明东越江通道项目将于2020年4月份完工,该项目总投资3710 000 000元,数据3710 000 000用科学户数法表示为( ) A .371×107B .37.1×108C .3.71×108D .3.71×1096.图1是由5个大小相同的小正方体摆成的几何体,它的俯视图是( )7.如果反比例函数y=xa 2-(a 是常数)的图象在第一、三象限,那么a 的取值范围是( ) A .a <0 B . a >0C .a <2D .a >28.如图2,在平面直角坐标系中,已知点A (2,1)、点B (3,-1),平移线段AB,使点A 落在点 A 1(-2,2)处,则点的对应的B 1坐标为( )A .(-1,-1)B . (1,0)C .(-1,0)D .(3,0)9.如图3,直线l 1∥l 2 ,点A 在直线上l 1,以点A 为圆心,适当长度为半径画弧,分别交直线l 1、l 2于B 、C 两点,连接AC 、BC ,若∠ABC =700,则∠1的大小为( )A .200B . 350C .400D .70010.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是( )A .21 B . 43 C .121 D .125 11. 如图4,在□ABCD 中,将△ADC 沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处,若∠B =600,AB=3,则△ADE 的周长为( )A . 12B .15C .18D . 2112. 如图5,在Rt △ABC 中 ,∠C =900,AB=5, BC=4,点P 是边AC 上一动点,过点P 作PQ ∥AB ,交BC 于点Q ,D 为线段PQ 的中点.当BD 平分∠ABC 时,AP 的长度为( )A .138 B . 1315 C .1325 D .1332二、填空题(本大题满分16分,每小题4分) 13.因式分解:ab -a =__________.14. 如图6,⊙O 与正五边形ABCDE 的边AB 、DE 分别相切于点B 、D ,则劣弧BD 所对的圆心角∠BOD 的大小为________度.15. 如图7,将Rt △ABC 的斜边AB 绕点A 顺时针旋转(00<a <900)得到AE ,直角边AC 绕点A 逆时针旋转β(00<β<900)得到AF ,连接EF.若AB=3,AC=2.且a +β=∠B,则EF=__________.16.有2019个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和,如果第一个数是0,第二个数是1,那么前6个数的和是________,这2019个数的和是__________. 三、解答题(本大题满分68分) 17.(满分12分,每小题6分)(1)计算:(9×3-2+(-1)3-4; (2)解不等式组:⎩⎨⎧>+>+x x x 3401, 并求出它的整数解.18.(满分10分)时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?19. (满分8分)为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为发解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(图8).请根据图表信息解答以下问题:(1)本次调查一共随机抽取了________个参赛学生的成绩; (2)表1中a =________;(3)所抽取的参赛学生的成绩的中位数落在的“组别”是_______;(4)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约有______人.20.(满分10分)图9是某区域的平面示意图,码头A在观测站B的正东方向,码头A的北偏西600方向上有一小岛C,小岛C在观察站B的北偏西150方向上,码头A到小岛C的距离AC为10海里. (1)填空:∠BAC =______度,∠C =______度;(2)求观测站B到AC的距离BP(结果保留根号).21.(满分13分)如图10,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDEC≌△QCE;(2)过点E作EF∥BC交PB于点F,连接AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.22.(满分15分)如图11,已知抛物线y=a x2+bx+5经过A(-5,0)、B(-4,-3)两点,与x轴的另一个交点为C,顶点为D连接CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合).设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.海南省2019年初中学业水平考试数学参考答案与评分标准一、选择题(本大题满分36分,每小题3分)1.A . 2. C . 3. A . 4. B . 5. D. 6. D. 7.D. 8.C 9. C. 10. D. 11. C. 12. B. 二、填空题(本大题满分16分,每小题4分)13. a (b -1); 14. 144; 15. 13 16. 0, 2.三、解答题(本大题满分68分) 17.(1)9×3-2 +(-1)3-4=9×91+(-1)-2 =1-1-2=-2 ……………………………………………6分 (2)由⎩⎨⎧>+>+x x x 3401 解不等式① ,得x >-1 , 解不等式②,得x <2 .所以这个不等式组的解集是-1<x <2,因此,这个不等式组的整数解是0,1. ……………………………………………12分 18.(满分10分)解:设“红土”百香果每千克x 元,“黄金”百香果每千克y 元,依题意得 ⎩⎨⎧=+=+1153802y x y x ……………………………………………7分 解得:⎩⎨⎧==3025y x 答:“红土”百香果每千克25元,“黄金”百香果每千克30元. ………………………………10分① ②19.(满分8分)(1)50;……………………………………………2分(2)8;……………………………………………4分(3)C;……………………………………………6分(4)320. ……………………………………………8分20.(满分10分)(1)30;45;……………………………………………4分(2)解:设BP=x海里,由题意得:BP⊥AC,∴∠BPC=∠BPA=90°,∵∠C=45°,∴∠CBP=∠C=45°,∴CP=BP=x,在Rt△ABP中,∠BAC=300,∠ABP=600,∴AP=tan∠ABP•BP= BP•tan600= 3x,∴3x+ x=10,解得:x=53-5.答:观测站B到AC的距离BP为(53-5)海里.………………………………………10分21.(满分13分)(1)证明:∵四边形ABCD是正方形,∴∠D=∠BCD=90°,∴∠ECQ=90°=∠D,∵E是CD的中点,、∴DE=CE.又∵∠DEP=∠CEQ,∴△PDE ≌△QCE. ………………………………………4分 (2) ① 证明:如图1,由(1)可知△PDE ≌△QCE ∴PE =QE=21P Q. 又∵EF ∥BC , ∴PF =FB=21P B. ∵P B= P Q, ∴PF = PE, ∴∠1=∠2.∵四边形ABCD 是正方形, ∴∠BAD=90°,∴在Rt △ABP 中,F 是PB 的中点, ∴AF=21B P = FP, ∴∠3=∠4.又∵AD ∥BC ,EF ∥BC , ∴∠1=∠4. ∴∠2=∠3. 又∵PF = FP,∴△APF ≌△EFP. ∴AP =EF, 又∵AP ∥EF,∴四边形AFEP 是平行四边形. ………………………………………9分 (2)②四边形AFEP 不一定为菱形, ∵AP 不一定等于AF ,只有当AP =21B P 时,才有四边形AFEP 为菱形. 22(满分15分)解:(1)∵抛物线y=a x 2+bx+5经过A (-5,0)、B (-4,-3)两点,∴代入得:⎩⎨⎧+-=-+-=5416355250b a b a 解得:⎩⎨⎧==61b a∴抛物线的表达式为:y=x 2+6x+5(2)②存在.∵y=x 2+6x+5=(x+3)2-4,∴抛物线的顶点D 的坐标为(-3,-4), 由点C (-1,0)和D (-3,-4),可得 直线CD 的表达式为:y=2x+2. 分两种情况讨论:I.当点P 在直线BC 上方时,有∠PBC=∠BCD , 如图2-2.若∠PBC=∠BCD , 则PB ∥CD,∴设直线PB 的表达式为:y=2x+b. 把B (-4,-3)代入y=2x+b ,得b=5, ∴直线PB 的表达式为:y=2x+5.由x 2+6x+5=2x+5,解得:x 1=0,x 2=-4(舍去) ∴P 为(0,5).II . 当点P 在直线BC 下方时,有∠PBC=∠BCD , 如图2-3.若∠PBC=∠BCD , 则PB ∥CD,∴设直线PB 与C 交于点M,则MB=MC , 过点B 作BN ⊥x 轴于点N ,则点N (-4,0), ∴NB=NC=3,∴MN 垂直平分线段BC.则线段BC 的中点G 的坐标为(-25,-23), 由点N (-4,0)和G (-25,-23),得直线NG 的表达式为:y=-x -4.∵直线CD :y=2x+2与直线NG 的表达式为:y=-x -4交于点M , 由2x+2=-x -4,解得x=-2,∴M 为(-2,-2),由点B (-4,-3)和点M (-2,-2),得直线BM 的表达式为:y=21x -1. 由x 2+6x+5=21x -1,解得x 1=-23,x 2=-4(舍去)∴P 为(-23,-47).综上所述,存在满足条件的点P 的坐标为(0,5)和(-23,-47). ……………………………15分。

2019哈尔滨中考数学试卷及答案(word版)

2019哈尔滨中考数学试卷及答案(word版)

哈尔滨市2019年初中升学考试数学试卷一、选择题(每小题3分,共计30分)1、-9的相反数是( )A.-9B.C.9D.2、下列运算正确的是( )A. B.C. D.3、下列图形中,既是轴对称图形又是中心对称图形的是( )A B C D4、七个大小相同的正方体搭成的几何体如图所示,其左视图是( )5、如图,P A、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P=50º,则∠ACB的度数为( )A.60ºB. 75ºC.70ºD.65º6、抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A B.C. D.7、某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为()A.20%B. 40%C. 18%D. 36%A. B. C. D.9、点(-1,4)在反比例函数的图象上,则下列各点在此函数图象上的是()A.(4,-1)B.()C.(-4,-1)D.()10、如图,□ABCD中,点E在对角线BD上,EM∥AD,交AB于点M,EN∥AB,交AD于点N,则下列式子一定正确的是( )A. B.C. D.二、填空题(每小题3分,共计30分)11、将6 260 000用科学记数法表示为.12、函数中,自变量的取值范围是.13、把多项式分解因式的结果为.14、不等式组的解集是.15、二次函数的最大值是.16、如图,将△ABC绕点C逆时针旋转得到△A'B'C,其中点A'与点A是对应点,点B'与点B是对应点,点B'落在边AC上,连接A'B,若∠ACB=45°,AC=3,BC=2,则A'B的长为.17、一个扇形的弧长为cm,半径为18 cm,则此扇形的圆心角为度.18、在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD 为直角三角形,则∠BCD的度数为度.19、同时掷两枚质地均匀的骰子,每枚骰子的六个面上分别刻有1到6的点数,则这两枚骰子向上的一面出现点数相同的概率为.20、如图,在四边形形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD 边上一点,连接BD、CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21、先化简,再求代数式的值,其中.22、如图,图1和图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)在图1中画出以AC为底边的等腰直角三角形ABC,点B在小正方形的顶点上;(2)在图2中画出以AC为腰的等腰三角形ACD,点D在小正方形的顶点上,且△ACD的面积为8.23、建国七十周年到来之际,海庆中学决定举办以“祖国在我心中”为主题的读书活动.为了使活动更具有针对性,学校在全校范围内随机抽取部分学生进行问卷调查,要求学生在“教育、科技、国防、农业、工业”五类书籍中,选取自己最想读的一种(必选且只选一种).学校将收集到的调查结果适当整理后绘制成如图所示的不完整的统计图. 请根据图中所给的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)如果海庆中学共有1500名学生,请你估计该校最想读科技类书籍的学生有多少名?24、已知:在矩形ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F.(1)如图1,求证:AE=CF;(2)如图2,当∠ADB=30°时,连接AF、CE,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD面积的.25、寒梅中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用.若购买3副围棋和5副中国象棋需用98元;若购买8副围棋和3副中国象棋需用158元.(1)求每副围棋和每副中国象棋各多少元?(2)寒梅中学决定购买围棋和中国象棋共40副,总费用不超过550元,那么寒梅中学最多可以购买多少副围棋?26、已知:MN为⊙O的直径,OE为⊙O的半径,AB、CH是⊙O的两条弦,AB⊥OE于点D,CH⊥MN于点K,连接HN、HE,HE与MN交于点P. (1)如图1,若AB与CH交于点F,求证:∠HFB=2∠EHN;(2)如图2,连接ME、OA,OA与ME交于点Q,若OA⊥ME,∠EON=4∠CHN,求证:MP=AB;(3)如图3,在(2)的条件下,连接OC、BC、AH,OC与EH交于点G,AH与MN交于点R,连接RG,若HK:ME=2:3,BC=,求RG的长.27、如图,在平面直角坐标系中,点O为坐标原点,直线与轴交于点A,与y轴交于点B,直线BC与x轴交于点C,且点C与点A关于y 轴对称.(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC上一点,BQ=AP,连接PQ,设点P的横坐标为t,△PBQ的面积为S(S≠0),求S与t之间的函数关系式(不要求写出自变量的取值范围);(3)在(2)的条件下,点E在线段OA上,点R在线段BC的延长线上,且点R的纵坐标为,连接PE、BE、AQ,AQ与BE交于点F,∠APE=∠CBE,连接PF,PF的延长线与y轴的负半轴交于点M,连接QM、MR,若tan∠QMR=,求直线PM的解析式.。

(完整版)2019年全国中考数学真题180套分类汇编:一元一次方程及其应用【含解析】

(完整版)2019年全国中考数学真题180套分类汇编:一元一次方程及其应用【含解析】

故选: D.
点评: 本题主要考查对解一元一次方程,等式的性质等知识点的理解和掌握,能根据等式的性质正确解一元一 次方程是解此题的关键.
2.( 2018 ?无锡,第 5 题 3 分)某文具店一支铅笔的售价为 1.2 元,一支圆珠笔的售价为 2 元.该店在“ 6?1 儿
童节”举行文具优惠售卖活动,铅笔按原价打
解答: 解:设 x=
,则 x=0.4545 …①,
根据等式性质得: 100x=45.4545…②,
由②﹣①得: 100x﹣x=45.4545 …﹣ 0.4545 …,
即: 100x ﹣x=45,
解方程得: x= .
100x﹣ x=45,
故答案为 . 点评: 此题主要考查了一元一次方程的应用,关键是正确理解题意,看懂例题的解题方法.
袋玻璃球,还有 2 个各 20 克的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的
1 个砝码后,
天平仍呈平衡状态,如图 2,则被移动的玻璃球的质量为(

A. 10 克
B. 15 克
C. 20 克
D. 25 克
考点: 一 元一次方程的应用.
分析: 根 据天平仍然处于平衡状态列出一元一次方程求解即可.
二.填空题
1. ( 2018?黑龙江绥化 , 第 7 题 3 分)服装店销售某款服装,一件服装的标价为
仍可获利 60 元,则这款服装每件的标价比进价多
120 元.
300 元,若按标价的八折销售,
考点: 一元一次方程的应用. 分析: 设这款服装每件的进价为 x 元,根据利润 =售价﹣进价建立方程求出 解答: 解:设这款服装每件的进价为 x 元,由题意,得
解答: 解:设铅笔卖出 x 支,由题意,得

(完整版)【2019年整理】中考数学应用题汇总,推荐文档

(完整版)【2019年整理】中考数学应用题汇总,推荐文档

2、(增长率问题)(广州市)为了拉动内需,广东启动“家电下乡”活动。

某家电公司销售给农户的Ⅰ型冰箱和Ⅱ型冰箱在启动活动前一个月共售出960 台,启动活动后的第一个月销售给农户的Ⅰ型和Ⅱ型冰箱的销量分别比启动活动前一个月增长30%、25%,这两种型号的冰新课标中考数学应用题精选汇总(含图像、表格信息问题)应用题是中考重点和难点,解题时要认真读题,正确建模,灵活解答分析。

读题时,文字信息要注意关键词语、隐含条件;读表格图像时,要结合文字信息理解,将信息转化为实际意义。

建模、分析见以下例题。

一、方程型1、(股票问题)(四川凉ft)我国沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.张先生以每股5 元的价格买入“西昌电力”股票1000 股,若他期望获利不低于1000 元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01 元)提示:一元一次方程型箱共售出1228 台。

(1)在启动活动前的一个月,销售给农户的Ⅰ型冰箱和Ⅱ型冰箱分别为多少台?(2)若Ⅰ型冰箱每台价格是2298 元,Ⅱ 型冰箱每台价格是1999 元,根据“家电下乡”的有关政策,政府按每台冰箱价格的13%给购买冰箱的农户补贴,问:启动活动后的第一个月销售给农户的1228 台Ⅰ型冰箱和Ⅱ型冰箱,政府共补贴方程了多少元(结果保留2 个有效数字)?提示:一元一次方程型提示:一元一次方程与二元一次方程型3、(传染问题)(广东省)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有 81 台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制, 3轮感染后,被感染的电脑会不会超过 700 台?提示:一元二次方程型4、(广东东营)为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007 年12 月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008 年12 月底,试点产品已销售350 万台(部),销售额达50 亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007 年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500 元,冰箱每台2000 元,•手机每部800 元,已知销售的冰箱(含冰柜)数量是彩电数量的3 倍,求彩电、冰箱、手机三2大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元?二、不等式型5、(方案设计)(河南)某家电商场计划用32400 元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共 l5 台.三种家电的进价和售价如下表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下.如果这 15 台家电全部销售给农民,国家财政最多需补贴农民多少元?提示:不等式组型促销活动期间小颖去该超市购买A种商品,小华去该超市购买B种商品,分别付款210元与268.8元. 促销活动期间小明决定一次去购买小颖和小华购买的同样多的商品,他需付款多少元?提示:注意隐含条件---- 件数是整数、一次函数、一元一次方程三、函数型近几年常考分段函数。

(完整)2019年武汉市中考数学试题及答案,推荐文档

(完整)2019年武汉市中考数学试题及答案,推荐文档

x -12019年武汉市初中毕业生考试数学试卷一、选择题(共10 小题,每小题3 分,共30 分)1.实数2019 的相反数是()A.2019 B.-2019 C.12019D.-120192.式子在实数范围内有意义,则x 的取值范围是()A.x>0 B.x≥-1 C.x≥1 D.x≤13.不透明的袋子中只有4 个黑球和2 个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3 个球,下列事件是不可能事件的是()A.3 个球都是黑球B.3 个球都是白球C.三个球中有黑球D.3 个球中有白球4.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是()A.诚B.信C.友D.善5.如图是由5 个相同的小正方体组成的几何体,该几何题的左视图是()6.“漏壶”是一种这个古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t 表示漏水时间,y 表示壶底到水面的高度,下列图象适合表示y 与x 的对应关系的是()7.从1、2、3、4 四个数中随机选取两个不同的数,分别记为a、c,则关于x 的一元二次方程ax2+4x+c=0 有实数解的概率为()A.14B.13C.12D.232168.已知反比例函数y =k的图象分别位于第二、第四象限,A (x1,y1)、B(x2,y2)两点在该图象x上,下列命题:①过点A 作AC⊥x 轴,C 为垂足,连接OA.若△ACO 的面积为3,则k=-6;②若x1<0<x2,则y1>y2;③ 若x1+x2=0,则y1+y2=0 其中真命题个数是()A.0 B.1 C.2 D.39.如图,AB 是⊙O 的直径,M、N 是弧AB(异于A、B)上两点,C 是弧MN 上一动点,∠ACB 的角平分线交⊙O 于点D,∠BAC 的平分线交CD 于点E.当点 C 从点M 运动到点N 时,则C、E 两点的运动路径长的比是()A.B.2C.32D.5210.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a 的式子表示这组数的和是()A.2a2-2a B.2a2-2a-2 C.2a2-a D.2a2+a二、填空题(本大题共6 个小题,每小题3 分,共18 分)11.计算的结果是12.武汉市某气象观测点记录了5 天的平均气温(单位:℃),分别是25、20、18、23、27,这组数据的中位数是13.计算2a-a 2 -161a -4的结果是14.如图,在□ABCD 中,E、F 是对角线AC 上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE 的大小为15.抛物线y=ax2+bx+c 经过点A(-3,0)、B(4,0)两点,则关于x 的一元二次方程a(x-1)2+c=b-bx 的解是16.问题背景:如图1,将△ABC 绕点A 逆时针旋转60°得到△ADE,DE 与BC 交于点P,可推出结论:PA+PC=PE问题解决:如图2,在△MNG 中,MN=6,∠M=75°,MG=4则点O 到△MNG 三个顶点的距离和的最小值是三、解答题(共8 题,共72 分)17.(本题8 分)计算:(2x2)3-x2·x4.点O 是△MNG 内一点,18.(本题8 分)如图,点A、B、C、D 在一条直线上,CE 与BF 交于点G,∠A=∠1,CE∥DF,求证:∠E=∠F19.(本题8 分)为弘扬中华传统文化,某校开展“双剧进课堂”的活动,该校童威随机抽取部分学生,按四个类别:A 表示“很喜欢”,B 表示“喜欢”,C 表示“一般”,D 表示“不喜欢”,调查他们对汉剧的喜爱情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)这次共抽取名学生进行统计调查,扇形统计图中,D 类所对应的扇形圆心角的大小为(2)将条形统计图补充完整(3)该校共有1500 名学生,估计该校表示“喜欢”的B 类的学生大约有多少人?各类学生人数条形统计图各类学生人数扇形统计图20.(本题8 分)如图是由边长为1 的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD 的顶点在格点上,点E 是边DC 与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由(1)如图1,过点A 画线段AF,使AF∥DC,且AF=DC(2)如图1,在边AB 上画一点G,使∠AGD=∠BGC(3)如图2,过点E 画线段EM,使EM∥AB,且EM=AB221.(本题8 分)已知AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,DC 与⊙O 相切于点E,分别交AM、BN 于D、C 两点(1)如图1,求证:AB2=4AD·BC(2)如图2,连接OE 并延长交AM 于点F,连接CF.若∠ADE=2∠OFC,AD=1,求图中阴影部分的面积22.(本题10 分)某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如下表:售价x(元/件)50 60 80周销售量y(件)100 80 40周销售利润w(元)1000 1600 1600注:周销售利润=周销售量×(售价-进价)(1)① 求y 关于x 的函数解析式(不要求写出自变量的取值范围)② 该商品进价是元/件;当售价是元/件时,周销售利润最大,最大利润是元(2)由于某种原因,该商品进价提高了m 元/件(m>0),物价部门规定该商品售价不得超过,65 元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400 元,求m 的值23.(本题10 分)在△ABC 中,∠ABC=90°AB=n ,M 是BC 上一点,连接AMBC(1)如图1,若n=1,N 是AB 延长线上一点,CN 与AM 垂直,求证:BM=BN(2)过点B 作BP⊥AM,P 为垂足,连接CP 并延长交AB 于点Q① 如图2,若n=1,求证:CP=BMPQ BQ② 如图3,若M 是BC 的中点,直接写出tan∠BPQ 的值(用含n 的式子表示)24.(本题12 分)已知抛物线C1:y=(x-1)2-4 和C2:y=x2(1)如何将抛物线C1平移得到抛物线C2?(2)如图1,抛物线C 与x 轴正半轴交于点A,直线y =-4x +b 经过点A,交抛物线C 于另一1 13点B.请你在线段AB 上取点P,过点P 作直线PQ∥y 轴交抛物线C1于点Q,连接AQ➀若AP=AQ,求点P 的横坐标②若PA=PQ,直接写出点P 的横坐标(3)如图2,△MNE 的顶点M、N 在抛物线C2上,点M 在点N 右边,两条直线ME、NE 与抛物线C2均有唯一公共点,ME、NE 均与y 轴不平行.若△MNE 的面积为2,设M、N 两点的横坐标分别为m、n,求m 与n 的数量关系2019 年武汉市初中毕业生考试数学试卷一、选择题(共10 小题,每小题3 分,共30 分)1.实数2019 的相反数是()A.2019 B.-2019 C.12019D.12019答案:B考点:相反数。

19年数学试题中考及答案

19年数学试题中考及答案

19年数学试题中考及答案2019年的数学试题中考及答案如下:题目1:(20分)已知函数f(x)=2x+3,求f(-4)的值。

解答1:将x代入函数f(x)=2x+3中,得到f(-4)=2(-4)+3= -8+3= -5。

因此,f(-4)的值为-5。

题目2:(30分)一辆汽车以每小时60公里的速度行驶,行驶4小时后,汽车的总里程是多少?解答2:该汽车以每小时60公里的速度行驶,行驶4小时共计60 * 4 = 240公里。

因此,汽车的总里程为240公里。

题目3:(40分)已知三角形ABC中,∠A= 30°,∠C= 90°,AC= 8√3 cm,求BC的长度。

解答3:根据三角形ABC中的定理,我们可以使用正弦定理来求解BC的长度。

根据正弦定理,我们有 sinA/AB = sinC/BC。

已知∠A= 30°,∠C= 90°,AC= 8√3 cm,代入可得 sin30°/AB =sin90°/BC。

sin30° = 1/2,sin90° = 1,代入可得 1/2/AB = 1/BC。

根据等式关系,我们可以得到 AB = BC/2。

由于AC=8√3 cm,可得 AB = AC - BC = 8√3 - BC。

将此结果代入前面的等式,我们可以得到8√3 - BC = BC/2。

将BC移到一边并展开,我们可以得到BC+BC/2= 8√3。

根据等式关系,我们可以得到BC = 16√3/3。

因此,BC的长度为16√3/3。

题目4:(50分)已知一个正方体的表面积为96平方厘米,求该正方体的体积。

解答4:设正方体的边长为a。

根据正方体的表面积公式,我们有 6a^2 = 96。

将96移到一边并展开,我们可以得到 a^2 = 16。

取平方根,我们可以得到 a = 4。

由于正方体的体积公式为V = a^3,代入边长 a=4,我们可以得到 V = 4^3 = 64平方厘米。

【中考数学】2019最新版本中考数学应用题(各类应用题汇总练习)(历年真题-可打印)

【中考数学】2019最新版本中考数学应用题(各类应用题汇总练习)(历年真题-可打印)

中 考 应 用 题附参考答案列方程(组)解应用题是中考的必考内容,必是中考的热点考题之一,列方程(组)解应用题的关键与难点是如何找到能够表示题目全部含义的相等关系,所谓“能表示全部含义”就是指在相等关系中,题目所给出的全部条件(包括所求的量)都要给予充分利用,不能漏掉,但也不能把同一条件重复使用,应用题中的相等关系通常有两种,一种是通过题目的一些关键词语表现出来的明显的相等关系,如“多” 、“少” 、“增加” 、“减少” 、“快” 、“慢”等,另一种是题目中没有明显给出而题意中又包含着的隐含相等关系,这也是中考的重点和难点,此时需全面深入的理解题意,结合日常生活常识和自然科学知识才能做到.解应用题的一般步骤:解应用题的一般步骤可以归结为:“审、设、列、解、验、答” .1、“审”是指读懂题目,弄清题意,明确题目中的已知量,未知量,以及它们之间的关系,审题时也可以利用图示法,列表法来帮助理解题意.2、“设”是指设元,也就是未知数.包括设直接未知数和设间接未知数以及设辅助未知数(较难的题目).3、“列”就是列方程,这是非常重要的关键步骤,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程.4、“解”就是解方程,求出未知数的值.5、“验”就是验解,即检验方程的解能否保证实际问题有意义.6、“答”就是写出答案(包括单位名称). 应用题类型:近年全国各地的中考题中涉及的应用题类型主要有:行程问题,工程问题,增产率问题,百分比浓度问题,和差倍分问题,与函数综合类问题,市场经济问题等.几种常见类型和等量关系如下: 1、行程问题:基本量之间的关系:路程=速度×时间,即:vt s .常见等量关系:(1)相遇问题:甲走的路程+乙走的路程=原来甲、乙相距的路程. (2)追及问题(设甲速度快): ①同时不同地:甲用的时间=乙用的时间;甲走的路程-乙走的路程=原来甲、乙相距的路程. ②同地不同时:甲用的时间=乙用的时间-时间差; 甲走的路程=乙走的路程. 2、工程问题:基本量之间的关系:工作量=工作效率×工作时间.常见等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量. 3、增长率问题:基本量之间的关系:现产量=原产量×(1+增长率). 4、百分比浓度问题:基本量之间的关系:溶质=溶液×浓度. 5、水中航行问题:基本量之间的关系:顺流速度=船在静水中速度+水流速度; 逆流速度=船在静水中速度-水流速度. 6、市场经济问题:基本量之间的关系:商品利润=售价-进价;商品利润率=利润÷进价;利息=本金×利率×期数;本息和=本金+本金×利率×期数.一元一次方程方程应用题归类分析列方程解应用题,是初中数学的重要内容之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年4月13日初中数学试卷(初三-应用题)一、综合题(共8题;共85分)1. ( 10分) (2015•深圳)下表为深圳市居民每月用水收费标准,(单位:元/m3).用水量单价x≤22 a剩余部分a+1.1(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?2. ( 10分) 春平中学要为学校科技活动小组提供实验器材,计划购买A型,B型两种型号的放大镜,若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元?(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?3. ( 10分) 某商场计划购进、两种型号的手机,已知每部型号手机的进价比每部型号手机的多500元,每部型号手机的售价是2500元,每部型号手机的售价是2100元.(1)若商场用50000元共购进型号手机10部,型号手机20部.求、两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购、两种型号的手机共40部,且型号手机的数量不少于型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?4. ( 10分) 某童装店在服装销售中发现:进货价每件元,销售价每件元的某童装每天可售出件.为了迎接“六一儿童节”,童装店决定采取适当的促销措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价元,那么每天就可多售出件.(1)如果童装店想每天销售这种童装盈利元,同时又要使顾客得到更多的实惠,那么每件童装应降价多少元?(2)每件童装降价多少元时,童装店每天可获得最大利润?最大利润是多少元?5. ( 10分) 空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.6. ( 10分) 某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?7. ( 15分) 我市从2018 年1 月1 日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8 万元购进A、B 两种型号的电动自行车共30 辆,其中每辆B 型电动自行车比每辆A 型电动自行车多500 元.用5 万元购进的A 型电动自行车与用6 万元购进的 B 型电动自行车数量一样.(1)求A、B 两种型号电动自行车的进货单价;(2)若A 型电动自行车每辆售价为2800 元,B 型电动自行车每辆售价为3500 元,设该商店计划购进A 型电动自行车m 辆,两种型号的电动自行车全部销售后可获利润y 元.写出y 与m 之间的函数关系式;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?8. ( 10分) 如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A 在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?9. ( 5分) 随着人们生活水平的不断提高,旅游已成为人们的一种生活时尚.为开发新的旅游项目,我市对某山区进行调查,发现一瀑布.为测量它的高度,测量人员在瀑布的对面山上 D 点处测得瀑布顶端A 点的仰角是30°,测得瀑布底端B 点的俯角是10°,AB与水平面垂直.又在瀑布下的水平面测得CG=27m,GF=17.6m(注:C、G、F 三点在同一直线上,CF⊥AB 于点F).斜坡CD=20m,坡角∠ECD=40°.求瀑布AB 的高度.(参考数据:≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)10. ( 5分) 如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B处的求救者后,又发现点B正上方点C处还有一名求救者.在消防车上点A处测得点B和点C的仰角分别是45°和65°,点A距地面2.5米,点B距地面10.5米.为救出点C处的求救者,云梯需要继续上升的高度BC约为多少米?(结果保留整数.参考数据:tan65°≈2.1,sin65°≈0.9,cos65°≈0.4, ≈1.4)11. ( 5分) (2014•遵义)如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)12. ( 1分) 如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是________m(结果保留根号)答案解析部分一、综合题1.【答案】(1)解:由题意可得:10a=23,解得:a=2.3,答:a的值为2.3;(2)解:设用户水量为x立方米,∵用水22立方米时,水费为:22×2.3=50.6<71,∴x>22,∴22×2.3+(x﹣22)×(2.3+1.1)=71,解得:x=28,答:该用户用水28立方米.【解析】【分析】(1)直接利用10a=23进而求出即可;(2)首先判断得出x>22,进而表示出总水费进而得出即可.2.【答案】(1)解:设每个A型放大镜x元,每个B型放大镜y元根据题意得解得∴每个A型放大镜20元,每个B型放大镜12元(2)解:解:设可以购买a个A型放大镜,则购买B型放大镜75-a)个根据题意得20a+12(75-a)≤1180解得a≤35∴最多可以购买35个A型放大镜.【考点】一元一次不等式的特殊解,一元一次不等式的应用,二元一次方程组的实际应用-销售问题【解析】【分析】(1)根据题中关键的已知条件:购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元,设未知数,列方程组求解即可。

(2)根据买A型放大镜的数量+B型放大镜的数量=75;75个两种型号的放大镜的总费用≤1180,设未知数,列不等式求解,再取不等式的最大整数解,即可求解。

3.【答案】(1)解:A型号的手机每部进价为x元,B型号的手机每部进价为y元,根据题意得解之:(2)解:设购进A型号的手机m部,则购进B型号的手机(40-m)部则:解之:∵m为正整数∴m=27、28、29、30∴该商场一共有5种进货方案;②设总利润为W∴W=(2500-2000)m+(2100-1500)(40-m)=-100m+24000∵k=-100<0,∴W随m的增大而减小∴m取最小值为27时,W最大值=-2700+24000=21300元【考点】一元一次不等式组的应用,根据实际问题列一次函数表达式,一次函数的性质,二元一次方程组的实际应用-销售问题【解析】【分析】(1)根据题意可得等量关系:A型号手机额单价-B型号手机的单价=500;10部A型号手机的总价+20部B型号手机的总价=50000;列方程组求解即可。

(2)①商场决定用不超过7.5万元采购、两种型号的手机共40部,且型号手机的数量不少于型号手机数量的2倍,设未知数,建立不等式组,求出其整数解即可解答;②设总利润为W,建立W关于m的函数解析式,再根据一次函数的性质,即可求解。

4.【答案】(1)解:设每件童装降价x元,根据题意,得(100−60−x)(20+2x)=1050,解得:∵要使顾客得到较多的实惠,∴取x=25,答:童装店应该降价元(2)解:设每件童装降价元,可获利元,根据题意,得,化简得:∴.答:每件童装降价元童装店可获得最大利润,最大利润是元【考点】一元二次方程的实际应用-销售问题,二次函数的实际应用-销售问题【解析】【分析】(1)设每件童装降价x元, 每件的利润为(100-60-x)元,销售的数量为(20+2x) 件,根据单件的利润乘以销售的数量等于总利润即可列出方程,求解并检验即可;(2)设每件童装降价元,可获利元,根据单件的利润乘以销售的数量等于总利润即可建立出y与x的函数关系式,再根据所得函数的性质即可解决问题。

5.【答案】(1)解:设AD=x米,则AB= 米依题意得,解得x1=10,x2=90∵a=20,且x≤a∴x=90舍去∴利用旧墙AD的长为10米(2)解:设AD=x米,矩形ABCD的面积为S平方米①如果按图一方案围成矩形菜园,依题意得:S= ,0<x<a∵0<α<50∴x<a<50时,S随x的增大而增大当x=a时,S最大=50a﹣②如按图2方案围成矩形菜园,依题意得S= ,a≤x<50+当a<25+ <50时,即0<a<时,则x=25+ 时,S最大=(25+ )2=当25+ ≤a,即时,S随x的增大而减小∴x=a时,S最大=综合①②,当0<a<时,﹣()=>,此时,按图2方案围成矩形菜园面积最大,最大面积为平方米当时,两种方案围成的矩形菜园面积最大值相等.∴当0<a<时,围成长和宽均为(25+ )米的矩形菜园面积最大,最大面积为平方米;当时,围成长为a米,宽为(50﹣)米的矩形菜园面积最大,最大面积为()平方米【考点】一元二次方程的实际应用-几何问题,二次函数y=a(x-h)^2+k的性质,二次函数的实际应用-几何问题【解析】【分析】(1)此题的等量关系为:2AB+BC=100,AB AD=450,设未知数,列方程求解即可。

相关文档
最新文档