第7讲 数阵图

合集下载

数学:第七讲《树阵图》讲义

数学:第七讲《树阵图》讲义

三年级尖子班第七讲数阵图【例1】(难度★)∼分别填入下图的○中,①将19使得横、竖五个数相加的和都等于25。

②(难度★★)请你把1~7这七个自然数,分别填在下图(1)的圆圈内,使每条直线上的三个数的和都相等.应怎样填?【分析】①(1)这9个自然数+++++之和:123456+++=;78945(2)这个图形共有2条边,2×=;条边总和为25250(3)而中间数被重复计算了1−=;次,所以,中间数=50455(4)剩下8个数之和为40,所以每边剩下2数之和为÷=;40220=+++=(5)凑数,209731+++,那么可得填法如右8642上图(答案不唯一)②1~7这七个自然数的和为:123456728++++++=; 而中心数被重复计算了两次,假设中心数为a ,三条直线上的三个数总和为S ,则2823a S +=,即282a +能被3整除,所以,中心数a 的可能取值为:1、4、7;(1)当a 的取值为1时,除中心数外其它两数和为9273645=+=+=+(2)当a 的取值为4时,除中心数外其它两数和为8172635=+=+=+(3)当a的取值为7时,除中心数外其它两数和为=+=+=+7162534答案如图所示。

【例2】(难度★★)将1~6这六个自然数分别填入下图的六个○中使得三角形每条边上的三个数之和都相等【分析】(1)这6个自然数之和:12345621+++++=;(2)假设每条边上的数字和为S,重复数为a 、b 、c ,则213a b c S +++=,而3S 是3的倍数,所以21a b c +++也是3的倍数, 所以,a b c ++可能的取值为:6、9、12、15;⑶凑数,当6123a b c ++==++时,答案如图所示; 当9135a b c ++==++时,答案如图所示;当12246a b c ++==++时,答案如图所示;当15456a b c ++==++时,答 案如图所示。

趣味数学—数阵图与幻方

趣味数学—数阵图与幻方

三年级奥数--数阵图与幻方知识框架一、数阵图定义及分类:定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.三、幻方起源:幻方也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.四、幻方定义:幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216。

把1~7这七个数字填在下图中

把1~7这七个数字填在下图中

数阵图
1、把1~7这七个数字填在下图中,使得横行、竖列之和都等于15。

如果和是16、17又怎样填呢?请你试一试:
2、把1、2、
3、
4、
5、6六个数分别填入圆圈内,使横行三个数的和与竖行四个数的和分别等于11。

3、在一个魔术三角形里,把10到15这六个数分别填入圆圈中,要求三角形每条边上的三个数之和S都相等,那么S最小是多少?
4、将1、2、3、4、
5、6六个数字填入图中的小圆圈内,使每个大圆上四个数字的和都是15。

5、请你把1、2、3、4、5、
6、
7、8八个数分别填入图中,使每个五边形上的五个数的和是21。

6、把1~7这七个数填在下图中,使得每条线上三个数的和都相等,且最大。

7、将1~4四个数填在下图的四个空格中,使横行三个数的和与纵列两个数的和相等。

8、将1~7这七个数填入图中,使得每条线上三个数的和相等。

`
参考答案:
1题:(1)6、2、7与1、3、2、4、
5。

(2)中间填4,
(3)中间填6.
2题:4、1、6与1、2、3、5.
3题:从某一顶点起10、15、11、
13、12、14。

4题:中间数3、6.两边为1、5与2、
4.
5题(1)中间1、5.两边6、2、7与
3、4、8。

(2)中间2、4两边3、
5、7与1、
6、8
6题:中间数7.
7题:中间数2或4.
8题:中间数1、4、7。

数阵图PPtPPT课件

数阵图PPtPPT课件
数阵图
2021
1
例1. 把1--- 7这七个数填入下图,使每条 线段上三个○内的数的和相等.
2021
2
和都等于己于14,且数字1出现在四边形 的一个顶点上.
2021
3
2021
4
例3.把1---7这七个数填入下图中的7个○内, 使每条线段上三个数的和两个圆上的数的和 都相等 .
2021
5
2021
2021
13
例8. 如下左图有5个圆,它们相交后相互分 成几个区域,现在两个区域里已分别填上数 字10、6,请在另外七个区域里分别填进2、 3、4、5、6、7、9七个数字,使每个圈内 的数的和都是15.
2021
14
2021
15
6
例4. 将1~16分别填入下图(1)中圆圈 内,要求每个扇形上四个数之和及中间正方 形的四个数之和都为34,图中已填好八个数, 请将其余的数填完.
2021
7
2021
8
例5. 10个连续的自然数中从小到大的第三 大的数是9,把这10个数填入图中的10个方 格内,每格填一个数,要求图中3个2×2的正 方形中4个数之和相等,那么这个和最小值是
______.
2021
9
例6. 将1~8填入左下图的○内,要求按照 自然数顺序相邻的两个数不能填入有直线连 接的相邻的两个○内
2021
在下左图的七个圆圈内各填上一个数, 要求每条线上的三个数中,当中的数是两边 两个数的平均数,现在已填好两个数,求x 是多少?
2021
12

数阵图

数阵图

数阵图
一、数阵图定义及分类:
定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.
数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.
二、解题方法:
解决数阵类问题可以采取从局部到整体再到局部的方法入手:
第一步:区分数阵图中的普通点(或方格)和关键点(或方格);
第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;
第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.
简单数阵图
一、辐射型数阵图
从一个中心出发,向外作若干条射线,在每条射线上安放同样多个数,使其和是一个不变的数。

突破关键:确定中心数,多算的次数,公共的和
数和+中心数×重复次数=公共的和×线数
数和:指所有要填的数字加起来的和
中心数:指中间那数字,即重复计算那数字
重复次数:中心数多算的次数,一般比线数少1
公共的和:指每条直线上几个数的和
线数:指算公共和的线条数
二、封闭型数阵图
多边形的每条边放同样多的数,使它们的和都等于一个不变的数。

突破关键:确定顶点上的数字,公共的和
数和+重叠数的和=公共的和×边数
数和、公共的和跟辐射型数阵图一样的意思
重叠数的和:指数阵图顶角重复算的数全加起来的和
边数:指封闭图形的边数。

小学数学《数阵图》ppt

小学数学《数阵图》ppt
解答数阵图的步骤是:
① 确定所填数字的和A;
②按题目要求用直线上各数的和乘以直线 条数,求出整个图形的和B(包含重复计 算的数);
③确定重复计算的位置的数字的和B-A;
④看这个和B-A可能有哪几种组成情况; ⑤再分别试填,确定重复计算的位置的数字; ⑥根据要求确定其它位置的数字。
对于开放型数阵图要看重复使 用的数字重复计算了几次。
变式练习
将1~6这六个数分别填在下图的六个圆圈中,使 每条边上的三个圆圈内的数的和都等于10。
1
6
4
3
2
5
河边的苹果
一位老和尚,他身边聚拢着一帮虔诚的弟子。这 一天,他嘱咐弟子每人去南山打一担柴回来。弟子们 匆匆行至离山不远的河边,人人目瞪口呆。只见洪水 从山上奔泻而下,无论如何也休想渡河打柴了。无功 而返,弟子们都有些垂头丧气。唯独一个小和尚与师 傅坦然相对。师傅问其故,小和尚从怀中掏出一个苹 果,递给师傅说,过不了河,打不了柴,见河边有棵 苹果树,我就顺手把树上唯一的一个苹果摘来了。后 来,这位小和尚成了师傅的衣钵传人。
数阵图的解题方法关键是确 定重复使用的数字。
解:
1
6
5
2
4
3
小结: ➢ 像这样把一些数字按照一定的要求排成各种 各样的图形,这类问题就叫做数阵图。
➢ 因为这些数字组成的是一个三角形,所以顶 点的三个数字改变位置不会影响其结果。
➢ 解答数阵图的步骤是: ①确定所填数字的和A; ②按题目要求用直线上各数的和乘以直线条数,求出
整个图形的和B(包含重复计算的数); ③确定重复计算的位置的数字的和B-A; ④看这个和B-A可能有哪几种组成情况; ⑤再分别试填,确定重复计算的位置的数字; ⑥根据要求确定其它位置的数字。

数阵图

数阵图

数阵图一、把1~6这六个数,分别填在下图,使每条线上三个数的和都等于①9 ②10 ③11 ④12,应如何填二、把1~12这十二个数,分别填在下图的圆圈里,使每条线上四个数的和分别等于22和30三、把四、把22五、把1~9这九个数分别填在下图中的九个圆圈里,使内,外两个三角上六个数的和都等于26六、将1~11七、把1~7这七个数分别填在下图的圆圈里,使每条线上三个数的和与每个圆上三个数的和都等于12。

八、在图中空格内填上适当的数,使每行、每列,每条对角线上的数和为27。

(必须写出2种)九、将5~1455。

十、1.把3,4,5,6,7都是14。

十一、下面是一个九宫图,第一行第三列上的数是6,第二行第一列上的数是7,请你在其他位置填上适当的数,使每行、每列以及每条对角线上的三个数和为30十二、将1~25填在5×5的方格内,制成五阶幻方。

十三、将1~16填在4×46.将1~67.把1~8这89.将1,2,3,4,5,6,7,8,9这九个数,分别填入下图的九个方格中,使第二行组成的三位数是第一行组成的三位数的2倍,第三行组成的三位数是第一行组成的三位数的3倍。

10.将1~10这十个自然数分别填入图中的十个圆内,使各条线段上四个圈内数的和相等,每11.把1~8这八个数填入下图正方体的八个顶点的圆圈里,使每个面上的四个圆圈里的四个数之和都相等。

补充:幻方构造方法幻方,亦称纵横图。

台湾称为魔术方阵。

将自然数1,2,3,……n*n排列成一个n*n方阵,使得每行、每列以及两对角线上的各个数之和都相等,等于n/2*(n*n+1),这样的方阵称为幻方。

例如:把1,2,3,4,5,6,7,8,9填入3*3的格子,使得:每行、每列、两条对角线的和是15。

n是它的阶数,比如上面的幻方是3阶。

n/2*(n*n+1)为幻方的变幻常数。

数学上已经证明,对于n>2,n阶幻方都存在。

目前填写幻方的方法,是把幻方分成了三类,每类又有各种各样的填写方法。

数阵图(二)(含详细解析)

数阵图(二)(含详细解析)

1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.复合型数阵图【例 1】 由数字1、2、3组成的不同的两位数共有9个,老师将这9个数写在一个九宫格上,让同学选数,每个同学可以从中选5个数来求和.小刚选的5个数的和是120,小明选的5个数的和是111.如果两人选的数中只有一个是相同的,那么这个数是_____________.313233212223131211【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】迎春杯,中年级,决赛,3题【分析】 这9个数的和:111213212223313233++++++++10203031233198=++⨯+++⨯=()()例题精讲知识点拨教学目标5-1-3-2.数阵图由小刚和小明选的数中只有一个是相同的,可知他们正好把这9个数全部都取到了,且有一个数取了两遍.所以他们取的数的总和比这9个数的和多出来的部分就是所求的数.那么,这个数是12011119833+-=.【答案】33【例 2】 如图1,圆圈内分别填有1,2,……,7这7个数。

如果6个三角形的顶点处圆圈内的数字的和是64,那么,中间圆圈内填入的数是 。

【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】希望杯,五年级,复赛,第5题,5分【解析】 2 【答案】2【例 3】 如下图(1)所示,在每个小圆圈内填上一个数,使得每一条直线上的三个数的和都等于大圆圈上三个数的和.(1)17894【考点】复合型数阵图 【难度】3星 【题型】填空 【解析】 为叙述方便,先在每个圆圈内标上字母,如图(2),(2)a cb49817则有a+4+9=a+b+c (1)b+8+9=a+b+c (2)c+17+9=a+b+c (3)(1)+(2)+(3):(a+b+c )+56=3(a+b+c ),a+b+c=28,则 a=28-(4+9)=15,b=28-(8+9)=11,c=28-(17+9)=2解:见图.1789411215【答案】17 89411215【例 4】请你将数字1、2、3、4、5、6、7填在下面图(1)所示的圆圈内,使得每个圆圈上的三个数之和与每条直线上的三个数之和相等.应怎样填?【考点】复合型数阵图【难度】3星【题型】填空【解析】为了叙述方便,将各圆圈内先填上字母,如图(2)所示.设A+B+C=A+F+G=A+D+E=B+D+F=C+E+G=k (A+B+C)+(A+F+G)+(A+D+E)+(B+D+F)+(C+E+G)=5k,3A+2B+2C+2D+2E+2F+2G=5k,2(A+B+C+D+E+F+G)+A=5k,2(1+2+3+4+5+6+7)+A=5k,56+A=5k.,因为56+A为5的倍数,得A=4,进而推出k=12,因为在1、2、3、5、6、7中,1+5+6=7+3+2=12,不妨设B=1,F=5,D=6,则C=12-(4+1)=7,G=12-(4+5)=3,E=12-(4+6)=2.,解:得到一个基本解为:(见图)7654321【答案】7654321【例 5】在左下图的每个圆圈中填上一个数,各数互不相等,每个圆圈有3个相邻(即有线段相连的圆圈)的圆圈。

四年级下册数学课件-暑假拓展:7有趣的数阵图全国通用15张

四年级下册数学课件-暑假拓展:7有趣的数阵图全国通用15张

3例62+(:a+b把3+1c)+~d1=0如4这个1和0果个,自四所然以个数a+,b顶+填c+入点d是图4分中的,倍别使数每是。条3线、上的4数、字5和、相等8。,每条边上的和是14;
1+2+3+4+5+6+7+8+9=45
三条边顶点上的数被重复计算了,假设顶点上的三个数分别是a、b、c。
(1)如果三个顶点分别是1、2、3,每条边上的和是9;
(2)如果四6个顶点分4别是1、2 2、5、8,每条8 边上的和3是13;2
5 18
(2)如果三个顶点分别是1、3、5,每条边上的和是10;
当a=5时,每条线上的数字和=15。
例6:将1~8八个数字,分别填入下图圆圈中,使每个小三角形顶点上三个 数的和都为12。
1+2+3+4+5+6+7+8=36 中间四个点上的数被重复计算了,假设中间四个点上的数分别是a、b、c、d。 36+a+b+c+d=4个和,所以a+b+c+d是4的倍数。
1+2+3+4+5+16+7+8+98+10=55 3
17 5
(3)如果四个顶点分别是3、4、5、8,每条边上的和是14;
37 4
当a=9时5,每有条以线下上几的种数情字况和7 成=2立5。。
4
6
6
2
(2)如果三个顶点分别是1、3、5,每条边上的和是10;
1
6
5
1
6
4

小学三年级奥数_第7讲数阵图_

小学三年级奥数_第7讲数阵图_

顿悟教育三年级数学培优训练第七讲数阵图在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。

它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。

那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。

右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。

上面两个图就是数阵图。

准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。

要排出这样巧妙的数阵图,可不是一件容易的事情。

我们还是先从几个简单的例子开始。

例1把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。

同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。

下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。

分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。

也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。

因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3。

重叠数求出来了,其余各数就好填了(见右上图)。

例2把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。

分析与解:与例1不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。

所以,必须先求出这个“和”。

根据例1的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5]÷2=10。

数阵图(一)(含详细解析)

数阵图(一)(含详细解析)

1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.模块一、封闭型数阵图【例 1】 把1~8的数填到下图中,使每个四边形中顶点的数字和相等。

【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】学而思杯,3年级,第6题 【解析】例题精讲知识点拨教学目标5-1-3-1.数阵图87654321【答案】87654321【例 2】 将1~8这八个自然数分别填入下图中的八个○内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上.应如何填?(1)【考点】封闭型数阵图 【难度】2星 【题型】填空【解析】 为了叙述方便,先在各圆圈内填上字母,如下图(2).由条件得出以下四个算式:(2)h gf ed c baa+b+c=14(1)c+d+e=14 (2) e+f+g=14 (3)a+h+g=14 (4)由(1)+(3),得:a+b+c+e+f+g=28,(a+b+c+d+e+f+g+h )-(d+h )=28,d+h=(1+2+3+4+5+6+7+8)-28=8,由(2)+(4),同样可得b+f=8, 又1,2,3,4,5,6,7,8中有1+7=2+6=3+5=8.又1要出现在顶点上,d+h 与b+f 只能有2+6和3+5两种填法. 又由对称性,不妨设b=2,f=6,d=3,h=5. a ,c ,e ,g 可取到1,4,7,8若a=1,则c=14-(1+2)=11,不在1,4,7,8中,不行.若c=1,则a=14-(1+2)=11,不行. 若e=1,则c=14-(1+3)=10,不行. 若g=1,则a=8,c=4,e=7.说明:例题为封闭型数阵,由它的分析思考过程可以看出,确定各边顶点所应填的数为封闭型数阵的解题突破口.【答案】【例 3】 在如图6所示的○内填入不同的数,使得三条边上的三个数的和都是12,若A 、B 、C 的和为18,则三个顶点上的三个数的和是 。

小学数学数阵图

小学数学数阵图

解题过程
边和X3 = a+b+c+d+e+f+g+2c 14X3 = 1+2+3+4+5+6+7+2c 42 = 28+2c 14 = 2c c= 7
2020/12/9
例1 (★★)
将1~7这七 个数字, 分别填入 2 图中各个 ○内,使 每条线段 上的三个 ○内数的 和都等于 14。
1
6
7
5
4
3
先填入边和,直线上微调,满足圆圈。
【超常大挑战】(★★★★★)
a ,b ,c ,d ,e, f, g ,h ,I ,处分别填入1至9, 如果每个圆环所填的数的和都相等, 那么这个相等的和最大是多少?最少是多少?
a+e+i+c+g+2(b+d+f+h)=和×5 45+b+d+f+h=和×5 b+d+f+h最大时为6,7,8,9 此时和为15 b+d+f+h最小时为1,2,3,4 和为11 当和为15时无解,和为14有解 最大为14,最小为11
行 业 PPT模 板 : /hangye/ PPT素 材 下 载 : /sucai/ PPT图 表 下 载 : /tubiao/ PPT教 程 : /powerpoint/ Excel教 程 : /excel/ PPT课 件 下 载 : /kejian/ 试 卷 下 载 : /shiti/
圈和X2=数字和+a+b 圈和X2=36+a+b 圈和等于21 a+b=6 则a 和b有两种可能1,5和2,4

二年级奥数:数阵图

二年级奥数:数阵图

二年级奥数:数阵图渣渣兔摆棋子,它想让每行每列的三个数相加都等于 15.现在摆了 4 个,剩下的应该摆哪几个数呢?数阵图——把数按照一定的规律要求排起来方法:找准要求和填数的突破口庆祝渣渣兔的生日,微微老师给它做了一个蛋糕.现在往蛋糕上插上数字蜡烛,希望每条线上的三个数相加和都等于 12.你来帮帮我!辐射型数阵图关键点:重叠数如果所填的数是连续数,可以尝试重叠数为最大的、最小的、中间数其余的:大手拉小手请把 1、2、3、4、5、6、7 这七个数分别填入圆圈里,使每条直线上的三个数相加的和都是 12.请把 1~9 这九个数字分别填入圆圈内,使每条横线、竖线、斜线上的三个数相加的和都是12.请你把 1、2、3、5、7、9、11 这 7 个数分别填入圆圈里,使每条直线上的三个数相加的和都是 14.辐射型数阵图(一个重叠点)如果所填的数不是连续数,用拆数法,将总数拆成几个数相加的形式.请你把 1、2、3、4、5、7 分别填入圆圈里,使每一个大椭圆上的四个数之和等于 13.封闭型数阵图(多个重叠数)方法:有序的拆数(重复的数就是数阵图中的重叠数)数阵图,关键点是找出重叠数1、辐射型——连续的数:尝试法:头、尾、中间数;其余大手拉小手不连续的数:拆数法2、封闭型——拆数法【练习 1】在圆圈内填上适当的数,使每条线上的三个数之和都为 12.你能做到吗?【练习 2】把 4~8 这 5 个数填入圆圈中(左下图),使两条直线上三个数之和等于 18.【练习 3】将 1-7 这 7 个数填入右上图中,使每条线上的数之和都未 14.【练习 4】请将 3、4、5、6、7、8、9 填入下面的圆圈里,并使每条直线上三个数字之和都相等.(同一图片中不能出现相同的数;不同图片中数字可以重复使用.)【练习 5】请你把 1、2、3、4、5、6 分别填入圆圈里,使每一个大椭圆上的四个数之和等于 14.。

四年级奥数之《数阵图》 教参+配套练习 覆盖面广,类型全面,针对性强,可直接下载

四年级奥数之《数阵图》 教参+配套练习 覆盖面广,类型全面,针对性强,可直接下载

数阵图
数阵图,就是把一些数按照一定的规则,填在某一特定图形的规定位置上,这种图形,我们称它为数阵图。

数阵图的种类繁多、绚丽多彩,这里我们将主要介绍两种数阵图,即封闭型数阵图和开放型数阵图。

解答这类问题时,常用以下知识:
等差数列的求和公式:总和﹦(首项+末项)x项数÷2
计算中的奇偶问题:
奇数±奇数﹦偶数
偶数±偶数﹦偶数
奇数±偶数﹦奇数
10以内数字有如下关系:
(1)1+9=2+8=3+7=4+6
(2)1+8=2+7=3+6=4+5
(3)2+9=3+8=4+7=5+6
在解答这类问题时,要善于确定所求的和与关键数字间的关系式,用试验的方法,找到相等的和与关键数字;要会对基本解中的数进行适当调整,得到其他的解,从而培养自己的观察能力、思维的灵活性和严密性。

例1:
把1,2,3,4,5,6这六个数填在下图的6个○中,使每条边上的三个数之和都等于9。

例2:
把1—12这十二个数,分别填在下图中正方形四条边上的十二个○内,使每条边上四个○内数的和都等于22,试求出一个基本解。

随堂练习1
1、(1)将5—10这六个数字分别填入左下图中三角形三条边的六个○内,使每条边上三个○内数的和都是24。

四年级奥数教程第7讲有趣的数阵图ppt课件

四年级奥数教程第7讲有趣的数阵图ppt课件

为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
随堂练习2
如下图, 将数字1~6填入图中的小圆圈内,使每 个大圆上4个数字和都是16.
开放型(辐射型)数阵图
例4:把1-7这7个数分别填入下图中的7个圆圈内, 使每条线段上的三个圆圈内各数之和都相等。
数学游戏千姿百态,种类很多。在前面我们
已经学习了找规律、魔牌二十四、算式谜等。下 面我们再来学习一种很有趣的填数游戏—数阵图。 它的特点是把一些数字按照一定的要求,填入各 种各样的图形中。数阵图主要有封闭型、开放型 (也称辐射型)和复合型。它的填写需要有一定 的技巧,要求同学们必须有敏锐的观察能力,灵 活的思维能力才能找到答案。
解:此题解答的关键是确定正方形4个顶点上的数。
1 11 6 4
12
5
7
10
2983
像以上介绍的各条边相互连接的数阵图叫做封闭
型数阵图。对于封闭型数阵图,解题的关键是先确定 顶点处的数字,然后再根据条件要求试验找出正确的 解。另外,数阵的解,多数都是不唯一的,如果题目 没有特别要求,只要求出一个基本解即可。
使竖列和横行口内数的和相等。
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
(2)如下图,把数字1,3,4,5,6分别填入图中 三角形3条边上的5个○内,使每条边上3个○内 数的和等于9.
例3:把1-12这12个数,分别填在下图正方形的四条 边上的12个 内,使每条边上4个 内数的和都等于 22,试求出一个基本解。
解:解答本题的关键是确定中心 内的数,另外 还知道每条线段上3个数的和是几?经试验,可 得出3个基本解。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【知识要点】
数阵图就是将一些数按照一定要求排列而成的某种图形,有时简称数阵。

常见的数阵图有以下三种:
1.有一种数阵图,它们的特点是从一个中心出发,向外作了一些射线,我们把这种数阵图叫做辐射型数阵图。

填辐射型数阵图的关键是确定中心数以及每条线段上的几个数的和,然后通过对各数的分析,进行试验填数求解。

2.有一种数阵图,它的各边之间相互连接,形成封闭图形,我们称它们为“封闭型数阵图”。

填这样的图形,主要是顶点数字,抓住条件提供的关系式,进行分析,用试验的方法确定顶点数以及各边上的数字之和,最后填出数阵图。

3.有的数阵图既有辐射型数阵图的特点,又有封闭型数阵图的要求,所以叫做“复合型数阵图”。

我们在思考数阵图问题时,首先要确定所求的和与关键数间的关系,再用试验的方法,找到相等的和
与关键数字。

数阵图的解题关键是找”重复数”。

将1~7这七个数分别填入左下图中的○里,使每条直线上的三个数之和都等于12。

【例2】
把1~7这七个数分别填入下图的○内,使每条线段上三个○内数的和相等。

【例3】
将2~9这八个数分别填入下图的○里,使每条边上的三个数之和都等于18。

【例4】
唐僧师徒西天取经路过数字山,山中住着一个数学大王告诉他们,只有他们能1,2,3,4,5,6 六个数字填入下图中的小圆圈内,使每个大圆上四个数字的和都是l6才允许他们通过,这可急坏了师徒四人,你能解决这个问题吗?
【例5】
【超常】将1~8填入下图的八个○中,使得每条直线上的四个数之和与每个圆周上的四个数之和都相等。

【例5】
【超常2】将自然数1~7填入右图的七个○中,使得横、竖、斜的每条直线上的三个数之和都相等。

【例5】
【超常】如图 “好、朋、友、伙、伴、帮、手”这7个汉字分别代表1~7这7个数字。

已知3条直线上的3个数相加,2个圆周上的3个数相加,所得的5个和相同。

那么,“好”字代表多少?

帮伴




【例6】
【超常】(希望杯培训题)小老鼠打洞,撞到一面墙上有一个奇怪的问题挡住了它的去路,问题是这样的:请分别将1,2,4,6这4个数填在下图的各空白区域内,使得每个圆圈里4个数的和都等于15,快点帮帮小老鼠吧。

5
7 3
【例6】
【超2】将1~8填入下图的八个○中,使得每条边上的三个数之和都等于15。

【例6】
【超1】将2~9这八个数分别填入下图的○里,使每条边上的三个数之和都等于18。

9
874
9
86
5。

相关文档
最新文档