(完整版)2018中考数学应用题专题复习

合集下载

【中考汇编】2018版中考数学真题汇编310页(含答案解析)

【中考汇编】2018版中考数学真题汇编310页(含答案解析)

【中考汇编】2018版中考数学真题汇编目录【中考汇编】2018版中考数学真题汇编:1.1实数【中考汇编】2018版中考数学真题汇编:1.2整式及其运算【中考汇编】2018版中考数学真题汇编:1.3因式分解【中考汇编】2018版中考数学真题汇编:1.4分式【中考汇编】2018版中考数学真题汇编:1.5二次根式【中考汇编】2018版中考数学真题汇编:2.1一元一次方程【中考汇编】2018版中考数学真题汇编:2.2一元二次方程【中考汇编】2018版中考数学真题汇编:2.3二元一次方程组【中考汇编】2018版中考数学真题汇编:2.4不等式与不等式组【中考汇编】2018版中考数学真题汇编:3.1平面直角坐标系【中考汇编】2018版中考数学真题汇编:3.2一次函数【中考汇编】2018版中考数学真题汇编:3.3二次函数【中考汇编】2018版中考数学真题汇编:3.4反比例函数【中考汇编】2018版中考数学真题汇编:4.1图形的初步认识【中考汇编】2018版中考数学真题汇编:4.2三角形【中考汇编】2018版中考数学真题汇编:4.3全等三角形【中考汇编】2018版中考数学真题汇编:4.4等腰三角形【中考汇编】2018版中考数学真题汇编:4.5多边形【中考汇编】2018版中考数学真题汇编:4.6矩形、菱形、正方形【中考汇编】2018版中考数学真题汇编:5.1圆的有关概念与性质【中考汇编】2018版中考数学真题汇编:5.2圆的有关计算【中考汇编】2018版中考数学真题汇编:5.3与圆有关的位置关系【中考汇编】2018版中考数学真题汇编:6.1视图与投影【中考汇编】2018版中考数学真题汇编:6.2轴对称、平移、旋转【中考汇编】2018版中考数学真题汇编:6.3图形的相似【中考汇编】2018版中考数学真题汇编:6.4锐角三角函数【中考汇编】2018版中考数学真题汇编:7.1统计【中考汇编】2018版中考数学真题汇编:7.2概率【中考汇编】2018版中考数学真题汇编专题(1)规律探索问题【中考汇编】2018版中考数学真题汇编专题(2)开放探究问题【中考汇编】2018版中考数学真题汇编专题(3)方案设计问题【中考汇编】2018版中考数学真题汇编专题(4)图表信息问题【中考汇编】2018版中考数学真题汇编专题(5)阅读理解问题【中考汇编】2018版中考数学真题汇编专题(6)运动变化问题第一篇基础知识梳理第一章数与式§1.1实数A组2015年全国中考题组一、选择题1.(2015·浙江湖州,1,3分)-5的绝对值是()A.-5 B.5 C.-15 D.15解析∵|-5|=5,∴-5的绝对值是5,故选B.答案 B2.(2015·浙江嘉兴,1,4分)计算2-3的结果为() A.-1 B.-2 C.1 D.2解析2-3=-1,故选A.答案 A3.(2015·浙江绍兴,1,4分)计算(-1)³3的结果是() A.-3 B.-2 C.2 D.3解析(-1)³3=-3,故选A.答案 A4.(2015·浙江湖州,3,3分)4的算术平方根是() A.±2 B.2 C.-2 D. 2解析∵4的算术平方根是2,故选B.答案 B5.(2015·浙江宁波,3,4分)2015年中国高端装备制造业收入将超过6万亿元,其中6万亿元用科学记数法可表示为() A.0.6³1013元B.60³1011元C.6³10元D.6³10元解析6万亿=60 000³100 000 000=6³104³108=6³1012,故选C.答案 C6.(2015·江苏南京,5,2分)估计5-12介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间解析∵5≈2.236,∴5-1≈1.236,∴5-12≈0.618,∴5-12介于0.6与0.7之间.答案 C7.(2015·浙江杭州,2,3分)下列计算正确的是() A.23+26=29B.23-26=2-3C.26³23=29D.26÷23=22解析只有“同底数的幂相乘,底数不变,指数相加”,“同底数幂相除,底数不变,指数相减”,故选C.答案 C8.★(2015·浙江杭州,6,3分)若k<90<k+1(k是整数),则k=() A.6 B.7 C.8 D.9解析∵81<90<100,∴9<90<100.∴k=9.答案 D9.(2015·浙江金华,6,3分)如图,数轴上的A,B,C,D四点中,与表示数-3的点最接近的是 ()A.点A B.点B C.点C D.点D解析∵-3=-1.732,∴表示-3的点与表示-2的点最接近.答案 B二、填空题10.(2015·浙江宁波,13,4分)实数8的立方根是________.解析∵23=8,∴8的立方根是2.答案 211.(2015·浙江湖州,11,4分)计算:23³⎝ ⎛⎭⎪⎫122=________.答案 212.(2015·四川巴中,20,3分)定义:a 是不为1的有理数,我们把11-a称为a 的差倒数,如:2的差倒数是11-2=-1,-1的差倒数是11-(-1)=12.已知a 1=-12,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,……,以此类推,则a 2 015=________.解析 根据“差倒数”的规定进行计算得:a 1=-12,a 2=23,a 3=3,a 4= -12,……,三个数一循环,又2 015÷3=671……2,∴a 2 015=23. 答案 23 三、解答题13.(2015·浙江嘉兴,17(1),4分)计算:|-5|+4³2-1. 解 原式=5+2³12=5+1=6.14.(2015·浙江丽水,17,6分)计算:|-4|+(-2)0-⎝ ⎛⎭⎪⎫12-1.解 原式=4+1-2=3.15.(2015·浙江温州,17(1),5分)计算:2 0150+12+2³⎝ ⎛⎭⎪⎫-12.解 原式=1+23-1=2 3.16.(2015·浙江衢州,17,6分)计算:12-|-2|+(1-2)0-4sin 60° 解 原式=23-2+1-23=-1.B 组 2014~2011年全国中考题组一、选择题1.(2013·浙江舟山,1,3分)-2的相反数是( )A .2B .-2C.12D .-12解析 -2的相反数是2,故选A. 答案 A2.(2014·云南,1,3分)⎪⎪⎪⎪⎪⎪-17=( )A .-17B.17C .-7D .7解析 由绝对值的意义可知:⎪⎪⎪⎪⎪⎪-17=-⎝ ⎛⎭⎪⎫-17=17.故选B.答案 B3.★(2013·安徽,1,4分)-2的倒数是 ( )A .-12B.12C .2D .-2解析 ∵-2³(-12)=1,∴-2的倒数是-12. 答案 A4.(2013·浙江温州,1,4分)计算:(-2)³3的结果是 ( )A .-6B .1C .1D .6解析 根据有理数的乘法运算法则进行计算,(-2)³3=-2³3=-6.故选A. 答案 A5.(2014·浙江绍兴,1,4分)比较-3,1,-2的大小,正确的是 ( )A .-3<-2<1B .-2<-3<1C .1<-2<-3D .1<-3<-2解析 ∵||-3>||-2,∴-3<-2.∴-3<-2<1.故选A. 答案 A6.(2013·浙江丽水,1,3分)在数0,2,-3,-1.2中,属于负整数的是( ) A .0B .2C .-3D .-1.2解析 根据负整数的定义,属于负整数的是-3. 答案 C7.(2014·浙江宁波,2,4分)宁波轨道交通1号线、2号线建设总投资253.7亿元.其中253.7亿用科学记数法表示为 ( )A .253.7³108B .25.37³109C .2.537 ³1010D .2.537 ³1011解析 253.7亿=253.7³10=2.537 ³10,故选C. 答案 C8.(2014·浙江丽水,1,3分)在数23,1,-3,0中,最大的数是 ( )A.23B .1C .-3D .0解析 在数23,1,-3,0中,按从大到小的顺序排列为1>23>0>-3,故选B. 答案 B9.★(2013·山东德州,1,3分)下列计算正确的是( )A.⎝ ⎛⎭⎪⎫13-2=9 B.(-2)2=-2 C .(-2)0=-1D .|-5-3|=2解析 A 中,⎝ ⎛⎭⎪⎫13-2=1⎝ ⎛⎭⎪⎫132=119=9;B 中,(-2)2=4=2;C 中,(-2)0=1;D 中,|-5-3|=|-8|=8.故选A. 答案 A10.(2014·浙江台州,4,3分)下列整数中,与30最接近的是 ( )A .4B .5C .6D .7解析 由25<30<36,可知25<30<36,即5<30<6.又∵30.25=5.5,30<30.25,可知30更接近5.故选B. 答案 B 二、填空题11.(2013·浙江宁波,13,3分)实数-8的立方根是________. 解析 ∵(-2)3=-8,∴-8的立方根是-2. 答案 -212.(2013·湖南永州,9,3分)钓鱼岛列岛是我国固有领土,共由8个岛屿组成,其中最大的岛是钓鱼岛,面积约为4.3平方公里,最小的岛是飞濑岛,面积约为0.000 8平方公里,请用科学记数法表示飞濑岛的面积约为________平方公里.解析 在0.000 8中,8前面有4个0,则0.000 8=8³10-4.答案 8³10-13.(2014·河北,18,3分)若实数m ,n 满足||m -2+(n -2 014)2=0,则m -1+n 0=________.解析 ∵||m -2+(n -2 014)2=0,∴m -2=0,n -2 014=0,即m =2,n =2 014.∴m -1+n 0=2-1+2 0140=12+1=32.故答案为32. 答案 32 三、解答题14.(2014·浙江金华,17,6分)计算:8-4cos 45°+(12)-1+||-2.解8-4cos 45°+(12)-1+||-2=22-4³22+2+2=22-22+4=4.15.(2014·浙江丽水,17,6分)计算:(-3)2+||-4³2-1-(2-1)0. 解 原式=3+4³12-1=3+2-1=4.16.★(2013·山东滨州,20,7分)(计算时不能使用计算器) 计算:33-(3)2+(π+3)0-27+|3-2|. 解 原式=3-3+1-33+2-3=-3 3.§1.2 整式及其运算A 组 2015年全国中考题组一、选择题1.(2015·浙江衢州,3,3分)下列运算正确的是 ( )A .a 3+a 3=2a 6B .(x 2)3=x 5C .2a 4÷a 3=2a 2D .x 3²x 2=x 5解析 A .a 3+a 3=2a 3;B.(x 2)3=x 6;C.2a 4÷a 3=2a ,故选D. 答案 D2.(2015·山东济宁,2,3分)化简-16(x -0.5)的结果是 ( )A .-16x -0.5B .16x +0.5C .16x -8D .-16x +8解析 计算-16(x -0.5)=-16x +8.所以D 项正确. 答案 D3.(2015·四川巴中,4,3分)若单项式2x 2y a +b 与-13x a -b y 4是同类项,则a ,b 的值分别为( )A .a =3,b =1B .a =-3,b =1C .a =3,b =-1D .a =-3,b =-1解析 由同类项的定义可得⎩⎨⎧a -b =2,a +b =4,解得⎩⎨⎧a =3,b =1,故选A.答案 A4.(2015·浙江丽水,2,3分)计算(a 2)3结果正确的是 ( )A .3a 2B .a 6C .a 5D .6a解析 本题属于积的乘方,底数不变指数相乘,故B 正确. 答案 B5.(2015·贵州遵义,5,3分)计算3x 3²2x 2的结果为 ( )A .5x 5B .6x 5C .6x 6D .6x 9解析 属于单项式乘单项式,结果为:6x 5,故B 项正确. 答案 B6.(2015·福建福州,6,3分)计算a·a-的结果为() A.-1 B.0 C.0 D.-a解析a·a-1=1,故A正确.答案 A二、填空题7.(2015·福建福州,12,4分)计算(x-1)(x+2)的结果是________.解析由多项式乘以多项式的法则可知:(x-1)(x+2)=x2+x-2.答案x2+x-28.(2015·山东青岛,9,3分)计算:3a3²a2-2a7÷a2=________.解析本题属于同底数幂的乘除,和合并同类项,3a3·a2-2a7÷a2=3a5-2a5=a5.答案a59.(2015·安徽安庆,10,3分)一组按规律排列的式子:a2,a34,a56,a78,…,则第n个式子是________(n为正整数).解析a,a3,a5,a7,…,分子可表示为:a2n-1,2,4,6,8,…,分母可表示为2n,则第n个式子为:a2n-1 2n.答案a2n-1 2n三、解答题10.(2015·浙江温州,17(2),5分)化简:(2a+1)(2a-1)-4a(a-1).解原式=4a2-1-4a2+4a=4a-1.11.(2015·湖北随州,19,5分)先化简,再求值:(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-1 2.解原式=4-a2+a2-5ab+3ab=4-2ab,当ab=-12时,原式=4+1=5.B组2014~2011年全国中考题组一、选择题1.(2014·贵州毕节,13,3分)若-2a m b 4与5a n +2b 2m+n可以合并成一项,则m n的值是 ( )A .2B .0C .-1D .1解析 由同类项的定义可得⎩⎨⎧m =n +2,4=2m +n ,解得⎩⎨⎧m =2,n =0.∴m n =20=1.故选D.答案 D2.(2014·浙江丽水,3,3分)下列式子运算正确的是 ( )A .a 8÷a 2=a 6B .a 2+a 3=a 5C .(a +1)2=a 2+1D .3a 2-2a 2=1解析 选项A 是同底数幂的除法,根据同底数幂除法运算的性质可知a 8÷a 2=a 6,所以选项A 是正确的;选项B 是整式的加法,因为a 2,a 3不是同类项,所以无法合并,所以选项B 是错误的;选项C 是整式的乘法,根据完全平方公式可知(a +1)2=a 2+2a +1,所以选项C 是错误的;选项D 是整式的加法,根据合并同类项法则可知3a 2-2a 2=a 2,所以选项D 是错误的.故选A. 答案 A3.(2014·贵州遵义,8,3分)若a +b =22,ab =2,则a 2+b 2的值为 ( ) A .6 B .4 C .3 2D .2 3解析 ∵a +b =22,∴(a +b )2=(22)2,即a 2+b 2+2ab =8.又∵ab =2,∴a 2+b 2=8-2ab =8-4=4.故选B. 答案 B4.(2013·浙江宁波,2,3分)下列计算正确的是 ( )A .a 2+a 2=a 4B .2a -a =2C .(ab )2=a 2b 2D .(a 2)3=a 5解析 A .a 2+a 2=2a 2,故本选项错误;B.2a -a =a ,故本选项错误;C.(ab )2=a 2b 2,故本选项正确;D.(a 2)3=a 6,故本选项错误.故选C. 答案 C5.★(2013·湖南湘西,7,3分)下列运算正确的是( )A .a ²a =aB .(x -2)(x +3)=x -6C .(x -2)2=x 2-4D .2a +3a =5a解析 A 中,a 2·a 4=a 6,∴A 错误;B 中,(x -2)(x +3)=x 2+x -6,∴B 错误;C 中,(x -2)2=x 2-4x +4,∴C 错误;D 中,2a +3a =(2+3)a =5a ,∴D 正确.故选D. 答案 D 二、填空题6.(2013·浙江台州,11,5分)计算:x 5÷x 3=________. 解析 根据同底数幂除法法则,∴x 5÷x 3=x 5-3=x 2. 答案 x 27.(2013·浙江义乌,12,4分)计算:3a ·a 2+a 3=________. 解析 3a ·a 2+a 3=3a 3+a 3=4a 3. 答案 4a 38.(2013·福建福州,14,4分)已知实数a 、b 满足:a +b =2,a -b =5,则(a +b )3²(a -b )3的值是________.解析 法一 ∵a +b =2,a -b =5,∴原式=23³53=103=1 000. 法二 原式=[(a +b )(a -b )]3=103=1 000. 答案 1 000 三、解答题9.(2013·浙江衢州,18,6分)如图,在长和宽分别是a ,b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用含a ,b ,x 的代数式表示纸片剩余部分的面积;(2)当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长. 解 (1)面积=ab -4x 2.(2)根据题意可得:ab -4x 2=4x 2(或4x 2=12ab =12). 整理得:8x 2=24, 解得x =±3.10.(2014·浙江湖州,17,6分)计算:(3+a )(3-a )+a 2. 解 原式=9-a 2+a 2=9.11.(2014·浙江绍兴,17,4分)先化简,再求值:a (a -3b )+(a +b )2-a (a -b ),其中a =1,b =-12.解 a (a -3b )+(a +b )2-a (a -b )=a 2-3ab +a 2+2ab +b 2-a 2+ab =a 2+b 2. 当a =1,b =-12时, 原式=12+⎝ ⎛⎭⎪⎫-122=54.12.(2014·浙江金华,18,6分)先化简,再求值:(x +5)(x -1)+(x -2)2,其中x =-2.解 (x +5)(x -1)+(x -2)2=x 2+4x -5+x 2-4x +4 =2x 2-1.当x =-2时, 原式=2³(-2)2-1=8-1=7.§1.3因式分解A组2015年全国中考题组一、选择题1.(2015·四川宜宾,5,3分)把代数式3x3-12x2+12x分解因式,结果正确的是() A.3x(x2-4x+4) B.3x(x-4)2C.3x(x+2)(x-2) D.3x(x-2)2解析先提公因式3x再用公式法分解:3x3-12x2+12x=3x(x2-4x+4)=3x(x -2)2,故D正确.答案 D2.(2015·山东临沂,5,3分)多项式mx2-m与多项式x2-2x+1的公因式是() A.x-1 B.x+1C.x2-1 D.(x-1)2解析mx2-m=m(x-1)(x+1),x2-2x+1=(x-1)2,多项式mx2-m与多项式x2-2x+1的公因式是(x-1).答案 A3.(2015·华师一附中自主招生,7,3分)已知a,b,c分别是△ABC的三边长,且满足2a4+2b4+c4=2a2c2+2b2c2,则△ABC是 () A.等腰三角形B.等腰直角三角形C.直角三角形D.等腰三角形或直角三角形解析∵2a4+2b4+c4=2a2c2+2b2c2,∴4a4-4a2c2+c4+4b4-4b2c2+c4=0,∴(2a2-c2)2+(2b2-c2)2=0,∴2a2-c2=0,2b2-c2=0,∴c=2a,c=2b,∴a=b,且a2+b2=c2.∴△ABC为等腰直角三角形.答案 B二、填空题4.(2015·浙江温州,11,5分)分解因式:a2-2a+1=________.解析利用完全平方公式进行分解.答案(a-1)5.(2015·浙江杭州,12,4分)分解因式:m3n-4mn=________.解析m3n-4mn=mn(m2-4)=mn(m+2)(m-2).答案mn(m+2)(m-2)6.(2015·山东济宁,12,3分)分解因式:12x2-3y2=________.解析12x2-3y2=3(2x+y)(2x-y).答案3(2x+y)(2x-y)7.(2015·湖北孝感,12,3分)分解因式:(a-b)2-4b2=________.解析(a-b)2-4b2=(a-b+2b)(a-b-2b)=(a+b)(a-3b).答案(a+b)(a-3b)8.(2015·四川泸州,13,3分)分解因式:2m2-2=________.解析2m2-2=2(m2-1)=2(m+1)(m-1).答案2(m+1)(m-1)三、解答题9.(2015·江苏宿豫区,19,6分)因式分解:(1)x4-81;(2)6a(1-b)2-2(b-1)2.解(1)x4-81=(x2+9)(x2-9)=(x2+9)(x+3)(x-3);(2)6a(1-b)2-2(b-1)2=2(1-b)2(3a-1).B组2014~2011年全国中考题组一、选择题1.(2014·湖南岳阳,7,3分)下列因式分解正确的是 () A.x2-y2=(x-y)2B.a2+a+1=(a+1)2C.xy-x=x(y-1) D.2x+y=2(x+y)解析A中,由平方差公式可得x2-y2=(x+y)(x-y),故A错误;B中,左边不符合完全平方公式,不能分解;C中,由提公因式法可知C正确;D中,左边两项没有公因式,分解错误.故选C.答案 C2.(2014·贵州毕节,4,3分)下列因式分解正确的是() A.2x2-2=2(x+1)(x-1)B.x+2x-1=(x-1)C.x2+1=(x+1)2D.x2-x+2=x(x-1)+2解析A中,2x2-2=2(x2-1)=2(x+1)(x-1),故A正确;B中,左边多项式不符合完全平方公式,不能分解;C中,左边多项式为两项,不能用完全平方公式分解,故C错误;D中,右边不是乘积的形式,不是因式分解,故D错误.故选A.答案 A3.(2014·山东威海,3,3分)将下列多项式分解因式,结果中不含因式x-1的是() A.x2-1 B.x(x-2)+(2-x)C.x2-2x+1 D.x2+2x+1解析A中,x2-1=(x+1)(x-1),不符合题意;B中,x(x-2)+(2-x)=x(x -2)-(x-2)=(x-2)(x-1),不符合题意;C中,x2-2x+1=(x-1)2,不符合题意;D中,x2+2x+1=(x+1)2,符合题意,故选D.答案 D4.(2012·浙江温州,5,4分)把a2-4a多项式分解因式,结果正确的是() A.a(a-4) B.(a+2)(a-2)C.a(a+2)(a-2) D.(a-2)2-4解析a2-4a=a(a-4).答案 A5.(2011·浙江金华,3,3分)下列各式能用完全平方公式进行分解因式的是() A.x2+1 B.x2+2x-1C.x2+x+1 D.x2+4x+4解析根据完全平方公式:a2±2ab+b2=(a±b)2可得,选项A,B,C都不能用完全平方公式进行分解因式,D.x2+4x+4=(x+2)2.答案 D二、填空题6.(2014·浙江台州,13,3分)因式分解a3-4a的结果是________.解析a3-4a=a(a2-4)=a(a+2)(a-2).故答案为a(a+2)(a-2).答案a(a+2)(a-2)7.(2013·浙江绍兴,11,5分)分解因式:x2-y2=________.解析直接利用平方差公式进行因式分解.答案(x+y)(x-y)8.(2012·浙江绍兴,11,5分)分解因式:a3-a=________.解析a3-a=a(a2-1)=a(a+1)(a-1).答案a(a+1)(a-1)9.(2013·四川南充,12,3分)分解因式:x2-4(x-1)=________.解析原式=x2-4x+4=(x-2)2.答案(x-2)210.★(2013·四川自贡,11,4分)多项式ax2-a与多项式x2-2x+1的公因式是________.解析∵ax2-a=a(x2-1)=a(x+1)(x-1),x2-2x+1=(x-1)2,∴它们的公因式是(x-1).答案x-111.(2013·江苏泰州,11,3分)若m=2n+1,则m2-4mn+4n2的值是________.解析法一∵m=2n+1,∴m-2n=1.∴m2-4mn+4n2=(m-2n)2=12=1.法二把m=2n+1代入m2-4mn+4n2,得m2-4mn+4n2=(2n+1)2-4n(2n +1)+4n2=4n2+4n+1-8n2-4n+4n2=1.答案 112.(2013·贵州黔西南州,18,3分)因式分解:2x4-2=________.解析2x4-2=2(x4-1)=2(x2+1)(x2-1)=2(x2+1)(x+1)(x-1).答案2(x2+1)(x+1)(x-1)§1.4 分 式A 组 2015年全国中考题组一、选择题1.(2015·浙江丽水,4,3分)分式-11-x 可变形为( )A .-1x -1B.11+xC .-11+xD.1x -1解析 由分式的性质可得:-11-x =1x -1. 答案 D2.(2015·山东济南,3,3分)化简m 2m -3-9m -3的结果是( )A .m +3B .m -3C.m -3m +3D.m +3m -3解析 原式=m 2-9m -3=(m +3)(m -3)m -3=m +3.答案 A3.(2015·山西,3,3分)化简a 2+2ab +b 2a 2-b 2-ba -b 的结果是 ( )A.aa -bB.b a -bC.a a +bD.b a +b解析 原式= (a +b )2(a +b )(a -b )-b a -b =a +b a -b -b a -b =a +b -b a -b =aa -b .答案 A4.(2015·浙江绍兴,5,3分)化简 x 2x -1+11-x 的结果是( )A .x +1B.1x +1C .x -1D.x x -1解析 原式=x 2x -1-1x -1=x 2-1x -1=(x +1)(x -1)x -1=x +1. 答案 A5.(2015·贵州遵义,13,4分)计算:1a -1+a 1-a的结果是________. 解析1a -1+a1-a =1-a a -1=-1. 答案 -16.(2015·四川泸州,19,6分)化简:m 2m 2+2m +1÷⎝ ⎛⎭⎪⎫1-1m +1=________.解析 原式=m 2(m +1)2÷m +1-1m +1=m 2(m +1)2·m +1m =mm +1.答案 mm +17.(2015·山东青岛,16,4分)化简:⎝ ⎛⎭⎪⎫2n +1n +n ÷n 2-1n =________.解析 ⎝ ⎛⎭⎪⎫2n +1n +n ÷n 2-1n =⎝ ⎛⎭⎪⎫2n +1n+n 2n ·n n 2-1=n 2+2n +1n ·n n 2-1=(n +1)2n ·n(n +1)(n -1)=n +1n -1. 答案n +1n -18.(2015·福建福州,18,7分)化简:(a +b )2a 2+b 2-2aba 2+b 2=________. 解析 (a +b )2a 2+b 2-2aba 2+b 2=a 2+2ab +b 2-2ab a 2+b 2=a 2+b 2a 2+b 2=1.答案 1 三、解答题9.(2015·山东烟台,19,5分)先化简:x 2+x x 2-2x +1÷⎝ ⎛⎭⎪⎫2x -1-1x ,再从-2<x <3的范围内选取一个你最喜欢的值代入求值.解 原式=x (x +1)(x -1)2÷2x -x +1x (x -1)=x (x +1)(x -1)2²x (x -1)x +1=x 2x -1.当x =2时,原式=4.B 组 2014~2011年全国中考题组1.(2014·浙江温州,4,4分)要使分式x +1x -2有意义,则x 的取值应满足 ( )A .x ≠2B .x ≠-1C .x =2D .x =-1解析 由x -2≠0得x ≠2,故选A. 答案 A2.(2014·浙江杭州,7,3分)若(4a 2-4+12-a)·w =1,则w = ( )A .a +2(a ≠-2)B .-a +2(a ≠2)C .a -2(a ≠2)D .-a -2(a ≠±2)解析 原式可以化简如下:4-(a +2)(a +2)(a -2)·w =1,-(a -2)(a +2)(a -2)·w=1,-1a +2·w =1,所以w =-(a +2)=-a -2.故选D.答案 D3.(2013·江苏南京,2,2分)计算a 3²⎝ ⎛⎭⎪⎫1a 2的结果是( ) A .aB .a 5C .a 6D .a 9解析 a 3·⎝ ⎛⎭⎪⎫1a 2=a 3·1a 2=a ,故选A. 答案 A4.(2013·山东临沂,6,3分)化简a +1a 2-2a +1÷(1+2a -1)的结果是( )A.1a -1 B.1a +1 C.1a 2-1D.1a 2+1解析 原式=a +1(a -1)2÷a +1a -1=a +1(a -1)2³a -1a +1 =1a -1,故选A.答案 A5.(2013·浙江杭州,6,3分)如图,设k =甲图中阴影部分面积乙图中阴影部分面积(a >b >0),则有( )A .k >2B .1<k <2 C.12<k <1D .0<k <12解析 甲图中阴影部分面积是:a 2-b 2,乙图中阴影部分的面积是a 2-ab ,∴k =a 2-b 2a 2-ab =(a +b )(a -b )a (a -b )=a +b a =1+b a .∵a >b >0,∴0<b a <1.∴1<1+ba <2. 答案 B 二、填空题6.(2011·浙江嘉兴,11,4分)当x ________时,分式13-x有意义. 解析 要使分式13-x有意义,必须3-x ≠0,即x ≠3. 答案 ≠37.(2012·浙江杭州,12,4分)化简m 2-163m -12得________;当m =-1时,原式的值为________. 解析 m 2-163m -12,=(m +4)(m -4)3(m -4)=m +43,当m =-1时,原式=-1+43=1.答案m +43 18.(2014·贵州遵义,13,4分)计算:1a -1+a 1-a的结果是________.解析 1a -1+a 1-a =1a -1-aa -1=1-a a -1=-(a -1)a -1=-1.答案 -19.(2014·山东东营,15,4分)如果实数x ,y 满足方程组⎩⎨⎧x +3y =0,2x +3y =3,那么代数式⎝ ⎛⎭⎪⎫xy x +y +2÷1x +y的值为______. 解析 解方程组可得⎩⎨⎧x =3,y =-1.∴⎝ ⎛⎭⎪⎫xy x +y +2÷1x +y =⎝ ⎛⎭⎪⎫xy x +y +2·(x +y )=xy +2x+2y =3³(-1)+2³3+2³(-1)=1. 答案 110.(2014·浙江台州,16,3分)有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下: 输入x ――→第1次y 1=2x x +1――→第2次y 2=2y 1y 1+1――→第3次y 3=2y 2y 2+1――→… 则第n 次的运算结果=____________(含字母x 和n 的代数式表示). 解析 将第2、3、4次化简后列表如下:故答案为2x(2n -1)x +1.答案 2n x(2n -1)x +1三、解答题11.(2012·浙江宁波,19,6分)计算:a 2-4a +2+a +2.解 法一:原式=(a +2)(a -2)a +2+a +2=a -2+a +2=2a .法二:原式=a 2-4a +2+(a +2)2a +2=a 2-4a +2+a 2+4a +4a +2=2a 2+4a a +2=2a (a +2)a +2=2a .12.(2013·四川宜宾,17,5分)化简:b a 2-b 2÷⎝ ⎛⎭⎪⎫1-a a +b . 解 原式=b(a +b )(a -b )÷⎝⎛⎭⎪⎫a +b a +b -a a +b =b (a +b )(a -b )²a +b b =1a -b. 13.(2013·江西,17,6分)先化简,再求值:x 2-4x +42x ÷x 2-2x x 2+1,在0,1,2,三个数中选一个合适的,代入求值. 解 原式=(x -2)22x ²x 2x (x -2)+1=x -22+1=x2. 当x =1时,原式=12.14.(2014·湖南娄底,21,8分)先化简x -4x 2-9÷⎝ ⎛⎭⎪⎫1-1x -3,再从不等式2x -3<7的正整数解中选一个使原式有意义的数代入求值.解 原式=x -4(x +3)(x -3)÷x -3-1x -3=x -4(x +3)(x -3)²x -3x -4=1x +3.解不等式2x -3<7,得x <5. 取x =0时,原式=13.(本题最后答案不唯一,x ≠±3,x ≠4即可)§1.5二次根式A组2015年全国中考题组一、选择题1.(2015·重庆,3,3分)化简12的结果是() A.4 3 B.2 3 C.3 2 D.2 6解析化简得:23,故B正确.答案 B2.(2015·山东济宁,3,3分)要使二次根式x-2有意义,x必须满足() A.x≤2 B.x≥2 C.x<2 D.x>2解析由x-2≥0得:x≥2.故B正确.答案 B3.(2015·江苏淮安,4,3分)下列式子为最简二次根式的是()A. 3B. 4C.8D.1 2解析4=2,8=22,12=22,4,8,12都不是最简二次根式,故选A.答案 A4.(2015·湖北孝感,9,3分)已知x=2-3,则代数式(7+43)x2+(2+3)x+3的值是() A.0 B. 3 C.2+ 3 D.2- 3解析原式=(7+43)(2-3)2+(2+3)(2-3)+3=49-48+4-3+3=2+ 3.故选C.答案 C二、填空题5.(2015·贵州遵义,11,4分)27+3=________.解析原式=33+3=4 3.6.(2015·江苏南京,12,3分)计算5³153的结果是________. 解析5³153=5³5=5. 答案 57.(2015·江苏泰州,12,3分)计算:18-212等于________.解析 原式=32-2=2 2. 答案 2 2 三、解答题8.(2015·四川凉山州,19,5分)计算:-32+3³1tan 60°+|2-3|.解 -32+3³1tan 60°+|2-3|=-9+3³13+3-2=-5- 2.9. (2015·山西,21,6分)阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170~1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n 个数可以用15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n 表示(其中,n ≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.解 第1个数,当n =1时,15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n =15⎝ ⎛⎭⎪⎫1+52-1-52=15³5=1. 第2个数,当n =2时, 15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+52n -⎝ ⎛⎭⎪⎫1-52n=15⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+522-⎝ ⎛⎭⎪⎫1-522=15⎝ ⎛⎭⎪⎫1+52+1-52⎝ ⎛⎭⎪⎫1+52-1-52=15³1³5=1.B 组 2014~2011年全国中考题组一、选择题1.(2013·上海,1,4分)下列式子中,属于最简二次根式的是 ( ) A.9B.7C.20D.13解析 ∵9=32=3,20=22³5=25,13=13=33,∴9,20,13都不是最简二次根式,7是最简二次根式,故选B. 答案 B2.(2013·广东佛山,5,3分)化简2+(2-1)的结果是( )A .22-1B .2- 2C .1- 2D .2+ 2解析2+(2-1)=2+2-1=22-1,故选A.答案 A3.★(2013·江苏泰州,2,3分)下列计算正确的是 ( )A .43-33=1 B.2+3= 5 C .212= 2D .3+22=5 2错误;212=2³22=2,∴C正确;3和22一个是有理数,一个是无理数,不能合并,∴D错误.综上所述,选C.答案 C4.(2013·山东临沂,5,3分)计算48-913的结果是 ()A.- 3 B. 3 C.-113 3 D.113 3解析48-913=43-33= 3.答案 B5.(2014·山东济宁,7,3分)如果ab>0,a+b<0,那么下面各式:①ab=ab,②ab²ba=1,③ab÷ab=-b,其中正确的是()A.①②B.②③C.①③D.①②③解析∵ab>0,a+b<0,∴a,b同号,且a<0,b<0,∴ab>0,ba>0.ab=ab.等号右边被开方数小于零,无意义,∴①不正确;ab·ba=ab·ba=1,②正确;ab÷ab=ab·ba=b2=-b,∴③正确.故选B.答案 B二、填空题6.(2013·浙江舟山,11,4分)二次根式x-3中,x的取值范围为________.解析由二次根式有意义,得出x-3≥0,解得x≥3.答案x≥37.(2014·福建福州,13,4分)计算:(2+1)(2-1)=________.解析由平方差公式可得(2+1)(2-1)=(2)2-12=2-1=1.答案 1解析 原式=3³2-(3)2-26-3+6=6-3- 26-3+6=-6. 答案 -69.(2012·浙江杭州,14,4分)已知a (a -3)<0,若b =2-a ,则b 的取值范围是________.解析 由题意知,a >0,∴a >0,∴a -3<0,解得:0<a <3,∴2-3<2-a <2,即:2-3<b <2. 答案 2-3<b <2 三、解答题10.(2013·浙江温州,17,5分)计算:8+(2-1)+⎝ ⎛⎭⎪⎫120.解8+(2-1)+⎝ ⎛⎭⎪⎫120=22+2-1+1=3 2.11.(2013·湖北孝感,19,6分)先化简,再求值:1x -y ÷⎝ ⎛⎭⎪⎫1y -1x ,其中x =3+2,y =3- 2. 解1x -y ÷⎝⎛⎭⎪⎫1y -1x =1x -y ²xy x -y =xy (x -y )2,当x =3+2,y =3-2时, 原式=(3+2)(3-2)(3+2-3+2)2=18.第二章方程(组)与不等式(组)§2.1一元一次方程与可化为一元一次方程的分式方程A组2015年全国中考题组一、选择题1.(2015·山东济宁,8,3分)解分式方程2x-1+x+21-x=3时,去分母后变形正确的为() A.2+(x+2)=3(x-1) B.2-x+2=3(x-1)C.2-(x+2)=3 D.2-(x+2)=3(x-1)解析公分母为x-1,结果为:2-(x+2)=3(x-1),故D正确.答案 D2.(2015·浙江杭州,7,3分)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%,设把x公顷旱地改为林地,则可列方程() A.54-x=20%³108 B.54-x=20%(108+x)C.54+x=20%³162 D.108-x=20%(54+x)解析∵改造完后的林地为(108+x)公顷,改造完后的旱地是(54-x)公顷,∴54-x=20%(108+x).故选B.答案 B3.(2015·山东济南,5,3分)若代数式4x-5与2x-12的值相等,则x的值是()A.1 B.32 C.23D.2解析根据题意得:4x-5=2x-12,去分母得:8x-10=2x-1,解得:x=32,故选B. 答案 B4.(2015·四川自贡,5,3分)方程x2-1x+1=0的解是()A .1或-1B .-1C .0D .1解析 去分母得:x 2-1=0,即x 2=1,解得:x =1或x =-1,经检验x =-1是增根,分式方程的解为x =1. 答案 D5.(2015·湖南常德,6,3分)分式方程2x -2+3x2-x=1的解为 ( )A .1B .2C.13D .0解析 去分母得:2-3x =x -2,解得:x =1,经检验x =1是分式方程的解. 答案 A 二、填空题6.(2015·四川巴中,14,3分)分式方程3x +2=2x 的解x =________. 解析 去分母得:3x =2x +4,解得:x =4.经检验x =4是原分式方程的解. 答案 47. (2015·浙江绍兴,16,5分)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1∶2∶1,用两个相同的管子在容器的5 cm 高度处连通(即管子底离容器底5 cm),现三个容器中,只有甲中有水,水位高1 cm ,如图所示,若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升56 cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是0.5 cm. 解析 第一种情况,甲比乙高0.5 cm ,0.5÷56=35分钟;第二种情况,乙比甲高0.5 cm 且甲的水位不变,时间为3320分钟; 第三种情况,乙达到5 cm 后,乙比甲高0.5 cm ,时间为17140分钟. 答案 35或3320或171408.(2015·湖北,13,3分)分式方程1x -5-10x 2-10x +25=0的解是________.解析去分母得:x-5-10=0,解得:x=15,经检验x=15是分式方程的解.答案159.(2015·山东威海,12,3分)分式方程1-xx-3=13-x-2的解为________.解析去分母得:1-x=-1-2x+6,解得:x=4,经检验x=4是分式方程的解.答案x=4三、解答题10.(2015·广东深圳,22,7分)下表为深圳市居民每月用水收费标准(单位:元/m3).(1)某用户用水10(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?解(1)由题意可得:10a=23,解得:a=2.3,答:a的值为2.3;(2)设用户用水量为x立方米,∵用水22立方米时,水费为:22³2.3=50.6<71,∴x>22,∴22³2.3+(x-22)³(2.3+1.1)=71,解得:x=28.答:该用户用水28立方米.11.(2015·四川广安,19,4分)解方程:1-xx-2=x2x-4-1.解化为整式方程得:2-2x=x-2x+4,解得:x=-2.经检验x=-2是分式方程的解.12.(2015·广东深圳,18,8分)解方程:x2x-3+53x-2=4.解去分母得:3x2-2x+10x-15=4(2x-3)(3x-2),整理得:3x -2x +10x -15=24x -52x +24,即7x -20x +13=0,分解因式得:(x -1)(7x -13)=0,解得:x 1=1,x 2=137,经检验x 1=1与x 2=137都为分式方程的解.13.(2015·浙江湖州,22,8分)某工厂计划在规定时间内生产24 000 个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件. (1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24 000个零件的生产任务,求原计划安排的工人人数.解 (1)设原计划每天生产零件x 个,由题意得24 000x =24 000+300x +30,解得x =2 400.经检验,x =2 400是原方程的根,且符合题意, ∴规定的天数为24 000÷2 400=10(天).答:原计划每天生产零件2 400 个,规定的天数是10天.(2)设原计划安排工人人数为y 人,由题意得,⎣⎢⎡⎦⎥⎤5³20³(1+20%)³2 400y +2 400³(10-2)=24 000. 解得y =480.经检验y =480是原方程的根,且符合题意. 答:原计划安排工人人数为480人.B 组 2014~2011年全国中考题组一、选择题1.(2014·海南,2,3分)方程x +2=1的解是 ( )A .3B .-3C .1D .-1解析 x +2=1,移项得:x =1-2,x =-1.故选D. 答案 D2.(2014·浙江台州,7,3分)将分式方程1-2x x -1=3x -1去分母,得到正确的整式方程是() A.1-2x=3 B.x-1-2x=3C.1+2x=3 D.x-1+2x=3解析两边同时乘以(x-1),得x-1-2x=3,故选B.答案 B3.(2014·山东枣庄,6,3分)某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是 () A.350元B.400元C.450元D.500元解析设这批服装的标价为x元,得0.6x-200200=20%,解得x=400,故选B.答案 B4.(2013·江苏宿迁,6,3分)方程2xx-1=1+1x-1的解是()A.x=-1 B.x=0 C.x=1 D.x=2解析方程两边都乘以x-1,得2x=x-1+1.移项,合并,得x=0.经检验,x=0是原方程的解.故选B.答案 B二、填空题5.(2014·浙江宁波,14,4分)方程xx-2=12-x的根x=________.解析去分母,两边同乘以x-2,得x=-1,经检验x=-1是原方程的根,故答案为-1.答案-16.(2013·浙江丽水,12,4分)分式方程1x-2=0的解是________.解析去分母得1-2x=0,解得x=12.经检验,x=12是原方程的解.答案x=1 27.★(2013·黑龙江齐齐哈尔,16,3分)若关于x的分式方程xx-1=3a2x-2-2有非负数解,则a 的取值范围是________. 解析 去分母,得2x =3a -2(2x -2), 解得x =3a +46.∵有非负数解, ∴3a +4≥0,即a ≥-43. 又∵x -1≠0,即x ≠1, ∴3a +4≠6,解得a ≠23. ∴a ≥-43且a ≠23. 答案 a ≥-43且a ≠238.(2013·浙江舟山,15,4分)杭州到北京的铁路长1 487千米,动车的原平均速度为x 千米/时,提速后平均速度增加了70千米/时,由杭州到北京的行驶时间缩短了3小时,则可列方程为________.解析 动车从杭州到北京以平均速度为x 千米/时行完全程所需时间为1 487x 小时,提速后行完全程所需时间为1 487x +70小时,又行驶时间缩短了3小时,即少用3小时,故所列方程应为1 487x -1 487x +70=3.答案 1 487x -1 487x +70=3三、解答题9.(2014·浙江嘉兴,18,8分)解方程:1x -1-3x 2-1=0. 解 方程两边同乘x 2-1,得: x +1-3=0. ∴x =2.经检验,x =2是原方程的根.10.(2014·浙江宁波,24,10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成.硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?解(1)裁剪出的侧面个数为6x+4(19-x)=(2x+76)个,裁剪出的底面个数为5(19-x)=(-5x+95)个.(2)由题意,得2x+763=-5x+952,∴x=7.当x=7时,2x+763=30.∴能做30个盒子.§2.2一元二次方程A组2015年全国中考题组一、选择题1.(2015·浙江金华,5,3分)一元二次方程x2+4x-3=0的两根为x1,x2,则x1²x2的值是() A.4 B.-4 C.3 D.-3解析根据两根之积x1·x2=ca=-3.所以D正确.答案 D2.(2015·四川巴中,6,3分)某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是() A.560(1+x)2=315 B.560(1-x)2=315C.560(1-2x)2=315 D.560(1+x2)=315解析由题意可列方程为:560(1-x)2=315.故B正确.答案 B3.(2015·山东济宁,5,3分)三角形两边长分别为3和6,第三边的长是方程x2-13x+36=0的两根,则该三角形的周长为() A.13 B.15 C.18 D.13或18解析解方程x2-13x+36=0得,x=9或4,即第三边长为9或4.边长为9,3,6不能构成三角形;而4,3,6能构成三角形,所以三角形的周长为3+4+6=13.答案 A4.(2015·四川攀枝花,5,3分)关于x的一元二次方程(m-2)x2+(2m+1)x+m-2=0有两个不相等的正实数根,则m的取值范围是()A.m>34B.m>34且m≠2C.-12<m<2 D.34<m<2解析 根据题意得m -2≠0且Δ=(2m +1)2-4(m -2)·(m -2)>0,解得m >34且m ≠2,设方程的两根为a 、b ,则a +b =-2m +1m -2>0,ab =m -2m -2=1>0,而2m +1>0,∴m -2<0,即m <2,∴m 的取值范围为34<m <2. 答案 D 二、填空题5.(2015·山东泰安,22,4分)方程:(2x +1)(x -1)=8(9-x )-1的根为________. 解析 化简为:2x 2+7x -72=0,解得:x 1=-8,x 2=4.5. 答案 x 1=-8,x 2=4.56.(2015·贵州遵义,14,4分)关于x 的一元二次方程x 2-3x +b =0有两个不相等的实数根,则b 的取值范围是________. 解析 有题意得:Δ=9-4b >0,解得 b <94. 答案 b <947.(2015·四川泸州,15,3分)设x 1,x 2是一元二次方程x 2-5x -1=0的两实数根,则x 21+x 22的值为________.解析 ∵x 1,x 2是一元二次方程x 2-5x -1=0的两实数根,∴x 1+x 2=5,x 1x 2=-1,∴x 21+x 22=(x 1+x 2)2-2x 1x 2=25+2=27.答案 278.(2015·四川宜宾,11,3分)关于x 的一元二次方程x 2-x +m =0没有实数根,则m 的取值范围是________.解析 由题意得(-1)2-4³1³m <0解之即可. 答案 m >149.(2015·四川宜宾,13,3分)某楼盘2013年房价为每平方米8 100元,经过两年连续降价后,2015年房价为7 600元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为________.解析 先根据题意将每个量用代数式表示,然后利用等量关系建立等式即可.答案8 100(1-x)=7 600三、解答题10.(2015·山东青岛,16,8分)关于x的一元二次方程2x2+3x-m=0有两个不相等的实数根,求m的取值范围.解∵关于x的一元二次方程2x2+3x-m=0有两个不相等的实数根,∴Δ=32-4³2³(-m)>0,∴m>-98,即m的取值范围是m>-98.11.(2015·四川巴中,28,8分)如图,某农场有一块长40 m,宽32 m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路.要使种植面积为1 140 m2,求小路的宽.解设小路的宽为x m.图中的小路平移到矩形边上时,种植面积是不改变的.∴(40-x)(32-x)=1 140.解得x1=2,x2=70(不合题意,舍去).∴小路的宽为2 m.答:小路的宽为2 m.12.(2015·安徽,21,8分)(1)解下列方程:①x+2x=3根为________;②x+6x=5根为________;③x+12x=7根为________;(2)根据这类方程特征,写出第n个方程为________,其根为________;(3)请利用(2)的结论,求关于x的方程x+n2+nx-3=2n+4(n为正整数)的根.解(1)①去分母,得:x2+2=3x,即x2-3x+2=0,(x-1)(x-2)=0,则x-1=0,x-2=0,解得:x1=1,x2=2.经检验:x1=1,x2=2都是方程的解;②去分母,得:x2+6=5x,即x2-5x+6=0,(x-2)(x-3)=0,则x-2=0,x-3=0,解得:x1=2,x2=3,经检验:x1=2,x2=3是方程的解;③去分母,得:x2+12=7x,即x2-7x+12=0,(x-3)(x-4)=0,则x1=3,x2=4,经检验x1=3,x2=4是方程的解;(2)列出第n个方程为x+n(n+1)x=2n+1,解得:x1=n,x2=n+1;(3)x+n+nx-3=2n+4,即x-3+n(n+1)x-3=2n+1,则x-3=n或x-3=n+1,解得:x1=n+3,x2=n+4.B组2014~2011年全国中考题组一、选择题1.(2013·浙江丽水,7,3分)一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是() A.x-6=-4 B.x-6=4C.x+6=4 D.x+6=-4解析开方得x+6=±4,∴另一个一元一次方程是x+6=-4,故选D.答案 D2.(2014·陕西,8,3分)若x=-2是关于x的一元二次方程x2-52ax+a2=0的一个根,则a的值为() A.1或4 B.-1或-4C.-1或4 D.1或-4解析把x=-2代入x2-52ax+a2=0得(-2)2-52a³(-2)+a2=0,解得a1=-1,a2=-4.故选B.答案 B3.(2011·浙江嘉兴,2,3分)方程x(x-1)=0的解是() A.x=0 B.x=1C.x=0或x=1 D.x=0或x=-1解析x(x-1)=0,x=0或x-1=0,x1=0或x2=1.答案 C4.(2013·山东滨州,10,3分)对于任意实数k,关于x的方程x2-2(k+1)x-k2+2k-1=0的根的情况为() A.有两个相等的实数根B.没有实数根。

2018全国中考数学分类汇编--3方程与不等式应用题

2018全国中考数学分类汇编--3方程与不等式应用题

2018全国中考数学分类汇编--3方程与不等式应用题D【解析】分析:直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案.详解:设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为:.故选C.点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键.10.(2018·山东淄博)(4分)“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.【考点】B6:由实际问题抽象出分式方程.【分析】设实际工作时每天绿化的面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x的分式方程.【解答】解:设实际工作时每天绿化的面积为x万平方米,则原来每天绿化的面积为万平方米,依题意得:﹣=30,即.故选:C.【点评】考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.10.(2018·四川眉山)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是A.8% B.9% C.10% D.11%答案:C8.(2018·四川绵阳)在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人【答案】C【考点】一元二次方程的应用【解析】【解答】解:设参加酒会的人数为x人,依题可得:x(x-1)=55,化简得:x2-x-110=0,解得:x1=11,x2=-10(舍去),故答案为:C.【分析】设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.6.(2018·四川宜宾)(3分)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%【考点】AD:一元二次方程的应用.【分析】设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据2017年及2019年“竹文化”旅游收入总额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.故选:C.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.6.(2018·浙江杭州)某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。

(完整版)2018中考数学应用题专题复习

(完整版)2018中考数学应用题专题复习

(完整版)2018中考数学应用题专题复习2017年中考数学应用题专题复习1、整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题:(1)降价前,甲乙两种药品每盒的出厂价格之和为6。

6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2。

2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33。

8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%、对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?2、由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1。

76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a应取何值?3、为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的(完整版)2018中考数学应用题专题复习人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.4、某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0。

湖南省2018年中考数学专题复习课件专题二 实际应用题

湖南省2018年中考数学专题复习课件专题二 实际应用题

专题二┃实际应用题
[变式训练] [2017·淄博]某内陆城市为了落实国家“一带一路”战略,促进
经济发展,增强对外贸易的竞争力,把距离港口420 km的普通公路升 级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了 50%,行驶时间缩短了2 h.求汽车原来的平均速度.
解:设汽车原来的平均速度为x km/h, 根据题意,得4x20-(1+45200%)x=2, 解x=70. 经检验,x=70是方程的解. 答:汽车原来的平均速度为70 km/h.
专题二┃实际应用题
当a=4,b=6时,w=10×4+8×6=88, 当a=3,b=7时,w=10×3+8×7=86, 当a=2,b=9时,w=10×2+8×9=92, 当a=1,b=10时,w=10×1+8×10=90, 当a=0,b=11时,w=8×11=88, 故购买6台A型污水处理器,3台B型污水处理器,费用最少,为 84万元,即他们至少要支付84万元.
湖南省2018年中考数学专题复习课件 专题二 实际应用题
专题二┃实际应用题
实际应用题在湖南的各地中考中,一般都呈现在第3大题或第4 大题中,所占的分值在8~12分之间,考查的形式多与方程(组)、不 等式、函数及图象、最值相结合,利用二次函数的最值的考查也是 中考常结合的考查内容.
专题二┃实际应用题
(1)依题意列出二元一次方程组; (2)求出甲、乙两施工队每天各铺设多少米.
专题二┃实际应用题
思维分析
(1)根据条件“每天甲队比乙队多铺设100米钢轨”可得方程:
__x_-__y_=__1;00
(2)根据“甲队铺设5天的距离刚好等于乙队铺设6天的距离”
可得方程:5_x__=__6_y__;
x-y=100,

2018年中考数学真题分类汇编(第二期)专题4一元一次方程及其应用试题(含解析)

2018年中考数学真题分类汇编(第二期)专题4一元一次方程及其应用试题(含解析)

一元一次方程及其应用一.选择题1.(2018·湖北省恩施·3分)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏 B.盈利20元C.亏损10元D.亏损30元【分析】设两件衣服的进价分别为x、y元,根据利润=销售收入﹣进价,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再用240﹣两件衣服的进价后即可找出结论.【解答】解:设两件衣服的进价分别为x、y元,根据题意得:120﹣x=20%x,y﹣120=20%y,解得:x=100,y=150,∴120+120﹣100﹣150=﹣10(元).故选:C.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.2.(2018湖南省邵阳市)(3分)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人 B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人 D.大、小和尚各100人【分析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可.【解答】解:设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+=100,解得x=25则100﹣x=100﹣25=75(人)所以,大和尚25人,小和尚75人.故选:A.【点评】本题考查了一元一次方程的应用,关键以和尚数和馒头数作为等量关系列出方程.二.填空题1.(2018·湖北江汉油田、潜江市、天门市、仙桃市·3分)某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B 区的物资的1.5倍少1000件,则发往A区的生活物资为3200 件.【分析】设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据发往A.B两区的物资共6000件,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设发往B区的生活物资为x件,则发往A区的生活物资为(1.5x﹣1000)件,根据题意得:x+1.5x﹣1000=6000,解得:x=2800,∴1.5x﹣1000=3200.答:发往A区的生活物资为3200件.故答案为:3200.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.3.(2018•上海•4分)方程组的解是,.【分析】方程组中的两个方程相加,即可得出一个一元二次方程,求出方程的解,再代入求出y即可.【解答】解:②+①得:x2+x=2,解得:x=﹣2或1,把x=﹣2代入①得:y=﹣2,把x=1代入①得:y=1,所以原方程组的解为,,故答案为:,.【点评】本题考查了解高次方程组,能把二元二次方程组转化成一元二次方程是解此题的关键.三.解答题1.(2018•广东•7分)某公司购买了一批A.B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A.B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.2.(2018•海南•8分)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?【分析】设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据国家级、省级和市县级自然保护区共49个,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据题意得:10+x+5+x=49,解得:x=17,∴x+5=22.答:省级自然保护区有22个,市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.3.(2018湖南张家界5.00分)列方程解应用题《九章算术》中有“盈不足术”的问题,原文如下:“今有共買羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾何?”题意是:若干人共同出资买羊,每人出5元,则差45元;每人出7元,则差3元.求人数和羊价各是多少?【分析】可设买羊人数为未知数,等量关系为:5×买羊人数+45=7×买羊人数+3,把相关数值代入可求得买羊人数,代入方程的等号左边可得羊价.【解答】解:设买羊为x人,则羊价为(5x+45)元钱,5x+45=7x+3,x=21(人),5×21+45=150(员),答:买羊人数为21人,羊价为150元.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.。

2018年中考数学应用题专题复习及答案

2018年中考数学应用题专题复习及答案

2018年数学中考应用题专题复习1.(本题满分10分)近年来,由于受国际石油市场的影响,汽油价格不断上涨.请你根据下面的信息,帮小明计算今年5月份每升汽油的价格.今年5月份每升汽油的价格是去年5月份的1.6倍,用150元给汽车加的油量比去年少18.75升,今年5月份每升汽油的价格是多少呢?2.(本题满分9分)某公司专销产品A,第一批产品A上市40天内全部售完.该公司对第一批产品A上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图10中的折线表示的是市场日销售量与上市时间的关系;图11中的折线表示的是每件产品A的销售利润与上市时间的关系.(1)试写出第一批产品A的市场日销售量y与上市时间t的关系式;(2)第一批产品A上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?(说明理由)3.(本题满分8分)为迎接2008年奥运会,某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?4.(本题满分9分)为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手机每部800元,已知销售的冰箱3倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府(含冰柜)数量是彩电数量的2补贴分别为多少万元?为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1、y2与x之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?6.(本题满分10分)我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元.经市场调研发现:(利润=(售价-成本价)×销售量)(1)求销售量y(件)与售价x(元)之间的函数关系式;(2)你认为如何定价才能使工艺品厂每天获得的利润为40000 元?某种商品的成本为5元/件,开始按8元/件销售,销售量为50件,为了获取最大利润,商家先后采取了提价与降价两种措施进行试销.经试销发现:销售价每上涨1元每天销售量就减少10件;而降价后,日销售量利润y (元)与实际销售价x (元)满足关系:y=198-6x(6≤x<8).(1)求售价为7元/件时,日销售量为多少件?(2)求日销售利润(利润=销售额-成本)y(元)与实际销售价x (件)的函数关系式;(3)试问:当实际销售价为多少元时,总利润最大.8.(本题满分10分)为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.2017年数学中考应用题答案1.(本题满分10分)近年来,由于受国际石油市场的影响,汽油价格不断上涨.请你根据下面的信息,帮小明计算今年5月份每升汽油的价格.今年5月份每升汽油的价格是去年5月份的1.6倍,用150元给汽车加的油量比去年少18.75升,今年5月份每升汽油的价格是多少呢?解:设去年5月份汽油价格为x 元/升,则今年5月份的汽油价格为1.6x 元/升, ········· 1分 根据题意,得15015018.751.6x x -=. ··································································· 5分整理,得15093.7518.75x -=.解这个方程,得3x =. ·················································································· 8分经检验,3x =是原方程的解. ········································································· 9分所以1.6 4.8x =.答:今年5月份的汽油价格为4.8元/升. ···························································· 10分 2.(本题满分9分)某公司专销产品A ,第一批产品A 上市40天内全部售完.该公司对第一批产品A 上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图10中的折线表示的是市场日销售量与上市时间的关系;图11中的折线表示的是每件产品A 的销售利润与上市时间的关系.(1)试写出第一批产品A 的市场日销售量y 与上市时间t 的关系式;(2)第一批产品A 上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?(说明理由)解:(1)由图10可得,当030t ≤≤时,设市场的日销售量y kt =.点(3060),心图象上,6030k ∴=.2k ∴=.即2y t =. ···························· 2分 当3040t ≤≤时,设市场的日销售量1y k t b =+.点(3060),和(400),在图象上,∴116030040k b k b=+⎧⎨=+⎩ 解得16240k b =-=,. 6240y t ∴=-+. ··················································································· 4分综上可知,当030t ≤≤时,市场的日销售量2y t =;当3040t ≤≤时,市场的日销售量6240y t =-+. ······································ 6分(2)方法一:由图10知,当30t =(天)时,市场的日销售量达到最大60万件;又由图11知,当30t =(天)时产品的日销售利润达到最大60万元/件,所以当30t =(天)时,市场的日销售利润最大,最大值为3600万元. ·················································································································· 9分方法二:由图11得,当020t ≤≤时,每件产品的日销售利润为3y t =;当2040t ≤≤时,每件产品的日销售利润为60y =. ①当020t ≤≤时,产品的日销售利润2326y t t t =+=;∴当20t =时,产品的日销售利润y 最大等于2400万元.②当2030t ≤≤时,产品的日销售利润602120y t t =⨯=.∴当30t =时,产品的日销售利润y 最大等于3600万元;③当3040t ≤≤时,产品的日销售利润60(6240)y t =⨯-+;∴当30t =时,产品的日销售利润y 最大等于3600万元. 综合①,②,③可知,当30t =天时,这家公司市场的日销售利润最大为3600万元.(9分)3.(本题满分8分)为迎接2008年奥运会,某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?解:设生产奥运会标志x 套,生产奥运会吉祥物y 套.根据题意,得⎩⎨⎧=+=+②00300103①0020054.y x ,y x ……………………………………………2分①×2-②得:5x =10000. ∴ x =2000. ………………………………………………………………6分把x =2000代入①得:5y =12000.∴ y =2400.答:该厂能生产奥运会标志2000套,生产奥运会吉祥物2400套.………8分4. (本题满分9分)为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.(1)求2007年同期试点产品类家电销售量为多少万台(部)?(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,•手机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的23倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元?解:(1)2007年销量为a 万台,则a (1+40%)=350,a =250(万台). ……………3分(2)设销售彩电x 万台,则销售冰箱23x 万台,销售手机(350-25x )万台.由题意得:1500x +2000×x 23+800(35052-x )=500000. ……………6分 解得x =88. ………………………………………………………7分∴ 31322x =,53501302x -=. 所以,彩电、冰箱(含冰柜)、手机三大类产品分别销售88万台、132万台、130万部.………………………………………………………………8分∴ 88×1500×13%=17160(万元),132×2000×13%=34320(万元),130×800×13%=13520(万元).获得的政府补贴分别是17160万元、34320万元、13520万元. ……9分5. (本题满分10分)为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80℅销售.现购买太阳能路灯x 个,如果全部在甲商家购买,则所需金额为y 1元;如果全部在乙商家购买,则所需金额为y 2元.(1)分别求出y 1、y 2与x 之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?解:(1)由题意可知,当x ≤100时,购买一个需5000元,故15000y x =;-------------------1分当x ≥100时,因为购买个数每增加一个,其价格减少10元,但售价不得低于3500元/个,所以x≤1035005000-+100=250. ------------------------2分 即100≤x ≤250时,购买一个需5000-10(x -100)元,故y 1=6000x -10x 2;----------4分当x >250时,购买一个需3500元,故13500y x =; ----------------5分所以,⎪⎩⎪⎨⎧-=x x x x y 3500106000500021 ).250()250100()1000(>≤<≤≤x x x ,, 2500080%4000y x x =⨯=. ---------------------7分(2) 当0<x ≤100时,y 1=5000x ≤500000<1400000;当100<x ≤250时,y 1=6000x -10x 2=-10(x -300)2+900000<1400000;所以,由35001400000x =,得400x =; -------------------------------8分由40001400000x =,得350x =. -------------------------------9分故选择甲商家,最多能购买400个路灯.-----------------------------10分 6.(本题满分10分)我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元.经市场调研发现:该款工艺品每天的销售量y (件)与售价x (元)之间存在着如下表所示的一次函数关系.(利润=(售价-成本价)×销售量)(1)求销售量y (件)与售价x (元)之间的函数关系式;(2)你认为如何定价才能使工艺品厂每天获得的利润为40000 元?(1)设一次函数的关系式为y kx b =+,根据题意得300070100090k b k b =+⎧⎨=+⎩.............................................2分 解得 100,10000k b =-= ∴一次关系式为y = -100x +10000.....................5分(2)由题意得 (x -60)(-100x +10000)=40000.即216064000x x -+=,解得,1280x x ==.答:当定价为80元时,才能使工艺品厂每天的利润为40000元.........................10分7.(本题满分10分)某种商品的成本为5元/件,开始按8元/件销售,销售量为50件,为了获取最大利润,商家先后采取了提价与降价两种措施进行试销.经试销发现:销售价每上涨1元每天销售量就减少10件;而降价后,日销售量利润y (元)与实际销售价x (元)满足关系:y =198-6x (6≤x <8).(1)求售价为7元/件时,日销售量为多少件?(2)求日销售利润(利润=销售额-成本)y (元)与实际销售价x (件)的函数关系式;(3)试问:当实际销售价为多少元时,总利润最大.解:(1)当售价为7元/件时,利润y =198-42=156(元),此时销售7857156=-(件);…2分 (2)据题意,得 ⎩⎨⎧<≤---<≤-=)138)(5)](8(1050[)86(6198x x x x x y =⎩⎨⎧<≤-+-<≤-)138(65018010)86(61982x x x x x .…6分 (3)由(2)得:当6≤x <8时,y =198-6x ,所以当x =6时,y 最大=162;当x ≥8时,y =-10(x -9)2+160,所以当x =9时,y 极大=160;综上可知,当当x =6时,y 最大=162.………………10分8. (本题满分10分)为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.解:(1)设甲工程队单独完成该工程需x 天,则乙工程队单独完成该工程需(x +25)天.…………1分根据题意得:3030125x x +=+. ………………………………3分 方程两边同乘以x (x +25),得 30(x +25)+30x = x (x +25),即 x 2-35x -750=0. 解之,得x 1=50,x 2=-15. ………………………………5分经检验,x 1=50,x 2=-15都是原方程的解.但x 2=-15不符合题意,应舍去. …………………6分∴ 当x =50时,x +25=75.答:甲工程队单独完成该工程需50天,则乙工程队单独完成该工程需75天. ……………………7分(2)此问题只要设计出符合条件的一种方案即可.方案一:由甲工程队单独完成.………………………………8分所需费用为:2500×50=125000(元).………………………………10分方案二:甲乙两队合作完成. 所需费用为:(2500+2000)×30=135000(元).……………………10分其它方案略.。

2018年中考数学解题技巧总复习---全部考点解析及强化训练汇总全书(共计235页)

2018年中考数学解题技巧总复习---全部考点解析及强化训练汇总全书(共计235页)

况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。用
特例法解选择题时,特例取得愈简单、愈特殊愈好.
例 2 (•常州)已知 a、b、c、d 都是正实数,且 a c ,给出下列四个不 bd
等式:
① a c ;② c a ;③ d b ;④ b d 。
ab cd cd ab
Hale Waihona Puke 故选 A。点评:本题考查了不等式的性质,用特殊值法来解,更为简单.
对应训练
2.(•南充)如图,平面直角坐标系中,⊙O 的半径长为 1,点 P(a,0),⊙P 的半
径长为 2,把⊙P 向左平移,当⊙P 与⊙O 相切时,a 的值为( )
A.3
B.1
C.1,3
D.±1,±3
对应训练
3. (•临沂)如图,若点 M 是 x 轴正半轴上任意一点,过点 M 作 PQ∥y 轴,
2018 年中考数学总复习--全部考点解析及强化训练汇总全书
中考数学专题讲座一:选择题解题方法
一、中考专题诠释 选择题是各地中考必考题型之一,年各地命题设置上,选择题的数目稳定在 8~
14 题,这说明选择题有它不可替代的重要性. 选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖
面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际 问题的能力的培养. 二、解题策略与解法精讲
1 D.△POQ 的面积是 2 (|k1|+|k2|)
考点四:逆推代入法
将选择支中给出的答案或其特殊值,代入题干逐一去验证是否满足题设
条件,然后选择符合题设条件的选择支的一种方法. 在运用验证法解题时,
若能据题意确定代入顺序,则能较大提高解题速度.

(完整word版)2018年中考数学试题分类汇编:全套考点专题汇编(Word版,含答案)

(完整word版)2018年中考数学试题分类汇编:全套考点专题汇编(Word版,含答案)

2018中考数学试题分类汇编:考点1 有理数一.选择题(共28小题)1.(2018•连云港)﹣8的相反数是()A.﹣8 B.C.8 D.﹣【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:﹣8的相反数是8,故选:C.2.(2018•泰州)﹣(﹣2)等于()A.﹣2 B.2 C.D.±2【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣(﹣2)=2,故选:B.3.(2018•青岛)如图,点A所表示的数的绝对值是()A.3 B.﹣3 C.D.【分析】根据负数的绝对值是其相反数解答即可.【解答】解:|﹣3|=3,故选:A.4.(2018•海南)2018的相反数是( )A.﹣2018 B.2018 C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:2018的相反数是:﹣2018.故选:A.5.(2018•自贡)计算﹣3+1的结果是()A.﹣2 B.﹣4 C.4 D.2【分析】利用异号两数相加取绝对值较大的加数的符号,然后用较大的绝对值减去较小的绝对值即可.【解答】解:﹣3+1=﹣2;故选:A.6.(2018•柳州)计算:0+(﹣2)=()A.﹣2 B.2 C.0 D.﹣20【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:0+(﹣2)=﹣2.故选:A.7.(2018•呼和浩特)﹣3﹣(﹣2)的值是()A.﹣1 B.1 C.5 D.﹣5【分析】直接利用有理数的减法运算法则计算得出答案.【解答】解:﹣3﹣(﹣2)=﹣3+2=﹣1.故选:A.8.(2018•铜仁市)计算+++++……+的值为()A.B.C. D.【分析】直接利用分数的性质将原式变形进而得出答案.【解答】解:原式=++++…+=1﹣+﹣+﹣+…+﹣=1﹣=.故选:B.9.(2018•台湾)已知a=(﹣)﹣,b=﹣(﹣),c=﹣﹣,判断下列叙述何者正确?()A.a=c,b=c B.a=c,b≠c C.a≠c,b=c D.a≠c,b≠c【分析】根据有理数的减法的运算方法,判断出a、c,b、c的关系即可.【解答】解:∵a=(﹣)﹣=﹣﹣,b=﹣(﹣)=﹣+,c=﹣﹣,∴a=c,b≠c.故选:B.10.(2018•台州)比﹣1小2的数是( )A.3 B.1 C.﹣2 D.﹣3【分析】根据题意可得算式,再计算即可.【解答】解:﹣1﹣2=﹣3,故选:D.11.(2018•新疆)某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高()A.10℃B.6℃C.﹣6℃D.﹣10℃【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:2﹣(﹣8)=2+8=10(℃).故选:A.12.(2018•临安区)我市2018年的最高气温为39℃,最低气温为零下7℃,则计算2018年温差列式正确的()A.(+39)﹣(﹣7)B.(+39)+(+7)C.(+39)+(﹣7)D.(+39)﹣(+7)【分析】根据题意列出算式即可.【解答】解:根据题意得:(+39)﹣(﹣7),故选:A.13.(2018•淄博)计算的结果是()A.0 B.1 C.﹣1 D.【分析】先计算绝对值,再计算减法即可得.【解答】解: =﹣=0,故选:A.14.(2018•天门)8的倒数是()A.﹣8 B.8 C.﹣D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.15.(2018•宿迁)2的倒数是()A.2 B.C.﹣D.﹣2【分析】根据乘积是1的两数互为倒数可得答案.【解答】解:2的倒数是,故选:B.16.(2018•贵港)﹣8的倒数是( )A.8 B.﹣8 C.D.【分析】根据倒数的定义作答.【解答】解:﹣8的倒数是﹣.故选:D.17.(2018•通辽)的倒数是()A.2018 B.﹣2018 C.﹣D.【分析】根据倒数的定义,互为倒数的两数乘积为1,×2018=1即可解答.【解答】解:根据倒数的定义得:×2018=1,因此倒数是2018.故选:A.18.(2018•宜宾)我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4B.6。

2018中考数学专题训练应用题(大全5篇)

2018中考数学专题训练应用题(大全5篇)

2018中考数学专题训练应用题(大全5篇)第一篇:2018中考数学专题训练应用题一次方程(组)、分式方程、不等式组应用题中考数学专题训练:1.某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2 700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3 100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少(利润=售价-进价)?2、3、自2008年爆发全球金融危机以来,部分企业受到了不同程度的影响,为落实“促民生、促经济”政策,济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下表是甲、乙两位职工今年五月份的工资情况信息:职工甲乙 200 180 月销售件数(件)1800 1700 月工资(元)(1)试求工资分配方案调整后职工的月基本保障工资和销售每件产品的奖励金额各多少元?(2)若职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品?4、5、为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.6、2013年4月20日,雅安发生7.0级地震,某地需550顶帐蓬解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,并且加工生产240顶帐蓬甲工厂比乙工厂少用4天.①求甲、乙两个工厂每天分别可加工生产多少顶帐蓬?②若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批救灾帐蓬的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?7、某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.(1)求该校的大小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?8、在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.9、为增强市民的节能意识,我市试行阶梯电价.从2013年开始,按照每户每年的用电量分三个档次计费,具体规定见右图.小明统计了自己2013年前5个月的实际用电量为1300度,请帮助小明分析下面问题.(1)若小明家计划2013年全年的用电量不超过 2520度,则6至12月份小明家平均每月用电量最多为多少度?(保留整数)(2)若小明家2013年6月至12月份平均每月用电量等于前5个月的平均每月用电量,则小明家2013年应交总电费多少元?10、李明到离家2.1千米的学校参加联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即匀速步行回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.(1)李明步行的速度(单位:米/分)是多少?(2)李明能否12、某学校将周三“阳光体育”项目定为跳绳活动,为在联欢会开始前赶到学校?11、此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.(1)两种跳绳的单价各是多少元?(2)若学校准备用不超过2000元的现金购买200条长、短跳绳,且短跳绳的条数不超过长跳绳的6倍,问学校有几种购买方案可供选择?第二篇:一年级数学应用题专题训练一年级数学应用题专题训练1、同学们要做10个灯笼,已做好8个,还要做多少个?2、从花上飞走了6只蝴蝶,又飞走了5只,两次飞走了多少只?3、飞机场上有15架飞机,飞走了3架,现在机场上有飞机多少架?4、小苹种7盆红花,又种了同样多的黄花,两种花共多少盆?5、学校原有5瓶胶水,又买回9瓶,现在有多少瓶?6、小强家有10个苹果,吃了7个,还有多少个?7、汽车总站有13辆汽车,开走了3辆,还有几辆?8、小朋友做剪纸,用了8张红纸,又用了同样多的黄纸,他们用了多少张纸?9、马场上有9匹马,又来了5匹,现在马场上有多少匹?10、商店有15把扇,卖去5把,现在有多少把?11、学校有兰花和菊花共15盆,兰花有6盆,菊花有几盆?12、小青两次画了17个,第一次画了9个,第二次画了多少个?13、小红家有苹果和梨子共13个,苹果有4个,梨子有多少个?14、学校要把12箱文具送给山区小学,已送去7箱,还要送几箱?15、家有11棵白菜,吃了5棵,还有几棵?16、一条马路两旁各种上48棵树,一共种树多少棵?17、从车场开走8辆汽车,还剩24辆,车场原来有多少汽车?18、从车场开走8辆大汽车,又开走同样多的小汽车,两次开走多少辆汽车?19、学校体育室有6个足球,又买来20个,现在有多少个?20、学雷锋小组上午修了8张椅,下午修了9张,一天修了多少张椅21、明明上午算了12道数学题,下午算了8道,上午比下午多算多少道题?22、图书室里有20个女同学,有10个男同学,男同学比女同学少多少个?23、动物园里有大猴20只,有小猴30只,小猴比大猴多多少只?24、学校有10个足球,16个篮球,足球比篮球少多少个?25、花园里有兰花40盆,菊花60盆,兰花再种多少盆就和菊花同样多?26、妈妈买红扣子18个,白扣子10个,黑扣子8个。

2018年全国各市中考数学函数类应用题汇总

2018年全国各市中考数学函数类应用题汇总

2018年全国各市中考数学函数类应用题汇总海璧:2018全国中考函数应用题【2018安徽】小明大学毕业回家乡创业,第期培植盆景与花卉各50盆,售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景第增加1盆,盆景的平均每盆利润减少2,第减少1盆,盆景的平均每盆利润增加2元; ②花卉的平均每盆利润始终不变。

小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为W 1,W 2(单位:元)。

⑴用含x 的代数式分别表示W 1,W 2;⑵当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少?【2018随州】为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x 天(1≤x ≤15,且x 为整数)每件产品的成本是p 元,p 与x 之间符合一次函数关系,部分数据如表:任务完成后,统计发现工人李师傅第x 天生产的产品件数y (件)与x (天)满足如下关系:()()⎩⎨⎧≤≤<≤+=为整数且为整数且x x x x x y ,151040,101,202 设李师傅第x 天创造的产品利润为W 元.(1)直接写出p 与x ,W 与x 之间的函数关系式,并注明自变量x 的取值范围【2018黄冈】我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:()()⎩⎨⎧≤≤+-≤≤+=为整数为整数xxxxxxy,12920,814,每件产品的利润z(元)与月份x(月)的关系如下表:(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式(3)当x为何值时,月利润w有最大值,最大值为多少?【2018兰州】某商家销售一款商品,进价每件80元,售价每件145元.每天销售40件,每销售一件需支付商场管理费5元.未来一个月(按30天计算),这款商品将开展“每天降价1元”的促销活动,即从第一天起每天的单价均比前一天降1元.通过市场调查发现,该商品单价每降1元,每天销售量增加2件.设第x天(1≤x≤30且x为整数)的销量为y件.(1)直接写出y与x的函数关系式(2)设第x天的利润为w元,试求出w与x之间的函数关系式,并求出哪一天的利润最大?最大利润是多少元?【2018荆州】为响应荆州市“创建全国文明城市”号召,某单位不断美化环境,拟在块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=xm,面积为ym2(如图)(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若矩形空地的面积为160m2,求x的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.【2018衡阳】一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示(1)求y与x之间的函数关系式,并写出自变量x的取值范围(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?【2018无锡】一水果店是A酒店某种水果的唯一供货商,水果店根据该酒店以往每月的需求情况,本月初专门为他们准备了2600kg的这种水果.已知水果店每售出1kg该水果可获利润10元,未售出的部分每1kg将亏损6元,以x(单位:kg,2000≤x≤3000)表示A酒店本月对这种水果的需求量,y(元)表示水果店销售这批水果所获得的利润(1)求y关于x的函数表达式(2)问:当A酒店本月对这种水果的需求量如何时,该水果店销售这批水果所获的利润不少于22000元?【2018宿迁】某种型号汽车油箱容量为40 L,每行驶100km耗油10L.设一辆加满油的该型号汽车行驶路程为x(km),行驶过程中油箱内剩余油量为y(L).(1)求y与x之间的函数表达式(2)为了有效延长汽车使用寿命,厂家建议每次加油时油箱内剩余油量不低于油箱容量的1,按此建4议,求该辆汽车最多行驶的路程【2018盘锦】鹏鹏童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反应:每降价1元,每星期可多卖10件.已知该款童装每件成本30元.设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式(不求自变量的取值范围)(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?(3)①当每件童装售价定为多少元时,该店一星期可获得3910元的利润?②若该店每星期想要获得不低于3910元的利润,则每星期至少要销售该款童装多少件?【2018德州】为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y (单位:台)和销售单价x (单位:万元)成一次函数关系.(1)求年销售量y 与销售单价x 的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?【2018济宁】当a>0且x>0时,因为(√x −√a √x )2≥0,所以x −2√a +a x ≥0,从而x +a x ≥2√a ,(当x=√a 时取等号)设函数y= x +a x (a>0, x>0), 由上述结论可知,当x=√a 时,该函数有最小值为2√a . 应用举例已知函数y 1=x(x>0)与函数y 2=4x (x>0),则当x=√4=2时,y 1+y 2=x+4x 有最小值为2√4=4.解决问题(1)已知函数y 1=x+3(x>-3)与函数y 2=(x+3)2+9(x>-3),当x 取何值时,y2y 1有最小值?最小值是多少?(2)已知某设备租赁使用成本包含以下部分:一是设备的安装调试费用,共400元;二是设备的租赁使用费用,每天200元:三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001,若设该设备的租赁使用天数为x天,则当x取何值时,该设备平均每天的租赁使用成本最低?最低是多少元?【2018青岛】某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y (万件)与售价x(元/件)之间满足函数关系式y=﹣x+26.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.【2018上海】一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?【2018眉山】传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y 只,y 与x 满足如下关系:y =⎩⎨⎧≤+≤≤)<()(20x 680x 206x 0x 34 (1)李明第几天生产的粽子数量为280只?(2)如图,设第x 天生产的每只粽子的成本是p 元,p 与x 之间的关系可用图中的函数图象来刻画.若李明第x 天创造的利润为w 元,求w 与x 之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)【2018成都】为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积()2x m 之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0300x ≤≤和300x >时,y 与x 的函数关系式(2)广场上甲、乙两种花卉的种植面积共21200m ,若甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎忙分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?【2018乐山】某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?【2018台州】某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第t 个月该原料药的月销售量为P (单位:吨),P 与t 之间存在如图所示的函数关系,其图象是函数120(08)4P t t =<≤+的图象与线段AB 的组合;设第t 个月销售该原料药每吨的毛利润为Q (单位:万元),Q 与t 之间满足如下关系:28,01244,1224t t Q t t +<≤⎧=⎨-+<≤⎩(1)当824t <≤时,求P 关于t 的函数解析式;(2)设第t 个月销售该原料药的月毛利润为w (单位:万元).①求w 关于t 的函数解析式②该药厂销售部门分析认为,336513w ≤≤是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P 的最小值和最大值.。

2018中考数学真题分类汇编解析版-19.3.一次函数的应用

2018中考数学真题分类汇编解析版-19.3.一次函数的应用

一、选择题二、填空题1.(2018·杭州,15,4分)某日上午,甲、乙两车先后从A 地出发沿一条公路匀速前往B 地,甲车8点出发,如图是其行驶路程s (千米)随行驶时间t (小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v (单位:千米/小时)的范围是答案:60≤v≤80,解析:由图可知甲车的速度为40km/h,设从9点后经过t 小时,乙车恰好追上甲车. 则满足vt =40+40t,则4040-=v t ,题中说明是10至11点追上,即1≤t≤2,可得240401≤-≤v ,解得60≤v≤80三、解答题 1.(2018·南充,23,10分)(本小题满分10分)某销售商准备在南充采购一批丝绸,经调查,用10 000元采购A 型丝绸的件数与用8 000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元.(1)求一件A 型、B 型丝绸的进价分别为多少元?(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件.①求m 的取值范围.②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件,销售成本为n 元/件.如果50≤n ≤150,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式(每件销售利润=售价-进价-销售成本).思路分析:(1)利用“采购A 型丝绸的件数与采购B 型丝绸的件数相等”列出等量关系. (2)根据题意列出不等式,表示出w 关于m 的函数关系,分类讨论. 解:(1)设A 型进价为x 元,则B 型进价为(x -100)元,根据题意得: 100008000100x x =-. 解得x =500,经检验,x =500是原方程的解. ∴B 型进价为400元.答:A 、B 两型的进价分别为500元、400元.(2)①∵16,50.m m m ≥⎧⎨≤-⎩解得16≤m ≤25.②w =(800-500-2n )m +(600-400-n )(50-m )=(100-n )m +(10000-50n ).当50≤n <100时,100-n >0,w 随m 的增大而增大. 故m =25时,w 最大=12500-75n . 当n =100时,w 最大=5000.当100<n ≤150时,100-n <0,w 随m 的增大而减小. 故m =16时,w 最大=11600-66n .综上所述:w 最大=12500755000=n n n n n ≤⎧⎪⎨⎪≤⎩-,50<100, 10011600-66, 100<150.2.(2018·德州,23,12) 为积极响应新旧动能转换,提高公司经济效益,某科技公司研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y (单位:台)和销售单价x (单位:万元)成一次函数关系.(1)求年销售量y 与销售单价x 的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元? 思路分析:(1)额头待定系数法确定一次函数关系式; (2)由每台的利润×销量=总利润,列出方程,求出想获得10000万元的年利润减肥的销售单价. 解答过程:解:(1)因为该设备的年销售量y (单位:台)和销售单价x (单位:万元)成一次函数关系. 设y =kx +b (k ≠0),把每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台两组对应值代入,得4060045550k b k b +=⎧⎨+=⎩,解得101000k b =-⎧⎨=⎩.∴该一次函数为:y =-10x +1000;(2) 因此设备的销售单价为x ,成本价为30万元,则每台的利润为(x -30)万元 由题意,得(x -30)(-10x +1000)=10000, 解得:1280,50x x ==.因为,此设备的销售单价不得高于70万元, 所以,x =50.答:该公司想获得10000万元的年利润,则该设备的销售单价应是50万元. 3.(2018·山东泰安,20,9分)文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本. (1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完). 思路分析:(1)设乙种图书售价每本x 元,由于甲种图书每本的售价是乙种图书每本售价的1.4倍,故甲种图书售价为每本1.4x 元.根据等量关系“用1400元购买乙种图书的本数减去用1680元购买甲种图书的本数等于10本”列出分式方程求解;(2)设甲种图书进货a 本,总利润w 元,先构建w 关于a 的一次函数,再利用不等式求得a 的取值范围,最后利用一次函数的增减性求得书店获得最大利润时(即w 取得最大值) a 的大小.解答过程:解:(1)设乙种图书售价每本x 元,则甲种图书售价为每本1.4x 元. 由题意,得:xx 4.116801400-=10. 解得:x =20.经检验,x =20是原方程的解.所以,甲种图书售价为每本1.4×20=28元.答:甲种图书售价每本28元,乙种图书售价每本20元. (2)设甲种图书进货a 本,总利润w 元,则w =(28-20-3)a +(28-14-2)(1200-a )=a +4800.又∵20a +14×(1200-a )≤20000,解得a ≤31600. ∵w 随a 的的增大的增大,∴当a 最大时w 最大. ∴当a =533本时w 最大.此时,乙种图书进货本数为1200-533=667(本).答:甲种图书进货533本,乙种图书进货667本时利润最大. 4.(2018·临沂市,24,9分) 甲、乙两人分别从A ,B 两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达B 地后,乙继续前行.设出发xh 后,两人相距ykm ,图中折线表示从两人出发至乙到达A 地的过程中y 与x 之间的函数关系. 根据图中信息,求:(1)点Q 的坐标,并说明它的实际意义; (2)甲、乙两人的速度.QO531415210PN Mx/hy/km第24题图思路分析:(1)先求出直线PQ 的函数解析式,然后再求出点Q 的坐标;由点Q 位于x 轴上,并联系甲乙的位置来描述它的实际意义;(2)由点M 可知甲已到达点A ,由总路程为10km 即可求出甲的速度;再由点Q 的位置可知甲乙相遇时的时间,由此建立方程可求出乙的速度.解答过程:(1)设直线PQ 的解析式为y =kx +b ,代入点(0,10)和(14,152)的坐标,得 1154210k b b ⎧+=⎪⎨⎪=⎩,,解得:1010k b =-⎧⎨=⎩,,故直角PQ 的解析式为y =-10x +10, 当y =0时,x =1,故点Q 的坐标为(1,0),该点表示甲乙两人经过1小时相遇.(2)由点M 的坐标可知甲经过53h 达到B 地,故甲人的速度为:10km ÷53h =6km /h ;设乙人的速度为xkm /h ,由两人经过1小时相遇,得: 1·(x +6)=10,解得:x =4, 故乙人的速度为4km /h . 5.(2018·成都,26,8分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y(元)与种植面积x (m 2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x ≤300和x >300时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200 m 2,若甲种花卉的种植面积不少于200 m 2,且不超过乙种花卉种植面积的2倍,那么应该怎忙分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?思路分析:(1)由图可知,当0≤x ≤300时,y 与x 是正比例函数,设y =k 1x ,把点(300,39000)代入即可求得y =k 1x ;当x >300时,y 与x 是一次函数,设y =k 2x +b ,把点(300,39000),(500,55000) 代入即可求得y =k 2x +b ;(2) 设甲种花卉种植为a m 2,则乙种花卉种植(1200-a ) m 2,根据题意,列不等式组求得不等式组的解,根据a 得取值范围,一次函数的性质,分类讨论,确定最佳种植方案.解:(1)当0≤x ≤300时,设y =k 1x ,把点(300,39000)代入y =k 1x ,得39000=300k 1,解得k 1=130. ∴y =130x .当x >300时,设y =k 2x +b ,把点(300,39000),(500,55000) 代入y =k 2x +b ,得⎩⎨⎧=+=+.550005003900030022b k b k ,解得⎩⎨⎧==.15000802b k ,∴y =80x +15000. 所以⎩⎨⎧>+≤≤=).300(1500080)3000(130x x x x y ,(2)设甲种花卉种植为a m 2,则乙种花卉种植(1200-a ) m 2,根据题意,得 ∴⎩⎨⎧-≤≥).1200(2200a a a ,解得200≤a ≤800.当200≤a <300时,W 1=130a +100(1200-a )=30a +120000. 当a =200时,W 最小值=126000(元).当300≤a ≤800时,W 2=80a +15000+100(1200-a )=135000-20a . 当a =800时,W 最小值=119000(元). ∵119000<126000,,∴当a =800时,总费用最低,最低为119000元.此时乙种花卉种植面积为1200-800=400(m 2).所以应分配甲种花卉种植面积为800 m 2,乙种花卉种植面积为400 m 2,才能使种植总费用最少,最少总费用为119000元.6(2018·无锡市,25,8)一水果店是A 酒店某种水果的唯一供货商,水果店根据该酒店以往每月的需求情况,本月初专门为他们准备了2 600kg 的这种水果,已知水果店每售出1kg 该水果可获利润10元,未售出的部分每1kg 将亏损6元.以x (单位:kg ,2 000≤x ≤3 000)表示A 酒店本月对这种水果的需求量,y (元)表示水果店销售这批水果所获得的利润. (1)求y 关于x 的函数表达式; (2)问:当A 酒店本月对这种水果的需求量如何时,该水果店销售这批水果所获的利润不少于22000元?思路分析:(1)由于2 000≤x ≤3 000,根据题意需分2 000≤x ≤2 600和2 600<x ≤3 000两种情况讨论求y 关于x 的函数表达式;(2)由于表达式是分段函数,故需分2 000≤x ≤2 600和2 600<x ≤3 000两种情况讨论求A 酒店本月对这种水果的需求量范围.解答过程:解:(1)当2 000≤x ≤2 600时,y =10x -6(2600-x )=16x -15600;当2 600<x ≤3 000时,y =2600×10=26000.∴y 关于x 的函数表达式为y =()()16156002000260002600x x x -⎧⎪⎨<⎪⎩,≤≤2600≤3000;(3)(2)①当2 000≤x ≤2 600时,y =16x -15600≥22000,x ≥2350,∴2350≤x ≤2600; ②当2 600<x≤3 000时,y =26000>22000,成立,综上所述:2350≤x ≤3000不少于22000.答:当A 酒店本月对这种水果的需求量不小于2350kg 且不大于3000kg 时,该水果店销售这批水果所获的利润不少于22000元. 7.(2018江苏宿迁,24,10分)(本小题满分10分)某种型号汽油油箱容量为40L ,每行驶100km 耗油10L ,设一辆加满油的该型号汽车行驶路程为x (km ),行驶过程中油箱内剩余油量为y (L ). (1)求y 与x 之间的函数表达式;(2)为了有效延长汽车使用寿命,厂家建议每次加油时油箱剩余油量不低于油箱容量的41,按此建议,求该辆汽车最多行驶的路程.思路分析:(1)利用油箱内有油40L ,每行驶100km 耗油10L ,进而得出余油量与行驶路程之间的函数关系式即可;(2)根据“油箱剩余油量不低于油箱容量的41”列出不等式求解即可. 解:(1)1040x y -=; (2)由题意得:41401040⨯≥-x ,解得:x ≤300,答该辆汽车最多行驶的路程为300千米. 8.(2018·绍兴,19,8分) 一辆汽车行驶时的耗油量为0.1升/千米,如图是邮箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量. (2)求y 关于x 的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.思路分析:第(1)问通过观察图像可知,函数图象经过点(400,30),因此汽车行驶400千米时,油箱内剩余油量为30升;利用已经行驶的路程乘每千米耗油量,加上剩余的油量,就能算出加满油时油箱的油量;第(2)问结合第一问,利用待定系数法可求函数关系式,再利用函数关系式列方程可以求出已行驶的路程. 解答过程:解:(1)由图形可知汽车行驶400千米时,油箱内剩余油量为30升; ∵汽车行驶时的耗油量为0.1升/千米,∴行驶400千米的耗油量为400×0.1=40(升),40+30=70(升),∴加满油时油箱的油量为70升. (2)设其函数关系式为y =kx +b ,则⎩⎨⎧=+=3040070b x b ,解得⎩⎨⎧=-=701.0b k ,∴y =-0.1x +70;当y =-0.1x +70=5时,解得x =650.综上,y 关于x 的函数关系式为y =-0.1x +70;该汽车在剩余油量5升时,已行驶的路程为650千米. 9.(2018·绍兴,24,14分)如图,公交车行驶在笔直的公路上,这条路上有A ,B ,C ,D 四个站点,每相邻两站之间的距离为5千米,从A 站开往D 站的车称为上行车,从D 站开往A 站的车称为下行车.第一班上行车、下行车分别从A 站、D 站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在A ,D 站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.(1)问第一班上行车到B 站、第一班下行车到C 站分别用时多少?(2)若第一班上行车行驶时间为t 小时,第一班上行车与第一班下行车之间的距离为s 千米,求s 与t 的函数关系式.(3)一乘客前往A 站办事,他在B ,C 两站间的P 处(不含B ,C 站),刚好遇到上行车,BP =x 千米,此时,接到通知,必须在35分钟内赶到,他可选择走到B 站或走到C 站乘下行车前往A 站.若乘客的步行速度是5千米/小时,求x 满足的条件.思路分析:(1)用路程除以速度,即可得所求时间(对照本题计算结果,要注意体会同时发车的上行车、下行车的位置关于BC 中点对称这一特征);(2)先求出上行车、下行车相遇的时间,再以相遇前、相遇后进行分类讨论求解;(3)本题之所以能求出“x 满足的条件”,是因为该乘客“可选择走到B 站或走到C 站乘下行车前往A 站”,因此总体上可分为两大类进行研究,即:①走到B 站乘下行车;②走到C 站乘下行车.解答过程:解:(1)∵5÷30=61,∴第一班上行车到B 站、第一班下行车到C 站的用时均为61小时(或10分钟); (2)∵3×5÷30=21,∴行驶21小时,上行车、下行车将分别到达D 站、A 站.∵3×5÷(30+30)=41,∴行驶41小时,上行车、下行车相遇.在相遇前:y =15-60t ;在相遇后s =60t -15, ∴s 与t 的函数关系式为s =⎪⎩⎪⎨⎧≤≤-≤≤+-)2141(1560)410(1560t t t t .(3)由(2)知同时出发的一对上、下行车的位置关于BC 中点对称,设该乘客到达A 站总时间为t分钟.①当x =2.5时,往B 站用时30分钟,还需再等下行车5分钟,t =30+5+10=45,不合题意. 往C 站亦然. ②当x <2.5时,该乘客只能往B 站坐下行车,他离B 站x 千米,则离他右边最近的下行车离C 站也是x 千米,这辆下行车离B 站(5-x )千米. 如果能乘上右侧第一辆下行车,则3055x x -≤,解得x ≤75,∴0<x ≤75,此时1874≤t <20,符合题意.如果乘不上右侧第一辆下行车,改乘右侧第二辆下行车,由题意得⎪⎩⎪⎨⎧-≤>3010575x xx ,解得75<x ≤710,此时2771≤t <2874,符合题意.如果乘不上右侧第二辆下行车,改乘右侧第三辆下行车,由题意得⎪⎩⎪⎨⎧-≤>30155710x xx ,解得710<x ≤715,此时3575≤t <3771,不合题意.综上,如果往B 站坐下行车,x 应满足0<x ≤710.③当x >2.5时,该乘客需往C 站坐下行车,离他左边最近的下行车离B 站是(5-x )千米,离他右边最近的下行车离C 站也是(5-x )千米.如果乘上右侧第一辆下行车,则3055-5xx -≤,解得x ≥5,不合题意. 如果乘不上右侧第一辆下行车,改乘右侧第二辆下行车,由题意得⎪⎩⎪⎨⎧-≤-<3010555x x x ,解得4≤x <5,此时30<t ≤32,符合题意.如果乘不上右侧第二辆下行车,改乘右侧第三辆下行车,由题意得⎪⎩⎪⎨⎧-≤-<3015554x x x ,解得3≤x <4,此时42<t ≤44,不合题意.综上,如果往C 站坐下行车,x 应满足4≤x <5.综①、②、③得, x 应满足的条件为0<x ≤710或4≤x <5. 10.(2018湖北武汉,20,8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A 、B 型钢板共100块,并全部加工成C 、D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数). (1) 求A 、B 型钢板的购买方案共有多少种?(2) 出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若童威将C 、D 型钢板全部出售,请你设计获利最大的购买方案.思路分析:考察与不等式、一次函数相关的利润问题.(1)用A 型钢板x 块, B 型钢板(100-x )块分别表示出C 、D 型钢板的数量,根据C 型钢板不少于120块,D 型钢板不少于250块列不等式组;(2)每种钢板的利润乘以每种钢板的块数,求和得到总利润y ,根据函数的性质求最值. 解答过程:(1)解:(1)设A 型钢板x 块,则B 型钢板有(100-x )块. ()21001203100250x x x x +-≥⎧⎪⎨+-≥⎪⎩,解得20≤x ≤25.又因为x 为整数,所以x=20,21,22,23,24,25,购买方案共有6种. (2)设全部出售后共获利y 元,则 y=100(2x+100-x )+120【x+3(100-x )】=-140x+46000, 因为k=140<0,所以y 随着x 的增大而减小, 当x==20时,y=-140×20+46000=43200元. 获利最大的方案为购买A 型20块,B 型80块.11.(2018·盐城,24,10分)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y (米)与时间t (分钟)之间的函数关系如图所示.(1)根据图像信息,当t = 分钟时甲乙两人相遇,甲的速度为 米/分钟; (2)求出线段AB 所表示的函数表达式.t y 2400BAO 24 60(分钟)(米)思路分析:(1)当两人出发24分时,图像与x 轴相交即为两人相遇;由图像可知甲步行60分时到达图书馆,即可根据“速度=路程÷时间”计算出甲的速度;(2)先分析出点A 、B 的坐标,再利用待定系数法确定函数关系式.解答过程:(1)24,40 v 甲=2400÷60=40(米/分) (2)v 甲+v 乙=2400÷24=100, ∵v 甲=40,∴v 乙=60, ∵2400÷60=40(分),40×40=1600(米),∴A (40,1600) 由图可知:B (60,2400),设线段AB 所表示的函数表达式为:y =kt +b (k ≠0)将点A 、B 的坐标代入表达式得⎩⎨⎧=+=+240060160040b k b k ,解得:⎩⎨⎧==040b k ,∴线段AB 所表示的函数表达式为:y =40t (40<t <60).12.(2018·天津市,23,10分) 某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证旅游每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x (x 为正整数). (I )根据题意,填写下表:游泳次数 10 15 20 … x 方式一的总费用(元) 150 175 … 方式二的总费用(二) 90 135 …(II )若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多? (III )当x >20时,小明选择哪种付费方式更合算?思路分析:(1)当游泳次数为20时,方式一的总费用为:100+5×20=200(元),方式二的总费用为:9×20=180(元). 当游泳次数为x 时,方式一的总费用为(100+5x )元,方式二的总费用为9x 元.(2)当总费用为270元时,分别求出两种付费方式的游泳次数,再进行比较即可;(3)先求出何时两种付费方式一样合算,再进行分类讨论.解答过程:(I )200,5x +100,180,9x . (II )方式一:5x +100=270,解得x =34. 方式二:9x =270,解得x =30. ∵34>30,∴小明选择方式一游泳次数比较多.(III )设方式一与方式二的总费用的差为y 元, 则y =(5x +100)﹣9x ,即y =﹣4x +100. 当y =0时,即﹣4x +100=0,解得x =25.∴当x =25时,小明选择这两种方式一样合算. ∵﹣4<0,∴y 随x 的增大而减小.∴当20<x <25时,有y >0,小明选择方式二更合算; 当x >25时,有y <0,小型选择方式一更合算.13.(2018·湖州市,22,10分) “绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A ,B 两个果园运送有机化肥,甲,乙两个仓库分别可运出80吨和100吨有机化肥;A ,B 两个果园分别需要110吨和70吨有机化肥,两个仓库到A ,B 两个果园的路程如下表所示:路程(千米)甲仓库 乙仓库 A 果园15 25 B 果园20 20设甲仓库运往A 果园x 吨有机化肥,若汽车每吨每千米的运费为2元, (1)根据题意,填写下表.(温馨提示:请填写在答题卷相对应的表格内) 运量(吨) 运费(元)甲仓库 乙仓库 甲仓库 乙仓库 A 果园 x 110-x 2×15x 2×25(110-x ) B 果园(2)设总运费为y元,求y关于x的函数表达式,并求甲仓库运往A果园多少吨有机化肥时,总运费最省?最省的总运费是多少元?思路分析:(1)设甲仓库运往A果园x吨有机化肥,根据题意求得甲仓库运往B果园(80-x)吨,乙仓库运往A果园(110-x)吨,乙仓库运往B果园(x-10)吨,然后根据两个仓库到A,B两个果园的路程完成表格;(2)根据(1)中的表格求得总运费y(元)关于x(吨)的函数关系式,根据一次函数的增减性结合自变量的取值范围,可知当x=80时,总运费y最省,然后代入求解即可求得最省的总运费.解答过程:(1)填写表示,如图:运量(吨) 运费(元)甲仓库乙仓库甲仓库乙仓库A果园x110-x2×15x2×25(110-x)B果园80-x x-10 2×20(80-x) 2×20(x-10)(2)y=2×15x+2×25(110-x)+2×20(80-x)+2×20(x-10),即y=-20x+8300.在一次函数y=-20x+8300中,∵-20<0,且10≤x≤80,当x=80时,y最小=6700(元).即当甲仓库运往A果园80吨有机化肥时,总运费最省,是6700元.14.(2018·南京,25,9)小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16 min 回到家中,设小明出发第t min时的速度为v m/min,离家的距离为s m,v与t之间的函数关系如图所示(图中的空心圈表示不包含这一点).(1)小明出发第2m i n时离家的距离为m;(2)当2<t≤5时,求s与t之间的函数表达式;(3)画出s与t之间的函数图象.思路分析:(1)0-2m i n时速度为100 m/min,100×2=2;(2)当2<t≤5时,速度为160m/min,离家的距离(s)=前面2分钟走的路程+后面(t-2)分钟走的路程,即s=200+160(t-2);(3)前面5分钟走的路程为200+160×3=580,后面11分钟走的路程为80×11=880,则第5分钟时,小明离家不是最远.设t分钟时,小明离家最远,此时离家距离为200+160×3+80(t-5),回家时走的路程为80(16-t),由往返路程相等可得方程,解得t及离家最远距离,从而可画出图象.解答过程:(1)200.(2)根据题意,当2<t≤5时,s与t之间的函数表达式为s=200+160(t-2),即s=160-120.(3)前面5分钟走的路程为200+160×3=580,后面11分钟走的路程为80×11=880,则第5分钟时,小明离家不是最远.设t分钟时,小明离家最远,根据题意得,200+160×3+80(t-5)=80(16-t),解得t=6.25,80×(16-6.25)=780.s与t之间的函数图像如图所示.15.(2018·荆门,22,10分)随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10000kg 小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166000元;放养30天的总成本为178000元.设这批小龙虾放养t 天后的质量为a kg ,销售单价为y 元/kg ,根据往年的行情预测,a 与t 的函数关系为a =10000 (020),1008000 (2050).t t t ⎧⎨+⎩≤≤<≤y 与t 的函数关系如图所示.(1)设每天的养殖成本为m 元,收购成本为n 元,求m 与n 的值; (2)求y 与t 的函数关系式;(3)如果将这批小龙虾放养t 天后一次性出售所得利润为W 元,问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本=放养总费用+收购成本;利润=销售总额-总成本)思路分析:(1)根据“放养10天的总成本为166000元;放养30天的总成本为178000元”列方程组求解;(2)利用待定系数法求两条线段的解析式;(3)分20天前和20天后两种情况列函数解析式求解.解:(1)依题意得10166000,30178000.m n m n +=⎧⎨+=⎩解得600,160000.m n =⎧⎨=⎩(2)①当0≤t ≤20时,设y =k 1t +b 1,由图象得11116,2028.b k b =⎧⎨+=⎩解得113,516.k b ⎧=⎪⎨⎪=⎩∴y =35t +16.②当20<t ≤50时,设y =k 2t +b 2,由图象得22222028,5022.k b k b +=⎧⎨+=⎩解得221,532.k b ⎧=-⎪⎨⎪=⎩ ∴y =-15t +32.综上,y =316(020),5132(2050).5t t t t ⎧+⎪⎨⎪-+⎩≤≤<≤(3)W =ya -mt -n .①当0≤t ≤20时,W =10000(35t +16)-600t -160000=5400t .∵5400>0,∴当t =20时,W 最大=5400×20=108000.5020 t /天y /(元/kg)1628 22 第22题图②当20<t≤50时,W=(-15t+32)(100t+8000)-600t-160000=-20t2+1000t+96000=-20(t-25)2+108500.∵-20<0,抛物线的开口向下,∴当t=25时,W最大=108500.∵108500>108000,∴当t=25时,W取得最大值,该最大值为108500元.16.(2018·怀化市,20,10分)某学校积极响应怀化市“三城同创”的号召,绿化校园,计划购进A,B 两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70元.设购买A种树苗x棵,购买两种树苗所需费用为y元.(1)求y与x的函数关系式,其中0≤x≤21;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.思路分析:(1)根据购买两种树苗所需费用=A种树苗费用+B种树苗费用,即可解答;(2)根据购买B种树苗的数量少于A种树苗的数量,列出不等式,确定x的取值范围(注意取整),再根据(1)得出的y与x的函数关系式,利用一次函数的增减性,结合自变量的取值即可得出费用最省的方案.解答过程:解:(1)由题知y=90x+70(21-x),整理得y与x的函数关系式为y=20x+1470(0≤x≤21,且x为整数);(2)由(1)知y=20x+1470,∴y随x的增大而增大,∵21-x<x,∴x>10.5,∴x的最小整数值为11,∴当x=11时,y最小=20×11+1470=1690,此时21-x=10.综上,费用最省的方案是:购买A种树苗11棵,购买B种树苗10棵,该方案所需费用为1690元.第11 页共11 页。

全国2018年中考数学真题分类汇编 滚动小专题(三)方程、不等式的实际应用(答案不全)

全国2018年中考数学真题分类汇编 滚动小专题(三)方程、不等式的实际应用(答案不全)

滚动小专题(三)方程、不等式的实际应用(2018玉林)(2018苏州)(2018赤峰)(2018资阳)(2018包头)(2018铜仁)(2018湘潭)23.(8分)湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?解:(1)设温情提示牌的单价为x元,则垃圾箱的单价为3x元,根据题意得,2x+3×3x=550,∴x=50,经检验,符合题意,∴3x=150元,即:温馨提示牌和垃圾箱的单价各是50元和150元;(2)设购买温情提示牌y个(y为正整数),则垃圾箱为(100﹣y)个,根据题意得,意,,∴≤y≤52,∵y为正整数,∴y为42,43,44,45,46,47,48,49,50,51,52,共11中方案;即:温馨提示牌42个,垃圾箱58个,温馨提示牌43个,垃圾箱57个,温馨提示牌44个,垃圾箱56个,温馨提示牌45个,垃圾箱55个,温馨提示牌46个,垃圾箱54个,温馨提示牌47个,垃圾箱53个,温馨提示牌48个,垃圾箱52个,温馨提示牌49个,垃圾箱51个,温馨提示牌50个,垃圾箱50个,温馨提示牌51个,垃圾箱49个,温馨提示牌52个,垃圾箱48个,根据题意,费用为30y+150(100﹣y)=﹣120y+15000,当y=52时,所需资金最少,最少是8760元.(2018烟台)(2018哈尔滨)(2018大庆)(2018贵阳)(2018安顺)23.某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.解:(1)设该地投入异地安置资金的年平均增长率为x ,根据题意得21280(1)12801600x +=+,解得:0.5x =或 2.5x =-(舍),答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%; (2)设2017年该地有a 户享受到优先搬迁租房奖励,根据题意得, ∵8100040032000005000000⨯⨯=<,∴1000a >,10008400(1000)54005000000a ⨯⨯+-⨯⨯≥,解得:1900a ≥,答:2017年该地至少有1900户享受到优先搬迁租房奖励.(2018郴州)21. 郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A 、B 两种奖品以鼓励抢答者.如果购买A 种20件,B 种15件,共需380元;如果购买A 种15件,B 种10件,共需280元. (1)A 、B 两种奖品每件各多少元?(2)现要购买A 、B 两种奖品共100件,总费用不超过900元,那么A 种奖品最多购买多少件?(2018山西)(2018咸宁)22.为拓宽学生视野,引导学生主动适应社会,促进书木知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动.在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4 个学生,现有甲、乙两种大客车,它们的载客量和租金如下表所示:学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2 名老师,可知租用客车总数为_____辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.(2018广东)20.某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相符.(1)求该公司购买A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?(2018德阳)(2018宜昌)22.某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”( 下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算,第一年有40家工厂用乙方案治理,共使Q值降低了12. 经过三年治理,境内长江水质明显改善.(1)求n的值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加一个相同的数值a. 在(2) 的情况下, 第二年,用乙方案所治理的工厂 合计降低的Q 值与当年因甲方案治理降低的Q 值相等、第三年,用甲方案使Q 值降低了39.5.求第一年用甲方案治理降低的Q 值及a 的值. 解:(1)4012n =0.3n ∴=(2)24040(1)40(1)190m m ++++=解得:1217,22m m ==-(舍去) ∴第二年用乙方案治理的工厂数量为40(1)40(150%)60m +=⨯+=(家) (3)设第一年用甲方案整理降低的Q 值为x ,第二年Q 值因乙方案治理降低了1001000.330n =⨯=, 解法一:()30239.5a a -+=9.5a ∴=20.5x ∴=解法二:30239.5x a x a +=⎧⎨+=⎩20.5x ∴=,9.5a =(2018深圳)21.某超市预测某种饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这种饮料。

2018年苏州中考数学《第四讲:应用题》专题复习有答案

2018年苏州中考数学《第四讲:应用题》专题复习有答案

2018年苏州中考数学专题辅导第四讲《应用题》选讲此部分内容包括:概率与统计,列方程(不等式)组解应用题,属于基础题部分。

真题再现:1.(2008年苏州•本题3分)小明在7次百米跑练习中成绩如下: 这7次成绩的中位数是 秒.2.(2008年苏州•本题3分) 为迎接2008年北京奥运会,小甜同学设计了两种乒乓球,一种印有奥运五环图案,另一种印 有奥运福娃图案.若将8个印有奥运五环图案和12个印有奥运福娃图案的乒乓球放入一个空袋中,且每个球的大小相同,搅匀后在口袋中随机摸出一个球.则摸到印有奥运五环图案 的球的概率是 .3. (2008年苏州•本题3分) 6月1日起,某超市开始有偿提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤。

6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装剐买的20公斤散装大米,他们选购的3只环保购物袋至少..应付给超市 元.4. (2008年苏州•本题6分) 某厂生产一种产品,图①是该厂第一季度三个月产量的统计图,图②是这三个月的产量与第一季度总产量的比例分布统计图,统计员在制作图①、图②时漏填了部分数据。

根据上述信息,回答下列问题:(l )该厂第一季度哪一个月的产量最高 月.(2)该厂一月份产量占第一季度总产量的 %.(3) 该厂质检科从第一季度的产品中随机抽样,抽检结果发现样品的合格率为98%.请你估计:该厂第一季度大约生产了多少件合格的产品?(写出解答过程)5.(2009年江苏•本题满分8分)某市对九年级学生进行了一次学业水平测试,成绩评定分A 、B 、C 、D 四个等第.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2 000名学生的数学成绩进行统计分析,相应数据的统计图表如下:)请将上面表格中缺少的三个数据补充完整; 60 000名学生参加测试,试估计该市学生成绩合格以上(含合格)的人数. 6.(2009年江苏•本题满分8分)一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?7.(2009年江苏•本题满分8分)一辆汽车从A 地驶往B 地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h ,在高速公路上行驶的速度为100km/h ,汽车从A 地到B 地一共行农村 县镇 城市 各类学生人数比例统计图 等第 人数 类别 A B C D 农村 ▲ 200 240 80 县镇 290 132 130 ▲ 城市 240 ▲ 132 48 各类学生成绩人数比例统计表驶了2.2h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组.......解决的问题,并写出解答过程.8. (2010年苏州•本题满分6分)学生小明、小华到某电脑销售公司参加社会实践活动,了解到2010年该公司经销的甲、乙两种品牌电脑在第一季度三个月(即一、二、三月份)的销售数量情况.小明用直方图表示甲品牌电脑在第一季度每个月的销售量的分布情况,见图①;小华用扇形统计图表示乙品牌电脑每个月的销售量与该品牌电脑在第一季度的销售总量的比例分布情况,见图②.根据上述信息,回答下列问题:(1)这三个月中,甲品牌电脑在哪个月的销售量最大? 月份;(2)已知该公司这三个月中销售乙品牌电脑的总数量比销售甲品牌电脑的总数量多50台,求乙品牌电脑在二月份共销售了多少台?9.(2011年苏州•本题6分)如图所示的方格地面上,标有编号1、2、3的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的小鸟,将随意地落在图中所示的方格地面上,求小鸟落在草坪上的概率;(2)现准备从图中所示的3个小方格空地中任意选取2个种植草坪,则编号为1、2的2个小方格空地种植草坪的概率是多少(用树状图或列表法求解)?10.(2012年苏州•本题6分)我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的错误!不能通过编辑域代码创建对象。

2018中考数学专题复习 第十三讲二次函数的应用(共69张PPT)

2018中考数学专题复习 第十三讲二次函数的应用(共69张PPT)

5
考点二 利用二次函数解决最优化问题 【示范题2】(2017·济宁中考)某商店经销一种学生 用双肩包,已知这种双肩包的成本价为每个30元.市场 调查发现,这种双肩包每天的销售量y(个)与销售单价 x(元)有如下关系:y=-x+60(30≤x≤60).设这种双肩 包每天的销售利润为w元.
(1)求w与x之间的函数关系式. (2)这种双肩包销售单价定为多少元时,每天的销售利 润最大?最大利润是多少元? (3)如果物价部门规定这种双肩包的销售单价不高于 42元,该商店销售这种双肩包每天要获得200元的销售 利润,销售单价应定为多少元?
25
- 1 m2+18m+40000=1 - (m-225)2+42025,
25
25
所以当m=225时,w最大=42025.
答:该酒店将豪华间的价格上涨225元时,豪华间的日总收入
最高,最高日总收入是42025元.
(2017·鄂州中考)鄂州某个体商户购进某种电子产品 的进价是50元/个,根据市场调研发现售价是80元/个 时,每周可卖出160个.若销售单价每降低2元,则每周 可多卖出20个.设销售价格每个降低x元(x为偶数),每 周销售量为y个.
(2)w=-x2+90x-1800=-(x-45)2+225. ∵-1<0,∴当x=45时,w有最大值.w的最大值为225. 答:销售单价定为45元时,每天销售利润最大,最大销售 利润为225元.
(3)当w=200时,可得方程-(x-45)2+225=200, 解得x1=40,x2=50. ∵50>42,∴x2=50不符合题意,应舍去. 答:该商店销售这种双肩包每天要获得200元的销售利 润,销售单价应定为40元.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年中考数学应用题专题复习1、整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题: (1)降价前,甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元? (2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%、对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?2、由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元. (1)今年甲型号手机每台售价为多少元? (2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案? (3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a 元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a 应取何值?3、为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元. (1)甲、乙两个工程队单独完成各需多少天? (2)请你设计一种符合要求的施工方案,并求出所需的工程费用.4、某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%. (1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾? (2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗? (3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?5、我国西南五省市的部分地区发生严重旱灾,为鼓励节约用水,某市自来水公司采取分段收费标准,右图反映的是每月收取水费y (元)与用水量x (吨)之间的函数关系. (1)小明家五月份用水8吨,应交水费______元; (2)按上述分段收费标准,小明家三、四月份分6、甲、乙两位同学住在同一小区,在同一中学读书,一天恰好在同一时间骑自行车沿同一线路上学,小区离学校有9km ,甲以匀速行驶,花了30min 到校,乙的行程信息如图中折线O –A –B -C 所示,分别用1y ,2y 表示甲、乙在时间x (min )时的行程,请回答下列问题: ⑴分别用含x 的解析式表示1y ,2y (标明x 的范围),并在图中画出函数1y 的图象;⑵甲、乙两人在途中有几次相遇?分别是出发后的多长时间相遇? 7、某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件,设每件商品的售价为x 元,每月的销售量为y 件. (1)求y 与x 的函数关系式并写出自变量x 的取值范围; (2)设每月的销售利润为W ,请写出W 与x 的函数关系式;(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元? 8、有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg 放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg 蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元. (1)设x 天后每千克活蟹的市场价为p 元,写出p 关于x 的函数关系式; (2)如果放养x 天后将活蟹一次性出售,并记1000 kg 蟹的销售总额为Q 元,写出Q 关于x 的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q -收购总额)?9、为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)问符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元?10、 “保护环境,人人有责”为了更好的治理巴河,巴中市污水处理厂决定购买A 、B 两型污水处每月处理污水总量为y 吨,试写出W 与x ,y 与x 的函数关系式. (2)经预算,市污水处理厂购买设备的资金不超过106万元,月处理污水量不低于2040吨,请你列举出所有购买方案,并指出哪种方案最省钱,需要多少资金?11、某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车共10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.⑴请你帮助学校设计所有可行的租车方案;⑵如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?12、莱芜盛产生姜,去年某生产合作社共收获生姜200吨,计划采用批发和零售两种方式销售.经市场调查,批发平均每天售出6吨.(1)受天气、场地等各种因素的影响,需要提前完成销售任务.在平均每天批发量不变的情况下,实际平均每天的零售量比原计划增加了2吨,结果提前5天完成销售任务.那么原计划零售平均每天售出多少吨?(2)在(1)条件下,若批发每吨获得的利润为2000元,零售每吨获得的利润为2200元,计算实际获得的总利润.13、某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数.商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?14、为了增强居民的节约用水的意识,某市制定了新的水费标准:每户每月用水量不超过5吨的部分,自来水公司按每吨2元收费;超过5吨的部分,按每吨2.6元收费。

设某用户月用水量x 吨,自来水公司的应收水费为y元。

(1)试写出y(元)与x(吨)之间的函数关系式;(2)该户今年5月份的用水量为8吨,自来水公司应收水费多少元?15、一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.⑴如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?⑵如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?16、为迎接第四届世界太阳城大会,德州市把主要路段路灯更换为太阳能路灯.已知太阳能路灯售价为5000元/个,目前两个商家有此产品.甲商家用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙店一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y1、y2与x之间的函数关系式;(2)若市政府投资140万元,最多能购买多少个太阳能路灯?17、5月12日,我国四川省汶川县等地发生强烈地震,在抗震救灾中得知,甲、乙两个重灾区急需一种大型挖掘机,甲地需要25台,乙地需要23台;A、B两省获知情况后慷慨相助,分别捐赠该型号挖掘机26台和22台并将其全部调往灾区.如果从A省调运一台挖掘机到甲地要耗资0.4万元,到乙地要耗资0.3万元;从B省调运一台挖掘机到甲地要耗资0.5万元,到乙地要耗资0.2万元.设从A省调往甲地台挖掘机,A、B两省将捐赠的挖掘机全部调往灾区共耗资y万元.⑴请直接写出y与x之间的函数关系式及自变量x 的取值范围;⑵若要使总耗资不超过15万元,有哪几种调运方案?⑶怎样设计调运方案能使总耗资最少?最少耗资是多少万元?18、一家计算机专买店A型计算器每只进价12元,售价20元,多买优惠:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20-10)=1(元),因此,所买的全部20只计算器都按每只19元的价格购买.但是最低价为每只16元.(1)求一次至少买多少只,才能以最低价购买?(2)写出专买店当一次销售x(x>10)只时,所获利润y元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲买了46只,乙买了50只,店主却发现卖46只赚的钱反而比卖50只赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他优惠条件不变的情况下,店家应把最低价每只16元至少提高到多少?x中考数学应用题专题答案1、(2010江苏盐城) 【答案】解:(1)设甲种药品的出厂价格为每盒x 元,乙种药品的出厂价格为每盒y 元.则根据题意列方程组得:⎩⎨⎧=+-=+8.3362.256.6y x y x 解之得:⎩⎨⎧==36.3y x 5×3.6-2.2=18-2.2=15.8(元) 6×3=18(元)答:降价前甲、乙两种药品每盒的零售价格分别是15.8元和18元(2)设购进甲药品x 箱(x 为非负整数),购进乙药品(100-x )箱,则根据题意列不等式组得:⎩⎨⎧≥-≥-⨯⨯+⨯⨯40100900)100(10%10510%158x x x 解之得:607157≤≤x 则x 可取:58,59,60,此时100-x 的值分别是:42,41,40有3种方案供选择:第一种方案,甲药品购买58箱,乙药品购买42箱;第二种方案,甲药品购买59箱,乙药品购买41箱;第三种方案,甲药品购买60箱,乙药品购买40箱; (注:(1)中不作答不扣分,(2)中在方案不写或写错扣1分) 2、(2011广西梧州,24,10分) 【答案】解:(1)设今年甲型号手机每台售价为x 元,由题意得,80000x+500=60000x . 解得x=1500. 经检验x=1500是方程的解.故今年甲型号手机每台售价为1500元.(2)设购进甲型号手机m 台,由题意得, 17600≤1000m+800(20-m )≤18400, 8≤m≤12. 因为m 只能取整数,所以m 取8、9、10、11、12,共有5种进货方案. (3)方法一:设总获利W 元,则W=(1500-1000)m+(1400-800-a )(20-m ),W=(a -100)m+12000-20a . 所以当a=100时,(2)中所有的方案获利相同. 方法二:由(2)知,当m=8时,有20-m=12. 此时获利y 1=(1500-1000)×8+(1400-800-a )×12=4000+(600-a )×12 当m=9时,有20-m=11 此时获利y 2=(1500-1000)×9+(1400-800-a )×11=4500+(600-a )×11由于获利相同,则有y 1= y 2.即4000+(600-a )×12=4500+(600-a )×11, 解之得a=100 .所以当a=100时,(2)中所有方案获利相同. 3、(2011山东德州21,10分) 解:(1)设甲工程队单独完成需x 天,则乙工程队单独完成该工程需(x+25)天. 根据题意得: 3030125x x +=+. 方程两边同乘以x (x+25),得 30(x+25)+30x= x (x+25),即 x 2-35x -750=0. 解之,得x 1=50,x 2=-15. 经检验,x 1=50,x 2=-15都是原方程的解.但x 2=-15不符合题意,应舍去. ∴ 当x=50时,x+25=75.答:甲工程队单独完成该工程需50天,则乙工程队单独完成该工程需75天.(2)此问题只要设计出符合条件的一种方案即可. 方案一:由甲工程队单独完成. 所需费用为:2500×50=125000(元). 方案二:甲乙两队合作完成. 所需费用为:(2500+2000)×30=135000(元). 其它方案略. 4、(2010四川眉山) 解:(1)设购买甲种鱼苗x 尾,则购买乙种鱼苗(6000)x -尾,由题意得:0.50.8(6000)3600x x +-= 解这个方程,得:4000x = ∴60002000x -=答:甲种鱼苗买4000尾,乙种鱼苗买2000尾. (2)由题意得:0.50.8(6000)4200x x +-≤ 解这个不等式,得: 2000x ≥即购买甲种鱼苗应不少于2000尾.(3)设购买鱼苗的总费用为y ,则0.50.8(6000)0.34800y x x x =+-=-+ 由题意,有909593(6000)6000100100100x x +-≥⨯ 解得: 2400x ≤在0.34800y x =-+中 ∵0.30-<,∴y 随x 的增大而减少∴当2400x =时,4080y =最小.即购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低. 5、(2010福建南平) 【答案】解:(1)16; (2)解法一:由图可得 用水10吨内每吨2元,10吨以上每吨50-2020-10=3元 三月份交水费26元>20元。

相关文档
最新文档