高频功率放大器的应用

合集下载

高频功率放大器主要特点和应用

高频功率放大器主要特点和应用
特性;放大特性); 3、谐振功率放大器工作状态的调整。
3.2.1 谐振功率放大器的工作状态
前面所知,功率放大器的工作状态是根据晶体管的导通角的大小, 即晶体管进入截止区的时间长短,来区分功率放大器为甲类、乙类、丙 类等工作状态的。
注意,这种区分是在放大器的负载为纯电阻的情况下分析的。但丙 类谐振功率放大器的负载是谐振回路。其工作状态是怎样的?
根据晶体管在输入信号的一个周期内是否进入饱和区,将 放大器的工作状态分为欠压、过压和临界三种工作状态。
欠压状态:指晶体管在任何时刻都工作在放大状态。
过压状态:指晶体管工作时有部分时间进入饱和区。
临界状态:指晶体管刚刚进入饱和区的边缘。
放大器的这三种状态:主要取决于电源电压、偏置电压、 激励电压幅度和负载电阻。也就是说它的外部参数不同,谐振 功率放大器就处于不同的工作状态。见下图
第2章 高频选频放大器
高频功率放大器主要特点和应用
高频功率放大器主要用来对高频信号进行功率放大。它主要分有: 窄带高频功率放大器和宽带高频功率放大器。
*窄带高频功率放大器是以LC谐振回路为负载的功率放大器。又称 为谐振功率放大器。其主要特点:
1、用在发射设备中。 2、对高频已调波(窄带信号)的功率放大。 3、放大器工作在丙类。 **宽带高频功率放大器是以传输线变压器为负载的功率放大器。
回路的谐振电阻 Re 变化的特性,称为放大器的负载特性。
iC
iC
iC
iC
Re
t
图3.2.2
IC0 Ic1m Vcm
Vcm Ic1m IC0
Re
欠压 临界 过压
见书P57图3.1.2
3.1.2 余弦电流脉冲的分解
我们知道,在低频功率放大器中,在已知电源电压条件下,如已 知负载电阻,就可作出负载线。

高频功率放大器的工作原理

高频功率放大器的工作原理

高频功率放大器的工作原理高频功率放大器是一种电子器件,主要用于放大高频信号,并将其输出到负载上。

其工作原理基于电子管或晶体管的放大作用,在输入的高频信号上增加电压,从而实现信号放大的目的。

高频功率放大器广泛应用于无线电通信、雷达、卫星通信等领域。

最常用的高频功率放大器是基于晶体管的,其内部结构由多个不同功能的电路组成。

其中,收发信道通过变压器进行隔离,从而实现信号的单向传输。

在信号放大方面,晶体管的三个引脚分别为基极、集电极和发射极。

输入信号通过基极进入晶体管,集电极则是放大后的信号输出。

发射极则是提供功率的地方,通常在晶体管的大功率管中被找到。

高频功率放大器通常需要很高的驱动电压,它可以由直流电源提供。

晶体管的放大过程是通过电荷扩散和电场漂移来完成的。

在多数晶体管中,材料内部的电子浓度是不均匀的,因此电子在晶体中移动时会发生扩散。

此外,由于电场的存在,电子也会沿着电场方向移动,从而形成漂移的过程。

这两种运动将使得电子的浓度差异减小,最终导致电流被放大。

需要注意的是,在高频电路中,信号通常在不同的电阻、电容和电感之间进行传输,因此高频功率放大器要求不仅具有高放大倍数、低噪声等特点,还需要适应各种不同的阻抗,防止信号反射和损耗。

为了保证高频信号的传输质量,高频功率放大器通常采用多级级联的方式,以达到更高的放大倍数和更佳的工作效率。

总之,高频功率放大器是电子工程领域中极为重要的技术,其工作原理基于电子器件的放大作用。

通过不同级联和高数据速率的设计,高频功率放大器可以实现高精度的信号传输和处理,对无线电通讯、雷达、卫星通讯等领域具有举足轻重的作用。

高频功率放大器的基本原理(一)

高频功率放大器的基本原理(一)

高频功率放大器的基本原理(一)高频功率放大器的基本原理1. 什么是高频功率放大器高频功率放大器是一种用于增强高频信号幅度的电子设备。

它通常用于无线通信、雷达、高频电视和天线系统等领域。

高频功率放大器可以将低功率的高频信号放大到足够大的功率,以便传输和处理。

2. 高频功率放大器的工作原理高频功率放大器的工作原理可以简单分为三个步骤:放大输入信号、增加信号的功率和输出放大后的信号。

2.1 放大输入信号高频功率放大器的第一个任务是放大输入信号。

它通常使用晶体三极管(BJT)或场效应晶体管(FET)作为放大器的关键元件。

这些元件根据输入信号的幅度和频率变化进行放大操作。

2.2 增加信号的功率放大后的信号仍然可能是低功率的,因此高频功率放大器的下一个任务是增加信号的功率。

这一步骤通常通过使用功率放大器级联来实现。

级联多个放大器可以将信号功率从较低级别逐步增加到所需的功率级别。

2.3 输出信号在增加信号的功率之后,高频功率放大器将输出放大后的信号。

这个信号可以被用于进一步的处理或传输。

输出信号的幅度将取决于放大器的设计和配置。

3. 高频功率放大器的关键考虑因素在设计高频功率放大器时,需要考虑一些关键因素来确保性能和稳定性。

3.1 频率响应高频功率放大器应该能够在指定的频率范围内提供稳定的放大。

对于不同的应用,频率范围和响应要求会有所不同。

3.2 功率输出高频功率放大器应该能够提供足够的功率输出,以满足特定应用的需求。

功率输出的大小通常由设备和系统的要求来确定。

3.3 效率高频功率放大器的效率是指输入功率与输出功率之间的比率。

高效率的放大器能够最大限度地利用输入能量,减少能量浪费。

3.4 线性度高频功率放大器的线性度是指输出信号与输入信号之间的线性关系。

较好的线性度可以保持输入信号的准确度和完整性。

3.5 稳定性高频功率放大器的稳定性是指在各种工作条件下保持良好的性能。

它应该能够在不出现振荡或失真的情况下工作。

高频功率放大器简介

高频功率放大器简介

高频功率放大器简介
高频功率放大器,又称射频功率放大器,是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。

高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。

高频功率放大器是通信系统中发送装置的重要组件。

按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。

高频功率放大器大多工作于丙类。

但丙类放大器的电流波形失真太大,因而只能用于采用调谐回路作为负载的谐振功率放大。

由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。

一、高频放大器的特点
1. 采用谐振网络作负载。

2. 一般工作在丙类或乙类状态。

3. 工作频率和相对通频带相差很大。

4. 技术指标要求输出功率大、效率高。

二、高频功率放大器的技术指标
主要技术指标有:输出功率、效率、功率增益、带宽和谐波抑制度(或信号失真度)等。

这几项指标要求是互相矛盾的,在设计放大器时应根据具体要求,突出一些指标,兼顾其他一些指标。

高频功率放大器

高频功率放大器

《高频电子线路》在无线通信中的应用——高频功率放大器高频功率放大器是通信系统中发送设备的重要组成部分。

在无线通信的射频系统中,处理的都是小信号,因此需要对信号进行放大处理,为了获得大功率高频信号,必须采用高频功率放大器。

高频放大器按工作频率的带宽,可以分为窄带高频功率放大器和宽带高频功率放大器。

窄带高频功率放大器以LC并联谐振回路作负载又称谐振功率放大器。

宽带高频功率放大器以传输线变压器为负载,又称非谐振功率放大器。

高频功率放大器放大高频正弦信号或高频已调波(窄带)信号,也可以用于发射机的末极,将高频已调信号进行功率放大,满足发送功率的要求,然后经天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。

高频功率放大器的主要功能是用小功率的高频输入信号控制高频功率放大器将直流电源的能量转化为大功率高频能量输出,主要用于各种无线电发送设备中,要求输出功率大和效率高。

高频功率放大器采用谐振回路作负载,解决了大功率放大时的效率、失真、阻抗变换等问题。

高频功率放大器有源器件有晶体管和真空管,分为甲、乙、甲乙、丙、丁戊几类,高频功率放大器通常工作于丙类,下面主要介绍丙类谐振功率放大器。

对功率放大器,在大信号条件下,丙类工作状态可获得较大功率、较高效率;用谐振回路做负载可以使输出波形不失真。

谐振功率放大器的集电极负载是一个高品质因素的LC并联振荡回路,如果选取谐振角频率ω0等于输入信号的角频率ω,那么,尽管在集电极电流脉冲中含有丰富的高次谐波分量,但由于并联谐振回路的选频滤波作用,振荡回路两端的电压可近似认为只有基波电压。

高频功率放大器的主要参数:PD=Vcc*IC0=直流电源供给的直流功率PO=1/2(Vcm*Ic1m)=交流输出信号功率PC=PD-PO=集电极耗散功率集电极效率ηC=PO/PD PD=PO+PC1.丙类谐振功率放大器工作原理丙类谐振功率放大器原理电路2.丙谐振功率放大器的电路组成主要器件:晶体管,直流电源,偏置电阻,电容,电感。

简述高频功率放大器的特点

简述高频功率放大器的特点

简述高频功率放大器的特点高频功率放大器是一种电子设备,它具有放大高频信号的功能。

高频信号是指信号频率在1MHz以上的信号,高频功率放大器主要用于无线电通信、雷达、医学设备和工业加热等领域。

它具有以下特点:1.高效率:高频功率放大器通常使用功率放大管作为放大器核心,这些管子具有高效率的特点。

在高频信号下,功率放大管的效率可以达到60%以上,这意味着大部分的输入功率都能转化为输出功率,从而实现高效率的功率放大。

2.高线性:高频功率放大器要求在放大高频信号时,输出信号要与输入信号保持一致。

这就要求功率放大器具有高线性度,即输出信号随着输入信号的变化而变化,而不会出现非线性失真。

3.高稳定性:在高频信号下,功率放大器的稳定性尤为重要。

任何微小的变化都可能导致输出信号的失真。

因此,高频功率放大器通常采用恒定电流源或者负反馈电路来提高稳定性。

4.高功率密度:高频功率放大器需要在小体积内实现高功率输出,因此需要具有高功率密度。

这要求功率放大器的散热和结构设计都要优化,以实现高功率密度。

5.宽带:高频功率放大器需要能够放大多种频率的信号,因此需要具有宽带特性。

这就要求功率放大器的带宽尽可能宽,能够放大从几百kHz到几GHz的信号。

在中心扩展下,高频功率放大器的应用领域不断扩大。

例如,在无线电通信领域,高频功率放大器可以用于增强信号的传输距离和穿透能力;在雷达领域,高频功率放大器可以用于增强信号的探测能力和精度;在医学设备领域,高频功率放大器可以用于磁共振成像等应用;在工业加热领域,高频功率放大器可以用于快速加热和热处理等应用。

总的来说,高频功率放大器具有高效率、高线性、高稳定性、高功率密度和宽带等特点。

随着应用领域的扩大,高频功率放大器的需求也会越来越高,未来有望在更广泛的领域得到应用。

2.4(3)高频功率放大器

2.4(3)高频功率放大器
MAX2611的增益和频率曲线图如下图所示。当频率小于0.5 GHz时,功率放大倍数基本维持在20 dB,即10倍左右。频率继续增加将导致功率放大倍数急剧下降,即输出功率明显下降。因此,该功率放大器适合工作在中高频段,不能工作在超高频段。
MAX2611的增益和频率曲线图
§2-4高频功率放大器
三、高频如图所示为一种遥控发射机的实用电路。其工作频率为28~29.7 MHz。电路分为两部分,由三极管V1和晶体等组成的电路是产生28~29.7 MHz载频信号的石英晶体振荡器;V2和L3、C4回路构成调谐功率放大器。T1是输人变压器,T2是输出变压器,它们的一次侧都接成并联谐振回路,并调谐在选定的载频上。T2的二次侧L4以天线回路为负载,放大的载频信号通过T2的互感作用送给天线发射出去。C1、C3、C5是高频旁路电容,R4是V2的负偏压电阻,C6是高频滤波电容。L5是天线加感线圈,调整L5的电感,可以使天线辐射功率最大。
四、典型中、高频功率放大芯片—MAX2611芯片
下面将介绍MAXIM公司出品的低噪声中、高频功率放大芯片MAX2611,它的电路简单,管脚图和内部结构图如下图所示。
MAX2611管脚图和内部结构图
其中1脚为中、高频功率放大器的输出端,2脚和4脚都是接地端。3脚为高频功率放大器的输人端。
一般来说,输出功率越大,器件的体积越大,因为高频功率放大器需要散热。放大器不是100%的效率,进人放大器的能量只有部分是以射频的信号形式输出,其余则以热量的形式散发出来。因此,必须要有大的散热面积,或者引人散热片帮助散热,这些都势必会增加它的体积。

高频功率放大器

高频功率放大器

高频功率放大器
高频功率放大器是指能够放大高频信号的功率的放大器。

在无线通信、雷达、医学诊断等领域,需要对高频信号进行放大,因此高频功率放大器具有重要的应用价值。

高频功率放大器通常采用半导体器件如晶体管、场效应管等作为放大元件。

不同的放大器结构和电路设计可以用于不同的频率范围和功率要求。

在设计高频功率放大器时,需要考虑以下几个关键因素:
1. 频率响应:要保证放大器在所需的频率范围内具有良好的增益和相位特性,以确保信号的准确放大。

2. 功率输出:放大器应能够提供所需的输出功率,以满足系统的功率要求。

3. 效率:高频功率放大器的效率越高,其在转换输入功率为输出功率时损耗的能量越少。

4. 线性度:在大功率输出时,要保持放大器的线性度,以避免失真和干扰。

5. 稳定性:放大器应具有良好的稳定性,以避免产生震荡或变换输出。

6. 抗干扰性:高频功率放大器应能够抵抗外部干扰,保持信号的纯净性。

高频功率放大器在无线通信系统中扮演着重要的角色,能够增强信号传输的距离和可靠性,提高信号的质量和覆盖范围。

高频电子线路阳昌汉版第3章高频功率放大器

高频电子线路阳昌汉版第3章高频功率放大器

输入匹配网络
根据晶体管的输入阻抗和信号源阻抗,设计合适的输入匹配网络 ,实现最大功率传输和最小失真。
输出匹配网络
根据负载阻抗和晶体管的输出阻抗,设计合适的输出匹配网络,实 现最大功率传输和最小失真。
阻抗变换
采用阻抗变换技术,如L型、π型或T型网络等,实现输入、输出阻 抗与信号源、负载阻抗的匹配。
04
高频功率放大器是一种电子设备 ,用于将低频信号放大为高频信 号,并且能够输出足够的功率以 驱动负载。
作用
高频功率放大器在通信、广播、 电视、雷达、导航等领域中广泛 应用,是实现信号传输和处理的 关键部件之一。
发展历程及现状
发展历程
高频功率放大器的发展经历了电子管、晶体管、集成电路等不同的技术阶段, 随着半导体技术的不断进步,高频功率放大器的性能不断提高,体积不断缩小 。
偏置电路设计
静态工作点设置
根据晶体管的特性和工作 要求,设置合适的静态工 作点,以确保放大器在正 常工作范围内。
温度补偿
采用温度补偿电路,减小 温度变化对放大器性能的 影响。
偏置电路稳定性
采用合适的偏置电路结构 和元件参数,确保偏置电 路的稳定性,避免自激振 荡和失真等问题。
输入输出匹配网络设计
模块化设计
实现不同功能模块之间 的灵活组合和配置,提 高放大器的适应性和可 扩展性。
数字化控制
采用数字信号处理技术 对放大器进行精确控制 和管理,提高性能和稳 定性。
面临的挑战及解决思路
散热问题
高频功率放大器在工作过程中会产生大量热量,需要采取有效的散 热措施,如使用高效散热器、优化散热结构等。
线性度与效率的矛盾
宽带放大技术
宽带放大原理
01

高频功率放大器设计

高频功率放大器设计

自激振荡的可能性。
高效率放大器设计
效率优化
高效率放大器设计的主要目标是减小能量损失和提高能源 利用效率。常用的效率优化技术包括采用晶体管并联、开 关电源、和漏极效率更高的放大器结构等。
热管理
高效率放大器通常会产生大量的热量,因此需要良好的热 管理系统来确保放大器的可靠性和稳定性。热管理系统可 以包括散热片、风扇、和液冷系统等。
大器、负反馈和源极跟随器等。
02
匹配网络设计
为了实现输入和输出阻抗的良好匹配,通常需要设计匹配网络。匹配网
络可以由电阻、电容和电感等无源元件构成,通过调整元件值,使输入
或输稳定性考虑
在宽带放大器设计中,需要考虑放大器的稳定性。稳定性问题通常通过
添加适当的负反馈来解决,以减小放大器在宽频范围内的非线性失真和
04
06
高频功率放大器的发展 趋势与展望
新型器件的研发与应用
新型晶体管
随着半导体技术的不断发展,新型晶 体管如GaN、SiC等在高频功率放大 器设计中得到广泛应用,具有高频率、 高效率、高功率等优点。
新型微波集成电路
微波集成电路是将多个器件集成在一 块衬底上,实现微波信号的放大、混 频、滤波等功能,具有小型化、高性 能、低成本等优势。
放大器的稳定性
频率稳定性
表示放大器在不同频率下的稳定性。
电源稳定性
表示放大器在不同电源电压下的稳定性。
温度稳定性
表示放大器在不同温度下的稳定性。
负载稳定性
表示放大器在不同负载下的稳定性。
03
高频功率放大器设计技 术
匹配网络设计
输入匹配网络
用于实现信号源与高频功率放大器之间的阻抗匹配,提高信号传输效率,减小 信号反射和能量损失。

第章高频功率放大器

第章高频功率放大器

第一章高频功率放大器概述高频功率放大器是一种专用放大器,主要用于放大高频信号以改善信号传输和处理的效果。

高频信号在传输过程中容易受到噪声和信号衰减等影响,因此需要使用高质量的放大器来解决这些问题。

高频功率放大器通常用于广播、通信、雷达和医学设备等领域。

在这些应用场合中,高频信号需要被放大到足够高的水平以保证其正常工作。

然而高频信号的放大并不是一件简单的事情,因为高频信号具有特别的特性,需要专门的技术和设备才能处理。

第二章高频功率放大器的原理高频功率放大器的工作原理类似于普通放大器,但它需要更多的细节和技巧。

以下是高频功率放大器的工作原理。

2.1 放大器基本原理放大器的基本原理是将输入信号增加到一个可控范围内的输出信号。

在高频功率放大器中,输入信号是原始高频信号,输出信号是经过放大和处理后的高频信号。

在放大器中,晶体管是主要的放大器元件,因为它们以高速工作,且具有稳定的放大特性。

2.2 高频功率放大器的原理高频功率放大器的原理类似于普通放大器的原理,主要包括功率放大和线性放大两种模式。

功率放大模式将输入信号的强度直接放大到最大,保证输出信号的功率尽可能大。

这种模式下的放大器通常用于发射机和雷达等应用场合。

线性放大模式将输入信号的强度放大到一个可以被处理的范围内,以保持输出信号的线性特性。

这种模式下的放大器通常用于接收机和信号处理器等领域。

第三章高频功率放大器的性能指标高频功率放大器的性能指标是衡量其性能和质量的标准,以下是几个常见的指标:3.1 频率响应频率响应表示放大器对于不同频率的输入信号的响应能力,它直接影响着信号的传输和处理效果。

3.2 增益增益表示输出信号与输入信号之间的增加比例,越高的增益意味着越大的信号输出。

3.3 噪声系数噪声系数是指输入信号和输出信号之间的信噪比,噪声越小,信噪比越高,放大器的效果就越好。

3.4 带宽带宽是指在特定的频率范围内,放大器能够保持其放大性能的能力,带宽越宽,放大器的应用范围就越广。

高频功率放大器原理

高频功率放大器原理

高频功率放大器原理
高频功率放大器是一种电子设备,用于将射频信号的功率放大到更高的水平。

其原理是通过增加输入信号的幅度,使其达到更高的功率输出。

高频功率放大器通常由多个级联的放大器组成,每个级别都能增加信号的幅度。

高频功率放大器的核心组件是晶体管或管子,它们具有高增益和较高的功率处理能力。

晶体管工作在饱和区,充分利用其线性增益特性。

信号经过输入阻抗匹配网络后进入晶体管的基极或栅极,然后通过晶体管的放大作用,输出到负载上。

高频放大器在输入和输出之间应用匹配网络,以确保最大功率传递。

这些匹配网络通常由L型或π型网络组成,通过调整电感和电容的参数来实现阻抗匹配。

匹配网络的设计要求与输入和输出负载的特性相匹配,以确保最大功率传输和信号衰减的最小化。

此外,高频功率放大器还需要提供稳定的偏置电路,以确保晶体管在稳定的工作条件下工作。

偏置电路通常由电阻和电容组成,它们用来提供适当的偏置电压和电流,以保持晶体管的工作在稳定的线性增益区。

总的来说,高频功率放大器通过级联的放大器和匹配网络,将输入信号的功率放大到更高的水平。

它在无线通信、雷达、卫星通信等高频应用中起着至关重要的作用。

(完整版)高频电子线路教案第三章高频功率放大器

(完整版)高频电子线路教案第三章高频功率放大器

三极管四种工作状态根据正弦信号整个周期内三极管的导通情况划分甲类:一个周期内均导通晶体管在输入信号的整个周期都导通静态I C较大,波形好, 管耗大效率低。

乙类:导通角等于180°晶体管只在输入信号的半个周期内导通,静态I C=0,波形严重失真, 管耗小效率高。

甲乙类:导通角大于180°晶体管导通的时间大于半个周期,静态I C 0,一般功放常采用。

丙类:导通角小于180°图3-4 各级电压和电流波形丙类(C类)高频功率放大器的折线分析法图3-5 3DA21静态特性曲线及其理想化cos cnm I +()cd t θωcos θ出电路 。

宽频带功率放大器没有选频作用。

因此谐波的抑制成了一个重要的问题。

为此,放大管的工作状态就只能选在非线性畸变比较小的甲类或甲乙类状态,效率较低,也就是说宽频带放大器是以牺牲效率作为代价来换取宽频带输出的 。

传输线变压器是将两根等长的导线紧靠在一起,并绕在高导磁率低损耗的磁芯上构成的。

最高工作频率可扩展到几百兆赫甚至上千兆赫。

传输线变压器与普通变压器在传输能量的方式上是不相同的,传输线变压器负载两端的电压不是次级感应电压,而是传输线的终端电压。

两根导线紧靠在一起,所以导线任意长度处的线间电容很大,且在整个线上均匀分布。

其次,两根等长导线同时绕在高μ磁芯上,所以导线上均匀分布的电感量也很大,这种电路通常又叫分布参数电路。

在传输线变压器中,线间的分布电容不影响高频能量的传输,电磁波以电磁能交换的形式在导线间介质中传播的。

u su su sR LR LR LR s R sR s (a) 结构示意图(c) 普通变压器的原理电路(b) 原理电路图u 1u 2u 1u 2u 1u 2。

高频功率放大器主要特点和应用

高频功率放大器主要特点和应用


T型
L型
我们设计的目的就是: 针对滤波、阻抗匹配两个问题,
在确定网络结构的情况下,如何 确定电路中的L、C值。
二、LC滤波匹配网络的阻抗变换 a
a
1、串、并联电路的阻抗变换
Xs
Z串=Z并 Q串=Q并
Rp Xp Rs
推导:
RS

jX S

RP jX P RP jX P
b
b
(RS RP X S X P ) j(RS X P RP XS RP X P ) 0
回路的谐振电阻 Re 变化的特性,称为放大器的负载特性。
iC
iC
iC
iC
Re
t
图3.2.2
IC0 Ic1m Vcm
Vcm Ic1m IC0
Re
欠压 临界 过压
Re
PO PD PC c
c
从图可以分析:放大器 的最佳性能是在临界状 态。其对应的谐振电阻Re 是谐振功率放大器的匹 配负载 Reopt 。
第2章 高频选频放大器
高频功率放大器主要特点和应用
高频功率放大器主要用来对高频信号进行功率放大。它主要分有: 窄带高频功率放大器和宽带高频功率放大器。
*窄带高频功率放大器是以LC谐振回路为负载的功率放大器。又称 为谐振功率放大器。其主要特点:
1、用在发射设备中。 2、对高频已调波(窄带信号)的功率放大。 3、放大器工作在丙类。 **宽带高频功率放大器是以传输线变压器为负载的功率放大器。
基波分量
用LC谐振回路滤波
在负载上得到最大的输出电压
因此,丙类谐振功率放大器的组成是:
丙类放大器+LC谐振回路
ui VBB

高频谐振功率放大器电路作用

高频谐振功率放大器电路作用

高频谐振功率放大器电路作用高频谐振功率放大器电路是一种用于放大高频信号的电路,其作用是将输入的高频信号放大到更高的功率水平,以便在无线通信、雷达、无线电广播等领域中使用。

它是一种常用的放大器电路,具有许多优点和应用场景。

高频谐振功率放大器电路采用谐振电路的原理,能够在特定频率下实现高增益的放大效果。

谐振电路是一种具有特殊频率响应特性的电路,当输入信号频率与电路的谐振频率相匹配时,其阻抗会达到最小值,从而使得信号能够得到最大的放大。

这种特性使得高频谐振功率放大器电路在高频信号放大方面具有很大的优势。

高频谐振功率放大器电路能够提供较大的输出功率。

在无线通信领域中,信号传输往往需要经过长距离的传输,因此需要将信号放大到足够的功率水平才能够保证信号的传输质量和距离。

高频谐振功率放大器电路能够将输入的低功率信号放大到较大的功率水平,从而能够满足长距离传输的需求。

高频谐振功率放大器电路还能够实现较高的效率。

在放大信号的过程中,电路会消耗一部分能量,这会导致功率损耗和效率降低。

然而,高频谐振功率放大器电路通过谐振电路的设计,能够在特定频率下实现高效的能量传输,从而提高了电路的效率。

这对于无线通信等领域来说,能够减少能源的消耗,提高系统的性能。

高频谐振功率放大器电路还具有宽频带特性。

传统的放大器电路在特定频率下具有较好的放大效果,但在其他频率下的放大效果较差。

而高频谐振功率放大器电路通过谐振电路的设计,能够在一定频率范围内实现较好的放大效果,从而适用于多种频率的信号放大需求。

高频谐振功率放大器电路在无线通信、雷达、无线电广播等领域中具有广泛的应用。

它通过谐振电路的原理,能够在特定频率下实现高增益的放大效果,并能够提供较大的输出功率和较高的效率。

同时,它还具有宽频带特性,能够适用于多种频率的信号放大需求。

因此,高频谐振功率放大器电路在现代通信技术中扮演着重要的角色,对于推动通信技术的发展具有重要意义。

高频功率放大器

高频功率放大器

第一章高频功率放大器的基本概念1.1 .概念高频功率放大器是一种用谐振系统作为匹配网络的功率放大器,一般丙类工作,主要应用在无线电发射机中,用来队在波信号或高频已调波信号进行功率放大。

顾名思义,高频功率放大器用于放大器高频信号并获得足够大的输出功率,常又称为射频功率放大器(Radio Frequency Power Amplifier)。

它广泛用于发射机、高频加热装置和微波功率源等电子设备中。

1.2.分类根据相对工作频带的宽窄不同,高频功率放大器可分为窄带型和宽带型两大类。

1. 窄带型高频功率放大器通常采用谐振网络作负载,又称为谐振功率放大器。

为了提高效率,谐振功率放大器一般工作于丙类状态或乙类状态。

2.采用传输线变压器作负载。

传输线变压器的工作频带很宽,可以实现功率合成。

1.3 特点1.采用谐振网络作负载。

2.一般工作在丙类或乙类状态。

3.工作频率和相对通频带相差很大。

4.技术指标要求输出功率大、效率高。

1.4. 技术指标1.输出功率:PO2.效率:η3.功率增益:Ap第二章高频功率放大器的原理分析利用选频网络作为负载回路的功率放大器称为谐振功率放大器。

根据放大器电流导通角θ的范围可以分为甲类、乙类、丙类及丁类等不同类型的功率放大器。

电流导通角θ愈小,放大器的效率η愈高。

如甲类功放的θ=180o,效率最高也只能达到50%,而丙类功放的θ<90%,效率η可达到80%。

由技术指标要求总效率η大于75%,显然不能只用一级宽带功放,利用丙类谐振功放和宽带高频功放组成两级功率放大器。

2.1.丙类谐振功放2.1.1.丙类谐振功放的特点1.与低频功放相比a.工作频率和相对频带不同b.负载性质不同c.工作状态不同2.与小信号谐振放大器比较a.对放大信号的要求不同b.谐振网络的作用不同c.工作状态不同图2.1 三种工作状态波形比较2.1.2.丙类谐振功放的原理1.电路原理图2.2 丙类谐振功放电路丙类功放的基极偏置电压-V BE 是利用发射极电流的直流分量I E0在射极电阻R E2上产生的压降来提供的,故称为自给偏压电路。

高频电子技术第3章高频功率放大器的应用

高频电子技术第3章高频功率放大器的应用
上一页 下一页 返回
3.1 谐振功率放大器
(2)晶体管输出电流、电压波形
当基极输入一余弦高频信号ui=ubm cos( ωt)时,基极与发 射极之间的电压为
(3. 1)
上一页 下一页 返回
3.1 谐振功率放大器
其波形如图3一3(a)所示,当ube的瞬时值大于晶体管的导通电 压UBZ时,晶体管导通,产生基极脉冲电流,由转移特性可 得集电极流过的电流或也为脉冲波形,如图3一3 (b)所示。将
图中示出动态特性曲线的斜率为负值,它的物理意义是:从 负载方面看来,放大器相当于一个负电阻,亦即它相当于交 流电能发生器,可以输出电能至负载。
上一页 下一页 返回
3.1 谐振功率放大器
(2)高频功率放大器的工作状态 功率放大器通常按晶体管集电极电流导通角θ的不同可划
分为甲类、乙类和丙类放大器。谐振功率放大器的工作状态 是指处于丙类或乙类放大时,在输入信号激励的一周内,是 否进入晶体管特性曲线的饱和区来划分,它分为欠压、临界 和过压3种状态,用动态特性能较容易地区分这3种工作状态。 图3 -8给出了丙类谐振高频功率放大器的3种不同工作状态 (欠压、临界和过压)的电压和电流波形。
处于放大区,对应的Ucm1较小,通常将这样的工作状态称为
欠压状态,对应的集电极电流为尖顶脉冲。当Ucm增大到Ucm
= Ucm2时,动态特性要变化,其A点由Ucemin与Ubemax决定相交
第3章 高频功率放大器的应用
3.1 谐振功率放大器 3.2 宽带高频功率放大器 3.3 倍频器 3.4 技能训练3:高频功率放大与发射实训
第3章 高频功率放大器
高频功率放大器的功能是用小功率的高频输入信号去控
制高频功率放大器,将直流电源供给的能量转换成大功率的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•及
上一页 下一页 返回
3.1 谐振功率放大器
• 4. 高频功率放大器的功率与效率 • 由于输出回路调谐在基波频率上,输出电路的高次谐波处于失谐状态,
相应的输出电压很小,因此,在谐振功率放大器中只需研究直流及基 波功率。放大器的输出功率Po 等于集电极电流基波分量在负载Re 上 的平均功率,即
上一页 下一页 返回
上一页 下一页 返回
3.1 谐振功率放大器
• 改变UCC 时,其工作状态和电流变化曲线如图3-12 所示。 • (2)基极调制特性。 • 若Re、Ubm、UCC 不变,只改变基极偏置电压UBB,谐振功率放大器
的工作状态将会跟随变化。当UBB 由小变到大时,管子的导通时间加 长,由于 Ubemax=UBB+Ubm,从而使集电极电流脉冲宽度和高度都增 加,并出现凹陷,放大器的工作状态为欠压→临界→过压。在欠压状 态,UBB 增大时,ic 脉冲高度增加显著,所以IC0、Ic1m和相应的Ucm 随UBB 的增加而迅速增大。在过压状态,UBB增大时,ic 脉冲高度虽 有增加,但凹陷也加深,所以IC0、Ic1m 和Ucm 增长缓慢。IC0、Ic1m 和 Ucm 随UBB 变化的特性如图3-14 所示。
压UCC、UBB 等四个参量决定的。为了阐明各种工作状态的特点和正 确地指导调试放大器,就应该了解这几个参量的变化会使放大器的工 作状态发生怎样的变化。
上一页 下一页 返回
3.1 谐振功率放大器
• 在高频功率放大器的电路和输入、输出条件确定后,即UCC、UBB、 Ubm 和输出信号幅度Ucm(或Re)一定下,ic = f (ube , uce )的关系称 为放大器的动态特性。由于是工作在丙类状态,高频功率放大器的动 态特性不是一条直线,而是折线。下面用理特性曲线来讨论动态特性 表示形式和方法。
上一页 下一页 返回
3.1 谐振功率放大器
• 其中输出匹配网络的主要要求如下。 • ① 把外接的负载阻抗(如天线的阻抗)变换为放大管所要求的负载
上一页 下一页 返回
3.1 谐振功率放大器
• 2. 滤波匹配网络 • 根据谐振功率放大器在发射机中所处位置的不同,常将谐振功率放大
器所采用的匹配网络分为输入、输出和级间耦合三种电路:① 输入 匹配网络用于信号源与谐振功率放大器之间;② 输出匹配网络用于 输出级与天线负载之间;③ 级间耦合匹配网络用于高频功率放大器 的推动级与输出级之间。这三种匹配网络都可以使用由L 和C 组成的 L 型、Π 型或T 型这样的基本网络。
上一页 下一页 返回
3.1 谐振功率放大器
• 3.1.3 谐振功率放大器电路
• 谐振功率放大器电路由功率管直流馈电电路和滤波匹配网络组成。由 于工作频率及使用场合不同,电路组成形式也各不相同。现对常用电 路组成形式进行讨论。
• 1. 直流馈电电路 • 1)集电极馈电电路 • 根据直流电源连接方式的不同,集电极馈电电路又分为串联馈电和并
上一页 下一页 返回
3.1 谐振功率放大器
• 2)基极馈电电路 • 要使放大器工作在丙类,功率管基极应加反向偏压或小于导通电压
UD 的正向偏压。基极偏置电压可采用集电极直流电源经电阻分压供 给,如图3-18(a)所示,这种方式只能提供小的正向基极偏压。基 极偏置电压也可采用自给偏压电路来获得,图3-18(b)和图3-18(c) 这两种方式只能提供反向基极偏压。
上一页 下一页 返回
3.1 谐振功率放大器
• 2. 谐振功率放大器的外部特性 • 1)负载特性 • 负载特性是指在晶体管及UCC、UBB、Ubm 一定时,改变回路谐振电
阻Re,高频功率放大器的工作状态、电流、电压、功率和效率随Re 变化的关系。由图3-8 可知,晶体管一定,是指理想化特性一定,即 gc、UBZ 不变。采用虚拟电流法可求出不同Re 对应的动态特性,可 清楚地分析负载特性。动态特性的斜率gd 与Re 的关系是
上一页 下一页 返回
3.1 谐振功率放大器
• (3)放大特性。 • 若UCC、UBB 和Re 不变,只改变输入信号幅度Ubm,谐振功率放大器
的工作状态将会跟随变化。其变化规律与改变UBB 对工作状态的影响 类似。这种放大器性能随Ubm 变化的特性称为振幅特性,也称为放大 特性。IC0、Ic1m 和Ucm 随Ubm 变化的特性如图3-16所示。
可求出集电极电流脉冲,可用图3-4 来说明。
上一页 下一页 返回
3.1 谐振功率放大器
• 2)余弦电流脉冲的分解系数 • 周期性的电流脉冲可以用傅里叶级数分解为直流分量、基波分量及各
高次谐波分量,即
上一页 下一页 返回
3.1 谐振功率放大器
• 各分量可用式(3-9)求得,即
上一页 下一页 返回
3.1 谐振功率放大器
上一页 下一页 返回
3.1 谐振功率放大器
• 2)调制特性 • (1)集电极调制特性。 • 若Re、Ubm、UBB 不变,只改变集电极直流电源电压UCC,谐振功率
放大器的工作状态将会跟随变化。当集电极供电电压UCC 由小至大变 化时,放大器的工作状态由欠压经临界转入过压,如图3-11 所示。 在欠压区内,输出电流的振幅基本上不随UCC 变化而变化,故输出功 率基本不变;而在过压区,输出电流的振幅将随UCC 的减小而下降, 输出功率也随之下降。在过压区中这种输出电压随UCC 改变而变化的 特性为集电极调幅特性。因为集电极调幅电路是依靠改变UCC 来实现 调幅过程的。
第3 章 高频功率放大器的应用
• 3.1 谐振功率放大器 • 3.2 宽带高频功率放大器 • 3.3 倍频器 • 3.4 技能训练3:高频功率放大与发射实训
返回
3.1 谐振功率放大器
• 3.1.1 谐振功率放大器的工作原理
• 1. 电路组成 • 谐振功率放大器的原理电路如图3-1 所示。该电路由高频大功率晶体
联馈电两种。
上一页 下一页 返回
3.1 谐振功率放大器
• (1)串馈电路。它指直流电源UCC、负载回路(匹配网络)、功率 管三者首尾相接的一种直流馈电电路。如图3-17(a)所示,C1、LC 为低通滤波电路,A 点为高频地电位,既阻止电源UCC 中的高频成分 影响放大器的工作,又避免高频信号在LC 负载回路以外不必要的损 耗。C1、LC 的选取原则为
下一页 返回
3.1 谐振功率放大器
• 2. 工作原理 • 谐振高频功率放大器的发射结在UBB 的作用下处于负偏压状态,当无
输入信号电压时,晶体管处于截止状态,集电极电流ic=0。当输入信 号为ui=Ubmcosɯ t 时,基极与发射极之间的电压 uBE=UBB+Ubmcosɯ t,为分析电路的工作波形,先对晶体管的特性 曲线进行折线化处理。处理后分析与计算大大简化,但误差也大,所 以实际电路工作时需要调整。
3.1 谐振功率放大器
• 集电极直流电源供给功率PE 等于集电极电流直流分量IC0 与UCC 的乘 积,即
上一页 下一页 返回
3.1 谐振功率放大器
• 3.1.2 谐振功率放大器的特性分析
• 1. 谐振功率放大器工作状态的分析 • 1)高频功率放大器的动态特性 • 高频功率放大器的工作状态是由负载阻抗Re、激励电压Ubm、供电电
管VT、LC 谐振回路和直流馈电电源组成。图中UCC、UBB 分别为集 电极和基极的直流电源电压。改变UBB可以改变放大器的工作类型, 该电路设置在丙类工作状态。RL 为实际负载,通过变压器耦合到谐 振回路。L、C 为滤波匹配网络,构成并联谐振回路,调谐在输入信 号频率上,作为晶体管集电极负载,滤除高频脉冲电流iC 中的谐波 分量,同时实现阻抗匹配。
上一页 下一页 返回
3.1 谐振功率放大器
• 动态特性应同时满足外部电路和内部电路关系式。而内部关系式是由 晶体管折线化的正向传输性决定的。对于导通段有
上一页 下一页 返回
3.1 谐振功率放大器
• 得出在ic–uce 坐标平面上的动态特性曲线(负载线或工作路)方程为
上一页 下一页 返回
3.1 谐振功率放大器
• 必须注意的是,当ube>UBZ 时,式(3-16)是直线方程;而当ube< UBZ 时,ic=0。故高频功率放大器的动态特性是一条折线。
• 若已知高频功率放大器晶体管的理想输出特性和外部电压UCC、UBB、 Ubm 和Ucm 的值,通常可以采用截距法和虚拟电流法来求出动态特性 和电流与电压的波形。
上一页 下一页 返回
3.1 谐振功率放大器
• 在gc、UBZ、UCC、UBB、Ubm 一定的条件下,cosθ、UCC 与IQ 不变, 因此导通角θ 和Q 点固定不变,则gd 的绝对值与Re 成反比。另外, Ubemax=UBB+Ubm 不变,即动态特性的A 点在Ubemax 线上随Re 的增大 而变化。如图3-9 中的A1、A2、A3 所示。
上一页 下一页 返回
3.1 谐振功率放大器
• 3. 集电极余弦电流脉冲的分解 • 1)余弦电流脉冲的表示式 • 为了研究谐振功率放大器的输出功率、管耗、效率,并指出一个大概
变化规律,可采用近似估算的方法,得到转移特性曲线。转移特性曲 线可表示为、
上一页 下一页 返回
3.1 谐振功率放大器
• 式中,gc 为折线化转移特性曲线的斜率。 • 在晶体管基极加上电压uBE=UBB+Ubmcosɯ t 后,通过转移特性曲线
上一页 下一页 返回
3.1 谐振功率放大器
• 三种状态中欠压状态的功率和效率都比较低,集电极耗散功率也较大, 输出电压随负载阻抗变化而变化,因此较少采用。但晶体管基极调幅, 需采用这种工作状态;过压状态的优点是:当负载阻抗变化时,输出 电压比较平稳且幅值较大,在弱过压时,效率可达最高,但输出功率 有所下降,发射机的中间级、集电极调幅级常采用这种状态;临界状 态的特点是输出功率最大,效率也较高,比最大效率差不了许多,可 以说是最佳工作状态,发射机的末级常设计成这种状态,在计算谐振 功率放大器时也常以此状态为例。掌握负载特性,对分析集电极调幅 电路、基极调幅电路的工作原理,对实际调整谐振功率放大器的工作 状态和指标是很有帮助的。
相关文档
最新文档