高频调谐功率放大器
高频谐振功率放大器的基本工作原理
![高频谐振功率放大器的基本工作原理](https://img.taocdn.com/s3/m/8277712d59fafab069dc5022aaea998fcc2240fd.png)
高频谐振功率放大器的基本工作原理高频谐振功率放大器是一种常用于无线通信和射频系统中的放大器,其基本工作原理是通过谐振电路和功率放大器的相互配合来实现信号的放大。
本文将介绍高频谐振功率放大器的基本构成和工作原理。
一、高频谐振功率放大器的构成高频谐振功率放大器主要由三个部分组成:输入谐振电路、功率放大电路和输出谐振电路。
输入谐振电路是用来接收输入信号并将其滤波、匹配到功率放大器的。
它通常由电容和电感组成的谐振回路构成,能够选择性地传输特定频率的信号。
功率放大电路是用来放大输入信号的。
它通常采用晶体管或管子放大器等器件,通过输入电压的调节来实现信号的放大,同时也可以调节放大器的增益和输出功率。
输出谐振电路是用来匹配和传输已放大的信号到输出负载的。
它通常也由谐振回路组成,能够将功率放大后的信号传输到负载上。
二、高频谐振功率放大器的工作原理高频谐振功率放大器的工作原理基于谐振电路的特性和功率放大器的线性放大特性。
首先,输入信号经过输入谐振电路后,可以选择性地通过特定频率的谐振回路,其他频率的信号会被滤波掉。
这样就能保证只有特定频率的信号能够进入功率放大器进行放大。
然后,经过谐振回路的输入信号进入功率放大电路。
功率放大电路通常采用线性放大器,其输入电压的大小决定了输出信号的放大倍数。
通过调节输入电压的大小,就可以实现对输出信号的放大程度的控制。
最后,放大后的信号经过输出谐振电路,并传输到输出负载上。
输出谐振回路起到了匹配和传输的作用,能够将功率放大后的信号有效地传输给负载。
三、高频谐振功率放大器的优势高频谐振功率放大器具有以下优势:1. 高效性:通过谐振电路的匹配和能量传输,以及功率放大器的线性放大特性,高频谐振功率放大器能够实现高效率的信号放大,提高系统的整体效能。
2. 稳定性:谐振回路能够选择性地传输特定频率的信号,并且能够稳定地工作在谐振状态下,使得输出信号的幅度和频率更加稳定。
3. 可调性:通过调节输入信号的电压,可以实现对输出信号的放大倍数和功率的可调。
高频实验高频谐振功率放大器
![高频实验高频谐振功率放大器](https://img.taocdn.com/s3/m/21420f04cc175527072208bb.png)
高频功放的工作状态: 高频功放的工作状态:
高频功放的工作状态有三种,分别是: 高频功放的工作状态有三种,分别是: (1) 欠压工作状态 特点:晶体管的工作范围在放大区和截止区。 特点:晶体管的工作范围在放大区和截止区。 (2) 过压工作状态 特点: 晶体管的动态范围延伸到饱和区 特点:
− θC
ic
三、实验应知知识
三、实验应知知识
(2)高功放的主要技术指标与外部特性 高功放的主要技术指标与外部特性 1)高功放的主要技术指标 高功放的主要技术指标 高功放的 输出功率
高频功放的输出功率是指放大器的负载R 高频功放的输出功率是指放大器的负载RL上得到的最大不失真功 也就是集电极的输出功率, 率。也就是集电极的输出功率,即
ic Icmax ic1 ic2 ic3 Ico
故输出仍为不失 真的正弦波. 真的正弦波.
ωt
θc
θc
利用功放负载LC 利用功放负载LC 回路的选频功能, 回路的选频功能, 适当选择LC的参 适当选择LC的参 LC 数使之谐振与基 波频率, 波频率,
R
+
L Uc1
BT
C
-
-VBB
Ec
厚德博学 追求卓越
uBE = ub − U BB = −U BB + U bm cos+ t ω
由晶体管的转移特性曲线可知: 由晶体管的转移特性曲线可知:
ub
BT
+ UBE
_
_ ic
-VBB
Ec
当 uBE < U BZ , i c = 0
当 uBE > UBZ , ic = gc (uBE − UBZ )
式中 gc 为:
θC
谐振功率放大器的调谐特性PPT课件
![谐振功率放大器的调谐特性PPT课件](https://img.taocdn.com/s3/m/f68d414da31614791711cc7931b765ce04087a43.png)
式中, 为集电极直流分量,
分别为集电极电流
的基波、二次谐波及高次谐波分量的振幅。
-
8
包含有直流、基波和高次谐波成分的电流iC流经谐振回路时,
只有基波电流才产生压降,因而谐振回路两端输出不失真的高频
信号电压。若回路谐振电阻为RL,则
由图3.2(c)可见,丙类放大器在一个信号周期内,只有小于 半个信号周期的时间内有集电极电流流通,形成了余弦脉冲电流。
效率低。通常称这种状态为谐振功放的欠压工作状态。
-
21
(2)临界工作状态
如果增大Rp的数值,谐振功放工作在放大区 和饱和区之间的临界状态。此时iC的波形仍为尖 顶余弦脉冲,iC的脉冲幅度相对于欠压工作状态 略有减小,如图3.4(b)所示。但负载回路的输 出电压 却增大较多。放大器输出功率大,管 耗小,效率高。称这种状态为谐振功放的临界工 作状态。
-
15
若丙类谐振功放的输入是振幅为Uim的单频余弦信号, 那么 输出单频余弦信号的振幅Ucm与Uim有什么关系?Ucm的大小受哪 些参数影响?
式(3.2.1)、 (3.2.2)和(3.2.6)分别给出了谐振功放输入回路、
输出回路和晶体管转移特性的表达式。由这些公式可以看出,
当晶体管确定以后, Ucm的大小与VBB、VCC、RΣ和Ubm四个参数 有关。利用图3.2.5所示折线化转移特性和输出特性曲线, 借助
-
10
-
11
3.2.2 输出功率与效率
-
12
-
13
例题3.1
-
14
3.3 谐振功率放大器的外特性
谐振功率放大器的输出功率、效率及集电极损耗等都 与集电极负载回路的谐振阻抗、输入信号的幅度、基极偏 置电压以及集电极电源电压的大小密切相关,其中集电极 负载阻抗的影响尤为重要。通过对这些特性的分析,可了 解谐振功率放大器的应用及正确的调试方法。
第2章 高频调谐功率放大器 44页 2.2M PPT版
![第2章 高频调谐功率放大器 44页 2.2M PPT版](https://img.taocdn.com/s3/m/02d0d91e964bcf84b9d57ba6.png)
C
尖顶余弦脉冲的数学表达式
Vbm
休息1 休息2
(1) 集电极电流
i c i c max
ic I co I cm1 cost I cm1 cos 2t I cmn cosnt
ic Icmax θc θc ic1
cos t cos c 1 cos c
第2章 高频调谐功率放大器
2.1 概述: 2.2 高频功率放大器的工作原理 2.3 高频功率放大器的动态分析 2.4高频功放的高频特性 2.5高频功率放大器的电路组成
休息1
返回
休息2
2. 1 概述:
在高频范围内,为了获得足够大的高频输出功率,必须采 用高频调谐功率放大器,这是发射设备的重要组成部分。 输出功率大 对高频功率放大器的一般要求同低频功放相同: 效率高
oP c ,时定一率功散耗的许允管体晶当
(3) (4) 集电极能量转换效率 c :
c
Po Po PD Po PC
c Po 集电极耗散功率PP 1, PP c (3) c P o P c o C C c
PD Po
α1 αo g1 α2 α3 θc 2.0 1.0
c c
c
c
式中:(1) 0 c , 1 c ,…, n c 称为尖顶余弦脉冲的分解系数。
一般可以根据 c 的数值查表求出各分解系数的值。 (2) Ico , I cm1 , I cm2 ,…, I cmn 为直流及基波和各次谐波的振幅。
UBZ UBB
u (2)集电极输出电压 u
休息1 休息2
输入激励电路:提供所需信号电压; 输出谐振回路: (1)滤波选频,(2)阻抗匹配。
高频谐振功率放大器
![高频谐振功率放大器](https://img.taocdn.com/s3/m/f046f788a0c7aa00b52acfc789eb172ded6399d0.png)
偏置电路优化
设计合适的偏置电路,以稳定放大器 的工作状态,提高其可靠性。
散热设计优化
根据实际散热需求,设计合理的散热 结构和散热方式,以提高放大器的可 靠性。
自动校准与补偿
利用自动校准和补偿技术,对放大器 的性能进行实时监测和调整,以提高 其稳定性和可靠性。
05
高频谐振功率放大器的 应用实例
在通信系统中的应用
放大器设计的基本原则
高效性
放大器应具有高效率,以减少能源消耗和散 热需求。
线性度
放大器应保持信号的线性放大,避免非线性 失真。
稳定性
放大器应具有稳定的性能,避免自激振荡和 失真。
可靠性
放大器应具有较高的可靠性和稳定性,以满 足长期使用需求。
放大器设计的步骤与方法
确定技术指标
根据应用需求,确定放大器的技术指标,如 输出功率、工作频率、带宽等。
分析放大器在不同频率下的稳定性表现,通常通 过测试不同频率下的增益和相位变化来评估。
温度稳定性
分析放大器在不同温度下的稳定性表现,通常通 过测试不同温度下的增益和相位变化来评估。
3
电源稳定性
分析放大器在不同电源电压下的稳定性表现,通 常通过测试不同电源电压下的增益和相位变化来 评估。
04
高频谐振功率放大器的 设计与优化
输入级是放大器的起始部分, 负责接收微弱的高频信号并将 其放大。
输入级通常采用晶体管或场效 应管等有源器件,通过小信号 放大来提高信号的幅度。
输入级的电路设计需考虑信号 源内阻、输入信号的幅度和频 率等参数,以确保信号能够有 效地传递到输出级。
输出级
输出级是放大器的末级,负责将经过放大的高频信号输出。
01
02
高频第3章高频调谐功率放大器
![高频第3章高频调谐功率放大器](https://img.taocdn.com/s3/m/81a9063283c4bb4cf7ecd10c.png)
o
导通角是调谐功率放大器的重要参数
20
二、集电极余弦脉冲电流分析
ic I c0 I cm1 cos t I cm2 cos 2t I cmn cos nt I c0 I cmn cos nt
n 1
ic Icmax θc θc
ic1
ic2
3.2 调谐功率放大器的工作原理(重点) 3.3功率和效率 (重点)
3.4调谐功率放大器的工作状态分析(难点)
3.5调谐功率放大器的实用电路(重点)
3.6功率晶体管的高频效应 (指导实践)
3.7 倍频器
3
3.1
概述
回顾问题:(模拟电子技术中的功放内容)
1. 放大器的实质?
2. 放大器的两种工作状态? (已学的)
U cm I c1m Rc
集电极抽头处基波电压幅值
则晶体管集电极与发射极间电压为 :
uce Ec uc Ec U cm cos t
26
3.3
晶体管 槽路
功率和效率
直流功率 交流功率 脉冲功率 正弦功率
2.槽路效率 TT 2.槽路效率 1.集电极效率 c 谐振回路 Q1 U I 0 尽量大,在 PO 2 cm c1m 1 Qcm 1I c max L 1Po 1UT Q0 QL U P Pcm 保证选频性能的前提下, L T c P P Q0 PS Ec I 2 Ec 0 I c max o 2 0 o Ec 尽量小(5~10)c 0 1 集电极电流利用系 0 数 ,尽量大 27
ic3
Ico
ωt
注意:高频调谐功率放大器,选频的对象是: 集电极电流 ic中的不同频率成分。
高频功率放大器
![高频功率放大器](https://img.taocdn.com/s3/m/8bd5d50b79563c1ec5da716a.png)
(1)丙类倍频器工作原理分析
为尖顶余弦脉冲, 已知丙类放大器集电极电流 i c 为尖顶余弦脉冲,即:
i c = I CO + I C 1 cos ω t + I C 2 cos 2 ω t + ⋯ + I Cn cos n ω t + ⋯
如果集电极回路不是调谐于基波, 如果集电极回路不是调谐于基波,而是调谐于 n 次谐波那 么回路对基波和其它谐波的阻抗很小, 么回路对基波和其它谐波的阻抗很小,而对 n 次谐波的阻 抗则达到最大值,且呈电阻性。 抗则达到最大值,且呈电阻性。于是回路的输出电压和功 次谐波,故起到了倍频作用。 率就是 n 次谐波,故起到了倍频作用。
-UBB
EC
由晶体管的转移特性曲线可以看出: 由晶体管的转移特性曲线可以看出: 当 uBE < U BZ , i c = 0 当 uBE > UBZ , ic = gc (uBE − UBZ ) 式中 gc 为:
∴有
ic
•
gC
ic
∆ic 折线的斜率 g c = ∆ u BE
-UBB
u ce = 常数
= 90 o
θ < 90 o , U BB < U BZ 。 C 类:
6.2 高频功率放大器的工作原理
1
+ uS -
基本电路结构
+ ub C L
-UBB EC (a) 原理电路
ic + ub -UBB + uCE C Rp
+ L u c1 -
EC (b) 等效电路
除电源和偏置电路外, 除电源和偏置电路外 , 主要由三个部分组成: 主要由三个部分组成:
c2 1 C C c1 1 L b1 i 2 c2 L b2
高频功率放大器
![高频功率放大器](https://img.taocdn.com/s3/m/a7a9656158fafab069dc02c3.png)
高频功率放大器的调制特性
临 当 RP , U 界 bm 不变, 区 Ic1
临 界 区
ic PD
ic
IC1 , IC0 EC Ico 而改变U 与 PD , Po BB
•
• •
•
•
ubemax
之间的关系。 PO
PC
1. 集电极调制特性 E 过压区 欠压区 C过压区 欠压区
当 R P , U bm , U BB 不变,
谐振功放的外部特性
调谐功率放大器的外部特性是指放大器的性能随放 大器的外部参数变化的规律
1. 负载特性
Rc
当调谐功率放大器的电源电压Ec、偏置电压Eb 2. 调制特性 Ubm Eb , Ec 和 激励电压幅值 一定后,放大器的集电极电 流ic、槽路电压uc、输出功率Po、效率c随晶体 管等效负载电阻Rc的变化特性,被称做调谐功率 3. 振幅特性 Ubm 放大器的负载特性。
c c
c c
高频调谐功率放大器,选频的对象是: 2 sin n cos cos n sin 1 I ic cos ntd (t t )U ic max cos gU ) I g U cos cmn i cmax n 2 bm cos t cos 集电极电流中的不同频率成分。 c bm bm 2 nn 11 cos
ube ub Eb —— U j 转移特性曲线 U bm cos t Eb U j 1. 由晶体管内部特性 2) 起始导通点 三、RcB ,Ec,RbB , Ubm : [变化对放大器工 Ec U cm cos ,0] uce Ec uc Ec U cm cos t 2. 在放大器有载情况下(负载回路处于谐振状态), 输入、输出电压的表示式 ——晶体管外部特性
高频功率放大器
![高频功率放大器](https://img.taocdn.com/s3/m/ccbfd4a37fd5360cba1adbf4.png)
1. 原理说明利用选频网络作为负载回路的功率放大器称为谐振功率放大器。
它是无线电发射机中的重要组成部件。
根据放大器电流导通角B 的范围可以分为甲类、 乙 类、丙类等不同类型的功率放大器。
电流导通角B 愈小放大器的效率n 愈高。
如甲类功放的B =180。
,效率n 最高也只能达 50%,而丙类功放的B <900,效率n 可 达到80%。
甲类功率放大器适合作为中间级或输出功率较小的末级功率放大器。
丙类功率放大器通常作为末级功放以获得较大的输出功率和较高的效率。
高频功率放大器按其工作频带的宽窄划分为窄带高频功率放大器和宽带高 频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作 为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。
高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高 频交流输出。
高频功放的主要技术指标1.1.1功率关系:功率放大器的作用原理是利用输入到基极的信号来控制集电极的直流电源 所供给的直流功率P O ,使之一部分转变为交流信号功率 R 输出去,一部分功率以 热能的形式消耗在集电极上,成为集电极耗散功率 P C根据能量守衡定理:P 。
R P c 直流功率:巳 I c0 U cc1.1.2放大器的集电极效率P12Uc怙-Po Ucc 1 c0 2输出交流功率:P -U c I c12U c 2 2R LJRU c -----回路两端的基频电压I c1基频电流R L----回路的负载阻抗。
其中集电极电压利用系数:U cicRUcc Ucc波形系数:;0 0()为通角的函数;越小Y 越大。
1.1.3谐振功率放大器临界状态的计算临界状态下,若已知电源电压 Ucc , U BB 三极管的参数g c , U 'BB ,设电压利 用系数为率等。
,集电极的导通角为。
高频实验报告_高频谐振功率放大器
![高频实验报告_高频谐振功率放大器](https://img.taocdn.com/s3/m/be871727f111f18583d05a4b.png)
1 1R0 8
1
1 1C0 5 1 1 1K0 1
2 3
1 1BG0 2
25
EC
1 1BG0 1
B
1
1 1TP0 4 1
3
1 1R0 2
1 1C0 6
1 1R0 7
+12 V1
1 1R0 9
1 1D0 1
1 1TP0 1
1
1 1C0 9
1 1R1 0
1 1P0 1
1 1R0 3
GND14 1
1 1R0 5
1 04 28 81 85 41 44 64 6 24 14 00 94 84 画出频率与电压的关系曲线如下:
(3)异常或错误处理:
1、一开始波形的出现不是非常明显,后来稍稍调整了一下高频信号源频率和幅度,波形就 变得非常明显了。
2、在“集电极电源电压 Ec 对放大器工作状态的影响”实验内容过程中,波形变化非常不明
实验 2 高频谐振功率放大器
实验名称
高频谐振功率 放大器
所属课程
高频电子 成绩评定
线路
电子信息工程专业电子班
实验桌编号
4
实验日期 2014 年 11 月 22 日
指导教师
***
学生姓名
**
学 号 *******
一、实验目的:
1、进一步理解谐振功率放大器的工作原理及负载阻抗,激励电压和集电极电源电压变化对 其工作状态的影响。 2、掌握丙类功率放大器的调谐特性和负载特性。
显,多次调试也是如此。 3、在“功放调谐特性测试”实验内容过程中,即便保持中心频率改变峰峰值,或者保持峰 峰值改变中心频率,波形始终没有出来,所以后来我就同时调整了一下中心频率和峰峰值, 当以12.9MHZ为中心频率,以600mV为峰峰值时,波形非常清楚,后面我以400KHZ为频率间隔。 因为若以200KHZ为频率间隔,变化不是很明显。
第3章高频功率放大器
![第3章高频功率放大器](https://img.taocdn.com/s3/m/7f8df3f2700abb68a982fb9b.png)
遗留问题:
(1) 丙类导通角<90o,何时最优? (2) 放大、临界、饱和,何处最优?
功率放大器的的概述
五、高频功率放大器的分类
1、窄带高频功率放大器:以LC谐振回路为负
载又称谐振功率放大器,主要工作在丙类 或者丁类。(主要掌握的内容) 2、宽带高频功率放大器:以传输变压器为负载 工作在甲类,采用功率合成技术来增大输出 功率。在军事上为了保密和反敌干扰多采用 此放大器
2.晶体管工作在什么区?(在后续的课程中仔细体会)
强调:功率放大的含义
根据能量守恒定律能量是不能放大的,功率放大 的本质是将直流电源VCC的能量转化为高频交流信号能 量的形式的过程,从现象上看就是高频小功率信号被 放大为高频大 功率信号。
3.1 丙类谐振功率放大器的工作原理
二、工作原理及性能分析
uBE= Uim coswt –VBB
iC vbemax
V BZ
- V BB
t
vBE
Uim
1 Pc T
T 0
i C v CE dt
1. iC 脉冲最大时,vCE最小,使得Pc较小; 2. 导通时间越短,即导通角越小,
导通角qc <90o,Pc越小;
三种类型功率放大器的比较
转移特性曲线
ic f uBE u
C E 常量
1 π PC uCE iC d t 2π π
结论:要提高高频功率放大器的输出效率,就要
尽可能降低器件的功率损耗,因此谐振功
率放大器中晶体管工作在丙类工作状态。
功率放大器的的概述
2. 效率与失真矛盾的解决
重点体会:电流波形严重失真,但输出波形又
不失真(完整的正弦波),且频率
高频功率放大器
![高频功率放大器](https://img.taocdn.com/s3/m/d25096222f60ddccda38a006.png)
1.调谐功率放大器知识简介在通信电路中,为了弥补信号在无线传输过程中的衰耗要求发射机具有较大的功率输出,通信距离越远,要求输出功率越大。
为了获得足够大的高频输出功率,必须采用高频功率放大器。
高频功率放大器是无线电发射没备的重要组成部分。
在无线电信号发射过程中,发射机的振荡器产生的高频振荡信号功率很小,因此在它后面要经过一系列的放大,如缓冲级、中间放大级、末级功率放大级等,获得足够的高频功率后,才能输送到天线上辐射出去。
这里提到的放大级都属于高频功率放大器的范畴。
实际上高频功率放大器不仅仅应用于各种类型的发射机中,而且高频加热装置、高频换流器、微波炉等许多电子设备中都得到了广泛的应用。
高频功率放大器和低频功率放大器的共同特点都是输出功率大和效率高,但二者的工作频率和相对频带宽度却相差很大,决定了他们之间有着本质的区别。
低频功率放大器的工作频率低,但相对频带宽度却很宽。
例如,自20 至20000 Hz,高低频率之比达1000 倍。
因此它们都是采用无调谐负载,如电阻、变压器等。
高频功率放大器的工作频率高(由几百kHz 一直到几百、几千甚至几万MHz),但相对频带很窄。
例如,调幅广播电台(535 -1605 kHz 的频段范围)的频带宽度为10 kHz,如中心频率取为1000 kHz,则相对频宽只相当于中心频率的百分之一。
中心频率越高,则相对频宽越小。
因此,高频功率放大器一般都采用选频网络作为负载回路。
由于这后一特点,使得这两种放大器所选用的工作状态不同:低频功率放大器可工作于甲类、甲乙类或乙类(限于推挽电路)状态;高频功率放大器则一般都工作于丙类(某些特殊情况可工作于乙类)。
高频功率放大器是通信系统中发送装置的重要组件。
按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。
通信电子线路第3章 高频调谐功率放大器
![通信电子线路第3章 高频调谐功率放大器](https://img.taocdn.com/s3/m/57909969fe4733687e21aab3.png)
目的:能够使电信号能够有效地进行远距离传输 特点:高频、大信号、非线性工作 要求:输出功率大(PE=PO+PC)、转换效率高 A,B,AB,C;(甲、乙、甲乙、丙) 工作状态: D,E,S; (开关型) F,G,H ;(特殊技术型)
分析方法:折线法近似分析
3.2 调谐功率放大器的工作原理
3.2.1 基本电路构成 组成:BJT、LC谐振回路、馈电电源
高频功放中的能量关系与效率:
1)集电极输出功率:
1 1 2 1 U c21m pO I c1mU c1m I c1m Re 2 2 2 Re
2)集电极电源提供功率: PE I c 0U CC 3)集电极损耗功率: Pc PE PO
PO 1 I c1m U c1m 1 4)集电极效率: C 1 C PE 2 I c 0 U CC 2
1 ( ) (2) —— 集电极电流利用系数 0 ( ) 1 ( ) ↑,但 ↓,Po↓,为了兼顾功率和效率, 0 ( )↑, c 60 ~ 80 通常取 。
3.3.2.槽路效率
PL —— 负载功率,RL 所吸收的功率; PT —— 槽路损耗功率,槽路空载电阻R0所吸收的功率。
电源供给的功率PS ,一部分(PC)损耗在管子,使管 子发热;另一部分(Po)转换为交流功率,输出给槽路。 通过槽路一部分( PT )损耗在槽路线圈和电容中,另 一部分(PL)输出给负载RL。
3.3.1.集电极效率 c
直流电源供给功率
PS Ec I c 0
集电极交流输出功率 Po 1 / 2U cm I c1m
其中0(θ)、1(θ) 、…、n (θ)为谐波分解系数;另 定义1=Ic1m/Ic0= 1(θ) / 0(θ)为波形系数,随减小 而增大。
高频-第3章 高频谐振放大器(4)高频功放状态分析及高频效应
![高频-第3章 高频谐振放大器(4)高频功放状态分析及高频效应](https://img.taocdn.com/s3/m/aeeda18d83d049649a665801.png)
有帮助的。
2. 高频功放的振幅特性
振幅特性是指放大器电流、 电压、功率及效率随激励信号 振幅Ub的变化特性。 Ub变化,但EC、(-Eb)、Rp 不变或(-Eb)变化,但EC、Ub、
Rp不变,这两种情况所引起放 大器工作状态的变化是相同的。 因为无论是Ub还是Eb的变化, 其结果都是引起uBE的变化。 当(-Eb)或ub由小到大变化时,放 由 uBE= -Eb+Ubcost 大器的工作状态由欠压经临界转 uBEmax= -Eb+Ub 入过压。
“最佳”的含义在于采用这一负载值时,调谐功率放大器的 效率较高,输出功率较大。 可以证明,放大器所要求的最佳负载是随导通角改变而变 化的。小,则Rp大。要提高放大器的效率,就要求放大器具 有大的最佳负载电阻值。
在实际电路中,放大器所要求的最佳电阻需要通过匹配网 络和终端负载(如天线等)相匹配。
临界状态的计算公式
Ub变化时电流、功率的变化
3. 高频功放的调制特性
调制特性是指放大器的偏置直流电压改变时,输出的高频信 号的振幅随之变化的特性。分为基极和集电极调制特性。
( 1)集电极调制特 性----EC变化时对工作
状态的影响: EC由小变 大,负载线向右平移, 状态由过压进入欠压,
EC变化时对工作状态的影响
高频情况下功放管 各电极电流波形
在工作频率很高, 渡越角在0=10~20时。
(1)发射极电流ie 随着工作频率提高,存贮在基区中的载 流子由于输入信号vb迅速向负极性变化而返回发射极,因 而ie出现反向脉冲,管子的导通角加大,工作频率越高,ie 反向脉冲的宽度就越大,幅值也越高,导通角也越扩展。
电压、电流随负载变化波形
2. 高频功放的工作状态
Uc、ic随负载变化的波形如图所示,放大器的输入电压是一 定的,其最大值为Ubemax,在负载电阻RP由小至大变化时,负
高频谐振功率放大器电路作用
![高频谐振功率放大器电路作用](https://img.taocdn.com/s3/m/e5427a4426284b73f242336c1eb91a37f11132f5.png)
高频谐振功率放大器电路作用高频谐振功率放大器电路是一种用于放大高频信号的电路,其作用是将输入的高频信号放大到更高的功率水平,以便在无线通信、雷达、无线电广播等领域中使用。
它是一种常用的放大器电路,具有许多优点和应用场景。
高频谐振功率放大器电路采用谐振电路的原理,能够在特定频率下实现高增益的放大效果。
谐振电路是一种具有特殊频率响应特性的电路,当输入信号频率与电路的谐振频率相匹配时,其阻抗会达到最小值,从而使得信号能够得到最大的放大。
这种特性使得高频谐振功率放大器电路在高频信号放大方面具有很大的优势。
高频谐振功率放大器电路能够提供较大的输出功率。
在无线通信领域中,信号传输往往需要经过长距离的传输,因此需要将信号放大到足够的功率水平才能够保证信号的传输质量和距离。
高频谐振功率放大器电路能够将输入的低功率信号放大到较大的功率水平,从而能够满足长距离传输的需求。
高频谐振功率放大器电路还能够实现较高的效率。
在放大信号的过程中,电路会消耗一部分能量,这会导致功率损耗和效率降低。
然而,高频谐振功率放大器电路通过谐振电路的设计,能够在特定频率下实现高效的能量传输,从而提高了电路的效率。
这对于无线通信等领域来说,能够减少能源的消耗,提高系统的性能。
高频谐振功率放大器电路还具有宽频带特性。
传统的放大器电路在特定频率下具有较好的放大效果,但在其他频率下的放大效果较差。
而高频谐振功率放大器电路通过谐振电路的设计,能够在一定频率范围内实现较好的放大效果,从而适用于多种频率的信号放大需求。
高频谐振功率放大器电路在无线通信、雷达、无线电广播等领域中具有广泛的应用。
它通过谐振电路的原理,能够在特定频率下实现高增益的放大效果,并能够提供较大的输出功率和较高的效率。
同时,它还具有宽频带特性,能够适用于多种频率的信号放大需求。
因此,高频谐振功率放大器电路在现代通信技术中扮演着重要的角色,对于推动通信技术的发展具有重要意义。
通信电子电路高频谐振功率放大器实验报告
![通信电子电路高频谐振功率放大器实验报告](https://img.taocdn.com/s3/m/b3a990dcde80d4d8d05a4fd2.png)
实验室时间段座位号实验报告实验课程实验名称班级姓名学号指导老师高频谐振功率放大器预习报告实验目的1.通过实验,加深对丙类功率放大器基本工作原理的理解,掌握丙类功率放大器的调谐特性。
2.掌握输入激励电压,集电极电源电压及负载变化对放大器工作状态的影响。
3.通过实验进一步了解调幅的工作原理。
实验内容1.实验准备在实验箱主板上装上幅度调制与无线发射模块,接通电源即可开始实验。
2.测试前置放大级输入、输出波形高频信号源频率设置为6.3MHZ,幅度峰-峰值300mV左右,用铆孔线连接到1P05,用示波器测试1P05和1TP07的波形的幅度,并计算其放大倍数。
由于该级集电极负载是电阻,没有选频作用。
3. 激励电压、电源电压及负载变化对丙类功放工作状态的影响U对放大器工作状态的影响(1)激励电压bE=5V左右(用万用表测1TP08直流电压, 1W05 1K03置“右侧”。
保持集电极电源电压cR=10KΩ左右(1K04置“右侧”,用万用表测1TP11电阻, 1W6逆时针调到底),负载电阻L顺时针调到底,然后1K04置“左侧”)不变。
高频信号源频率1.9MHZ左右,幅度200mv(峰—峰值),连接至功放模块输入端(1P05)。
示波器CH1接1P08,CH2接1TP09。
调整高频信号源频率,使功放谐振即输出幅度(1TP08)U,观察1TP09电压波形。
信号源幅度变化最大。
改变信号源幅度,即改变激励信号电压b时,应观察到欠压、临界、过压脉冲波形。
其波形如图7-7所示(如果波形不对称,应微调高频信号源频率,如果高频信号源是DDS信号源,注意选择合适的频率步长档位)。
实验报告1.认真整理实验数据,对实验参数和波形进行分析,说明输入激励电压、集电极电源电压,负载电阻对工作状态的影响。
2.用实测参数分析丙类功率放大器的特点。
3.总结由本实验所获得的体会。
c实验报告一.实验目的1.通过实验,加深对丙类功率放大器基本工作原理的理解,掌握丙类功率放大器的调谐特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为工作在……..
临界方程: ic = gcruce, gcr 具有电导的量纲
在转移特性的放大区,折线化后的AB线斜率为g(约为几十至几百 毫 安/伏)。此时,理想静态特性可用下式表示:
icg(ubeU0j)uu,bbeeUUjj
下面求余弦脉冲的幅度:
ic g (U bc mo t s U j E b) cos Uj Eb
Ubm
icgb U ( mco tc s o)s
当 ωt = 0 时,ic 最大,以Icmax 表示,可得
Icmax = g Ubm(1-cosθ)
这样电流ic又可写成: ic1 Iccmo a x(sc ot sco )s
第三章 高频调谐功率放大器
第三章 高频调谐功率放大器 3.1 概述 3.2 调谐功率放大器的工作原理 3.3 功率和效率 3.4 调谐功率放大器的工作状态分析 3.5 调谐功率放大器的实用电路 3.6 功率晶体管的高频效应 3.7 倍频器 3.8 集成高频功率放大电路及应用简介
二、本章重点和难点
3.2 调谐功率放大器的工作原理
一、电路 二、折线近似分析法——直线段近似法 三、晶体管导通的特点、导通角、
余弦脉冲电流的分析 四、槽路电压
3.2.1 电路
注意:该电路和小信号调谐放大器的不同(bias)
各元件的作用:
Ec 是直流电源电压; Eb 是基极偏置电源电压。 输入信号经变压器T1 耦合到晶体管基-射极, 这个信号也叫激励信号。
高频调谐功率放大器和低频放大器的异同之处: 相同之处:
输出功率大,效率要高。
不同之处:
1、工作频率与相对带宽不同。 2、放大器的负载不同。
低频负载:电阻、变压器。高频负载:谐振回路 3、放大器的工作状态不同 它的主要技术指标有: 输出功率、效率和谐波抑制度(输出中的谐波分量应尽量小)等。 调谐功率放大器的电子器件: 晶体管或电子管。
特别 注意
u be
图3-3 折线法分析非线性电路电流电压波形
注意:
管子只在一个周期的一小部分时间内导通,故集电极电流是
周期性的余弦脉冲。 导通角:
把集电极电流导通时间的一半称为集电极电流的导通角用 表示
放大器工作在甲类: 180o 管子在整个周期内导通
放大器工作在乙类: 90o 管子在半个周期内导通
功率较低的场合一般用晶体管,功率大的场合用电子管。
二、特点
1.输入信号强,电压在几百毫伏几伏数 量级附近;
2.为了提高放大器的工作效率,它通常工 作在丙类,即晶体管工作延伸到非线性 区域——饱和区、截止区;
3.要求:输出功率大、效率高。
三、分析方法
高频功率放大器因工作于大信号的非线 性状态,用解析法分析较困难,故工程上普 遍采用近似的分析方法——折线法来分析其 工作原理和工作状态。
傅立叶级数展开式为:
icIcoIc1mcotsIcncmonst
Ico Icncmonst n1
I c o 2 1 ic dt 2 1 I c m c a 1 x o tc c s o o d s ts
Ubm
分析: (Uj+Eb)一定, 激励愈强(Ubm), 愈大 Ubm一定, (Uj+Eb)愈强 , 愈小
3.2.4 集电极余弦脉冲电流分析
|t | 时,Ubm cotsEbUj 管子截止,ic = 0 |t | 时,Ubm cotsEbUj 管子导通,ic ≠ 0
即: - < wt < , ic ≠ 0 ,其余时间ic = 0 ,故ic 的波形是被切除了 下半部分的余弦脉冲。
图3-2 晶体管特性及其折线化
转移特性曲线: OA 、AB近似
输出特性曲线: EO 、OC、 CD近似
临界线: 斜线穿过每一条静态输出特性曲线的拐点-临界点, 称为临界线
临界状态: 当放大器在激励电压 ube 和集电极电压 uc 为最大 值的瞬间工作在临界点时,称为工作在临界状态;
放大状态: 工作在临界线右边时,称为放大状态。
放大器工作在丙类:
90o 管子导通时间小于半个周期
ubUbm cots
ube U bm cot sE b
导通角的解:
icg(ubeU0j)u,buebe UUjj
ic g (U bc mo t s U j E b )
t时i, c0
g (U bm co U sj E b) 0
故:
cos Uj Eb
L、C 组成并联谐振回路,作为集电极负载,
这个回路也叫槽路。 放大后的信号通过变压器耦合到负载 RL上以
达到阻抗匹配的要求。 注意:
在实际工作中,为了节省电源,可以不加偏置,或采
用自给偏压代替Eb。
3.2.2 晶体管特性的折线化 折线近似分析法:
将电子器件的特性理想化,每条特性曲线用一组折线 来代替。忽略特性曲线弯曲部分的影响,简化了电流 的计算,虽然精度较低,但仍可满足工程的需要。
Байду номын сангаас
3.1 概述
一、作用
高频功率放大器是一种能量转换器件, 它是将电源供给的直流能量转换为高频交 流输出。
高频功率放大器是通信系统中发送装置 的重要组件。它的作用是放大信号,使之 达到足够功率输出,以满足天线发射或其 他负载的要求。
调谐功率放大器的输入信号很大,为几百毫伏到几伏,晶体管 工作延伸到非线性区域——截至和饱和区。这种放大器的输出 功率大,以满足天线发射或其他负载的要求,效率较高,一般 工作在丙类状态。
(一)本章重点
1.调谐功放的用途与特点(与小信号调谐放大器进行 比较);
2.调谐功放的工作原理; 3.功率和效率,区别五种功率和两种效率; 4.工作状态(过压状态、欠压状态、临界状态)和阻
抗变换问题; 5.直流馈电电路;自给偏压环节——基流偏压与射
流偏压; 6.倍频器。
(二)本章难点
1.工作状态分析——特别是过压状态; 2.自给偏压环节; 3.调谐功率放大器动态负载线。
折线近似分析法的优点: 略。
3.2.3 晶体管导通的特点、导通角 设输入信号为:
ubUbm cots
加到晶体管基-射极电压为 :
u be U bm cot sE b
Eb 基极反偏电压
三极管导通条件: ub > Eb + Uj
无信号:晶体管截止 有信号:激励信号< Eb+Uj 截止
激励信号 > Eb+Uj 导通