2021年高中数学第一章统计相关性教案北师大版必修3

合集下载

北师大版高中数学必修3第1章《平均数、中位数、众数、极差、方差、标准差》练习

北师大版高中数学必修3第1章《平均数、中位数、众数、极差、方差、标准差》练习

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.下列说法正确的是( )A .在两组数据中,平均值较大的一组方差较大B .平均数反映数据的集中趋势,方差则反映数据离平均值的波动大小C .方差的求法是求出各个数据与平均值的差的平方后再求和D .在记录两个人射击环数的两组数据中,方差大的表示射击水平高 【解析】 平均值的大小与方差的大小无任何联系,故A 错,由方差的公式s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]知C 错.对于D ,方差大的表示其射击环数比较分散,而非射击水平高,故D 错.【答案】 B2.一个样本数据按从小到大的顺序排列为13,14,19,x,23,27,28,31,其中位数为22,则x 为 ( )A .21B .22C .20D .23【解析】 由中位数的概念知x +232=22,所以x =21. 【答案】 A3.(2016·长沙四校联考)为了了解某同学的数学学习情况,对他的6次数学测试成绩(满分100分)进行统计,作出的茎叶图如图1-4-3所示,则下列关于该同学数学成绩的说法正确的是( )图1-4-3A .中位数为83B .众数为85C .平均数为85D .方差为19【解析】易知该同学的6次数学测试成绩的中位数为84,众数为83,平均数为85.【答案】 C4.为了了解我国13岁男孩的平均身高,从北方抽取了300个男孩,平均身高为1.60 m;从南方抽取了200个男孩,平均身高为1.50 m.由此可推断我国13岁男孩的平均身高为()A.1.54 m B.1.55 mC.1.56 m D.1.57 m【解析】x=300×1.60+200×1.50300+200=1.56(m).【答案】 C5.为了普及环保知识,增强环境意识,某大学随机抽取30名学生参加环保知识测试,得分(10分制)如图1-4-4所示,假设得分值的中位数为m e,众数为m0,平均值为x,则()图1-4-4A.m e=m0=xB.m e=m0<xC.m e<m0<xD.m0<m e<x【解析】由图知30名学生的得分情况依次为2个人得3分,3个人得4分、10个人得5分、6个人得6分、3个人得7分,2个人得8分、2个人得9分、2个人得10分,中位数为第15、16个数的平均数,即m e=5+62=5.5,5出现次数最多,故m0=5.x=130(2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×10)≈5.97.于是m 0<m e <x . 【答案】 D 二、填空题6.某年级举行校园歌曲演唱比赛,七位评委为学生甲打出的演唱分数的茎叶图如右图1-4-5所示,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为________.图1-4-5【解析】 由茎叶图可知,学生甲的演唱分数分别为79,83,84,86,84,88,93,去掉一个最高分和一个最低分后,得分如下:83,84,84,86,88,则平均数为85,方差为s 2=15×[(-2)2+(-1)2+(-1)2+12+32]=3.2.【答案】 85,3.27.一组数据的方差为s 2,将这一组数据中的每个数都乘2,所得到的一组新数据的方差为________.【解析】 每个数都乘以2,则x =2x , S =1n [(2x 1-2x )2+…+(2x n -2x )2] =4n [(x 1-x )2+…+(x n -x )2]=4s 2. 【答案】 4s 28.由正整数组成的一组数据x 1,x 2,x 3,x 4其平均数和中位数都是2,且标准差等于1,则这组数据为________(从小到大排列).【解析】 不妨设x 1≤x 2≤x 3≤x 4且x 1,x 2,x 3,x 4为正整数. 由条件知⎩⎪⎨⎪⎧x 1+x 2+x 3+x 44=2,x 2+x 32=2,即⎩⎨⎧x 1+x 2+x 3+x 4=8,x 2+x 3=4,又x1、x2、x3、x4为正整数,∴x1=x2=x3=x4=2或x1=1,x2=x3=2,x4=3或x1=x2=1,x3=x4=3. ∵s=1 4[](x1-2)2+(x2-2)2+(x3-2)2+(x4-2)2=1,∴x1=x2=1,x3=x4=3.由此可得4个数分别为1,1,3,3.【答案】1,1,3,3三、解答题9.为了了解市民的环保意识,某校高一(1)班50名学生在6月5日(世界环境日)这一天调查了各自家庭丢弃旧塑料袋的情况,有关数据如下表:(1)求这50(2)求这50户居民每天丢弃旧塑料袋的标准差.【解】(1)平均数x=150×(2×6+3×16+4×15+5×13)=18550=3.7.众数是3,中位数是4.(2)这50户居民每天丢弃旧塑料袋的方差为s2=150×[6×(2-3.7)2+16×(3-3.7)2+15×(4-3.7)2+13×(5-3.7)2]=150×48.5=0.97.所以标准差s≈0.985.10.(2014·广东高考)某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.【解】 (1)这20名工人年龄的众数为:30;这20名工人年龄的极差为:40-19=21.(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图如下:(3)这20名工人年龄的平均数为:(19+28×3+29×3+30×5+31×4+32×3+40)÷20=30;所以这20名工人年龄的方差为:120(30-19)2+320(30-28)2+320(30-29)2+520(30-30)2+420(30-31)2+320(30-32)2+120(30-40)2=12.6.[能力提升]1.(2015·山东高考)为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图1-4-5所示的茎叶图.考虑以下结论:图1-4-5①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲地该月14时的平均气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的平均气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的序号为()A.①③B.①④C.②③D.②④【解析】甲地该月14时的气温数据分布在26和31之间,且数据波动较大,而乙地该月14时的气温数据分布在28和32之间,且数据波动较小,可以判断结论①④正确,故选B.【答案】 B2.对“小康县”的经济评价标准:①年人均收入不小于7 000元;②年人均食品支出不大于收入的35%.某县有40万人口,年人均收入如下表所示,年人均食品支出如图1-4-6所示.则该县()图1-4-6A.是小康县B.达到标准①,未达到标准②,不是小康县C.达到标准②,未达到标准①,不是小康县D.两个标准都未达到,不是小康县【解析】 由图表可知年人均收入为(2 000×3+4 000×5+6 000×5+8 000×6+10 000×7+12 000×5+16 000×3)÷40=7 050(元)>7 000元,达到了标准①;年人均食品支出为(1 400×3+2 000×5+2 400×13+3 000×10+3 600×9)÷40=2 695(元),则年人均食品支出占收入的2 6957 050×100%≈38.2%>35%,未达到标准②.所以不是小康县.【答案】 B3.已知样本9,10,11,x ,y 的平均数为10,方差为4,则xy =________. 【解析】 由题意得⎩⎪⎨⎪⎧9+10+11+x +y5=10,15[(9-10)2+(10-10)2+(11-10)2+(x -10)2+(y -10)2]=4.化简得x +y =20, ① (x -10)2+(y -10)2=18, ② 由①得x 2+y 2+2xy =400, ③ 代入②化简得xy =91. 【答案】 914.某校甲班、乙班各有49名学生,两班在一次数学测验中的成绩(满分100分)统计如下表:(1)甲班的小刚回家对妈妈说:“昨天的数学测验,全班平均79分,得70分的人最多,我得了85分,在班里算是上游了!”(2)请你根据表中数据,对这两个班的测验情况进行简要分析,并提出教学建议.【解】 (1)由中位数可知,85分排在第25名之后,从名次上讲,85分不算是上游.但也不能单以名次来判断学习成绩的好坏,小刚得了85分,说明他对本阶段的学习内容掌握较好.(2)甲班学生成绩的中位数为87分,说明高于或等于87分的学生占一半以上,而平均分为79分,标准差很大,说明低分也多,两极分化严重,建议对学习有困难的同学多给一些帮助;乙班学生成绩的中位数和平均分均为79分,标准差小,说明学生成绩之间差别较小,成绩很差的学生少,但成绩优异的学生也很少,建议采取措施提高优秀率.。

最新北师大版高中数学必修三第一章统计 估计总体的分布

最新北师大版高中数学必修三第一章统计 估计总体的分布

§5 用样本估计总体 5.1 估计总体的分布学习 目标1.理解什么是频率分布表、频率分布直方图、频率折线图.(数学抽象)2.会列频率分布表,会画频率分布直方图和频率折线图,能根据频率分布直方图解决问题.(数据分析、直观想象)3.了解用样本估计总体的意义.(数学抽象)导思 1.频率分布直方图纵轴的含义是什么?2.频率分布直方图的制作步骤是什么?3.如何画频率折线图?1.频率分布表和频率分布直方图 (1)频率分布表编制的方法步骤:(2)频率分布表与频率分布直方图有什么不同?提示:频率分布表能使我们清楚地知道数据分布在各个小组的个数,而频率分布直方图则是从各个小组数据在样本容量中所占比例大小的角度来表示数据分布的规律.2.频率折线图(1)在频率分布直方图中,按照分组原则,在左边和右边各加一个区间,从所加的左边区间的中点开始,用线段依次连接各个矩形的顶端中点,直至右边所加区间的中点,就可以得到一条折线,我们称之为频率折线图.(2)当样本容量不断增大时,样本中落在每个区间内的样本数的频率会越来越稳定于总体在相应区间内取值的概率.也就是说,一般地,样本容量越大,用样本的频率分布去估计总体的分布就越精确.(3)随着样本量的增大,所划分的区间数也可以随之增多,而每个区间的长度则会相应随之减小,相应的频率折线图就会越来越接近于一条光滑曲线.频率分布表、频率分布直方图与频率折线图各有什么优缺点?提示:①频率分布表:优点:频率分布表在数量表示上比较确切;缺点:不够直观、形象,分析数据分布的总体趋势不太方便;②频率分布直方图:优点:频率分布直方图能非常直观地表明数据分布的形状,使我们能够看到在分布表中看不清楚的数据模式;缺点:从直方图本身得不出原始的数据内容,也就是说,把数据表示成直方图后,原有的具体数据信息就被抹掉了;③频率折线图:优点是它反映了数据的变化趋势.缺点:由图本身得不到原始的数据信息.1.辨析记忆(对的打“√”,错的打“×”)(1)频率分布直方图中的纵坐标指的是频率的值.()(2)频率分布直方图的宽度没有实际意义.()(3)频率分布直方图中各小矩形的面积之和可以不为1.()(4)在画频率折线图时,可以画成与横轴相连.()提示:(1)×.纵坐标指的是频率与组距的比值.(2) ×.频率分布直方图的宽度表示组距.(3)×.各小矩形的面积之和一定为1.(4) √.为了方便看图,一般习惯把频率折线图画成与横轴相连,所以横轴上左右两端点没有实际的意义.2.已知一个容量为40的样本,把它分成6组,第一组到第四组的频数分别为5,6,7,10,第五组的频率是0.2,那么第六组的频数是________,频率是________. 【解析】第五组的频数为0.2×40=8.所以第六组的频数为40-5-6-7-10-8=4.频率为440=0.1.答案:40.13.200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,时速在[50,60)内的汽车有________.【解析】因为小长方形的面积即为对应的频率,时速在[50,60)内的频率为0.3,所以有200×0.3=60(辆).答案:60辆4.(教材例题改编)一个容量为n的样本,分成若干组,已知某组的频数和频率分别为50和0.25,则n=________.【解析】由题意得50n=0.25,所以n=200.答案:200类型一频率分布直方图的绘制(数据分析、直观想象)【典例】1.频率分布直方图中,小矩形的面积等于()A.组距B.频率C.组数D.频数2.调查某校高一年级男生的身高,随机抽取40名高三男生,实测身高数据(单位:cm)如下:171 163 163 166 166 168 168 160 168 165 171 169 167 169 151 168 170 168 160 174 165 168 174 159 167 156 157 164 169 180 176 157 162 161 158 164 163 163 167 161(1)作出频率分布表;(2)画出频率分布直方图.【思路导引】1.根据频率直方图中小矩形的几何意义,即可求解. 2.极差=180-151=29,组距为3,可分为10组.【解析】1.选B.根据小矩形的宽及高的意义,可知小矩形的面积为一组样本数据的频率.2.(1)①求极差:从数据中可看出,最大值是180,最小值是151,故极差为180-151=29.②确定组距与组数:取3为组距,则极差组距 =293 =923 ,故可将样本数据分成10组.③第一组起点定为150.5,组距为3,这样分出10组:[150.5,153.5),[153.5,156.5),[156.5,159.5),[159.5,162.5),[162.5,165.5),[165.5,168.5),[168.5,171.5),[171.5,174.5),[174.5,177.5),[177.5,180.5]. ④列频率分布表174.5~177.510.025177.5~180.510.025(2)画频率分布直方图如图所示:绘制频率分布直方图的注意事项(1)计算极差,需要找出这组数的最大值和最小值,当数据很多时,可选一个数当参照.(2)将一批数据分组,目的是要描述数据分布规律,要根据数据多少来确定分组数目,一般来说,数据越多,分组越多.(3)将数据分组,决定分点时,一般使分点比数据多一位小数,并且把第一组的起点稍微减小一点.(4)列频率分布表时,可通过逐一判断各个数据落在哪个小组内,以“正”字确定各个小组内数据的个数.(5)画频率分布直方图时,纵坐标表示频率与组距的比值,一定不能标成频率.1.有一个容量为45的样本数据,分组后各组的频数如下:(12.5,15.5],3;(15.5,18.5],8;(18.5,21.5],9;(21.5,24.5],11;(24.5,27.5],10;(27.5,30.5],4.由此估计,不大于27.5的数据约为总体的()A.91% B.92% C.95% D.30%【解析】选A.不大于27.5的样本数为:3+8+9+11+10=41,所以约占总体百分比为4145×100%≈91%.2.某中学同年级40名男生的体重数据如下(单位:千克):616059595958585757575756 565656565656555555555454 54545353525252525251515150504948列出样本的频率分布表,画出频率分布直方图. 【解析】①计算极差:61-48=13(千克); ②决定组距与组数,取组距为2,因为132 =612 ,所以共分7组;③决定分点,使分点比数据多一位小数.并把第1小组的分点减小0.5,即分成如下7组:47.5~49.5,49.5~51.5,51.5~53.5,53.5~55.5,55.5~57.5,57.5~59.5,59.5~61.5.④列出频率分布表如下:分组(Δx i ) 频数(n i ) 频率(f i ) 47.5~49.5 2 0.05 49.5~51.5 5 0.125 51.5~53.5 7 0.175 53.5~55.5 8 0.20 55.5~57.5 11 0.275 57.5~59.5 5 0.125 59.5~61.5 2 0.05 合计401.00⑤作出频率分布直方图如下:3.某花木公司为了调查某种树苗的生长情况,抽取了一个容量为100的样本,测得树苗的高度(cm)数据的分组及相应频数如下:107~109,3株;109~111,9株;111~113,13株;113~115,16株;115~117,26株;117~119,20株;119~121,7株;121~123,4株;123~125,2株.(1)列出频率分布表;(2)画出频率分布直方图;(3)据上述图表,估计数据在109~121范围内的可能性是百分之几.【解析】(1)频率分布表如下:分组频数频率累积频率107~10930.030.03109~11190.090.12111~113130.130.25113~115160.160.41115~117260.260.67117~119200.200.87119~12170.070.94121~12340.040.98123~12520.02 1.00合计100 1.00(2)频率分布直方图如下:(3)由上述图表可知数据落在109~121范围内的频率为:0.94-0.03=0.91,即数据落在109~121范围内的可能性是91%.类型二频率折线图的画法及应用【典例】从高三学生中抽取50名同学参加数学竞赛,成绩的分组及各组的频数如下(单位:分):40~50,2;50~60,3;60~70,10;70~80,15;80~90,12;90~100,8.(1)列出样本的频率分布表;(2)画出频率分布直方图及频率折线图; (3)估计成绩在60~90分的学生比例.【思路导引】画频率分布直方图和折线图⇒制作好频率分布表⇒纵坐标表示频率与组距的比值.【解析】(1)样本的频率分布表如下:成绩分组(Δx i ) 频数(n i ) 频率(f i ) f i Δx i 40~50 2 0.04 0.004 50~60 3 0.06 0.006 60~70 10 0.2 0.02 70~80 15 0.3 0.03 80~90 12 0.24 0.024 90~10080.160.016(2)频率分布直方图及频率折线图如图所示:(3)成绩在60~90的频率为1-0.04-0.06-0.16=0.74, 所以可估计成绩在60~90分的学生比例为74%.本例条件不变,估计成绩在50~80分的学生的比例.【解析】成绩在50~60分的学生的频数为3,在60~70的学生的频数为10,在70~80分的学生的频数为15,所以成绩在50~80分的学生的频数为28,占总体的2850 =1425 .频率折线图的作法及应用(1)作法:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.(2)应用:频率折线图也是用一个单位长度表示一定的数量,但是,它是根据数量的多少在图中描出各个点,然后把各个点用线段顺次连接成的折线,因此,它不但可以表现出数量的多少,而且能够以折线的起伏,清楚而直观地表示出数量的增减变化的情况.提醒:画图时,横轴和纵轴的单位可不一致.有一个容量为100的某校毕业生起始月薪的样本,数据的分组及各组的频数如下:起始月薪(百元)[13,14)[14,15)[15,16)[16,17) 频数7112623起始月薪(百元)[17,18)[18,19)[19,20)[20,21]频数1584 6(1)列出样本的频率分布表;(2)画出频率分布直方图和频率折线图;(3)根据频率分布估计该校毕业生起始月薪低于2 000元的频率.【解析】(1)样本的频率分布表为起始月薪(百元)频数频率[13,14)70.07[14,15)110.11[15,16)260.26[16,17)230.23[17,18)150.15[18,19)80.08[19,20)40.04[20,21]60.06总计100 1.00(2)频率分布直方图和频率折线图如图.(3)起始月薪低于2 000元的频率为0.07+0.11+…+0.04=0.94,故起始月薪低于2 000元的频率的估计值是0.94.【补偿训练】某学校随机抽取部分新生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80), [80,100].(1)求直方图中x的值;(2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,请估计学校1 000名新生中有多少名学生可以申请住宿.【解析】(1)由(x+0.012 5+0.006 5+0.003×2)×20=1,解得x=0.025.(2)上学所需时间不少于40分钟的学生的频率为:(0.006 5+0.003×2)×20=0.25,估计学校1 000名新生中有1 000×0.25=250名学生可以申请住宿.答:估计学校1 000名新生中有250名学生可以申请住宿.类型三用样本分布估计总体分布【典例】1.(2021·全国甲卷)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间2.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少;(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.【思路导引】1.利用频率分布直方图,计算出低于60分的人数的频率p,利用频数除以相应的频率p 得总人数.2.利用110次以上(含110次)的矩形面积除以所有的矩形面积之和,即可估计高一学生的达标率.【解析】1.选C. 低于4.5万元的比率估计为0.02×1+0.04×1=0.06=6%,故A 正确;不低于10.5万元的比率估计为(0.04+0.02×3)×1=0.1=10%,故B 正确;平均值为:(3×0.02+4×0.04+5×0.1+6×0.14+7×0.2+8×0.2+9×0.1+10×0.1+11×0.04+12×0.02+13×0.02+14×0.02)×1=7.68万元,故C 不正确;4.5万元到8.5万元的比率为:0.1×1+0.14×1+0.2×1+0.2×1=0.64=64%,故D 正确.2.(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此,第二小组的频率为:42+4+17+15+9+3=0.08. 又因为第二小组频率=第二小组频数样本容量, 所以样本容量=第二小组频数第二小组频率=120.08 =150. (2)由图可估计该学校高一学生的达标率约为17+15+9+32+4+17+15+9+3×100%=88%. (3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.用样本估计总体的常用方法(1)用频率分布表估计总体分布.根据样本数据可以制作频率分布表,利用频率分布表中的数据,如各小组的频数、频率,可以对总体中的有关量进行估计.(2)用频率分布直方图估计总体分布.根据样本数据绘制出的频率分布直方图具有直观的特点,可以直接判断出样本中数据的分布特点和变化趋势与规律,并由此对总体进行估计.(3)用频率折线图估计总体分布.由样本频率分布直方图可以绘制出频率折线图,且样本容量越大,分组的组距不断缩小,那么折线图就越接近于总体分布,从而由频率折线图对总体估计就越精确.某幼儿园根据部分同年龄段女童的身高数据绘制了频率分布直方图,其中身高的变化范围是[96,106](单位:厘米),样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106].(1)求出x 的值;(2)已知样本中身高小于100厘米的人数是36,求出样本容量N 的数值;(3)根据频率分布直方图提供的数据,求出样本中身高大于或等于98厘米并且小于104厘米的学生数.【解析】(1)由题意可知:(0.050+0.100+0.150+0.125+x )×2=1,解得:x =0.075.(2)设样本中身高小于100厘米的频率为p 1,所以,p 1=(0.050+0.100)×2=0.30,而p 1=36N ,所以N =36p 1=360.30 =120. (3)样本中身高大于或等于98厘米并且小于104厘米的频率为p 2=(0.100+0.150+0.125)×2=0.75,所以身高大于或等于98厘米并且小于104厘米的学生数n =p 2N =120×0.75=90.。

高中数学 第一章第九节《最小二乘估计》教学课件 北师大版必修3

高中数学 第一章第九节《最小二乘估计》教学课件 北师大版必修3

C. y=2x+1
D. y=x-1
解析:因为x 1 2 3 4 2.5, y 3.5而回归直线必过点 4
(x, y),所以把点2.5,3.5代入各个选项检验知. 14
小结:
1.如何求线性回归方程(公式法) 2.线性回归方程系数的含义 3.线性回归方程的应用
15
1.设一个回归方程为y=3-1.2x,则变量x增加一个单位时
( A)
A.y平均增加1.2个单位 B.y平均增加1.2个单位
C.y平均减少3个单位
D.y平均减少3个单位
2.在一次实验中,测得(x,y)的四组值为(1,2),(2,3),
4),(4,5),则y与x之间的回归直线方程为( )A
A.y=x+1 B. y=x+2
4 4.41 24.92
2.38 2.685 3.008 3.315 3.654 3.99 4.32 4.641 27.993
b
x1y1 xn yn nx y
x12
xn2
nቤተ መጻሕፍቲ ባይዱ
2
x
a y bx
0.733333333 0.694166667
回归方程预测值
2.050833333
13
课堂练习:
高中数学必修3第一章第 九节《最小二乘估计》教
学课件
1
最小二乘估计
2
问题导入:
上一节课我们学习了人的身高与右手 一拃长之间近似存在着线性关系,这种 线性关系可以有多种方法来进行刻画, 那么用什么样的线性关系刻画会更好? 这就是本节课我们要讨论的问题。
最小二乘估计
3
问题1:
用什么样的线性关系刻画会更 好一些?
想法:保证这条直线与所有点都近 (也就是距离最小)。

北师大版必修3高中数学1.1从普查到抽样课件

北师大版必修3高中数学1.1从普查到抽样课件


“火柴能划燃吗?”爸爸问. “都能划燃.” “你这么肯定?” 儿子递过一盒划过的火柴,兴奋地说:“我每 根都试过啦.” 问:在这则笑话中,儿子采用的是什么抽查方 式? 这种抽查方式好不好?还可采用什么方法抽查? 通过本节的学习,自然会回答这些问题.
1.普查 普查是为了了解总体的一般情况,对所有的对 象都无一例外地进行调查,也称整体调查与全 面调查.当普查的对象________时,普查无 很少 疑是一项非常好的调查方式.当普查的对象 很多 ________时,普查的工作量就很大,要耗费 大量的人力、物力与财力, 并且组织工作繁重、 时间长.更值得注意的是,在很多情况下,普 查工作难以实现.
2.抽样调查 一部分 从调查对象中按照一定的方法抽取 ________, 进行调查或观测,获取数据,并以此对调查对 象的某项指标作出推断,这就是抽样调查.其 全体 中,调查对象的 ________称为总体,被抽取 一部分 的________称为样本.
调查方法 3.抽样调查与普查辨析 普查 抽样调查 特点 1.所取得的资 1.迅速、及时 料更加全面、 2.节约人力、物力 系统 优点 和财力,对个 2.调查某时段 体信息的了解 总体的数量 更详细 耗费大量的人 获取的信息不够全 缺点 力、物力和 面、系统 财力
成才之路 · 数学
北师大版 · 必修3
路漫漫其修远兮 吾将上下而求索
第一章
统 计
第一章
§1 从普查到抽样 §1 从普查到抽样
1
课前自主预习
3
易错疑难辨析
2
课堂典例讲练
4
课后强化作业
பைடு நூலகம்
课前自主预习
一天,爸爸叫儿子去买一盒火柴,临出门前, 爸爸嘱咐儿子要买能划燃的火柴.儿子拿着钱 出门了,过了好一会儿,儿子才回到家.

北师大版必修3高中数学1.3统计图表课件

北师大版必修3高中数学1.3统计图表课件

• (3)扇形统计图:扇形统计图中的圆代表总体, 圆中的各个扇形分别代表总体中的不同部分, 各部分 扇形的大小反映部分占总体的百分比的大 数量同总数 小.通过扇形统计图可以很清楚地表示 总体分成部分较多 ________ ______________ 之间的关系,特 别适合表示总体的各个部分所占比例的问题, 但不适用于__________________的问题.
成才之路 · 数学
北师大版 · 必修3
路漫漫其修远兮 吾将上下而求索
第一章
பைடு நூலகம்统 计
第一章
§3 统计图表
1
课前自主预习
3
易错疑难辨析
2
课堂典例讲练
4
课后强化作业
课前自主预习
• 同学们看过电影《国家宝藏》吗?电影中有 一份藏宝图,藏宝图标明了寻找宝藏的路线, 它包含了宝藏地点的所有信息,为寻找宝藏 提供了方便.随机抽样过程中抽取出了大量 宝贵的数据信息,这些数据信息中也同样蕴 藏着总体的“宝藏”.我们可以将这些数据 信息用图表的形式表示出来.这就要用到统 计图表.
• • • •
A.5月1日 B.5月2日 C.5月3日 D.5月5日 [答案] D [解析] 将每日的温差由表中数据代入计算可 得.
• 3.小明把自己一周的支出情况,用如图所示 的统计图来表示,下列说法正确的是( )
• A.从图中可以直接看出各项消费额占总消 费额的百分比 • B.从图中可以直接看出具体消费数额 • C.从图中可以直接看出总消费数额 • D.从图中可以直接看出各项消费额在一周 中的具体变化情况 • [答案] A • [解析] 由扇形统计图知选A.
• 2.四种统计图的特点比较 • (1)条形统计图:条形统计图是用一个单位长 度表示一定的数量,根据数量的多少画成长 短不同的直条,然后把这些直条按照一定的 顺序排列起来. 能清楚地表示出每个项目的具体 数目 • 条形统计图的特点是 ________________________________ _________, • 当数据量很大时,条形统计图能更直观地反 映数据分布的大致情况,并且能够清晰地表 示出各个区间的具体数目,但却损失了数据

高中必修三数学统计教案

高中必修三数学统计教案

高中必修三数学统计教案
主题:统计学概述
目标:学生能够了解统计学的基本概念和应用,并掌握一些基本的统计方法。

一、引入
通过实例引入统计学的概念,让学生了解统计学在日常生活中的重要性。

二、概念介绍
1.统计学的定义和作用:统计学是研究数据收集、整理、分析和解释的一门学科,是现代科学和社会科学中不可或缺的工具。

2.统计学的基本概念:总体、样本、抽样、数据等。

三、常用统计方法
1.描述统计方法:平均数、中位数、众数等。

2.概率统计方法:频率分布、概率分布、期望值等。

3.推断统计方法:参数估计、假设检验等。

四、练习
1.实例分析:通过实例让学生掌握如何应用统计方法进行数据分析。

2.练习题:让学生做一些实践练习,巩固所学的统计方法。

五、总结
总结本节课的内容,强调统计学的重要性,并展望后续学习内容。

六、作业
布置相关作业,让学生进一步巩固所学知识。

七、扩展
介绍一些统计学在现代科学研究和社会应用中的具体案例,激发学生对统计学的兴趣和好奇心。

注:此为一份简单的高中必修三数学统计教案范本,具体教学内容和方法可根据教学需求进行调整和改进。

2021_2022学年高中数学第一章数列1.1数列的概念课时素养评价含解析北师大版必修5202103

2021_2022学年高中数学第一章数列1.1数列的概念课时素养评价含解析北师大版必修5202103

一数列的概念(20分钟35分)1.已知数列-1,,-,…,(-1)n,…,它的第5项的值为( )A.B.-C. D.-【解析】选D.a5=(-1)5×=-.2.下列四个数中,哪一个是数列{n(n+1)}中的一项( )A.380B.391C.352D.23【解析】选A.由n(n+1)=380得n=19.可验证其他项不符合.3.数列,,,,…的第10项是( )A. B. C. D.【解题指南】由数列,,,,…可得一个通项公式a n=,即可得出.【解析】选C.由数列,,,,…可得一个通项公式a n=,所以a10==.4.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n等于( )A. B.C.cosπD.cosπ【解析】选D.A项,展开可得数列为0,1,0,1,…不符合题意.B项,展开可得数列为0,-1,0,1,…不符合题意.C项,展开可得数列为-1,0,1,0,…不符合题意.D项,展开可得数列为0,1,0,-1,…符合题意.5.(2020·某某高一检测)已知数列满足a1=1,a n+1=2a n+1(n∈N*),则a5=.【解题指南】根据数列的首项及递推公式依次求出a2,a3,…a5即可.【解析】因为a1=1,a n+1=2a n+1,所以a2=2a1+1=3,a3=2a2+1=7,a4=2a3+1=15,a5=2a4+1=31,答案:316.写出下列数列的一个通项公式:(1)0,3,8,15,24,…(2)1,2,3,4,…(3)1,11,111,1111,…【解析】(1)观察数列中的数,可以看到0=1-1,3=4-1,8=9-1,15=16-1,24=25-1,…所以它的一个通项公式是a n=n2-1.(2)此数列的整数部分1,2,3,4,…恰好是序号n,分数部分与序号n的关系为,故所求的数列的一个通项公式为a n=n+=.(3)原数列的各项可变为×9,×99,×999,×9 999,…易知数列9,99,999,9 999,…的一个通项公式为a n=10n-1.所以原数列的一个通项公式为a n=(10n-1).(30分钟60分)一、选择题(每小题5分,共25分)1.有下列一列数:,1,1,1,( ),,,,,…,按照规律,括号中的数应为( )A.B. C. D.【解析】选B.把数列变为,,,,( ),,,,,…可得分子为连续的奇数,分母为连续的质数,故括号中的数应该为.【易错提醒】本题中不知道对第2,3,4项进行变形,使整个数列遵循同样的规律是解不出题的主要原因.2.数列2,5,11,20,32,x,…中的x等于( )A.28B.32C.33D.47【解析】选D.由5-2=3,11-5=6,20-11=9,32-20=12,则x-32=15,所以x=47.3.已知数列{a n}满足a n+2=a n+1-a n,若a1=1,a3=3,则a17=( )A.-4B.-3C.3D.4【解析】选A.因为数列满足a n+2=a n+1-a n,故有a n+3=a n+2-a n+1=-a n+1=-a n,所以a n+6=-a n+3=a n,故数列是以6为周期的周期数列,所以a17=a5=-a2,又因为a1=1,a3=3,a3=a2-a1得a2=4,故a17=-4.4.若一个数列的前三项依次为6,18,54,则此数列的一个通项公式为( )A.a n=4n-2B.a n=2n+4C.a n=2×3nD.a n=3×2n【解题指南】6=1×6=30×6,18=3×6=31×6,54=9×6=32×6,可以归纳出数列的通项公式. 【解析】选C.依题意,6=1×6=30×6,18=3×6=31×6,54=9×6=32×6,所以此数列的一个通项公式为a n=6×3n-1=2×3n.5.(2020·某某高一检测)数列,,,,…的递推公式可以是( )A.a n=B.a n=C.a n+1=a nD.a n+1=2a n【解题指南】观察数列,数列从第二项起,可知每一项是前一项的,由此可以得到递推公式,得出结果.【解析】选C.由题意可知,数列从第二项起,后一项是前一项的,所以递推公式为a n+1=a n.二、填空题(每小题5分,共15分)6.正整数列满足a1=a,且对于n∈N*有a n+1=,若a6=1,则a的所有可能取值为.【解析】因为正整数列满足a1=a,且对于n∈N*有a n+1=, 由a6=1,得a5=2或a5=0(舍),则a4=4,则a3=1,a2=2,a1=4或a3=8,a2=16,a1=5或a3=8,a2=16,a1=32,即a的所有可能取值为4,5或32.答案:4,5或327.将正偶数按下表排列则2010在第行第列.【解析】由题意可知,2 010是第1 005个正偶数,因为1 005÷4=251……1,所以2 010在第252行.观察表格知,第偶数行的四个数字从第4列开始从右至左排列,所以2 010在第252行,第4列.答案:252 48.如图1是第七届国际数学教育大会(简称ICME-7)的会徽图案,会徽的主体图案是由如图2的一连串直角三角形演化而成的,其中OA1=A1A2=A2A3=…=A7A8=1,如果把图2中的直角三角形继续作下去,记OA1,OA2,…,OA n,…的长度构成数列{a n},则此数列的通项公式为a n=.【解析】因为OA1=1,OA2=,OA3=,…,OA n=,…,所以a1=1,a2=,a3=,…,a n=.答案:三、解答题(每小题10分,共20分)9.已知数列的通项公式为a n=.(1)求a10.(2)是否是这个数列中的项?(3)这个数列中有多少整数项?【解析】(1)a10==.(2)由a n==,解得,n=100.即是这个数列中的项,且是第100项.(3)由a n=为整数项可知,n=1,n=2,n=3,n=6,即数列中有4个整数项.10.写出数列的一个通项公式,使它的前几项分别为下列各数.(1)3,5,9,17,33;(2)4,-4,4,-4,4;(3)1,0,1,0;(4),,,.【解析】(1)每项都可以看成2的n次幂加1的形式,所以a n=2n+1.(2)数列中的每一项的绝对值均等于4,只有各项的系数的符号正负相间,所以a n=4(-1)n+1(答案不唯一).(3)原数列可改写为+,-,+,…,所以a n=+(-1)n+1(答案不唯一).(4)可将分子、分母分别求其通项,再合并,分子通项为2n-1,分母通项为2n+1,所以a n=.1.已知f(1)=2,f(n+1)=(n∈N+),则f(4)=.【解析】因为f(1)=2,f(n+1)=,所以f(2)==,f(3)===,f(4)===.答案:2.如图,下列四个图形中,着色三角形的个数依次构成一个数列的前4项,求这个数列的一个通项公式.【解析】4个图形中着色三角形的个数依次为1,3,9,27,都是3的指数幂,猜想数列的通项公式为a n=3n-1.。

北师大版数学高一必修3教案1.4.1平均数、中位数、众数、极差、方差4.2标准差

北师大版数学高一必修3教案1.4.1平均数、中位数、众数、极差、方差4.2标准差

§4数据的数字特征4.1 平均数、中位数、众数、极差、方差4.2 标准差整体设计教学分析在义务教育阶段,学生已经通过实例,学习了平均数、中位数、众数、极差、方差等,并能解决简单的实际问题.在这个基础上,高中阶段还将进一步学习标准差,并在学习中不断地体会它们各自的特点,达到在具体的问题中能根据情况有针对性地选择一些合适的数字特征.三维目标1.能结合具体情境理解不同数字特征的意义,并能根据问题的需要选择适当的数字特征来表达数据的信息,培养学生解决问题的能力.2.通过实例理解数据标准差的意义和作用,学会计算数据的标准差,提高学生的运算能力.重点难点教学重点:平均数、中位数、众数、极差、方差的计算、意义和作用.教学难点:根据问题的需要选择适当的数字特征来表达数据的信息.课时安排1课时教学过程导入新课思路那么怎样判断中国女排和俄罗斯女排的队员谁的身材更为高大?我们分别求出两队球员的平均身高,谁的平均身高数值大,谁的身材就更高大,教师点出课题:数据的数字特征.思路 2.小明开设了一个生产玩具的小工厂,管理人员由小明、他的弟弟和六个亲戚组成.工作人员由五个领工和十个工人组成.工厂经营得很顺利,需要增加一个新工人,小亮需要一份工作,应聘而来与小明交谈.小明说:“我们这里报酬不错,平均薪金是每周300元.你在学徒期每周75元,不过很快就可以加工资了.”小亮工作几天后找到小明说:“你欺骗了我,我已经找其他工人核对过了,没有一个人的工资超过每周100元,平均工资怎么可能是一周300元呢?”小明说:“小亮啊,不要激动,平均工资是300元,你看,这是一张工资表.”工资表如下:人员 小明 小明弟弟 亲戚 领工 工人 周工资 2 400 1 000 250 200 100 人数 1 1 6 5 10 合计2 4001 0001 5001 0001 000这到底是怎么了?教师点出课题:数据的数字特征. 推进新课 新知探究 提出问题1.什么叫平均数?有什么意义? 2.什么叫中位数?有什么意义? 3.什么叫众数?有什么意义? 4.什么叫极差?有什么意义? 5.什么叫标准差?有什么意义? 6.什么叫方差?有什么意义? 讨论结果:1.一组数据的和与这组数据的个数的商称为这组数据的平均数.数据x 1,x 2,…,x n的平均数为x =x 1+x 2+…+x nn.平均数对数据有“取齐”的作用,代表该组数据的平均水平.任何一个数据的改变都会引起平均数的变化,这是众数和中位数都不具有的性质.2.一组数据按从小到大的顺序排成一列,处于中间位置的数称为这组数据的中位数.一组数据中的中位数是唯一的,反映了该组数据的集中趋势.3.一组数据中出现次数最多的数称为这组数据的众数.一组数据中的众数可能不止一个,也可能没有,反映了该组数据的集中趋势.4.一组数据的最大值与最小值的差称为这组数据的极差,表示该组数据之间的差异情况.5.标准差是样本数据到平均数的一种平均距离,一般用s 表示,通常用公式s =1n[x 1-x 2+x 2-x 2+…+x n -x 2]来计算.可以用计算器或计算机计算标准差.标准差描述一组数据围绕平均数波动的大小,反映了一组数据变化的幅度和离散程度的大小.标准差大,数据的离散程度大;标准差小,数据的离散程度小.标准差的取值范围是[0,+∞).样本数据x 1,x 2,…,x n 的标准差的计算步骤:(1)计算样本数据的平均数,用x 来表示;(2)计算每个样本数据与样本数据平均数的差:x i -x (i =1,2,…,n ); (3)计算x i -x (i =1,2,…,n )的平方;(4)计算这n 个x i -x (i =1,2,…,n )的平方的平均数,即方差;(5)计算方差的算术平方根,即为样本标准差.6.方差等于标准差的平方,即s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],与标准差的作用相同,描述一组数据围绕平均数波动的程度的大小.方差的取值范围是[0,+∞).应用示例思路1(1)分别计算该公司员工月工资的平均数、中位数和众数.(2)公司经理会选取上面哪个数来代表该公司员工的月工资情况?税务官呢?工会领导呢?解:(1)经过简单计算可以得出:该公司员工的月工资平均数为1 373元,中位数为800元,众数为700元.(2)公司经理为了显示本公司员工的收入高,采用平均数1 373元作为月工资的代表;而税务官希望取中位数800元,以便知道目前的所得税率对该公司的多数员工是否有利;工会领导则主张用众数700元作为代表,因为每月拿700元的员工数最多.点评:平均数是将所有的数据都考虑进去得到的度量,它是反映数据平均水平最常用的统计量;中位数将观测数据分成相同数目的两部分,其中一部分都比这个数小而另一部分都比这个数大,对于非对称的数据集,中位数更实际地描述了数据的中心;当变量是分类变量时,众数往往经常被使用. 变式训练请参照这个表解答下列问题:(1)用含x ,y 的代数式表示该班参加“环保知识竞赛”的班平均分f ; (2)若该班这次竞赛的平均分为2.5分,求x ,y 的值.解:(1)f =3x +5y +5940;(2)依题意,有⎩⎪⎨⎪⎧3x +5y =41,x +y =11,解得⎩⎪⎨⎪⎧x =7,y =4.2.某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人(1)该风景区调整前后这5个景点门票的平均收费不变,平均日总收入持平,问风景区是怎样计算的?(2)游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%,问游客是怎样计算的?(3)你认为风景区和游客哪一方的说法较能反映整体实际? 解:(1)风景区是这样计算的: 调整前的平均价格: 10+10+15+20+255=16(元),调整后的平均价格:5+5+15+25+305=16(元),因为调整前后的平均价格不变,平均日人数不变, 所以平均日总收入不变. (2)游客是这样计算的: 原平均日总收入:10×1+10×1+15×2+20×3+25×2=160(千元), 现平均日总收入:5×1+5×1+15×2+25×3+30×2=175(千元),所以平均日总收入增加了175-160160≈9.4%.(3)游客的说法较能反映整体实际.例2 甲、乙两台机床同时生产直径是40 mm 的零件.为了检验产品质量,从两台机床生产的产品中各抽取10件进行测量,结果如下表所示. 甲机床直径/mm 40.0 39.8 40.1 40.2 39.9 40.0 40.2 39.8 40.2 39.8 乙机床直径/mm40.040.039.940.039.940.1 40.140.140.039.9分别计算上面从甲、乙两台机床抽取的10件产品直径的标准差,并判断哪台机床生产过程更稳定.解:从数据很容易得到甲、乙两台机床生产的这10件产品直径的平均值x 甲=x 乙=40(mm).我们分别计算它们直径的标准差:s 甲=[40-402+39.8-402+…+39.8-402]/10=0.161(mm), s 乙=[40-402+40-402+…+39.9-402]/10=0.077(mm).由上面的计算可以看出:甲、乙两台机床生产的产品直径的平均值相同,而甲机床生产的产品直径的标准差为0.161 mm ,比乙机床的标准差0.077 mm 大,说明乙机床生产的零件要更标准些,即乙机床的生产过程更稳定一些.点评:对数据数字特征内容的评价,应当更多地关注对其本身意义的理解和在新情境中的应用,而不是记忆和使用的熟练程度. 变式训练设有容量为n 的样本x 1,x 2,…,x n ,其标准差为s x ,另有容量为n 的样本y 1,y 2,…,y n ,其标准差为s y ,且y k =3x k +5(k =1,2,…,n ),则下列关系正确的是( ).A .s y =3s x +5B .s y =3s xC .s y =3s xD .s y =3s x +5 答案:B思路2例1 800 800 800 800 800 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 000 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 200 1 500 1 5001 5001 5001 5001 5001 500(1)计算该公司员工的月工资的平均数、中位数和众数;(2)假如你去这家企业应聘职位,你会如何看待员工的收入情况?分析:(1)根据平均数、中位数和众数的定义可以分别求得;(2)主要根据月工资的平均数来看待员工的收入情况,当然也要考虑中位数和众数.解:(1)公司员工的月工资的平均数为5×800+10×1 000+20×1 200+7×1 500+5×2 000+3×2 50050=1 320(元),中位数为1 200元,众数为1 200元.(2)由于该公司员工的月工资的中位数和众数与平均数比较接近, 所以主要考虑月工资的平均数1 320元作为月工资的代表,这样以该公司月平均工资1 320元与同类企业的工资待遇作比较即可. 点评:大多情况下人们会把眼光仅停留在工资表中的最大与最小值处,把最高工资作为一个单位工资的评价,这是一种错误的评价方式. 变式训练1.已知10个数据:1 203,1 201,1 194,1 200,1 204,1 201,1 199,1 204,1 195,1 199,它们的平均数是( ).A .1 400B .1 300C .1 200D .1 100 答案:C2根据表中提供的信息填空:(1)该公司每人所创的年利润的平均数是__________万元. (2)该公司每人所创的年利润的中位数是__________万元.(3)你认为应该使用平均数和中位数中哪一个来描述该公司每人所创的年利润的一般水平?答案:(1)3.36 (2)2.1 (3)中位数.(1)甲、乙的平均成绩谁较好? (2)谁的各门功课发展较平衡?分析:(1)利用公式计算平均数;(2)计算方差来分析.解:(1)∵x 甲=15(60+80+70+90+70)=74,x 乙=15(80+60+70+80+75)=73,∴甲的平均成绩较好.(2)s 2甲=15(142+62+42+162+42)=104,s 2乙=15(72+132+32+72+22)=56,∵s 2甲>s 2乙,∴乙的各门功课发展较平衡.点评:平均数和方差是样本的两个重要数字特征,方差越大,表明数据越分散,相反地,方差越小,数据越集中、稳定;平均数越大表明数据的平均水平越高,平均数越小表明数据的平均水平越低. 变式训练已知一个样本中含有5个数据3,5,7,4,6,则样本方差为( ). A .1 B .2 C .3 D .4解析:∵x =3+5+7+4+65=5,∴方差s 2=15[(5-3)2+(5-5)2+(5-7)2+(5-4)2+(5-6)2]=2.答案:B 知能训练1.下列说法正确的是( ).A .甲、乙两个班期末考试数学平均成绩相同,这表明这两个班数学学习情况一样B .期末考试数学成绩的方差甲班比乙班的小,这表明甲班的数学学习情况比乙班好C .期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班大,则数学学习甲班比乙班好D .期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班小,则数学学习甲班比乙班好答案:D2.在一次数学测验中,某小组14名学生分别与全班的平均分85分的差是:2,3,-3,-5,12,12,8,2,-1,4,-10,-2,5,5,那么这个小组的平均分是__________分.( ).A .97.2B .87.29C .92.32D .82.86 答案:B3s 1,s 2,s 3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( ). A .s 3>s 1>s 2 B .s 2>s 1>s 3 C .s 1>s 2>s 3 D .s 2>s 3>s 1解析:方法一:计算得x 甲=x 乙=x 丙=8.5,s 21=2520,s 22=2820,s 23=2120,则s 2>s 1>s 3;方法二:可以计算三名运动员成绩的平均数都等于8.5,观察对比三个表格,相比之下丙的环数集中在8.5周围,比甲和乙要稳定,乙的环数比甲更分散,则有s 1>s 3,s 2>s 1.答案:B4.某人射击5次,分别为8,7,6,5,9环,则这个人射击命中的平均环数为__________. 答案:75.华山鞋厂为了了解中学生穿鞋的鞋号情况,对某中学八年级(1)班的20名男生所穿鞋号的统计如下表:鞋号 23.5 24 24.5 25 25.5 26 人数344711那么这20名男生鞋号数据的平均数是__________,中位数是__________,众数是__________,在平均数、中位数和众数中,鞋厂最感兴趣的是__________.答案:24.55 24.5 25 众数6.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是__________.答案:-3拓展提升甲 25 41 40 37 22 14 19 39 21 42 乙27164427441640401640问:(1)哪种玉米的苗长得高?(2)哪种玉米的苗长得齐?解:(1)∵x 甲=110(25+41+40+37+22+14+19+39+21+42)=110×300=30(cm),x 乙=110(27+16+44+27+44+16+40+40+16+40)=110×310=31(cm),∴x 甲<x 乙,即乙种玉米的苗长得高.(2)∵s 2甲=104.2(cm 2),s 2乙=128.8(cm 2),∴s 2甲<s 2乙,即甲种玉米的苗长得齐. 课堂小结本节课学习了平均数、中位数、众数、极差、方差的计算、意义和作用. 作业习题1-4 1,2.设计感想本节教学设计依据课程标准,在义务教育阶段的基础上,进一步掌握平均数、中位数、众数、极差、方差的计算、意义和作用,重在应用.备课资料备选习题1.现有同一型号的汽车50辆.为了了解这种汽车每耗油1 L 所行路程的情况,要从中抽出5辆汽车在同一条件下进行耗油 1 L 所行路程的试验,得到如下数据(单位:km):11,15,9,12,13.则样本方差是( ).A .20B .12C .4D .2解析:可以计算得平均数x =11+15+9+12+135=12,则方差s 2=15[(11-12)2+(15-12)2+(9-12)2+(12-12)2+(13-12)2]=4.答案:C2.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为( ).A .1B .2C .3D .4解析:由平均数为10,得(x +y +10+11+9)×15=10,整理得x +y =20;又由于方差为2,则15×[(x -10)2+(y -10)2+(10-10)2+(11-10)2+(9-10)2]=2,整理得x 2+y 2-20(x +y )+192=0,所以x 2+y 2=208,则2xy =192.故|x -y |=x -y 2=x 2+y 2-2xy =4.答案:D3.某农科所为寻找高产稳定的油菜品种,选了三个不同的油菜品种进行试验,每一品试评定哪一品种既高产又稳定.解:∵三个品种的产量的平均数分别为x1=21.0(kg),x2=21.0(kg),x3=20.48(kg),方差为s21=0.572,s22=2.572,s23=3.597 6,∴x1=x2>x3,s21<s22<s23.故第一个品种既高产又稳定.已经算得两个组的平均分数都是80分,请根据你所学过的统计知识,进一步判断这两个组本次竞赛中的成绩哪组更好一些,并说明理由.分析:该题不仅运用了统计的有关基础知识,还考查应用数学的意识,结论具有开放性,从众数、方差、中位数、高分数段以及满分人数全方位进行综合分析、比较,并作出判断.解:分析1:从众数看,甲组成绩的众数是90分,乙组成绩的众数是70分,甲组成绩好一些.分析2:从方差看,s2甲=172,s2乙=256,s2甲<s2乙,甲组成绩较乙组成绩稳定一些.分析3:甲、乙两组成绩的中位数、平均数都是80分,其中,甲组成绩在80分以上(含80分)的有33人,乙组成绩在80分以上(含80分)的有26人,甲组的成绩总体好一些.分析4:从成绩统计表看,甲组成绩高于80分的人数为20人,乙组成绩高于80分的人数为24人,所以乙组成绩在高分段的人数多,同时乙组得满分的人数比甲组多6人,乙组成绩好一些.点评:答案不唯一,只要符合实际数据就行.(设计者:张建国)。

新课标北师大版高中数学教材目录及课时安排

新课标北师大版高中数学教材目录及课时安排

新课标北师大版高中数学教材目录及课时安排必修1(36节)第一章集合(5)§1 集合的含义与表示 1 §2 集合的基本关系1 §3 集合的基本运算第二章函数(9)§1 生活中的变量关系1 §2 对函数的进一步认识3 §3 函数的单调性 1§4 二次函数性质的再研究2 §5 简单的幂函数 1 阅读材料函数概念的发展第三章指数函数和对数函数(14)§1 正整数指数函数 1 §2 指数概念的扩充3 §3 指数函数 3§4 对数 2 §5 对数函数 3 §6 指数函数、幂函数、对数函数增长的比较 1第四章函数应用 (7)§1 函数与方程 2 §2 实际问题的函数建模 4必修2(36)第一章立体几何初步(18节)§1 简单几何体 1 §2 直观图 1 §3 三视图 3§4 空间图形的基本关系与公理 2 §5 平行关系 3 §6 垂直关系 4§7 简单几何体的面积和体积 2第二章解析几何初步(18节)§1 直线与直线的方程 8 §2 圆与圆的方程 5 §3 空间直角坐标系 3必修3全书目录第一章统计(16)§1 统计活动:随机选取数字§2 从普查到抽样§3 抽样方法§4 统计图表§5 数据的数字特征§6 用样本估计总体§7 统计活动:结婚年龄的变化§8 相关性§9 最小二乘法第二章算法初步(12)§1 算法的基本思想§2 算法的基本结构及设计§3 排序问题§4 几种基本语句第三章概率(8)§1 随机事件的概率§2 古典概型§3模拟方法――概率的应用必修4第一章三角函数(16)§1 周期现象与周期函数§2 角的概念的推广§3 弧度制§4 正弦函数§5 余弦函数§6 正切函数§7 函数的图像§8 同角三角函数的基本关系阅读材料数学与音乐第二章平面向量(12)§1 从位移、速度、力到向量§2 从位移的合成到向量的加法§3 从速度的倍数到数乘向量§4 平面向量的坐标§5 从力做的功到向量的数量积§6 平面向量数量积的坐标表示§7 向量应用举例阅读材料向量与中学数学第三章三角恒等变形(8)§1 两角和与差的三角函数§2 二倍角的正弦、余弦和正切§3 半角的三角函数§4 三角函数的和差化积与积化和差§5 三角函数的简单应用必修5第一章数列(12)§1 数列 1.1 数列的概念 1.2 数列的函数特性§2 等差数列 2.1 等差数列 2.2 等差数列的前n项和§3 等比数列 3.1 等比数列 3.2 等比数列的前n项和第二章解三角形(8)§1 正弦定理与余弦定理 1.1 正弦定理 1.2 余弦定理§2 三角形中的几何计算§3 解三角形的实际应用举例第三章不等式(16)§1 不等关系——2 1.1 不等关系 1.2 比较大小§2 一元二次不等式——5 2.1 一元二次不等式的解法 2.2 一元二次不等式的应用§3 基本不等式——— 3 3.1 基本不等式 3.2 基本不等式与最大(小)值§4 简单线性规划——54.1 二元一次不等式(组)与平面区域4.2 简单线性规划 4.3 简单线性规划的应用。

高中数学 第一章 统计综合能力测试(含解析)北师大版必修3-北师大版高一必修3数学试题

高中数学 第一章 统计综合能力测试(含解析)北师大版必修3-北师大版高一必修3数学试题

【成才之路】2015-2016学年高中数学第一章统计综合能力测试北师大版必修3本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.时间120分钟,满分150分.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.2015年的世界无烟日(5月31日)之前,小华学习小组为了了解本地区大约有多少成年人吸烟,随机调查了100个成年人,结果其中有15个成年人吸烟.对于这个关于数据收集与处理的问题,下列说法正确的是( )A.调查的方式是普查B.本地区约有15%的成年人吸烟C.样本是15个吸烟的成年人D.本地区只有85个成年人不吸烟[答案] B[解析]调查方式显然是抽样调查,∴A错误.样本是这100个成年人.∴C也错误,显然D不正确.故选B.2.某班的78名同学已编号1,2,3,…,78,为了解该班同学的作业情况,老师收取了学号能被5整除的15名同学的作业本,这里运用的抽样方法是( )A.简单随机抽样法 B.系统抽样法C.分层抽样法 D.抽签法[答案] B[解析]所抽出的编号都间隔5,故是系统抽样.3.下列问题,最适合用简单随机抽样的是( )A.某电影院有32排座位,每排有40个座位,座位号为1~40.有一次报告会坐满了听众,报告会结束后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校在编人员160人.其中行政人员16人,教师112人,后勤人员32人.教育部门为了解学校机构改革意见,要从中抽取一个容量为20的样本D.某乡农田有:山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩. 现抽取农田480亩估计全乡农田某种作物的平均亩产量[答案] B[解析]A项的总体容量较大,用简单随机抽样法比较麻烦;B项的总体容量较小,用简单随机抽样法比较方便;C项由于学校各类人员对这一问题的看法可能差异较大,不宜采用简单随机抽样法;D 项的总体容量较大,且各类田地的产量差别很大,也不宜采用简单随机抽样法.4.一个容量为50的样本数据,分组后,组距与频数如下:[12.5,15.5),2;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),6;[30.5,33.5),4.根据分组情况估计小于30.5的数据占( )A .18% B.30% C .60% D.92%[答案] D[解析] (2+8+9+11+10+6)÷50=92%.5.如图所示的是2006年至2015年某省城镇居民百户家庭人口数的茎叶图,图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到2006年至2015年此省城镇居民百户家庭人口数的平均数为( )2 9 1 1 5 83 0 2 6 31247[答案] B[解析] 由茎叶图得到2006年至2015年城镇居民百户家庭人口数为:291,291,295,298,302,306,310,312,314,317,所以平均数为291+291+295+298+302+306+310+312+314+31710=3 03610=303.6.6.某地区共有10万户居民,该地区城市住户与农村住户之比为4∶6,根据分层抽样方法,调查了该地区1 000户居民冰箱拥有情况,调查结果如下表所示,那么可以估计该地区农村住户中无冰箱的总户数约为( )万户 C .1.76万户 D.0.24万户[答案] A[解析] 由于城市住户与农村住户之比为4∶6,城市住户有4万户,农村住户有6万户,调查的1 000户居民中共400户城市住户,有600户农村住户,其中农村住户中无冰箱的有160户,所以可估计该地区农村住户中无冰箱的总户数约为10×1601 000=1.6(万户).7.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )1 2 520 2 3 33 1 24 4 8 94 5 5 5 7 7 8 8 950 0 1 1 4 7 96 17 8A.46,45,56B.46,45,53C.47,45,56 D.45,47,53[答案] A[解析]本题考查了茎叶图的应用及其样本的中位数、众数、极差等数字特征,由茎叶图可知,中位数为46,众数为45,极差为68-12=56.在求一组数据的中位数时,一定不要忘记先将这些数据排序再判断.8.有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为( )A.18 B.36C.54 D.72[答案] B[解析]频率分布直方图中所有小矩形的面积之和为1,每个小矩形的面积表示样本数据落在该区间内的频率,故样本数据落在区间[10,12)内的频率为1-2×(0.02+0.05+0.15+0.19)=0.18,故样本数据落在区间[10,12)内的频数为0.18×200=36.9.已知两个变量x,y之间具有线性相关关系,测得(x,y)的四组值分别为(1,2),(2,4),(3,5),(4,7),则y与x之间的回归直线方程为( )A.y=0.8x+3 B.y=-1.2x+7.5C.y=1.6x+0.5 D.y=1.3x+1.2[答案] C[解析] 利用排除法. ∵x =14(1+2+3+4)= 2.5,y =14(2+4+5+7)=4.5,由于回归直线方程y =bx +a 必过定点(2.5,4.5),故排除A 、D.又由四组数值知y 随x 的增大而增大,知b >0,排除B.10.某路段检查站监控录像显示,在某时段内,有 1 000辆汽车通过该站,现在随机抽取其中的200辆汽车进行车速分析,分析的结果表示为如下图的频率分布直方图,则估计在这一时段内通过该站的汽车中速度不小于90 km/h 的约有( )A .100辆 B.200辆 C .300辆 D.400辆[答案] C[解析] 由题图可知汽车中车速在[60,90)的频率为10×(0.01+0.02+0.04)=0.7, ∴在[90,110]的频率为(1-0.7)=0.3.∴车速不小于90 km/h 的汽车数量约为0.3×1 000=300辆.11.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9,已知这组数据的平均数为10,方差为2,则|x -y |的值为( )A .1 B.2 C .3 D.4[答案] D[解析] 依题意,可得 ⎩⎪⎨⎪⎧10=x +y +10+11+95,2=15[x -102+y -102+10-102+11-102+9-102],⇒⎩⎪⎨⎪⎧x +y =20,x -102+y -102=8,⇒⎩⎪⎨⎪⎧x =12y =8,或⎩⎪⎨⎪⎧x =8y =12,所以|x-y|=4.12.甲,乙,丙三名运动员在某次测试中各射击20次,三人测试成绩的频率分布条形图分别如图1,图2和图3,若s甲,s乙,s丙分别表示他们测试成绩的标准差,则( )A.s甲<s乙<s丙 B.s甲<s丙<s乙C.s乙<s甲<s丙 D.s丙<s甲<s乙[答案] D[解析]由频率分布条形图可得甲,乙,丙三名运动员的平均成绩分别为x-甲=0.25×(7+8+9+10)=8.5;x-乙=0.3×7+8×0.2+9×0.2+10×0.3=8.5;x-丙=0.2×7+8×0.3+9×0.3+10×0.2=8.5,s2甲=0.25×(1.52+0.52+0.52+1.52)=1.25;s2乙=0.3×1.52+0.52×0.2+0.52×0.2+1.52×0.3=1.45;s2丙=0.2×1.52+0.52×0.3+0.52×0.3+1.52×0.2=1.05,∴s丙<s甲<s乙.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题5分,共20分,将正确答案填在题中横线上)13.一个容量为40的样本,共分成6组,第1~4组的频数分别为10,5,7,6,第5组的频率是0.10,则第6组的频率是________.[答案]0.20[解析]第5组的频数为40×0.10=4,第6组的频数为40-(10+5+7+6+4)=8,则频率为840=0.20.14.(2015·某某文,12)已知样本数据x1,x2,…,x n的均值x=5,则样本数据2x1+1,2x2+1,…,2x n+1的均值为________.[答案]11[解析]因为样本数据x1,x2,…,x n的均值x=5,所以样本数据2x1+1,2x2+1,…,2x n+1的均值为2x+1=2×5+1=11.15.(2014·某某,6)设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有________株树木的底部周长小于100cm.[答案] 24[解析] 本题考查频率分布直方图.由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.015+0.025)×10×60=24.频率分布直方图中的纵坐标为频率组距,此处经常误认为纵坐标是频率.16.下图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.0 8 9 10 3 5(注:方差s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2],其中x -为x 1,x 2,…,x n 的平均数)[答案] 6.8[解析] 本题考查茎叶图、方差的概念. 由茎叶图知x -=8+9+10+13+155=11,∴s 2=15[(8-11)2+(9-11)2+(10-11)2+(13-11)2+(15-11)2]=6.8.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)在同等条件下,对30辆同一型号的汽车进行耗油1升所行走路程的试验,得到如下数据(单位:km):14.1 12.3 13.7 14.0 12.8 12.9 13.1 13.6 14.4 13.8 12.6 13.8 12.6 13.2 13.3 14.2 13.9 12.7 13.0 13.2 13.5 13.6 13.4 13.6 12.1 12.5 13.1 13.5 13.2 13.4以前两位数为茎画出上面数据的茎叶图(只有单侧有数据),并找出中位数.[解析]茎叶图如图所示.1213566789130112223445566 6 788914012 4中位数为13.35.18.(本小题满分12分)某高级中学共有学生3 000名,各年级男、女人数如下表:高一年级高二年级高三年级女生523x y男生487490z已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.17.(1)问高二年级有多少名女生?(2)现对各年级用分层抽样的方法在全校抽取300名学生,问应在高三年级抽取多少名学生?[解析](1)由题设可知x3000=0.17,所以x=510.(2)高三年级人数为y+z=3000-(523+487+490+510)=990,现用分层抽样的方法在全校抽取300名学生,应在高三年级抽取的人数为:3003000×990=99名.答:(1)高二年级有510名女生;(2)在高三年级抽取99名学生.19.(本小题满分12分)为了了解一个小水库中养殖的鱼的有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,画出频率分布直方图(如图所示).分组频率[1.00,1.05)(1)(2)估计数据落在[1.15,1.30)中的概率为多少;(3)将上面捕捞的100条鱼分别作一记号后再放回水库,几天后再从水库的多处不同位置捕捞出120条鱼,其中带有记号的鱼有6条,请根据这一情况来估计该水库中鱼的总条数.[解析] (1)根据频率分布直方图可知,频率=组距×频率组距故可得下表:(2)0.30+0.15+0.02=中的概率约为0.47. (3)120×1006=2000.所以水库中鱼的总条数约为2000条.20.(本小题满分12分)某农场为了从三种不同的西红柿品种中选出高产稳定的西红柿品种,分别在5块试验田上试种,每块试验田均为0.5公顷,产量情况如下表:问哪一种西红柿既高产又稳定?[解析] 因为x 甲=15(21.5+20.4+22.0+21.2+19.9)=21.0(kg),x 乙=15(21.3+18.9+18.9+21.4+19.8)=20.06(kg), x 丙=15(17.8+23.3+21.4+19.9+20.9)=20.66(kg),所以s 甲=15[21.5-21.02+…+19.9-21.02]≈0.756(kg);s 乙=15[21.3-21.062+…+19.8-21.062]≈1.104(kg);s 丙=15[17.8-20.662+…+20.9-20.662]≈1.807(kg).由于x 甲>x 丙>x 乙,s 甲<s 乙<s 丙,所以甲种西红柿既高产又稳定.21.(本小题满分12分)某某统计局就某地居民的月收入调查了10 000人,并根据所得数据画出了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)).(1)求居民月收入在[3 000,3 500)的频率; (2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层抽样的方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽多少人?[解析] (1)月收入在[3 000,3 500)的频率为0.000 3×(3 500-3 000)=0.15. (2)∵0.000 2×(1 500-1 000)=0.1, 0.000 4×(2 000-1 500)=0.2, 0.000 5×(2 500-2 000)=0.25,0.1+0.2+0.25=0.55>0.5.∴样本数据的中位数为2 000+0.5-0.1+0.20.000 5=2 000+400=2 400(元).(3)居民月收入在[2 500,3 000)的频率为0.000 5×(3 000-2 500)=0.25, 所以10 000人中月收入在[2 500,3 000)的人数为0.25×10 000=2 500(人), 再从10 000人中分层抽样方法抽出100人,则月收入在[2 500,3 000)的这段应抽取100×2 50010 000=25(人).22.(本小题满分12分)(2015·新课标Ⅰ理,19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响.对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中w i =x i ,w =,(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题:(①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为word 11 / 11 β^=,α^=v -β^u .[解析] (1)由散点图可以判断,y =c +d x 适合作为年销售量y 关于年宣传费x 的回归方程类型.(2)令w =x ,先建立y 关于w 的线性回归方程,由于d ^=∑i =18w i -wy i -y ∑i =18 w i -w2=108.81.6=68, c ^=y -d ^w =563-68×6.8=100.6.∴y 关于w 的线性回归方程为y ^=100.6+68w ,∴y 关于x 的回归方程为y ^=100.6+68x .(3)①由(2)知,当x =49时,年销售量y 的预报值y ^=100.6+6849=576.6,年利润z 的预报值z ^=576.6×0.2-49=66.32.②根据(2)的结果知,年利润z 的预报值z ^=0.2(100.6+68x )-x=-x +13.6x +20.12,∴当x =13.62=6.8,即x =46.24时,z ^取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大.。

高中数学 7《相关性》教案 北师大版必修3

高中数学 7《相关性》教案 北师大版必修3

相关性-备课资料学习导航学习提示1.能根据数据,利用计算机制出反映两个变量间关系的散点图.2.能根据散点图判断变量间是否为线性相关.3.若两个变量为线性相关,告诉一个变量的值,能估计出其对应另一变量的值. 本节重点是能根据散点图,判断两个变量是否为线性相关;难点是根据一个变量的值估计出另一个变量的值. 教材习题探讨 方法点拨练习(第59页) 解:(1)散点图如图1-8-13.杯数气温/ oC (2)从散点图1-8-13中可以看出气温越低,销售热茶的杯数越多,近似地成一条直线,成线性相关. (3)画一条直线近似地表示这种线性关系(如图1-8-13). (4)如果某天的气温为-5℃,则这天的热茶卖出的杯数大约为67杯. 习题1—8 1.解:(1)第一步,先抽取样本.为使抽取的样本具有广泛的代表性,我们可采取分层抽样,按身高分层.. 第三步,根据得到的数据画出散点图.第四步,根据散点图,写出分析报告.(2)利用前面抽取的样本,测量每个个体的左、右手的一拃长,其余同(1).2.解:(1)散点图如图1-8-14.利用计算机电子表格软件作散点图,由散点图推断它们之间是否线性相关.本解答只提供步骤方法,具体由学生根据学过的方法知识、实际数据完成答案,然后互相交流比较.我们用计算机电子表格软件作散点图,由散点图推断身高与体重之间成线性相关,画出近似直线.由直线再估算身高为172 cm 的体重.12108642体重/k g 身高/c m图(2)从散点图1-8-14中可以看出,总体上体重随身高增大而增大,近似地成一条直线,成线性相关. (3)所画直线如图1-8-14.(4)身高为172 cm 的运动员,他的体重大约为61 kg. 3.解:(1)散点图如图1-8-15.7654321最大可识别距离/英尺 年龄/岁图我们从散点图1-8-15中可以发现,年龄与最大可识别距离总体趋势成一条直线,它们之间是线性相关的. (2)所画直线如图1-8-15.(3)如果一个美国司机年龄是50岁,估计他最大可识别距离为440英尺左右.(4)一般情况,年龄越大,可识别最大距离越小.老年司机开车时车速应比年青人要小一些. 4.解:肝功能原始值年龄76050 100图1-8-16 图1-8-16为年龄与肝功能原始值的散点图,由散点图可以看出年龄与肝功能原始值之间成线性相关.同样,年龄与肝功能对数变换值之间也成线性相关.同学们一定要熟练应用计算机电子表格软件作散点图.本题散点较多,如果用手工描图工作量非常大,故熟练应用现代计算机信息技术,利用计算机电子表格软件作散点图效率很高且比较准确.生存天数原始值10008006040200年龄50 100图1-8-17 图1-8-17是年龄与生存天数原始值的散点图.由散点图可以看出年龄与生存天数原始值之间成线性相关.同样年龄与生存天数对数变换值之间也成线性相关.108642-2图图1-8-18为肝功能原始值与生存天数原始值之间的散点图.由散点图可以看出它们之间成线性相关.同样,肝功能对数变换值与生存天数对数变换值之间也成线性相关. 互动学习知识链接1.在现实生活中,请你举出几个两个量之间存在明确函数关系的例子.2.请在现实生活中举出两个变量不满足函数关系,但二者确实有关系的例子.解:1.圆的半径r 和面积S ,有着S=πr2的关系.工作效率a和工作量W ,有着W=at 的关系.物体的质量m 和体积V ,满足m=ρV 的关系.2.(1)商品销售收入与广告支出经费之间的关系.商品销售收入与广告支出经费有着密切的联系,但商品销售收入不仅与广告支出多少有关,还与商品质量、居民收入等因素有关. (2)粮食产量与施肥量之间的关系.在一定范围内,施肥量越大,粮食产量就越高.但是,施肥量并不是决定粮食产量的唯一因素,因为粮食产量还要受到土壤质量、降雨量、田间管理水平等因素的影响.(3)人体内的脂肪含量与年龄之间的关系.在一定年龄段内,随着年龄的增长,人体内的脂肪含量会增加,但人体内的脂肪含量还与饮食习惯、体育锻炼等因素有关,可能还与个人的先天体质有关.在现实生活中,有些量之间存在着函数关系,还有很多量之间不满足函数关系,但二者之间确实有关系,这种关系正是本节所要研究的问题.高中数学 7《相关性》教案 北师大版必修3两个变量间的关系有两种:一种是函数关系;另一种是相关关系.理解两种关系的定义及两者之间的联系.另外散点图非常重要,要会画散点图,并会根据散点图判断两个变量间是何种关系.。

[推荐学习]高中数学北师大版必修3习题:第一章统计1.5.2

[推荐学习]高中数学北师大版必修3习题:第一章统计1.5.2

5.2估计总体的数字特征课时过关·能力提升1.某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:g)分别为150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的平均值是() A.150.2 g B.149.8 gC.149.4 gD.147.8 g解析:x=150+152+153+149+148+146+151+150+152+14710=149.8(g).答案:B2.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表:s1,s2,s3()A.s3>s1>s2B.s2>s1>s3C.s1>s2>s3D.s2>s3>s1解析:甲、乙、丙的平均成绩均为8.5.s1=√120[5(7-8.5)2+5(8-8.5)2+5(9-8.5)2+5(10-8.5)2]=√2520,同理s2=√2920,S3=√2120,所以s2>s1>s3.故选B.答案:B3.如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x A和x B,样本标准差分别为s A和s B,则()A.x A>x B,S A>S BB.x A<x B,S A>S BC.x A>x B,S A<S BD.x A<x B,S A<S B解析:由题图易得x A<x B,又A波动性大,B波动性小,所以s A>s B.答案:B4.某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.若日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中优秀工人的人数为.解析:因为样本均值为17+19+20+21+25+306=1326=22.所以样本中优秀工人占的比例为26=13,而12×13=4,故推断该车间12名工人中有4名优秀工人.答案:45.若10个数据的平均数是3,标准差是2,则方差是;这10个数据的平方和是.解析:设这10个数分别为x1,x2, (x10)则x1+x2+…+x10=30.又标准差为2,则方差为s2=4,则x12+x22+⋯+x102=4×10−9×10+6×30=130.答案:41306.样本数为9的一组数据,它们的平均数是5,频率条形图如图所示,则其标准差等于.(保留根号)解析:由条形图知2与8的个数相等,且多于5的个数,于是这9个数分别为2,2,2,2,5,8,8,8,8.∵x=5,∴s2=19[(2−5)2+(2−5)2+(2−5)2+(2−5)2+(5−5)2+(8−5)2+(8−5)2 +(8−5)2+(8−5)2]=19×8×9=8.∴s=2√2.答案:2√27.已知甲、乙两人在相同的条件下练习射击,每人打5发子弹,命中环数如下表:则两人射击成绩水平更为稳定的是.解析:因为x甲=8,x乙=8,而s甲2=1.2,s乙2=1.6,s甲2<s乙2,所以甲稳定性较强.答案:甲8.某中学举行了一次演讲比赛,分段统计参赛同学的成绩,结果如下表(分数均为整数,满分为100分).请根据表中提供的信息,(1)参加这次演讲比赛的同学共有多少人?(2)已知成绩在91~100分的同学为优秀者,则优秀率为多少?(3)所有参赛同学的平均得分M(分)在什么范围内?(4)将下图中的成绩频率分布直方图补充完整.解:(1)参加这次比赛的同学共有2+8+6+4=20(人).(2)分数在91~100分的人数为4,故优秀率为420=20%.(3)总分数段最小值及最大值分别除以人数,得120×(61×2+71×8+81×6+91×4)=77,120×(70×2+80×8+90×6+100×4)=86,故平均得分M的取值范围是77<M<86.(4)根据第三组的人数得其频率为620=0.3,f iΔx i=0.310=0.03,则频率分布直方图如下:9.为了了解汽车在某一路段上的速度,交警对这段路上连续驶过的50辆汽车的速度(单位:km/h)进行了统计,得到的数据如下表所示:(1)(2)试估计在这段路上,汽车行驶速度的标准差.(提示利用组中值估计)解:(1)用各速度区间的组中值作为汽车在这一区间行驶的平均速度,各区间速度的平均值分别为45,55,65,75,85,95,105.故样本的平均数为x=150(45×1+55×4+65×10+75×15+85×12+95×6+105×2)=76.8(km/h).即这一路段汽车行驶的平均速度约为76.8 km/h.(2)由上面各小区间的平均数和样本的平均数,可求得这一段路上汽车行驶的方差s 2=150[1×(45−76.8)2+4×(55−76.8)2+10×(65−76.8)2+⋯+6×(95-76.8)2+2×(105-76.8)2]=174.76(km 2/h 2),从而,标准差s ≈13.2(km/h).故在这段路上,汽车行驶速度的标准差约为13.2 km/h .10.甲、乙两人参加某体育项目训练,近期的五次测试成绩得分情况如图所示.(1)分别求出两人得分的平均数与方差;(2)根据图和(1)中的结果,对两人的训练成绩作出评价. 解:(1)由题图可得甲、乙两人五次测试的成绩分别为甲:10分,13分,12分,14分,16分; 乙:13分,14分,12分,12分,14分. x 甲=10+13+12+14+165=13(分), x 乙=13+14+12+12+145=13(分),s 甲2=15[(10−13)2+(13−13)2+(12−13)2+(14−13)2+(16−13)2]=4(分2), s 乙2=15[(13−13)2+(14−13)2+(12−13)2+(12−13)2+(14−13)2]=0.8(分2). (2)由s 甲2>s 乙2可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.11.在一次科技知识竞赛中,两组学生成绩如下表:中成绩谁优谁次,并说明理由.解:(1)甲组成绩的众数为90分,乙组成绩的众数为70分,从成绩的众数比较,甲组的成绩好一些.(2)s 甲2=12+5+10+13+14+6[2×(50−80)2+5×(60−80)2+10×(70−80)2+13×(80−80)2+14×(90−80)2+6×(100−80)2]=172(分2).s 乙2=150(4×900+4×400+16×100+2×0+12×100+12×400)=256(分2). 因为s 甲2<s 乙2,所以甲组的成绩比乙组的成绩好.(3)甲、乙两组成绩的中位数、平均数都是80分,其中,甲组成绩在80分以上的有33人,乙组成绩在80分以上的有26人,从这一角度来看甲组的成绩总体较好.(4)从成绩统计表来看,甲组的成绩高于90分的人数为14+6=20,乙组的成绩高于90分的人数为12+12=24.所以乙组成绩集中在高分段的人数多,同时乙组得满分的人数比甲组得满分的人数多6,从这一角度来看,乙组的成绩较好.。

高中数学 第一章 统计 14 数据的数字特征教案1 北师大版必修3 教案

高中数学 第一章 统计 14 数据的数字特征教案1 北师大版必修3 教案

一、教材分析1、教学内容北师大版普通高中课程标准试验教科书数学必修3第1章《4.数据的数字特征》教学设计.2、内容分析《普通高中数学课程标准》中要求数学学习应倡导教师在学习中起主导作用,而学生是学习的主体,自主探索,动手实践,合作交流,阅读自学等学习数学的方式。

提高学生的数学思维能力是数学教育的基本目标之一,本节课将使学生经历数学知识产生的过程性体验,发展学生的数学思维。

《课标》提倡利用信息技术来呈现以往数学学习中难以呈现的课程内容,在教学评价中要求体现评价的多元化。

《课标》中对本节教学内容的要求是:1通过实例理解样本数据标准差的意义和作用,学会计算数据的标准差。

2、能根据实际问题的需求合理地选取样本,从样本数据中提取基本数字特征(如平均数、标准差),并作出合理的解释。

教材通过3个实例的分析,在初中统计学习的基础上理解平均数、众数、中位数、极差、方差、标准差,对数据的刻画特点,例1目的在于使学生理解不同的人根据需要会选择不同的统计量来说明数据,例2要求学生根据茎叶图的分布特征来估计两组数据数字特征的大小、例3是对标准差计算的复习.动手实践部分意义在于使学生体会一次完整收集数据、整理数据、分析数据、得到统计结论的完整统计活动。

二、学情分析1、基础知识:学生在初中已经学习了平均数、众数、中位数、极差、方差和标准差这几个数字特征,并且会给出一组数据,计算其这几个统计量。

2、学习能力和态度:在基础知识学习的基础上,本节学生要理解各个数字特征的特点,同时理解标准差对数据刻画的优势,并且更进一步理解各数字特征对数据刻画的意义。

三、教学目标1、知识与技能理解不同数字特征的意义和作用,并能根据问题的需要选择适当的数字特征来表达数据的信息。

2、过程与方法通过实例,能结合具体情境理解数据标准差的意义和作用,培养学生解决问题的能力,提高学生的运算能力。

3、情感、态度与价值观通过探求反映数据波动情况的统计量,培养学生开放性思维,培养学生的动手操作能力和实践能力。

高中数学 第1章 统计 §2 2.2 分层抽样与系统抽样(教师用书)教案 北师大版必修3-北师大版高

高中数学 第1章 统计 §2 2.2 分层抽样与系统抽样(教师用书)教案 北师大版必修3-北师大版高

2.2 分层抽样与系统抽样 学 习 目 标核 心 素 养,准确把握分层抽样、系统抽样的概念.(重点)2.会用分层抽样、系统抽样解决实际问题.(难点)3.了解各种抽样方法的适用X 围,能根据具体情况选择恰当的抽样方法.(难点) 、系统抽样的概念,培养数学抽象素养.2.通过运用分层抽样、系统抽样解决实际问题,提升数据分析素养.一、分层抽样1.分层抽样的概念将总体按其属性特征分成假设干类型(有时称为层),然后在每个类型中按照所占比例随机抽取一定的样本,这种抽样方法通常叫作分层抽样,有时也称为类型抽样.2.对分层抽样的公平性的理解在分层抽样的过程中,每个个体被抽到的概率是相同的,与分层的情况无关.如果总体的个体数是N ,共分k 层,n 为样本容量,N i (i =1,2,3,…,k )是第i 层中的个体数,那么第i 层中所要抽取的个体数n i =n ×N i N ,而每一个个体被抽取的可能性是n i N i =n N,与层数无关,所以对所有个体而言,其被抽到的概率是相同的,也就是说分层抽样是公平的.二、系统抽样的概念将总体中的个体进行编号,等距分组,在第一组中按照简单随机抽样抽取第一个样本,然后按分组的间隔(称为抽样距)抽取其他样本.这种抽样方法叫系统抽样,有时也叫等距抽样或机械抽样.思考:系统抽样一般适用于具有怎样特征的样本?[提示]系统抽样的实质是“分组〞抽样,适用于总体中的个体数较大的情况.1.以下问题中,最适合用分层抽样抽取样本的是( )A .从10名同学中抽取3人参加座谈会B .某社区有500个家庭,其中高收入的家庭125个,中等收入的家庭280个,低收入的家庭95个,为了了解生活购买力的某项指标,要从中抽取一个容量为100的样本C .从1 000名工人中,抽取100名调查上班途中所用时间D .从生产流水线上,抽取样本检查产品质量B [A 中总体个体无明显差异且个数较少,适合用简单随机抽样;C 和D 中总体个体无明显差异且个数较多,不适合用分层抽样;B 中总体中的个体差异明显,适合用分层抽样.]2.为了解1 200名学生对学校食堂饭菜的意见,打算从中抽取一个样本容量为40的样本,考虑采用系统抽样,那么分段间隔k 为( )A .10B .20C .30D .40C [分段间隔k =1 20040=30.] 3.甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,计划采用分层抽样法抽取一个容量为90的样本,应在这三校分别抽取学生( )A .30人,30人,30人B .30人,45人,15人C .20人,30人,10人D .30人,50人,10人B [先求抽样比n N =903 600+5 400+1 800=1120,再各层按抽样比分别抽取,甲校抽取 3 600×1120=30(人),乙校抽取5 400×1120=45(人),丙校抽取1 800×1120=15(人),应选B.] 4.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,那么应从一年级本科生中抽取________名学生.60[根据题意,应从一年级本科生中抽取的人数为44+5+5+6×300=60.]分层抽样用哪种抽样方法更合理?青、中、老年职工应分别抽取多少人?每人被抽到的可能性相同吗?[解]因为总体由差异明显的三部分(青、中、老年)组成,所以采用分层抽样的方法更合理. 因为青、中、老年职工的比例是3∶5∶2,所以应分别抽取:青年职工400×310=120(人); 中年职工400×510=200(人); 老年职工400×210=80(人). 由样本容量为400,总体容量为3 200可知,抽样比是4003 200=18,所以每人被抽到的可能性相同,均为18.1.分层抽样使用的前提是总体可以分层,层与层之间有明显区别,而层内个体间差异较小,每层中所抽取的个体数可按各层个体数在总体的个体数中所占的比例抽取.2.用分层抽样抽取样本时,需照顾到各层中的个体,所以每层抽取的比例应等于样本容量在总体中的比例.3.在分层抽样中,确定抽样比k 是抽样的关键.一般地,抽样比k =n N(N 为总体容量,n 为样本容量),按抽样比k 在各层中抽取个体,就能确保抽样的公平性.4.在每层抽样时,应采用简单随机抽样或系统抽样的方法进行.[跟进训练]1.,按地域把48个城市分成大型、中型、小型三组,,那么应抽取的中型城市数为 ( )A .3B .4C .5D .6(2)我国古代数学名著《数书九章》有“米谷粒分〞题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,那么这批米内夹谷约为( )A .134石B .169石C .338石D .1 365石(1)B (2)B [(1)根据分层抽样的特点可知,抽样比例为1248=14,那么应抽取的中型城市数为16×14=4.(2)设1 534石米内夹谷x 石,那么由题意知x 1 534=28254,解得x ≈.]系统抽样【例2】 某单位共有在岗职工624人,为了调查职工上班时从离开家到来到单位的平均用时,决定抽取10%的工人进行调查,如何采用系统抽样完成这一抽样?[解]第一步:由题意知,应抽取在岗职工62人作为样本,即分成62组,由于62462的商是10,余数是4,所以每组有10人,还剩4人.这时,抽样距是10;第二步:用随机数法从这些职工中抽取4人并剔除,不进行调查;第三步:将余下的在岗职工620人进行编号,编号分别为000,001,002,…,619; 第四步:在第一组000,001,002,…,009这10个编号中,随机选定一个起始编号,每间隔10抽取一个编号,共抽62个编号,这样就抽取了容量为62的一个样本.1.解决此题时,对总体、个体先进行编号,然后依据样本容量确定分段数及每段间隔长度,再利用简单随机抽样法在第1段中抽取一个作为起始,并依次加间隔长度即可获取样本.2.系统抽样又称等距抽样,当给出总体数和样本容量后,应先确定组数和组距(注意一般组数等于样本容量/组距),在第一组抽取起始后,只需依次加间隔长度即可得到样本.[跟进训练]2.(1)某影院有40排座位,每排有46个座位,一个报告会上坐满了听众,会后留下座号为20的所有听众进行座谈,这是运用了( )A .抽签法B .随机数法C .系统抽样法D .放回抽样法 (2)为了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,那么分段的间隔k =________.(1)C (2)40[(1)此抽样方法将座位分成40组,每组46个个体,会后留下座号为20的相当于第一组抽20号,以后各组抽取20+46n ,n =1,2,3,…,符合系统抽样特点.(2)根据样本容量为30,将1 200名学生分为30段,每段人数即间隔k =1 20030=40.]三种抽样方法的综合应用[探究问题]1.简单随机抽样是不放回抽样吗?提示:是不放回抽样.2.分层抽样时为什么要将总体分成互不重叠的层?提示:在总体中由于个体之间存在着明显的差异,为了使抽取的样本更合理、更具代表性,故将总体分成互不重叠的层,而后独立地抽取一定数量的个体.3.系统抽样的第二步中,当Nn不是整数时,从总体中剔除一些个体采用的方法是什么?影响系统抽样的公平性吗?提示:剔除一些个体可以用简单随机抽样的方法抽取,不影响系统抽样的公平性.【例3】①某学校为了了解高一学生的情况,从每班抽2人进行座谈;②一次数学竞赛中,某班有10人的成绩在110分以上,10人的成绩在100~110分,30人的成绩在90~100分,12人的成绩低于90分,现在从中抽取12人了解有关情况;③运动会服务人员为参加400 m决赛的6名同学安排跑道.就这三件事,合适的抽样方法分别为________、________、________.系统抽样分层抽样简单随机抽样[系统抽样适合总体中个体数量比较大的情况.分层抽样适合总体由差异明显的几部分组成的情况.总体中个体数比较少的时候,选用简单随机抽样.]三种抽样方法的比较类别共同点各自特点相互联系适用X围简单随机抽样(1)抽样过程中每个个体被抽取的概率相等;(2)均属于不放从总体中逐个抽取总体中的个体数较少系统抽样将总体均分成几部分,按事先确定的规那么在各部分抽取在起始部分抽样时采用简单随机抽样总体中的个体数较多分层 抽样 回抽样将总体分成几层,分层进行抽取 各层抽样时采用简单随机抽样或系统抽样 总体由差异明显的几部分组成[跟进训练] 3.某社区有700户家庭,其中高收入家庭有225户,中收入家庭有400户,低收入家庭有75户,为了调查社会购买力的某项指标,要从中抽取一个容量为100户的样本,记作①;某中学高二年级有12名篮球运动员,要从中选出3人调查投篮命中率情况,记作②;从某厂生产的802辆轿车中抽取40辆测试某项性能,记作③.为完成上述三项抽样,那么应采取的抽样方法是( )A .①简单随机抽样,②系统抽样,③分层抽样B .①分层抽样,②简单随机抽样,③系统抽样C .①简单随机抽样,②分层抽样.③系统抽样D .①分层抽样,②系统抽样,③简单随机抽样B [对于①.总体由差异明显的高收入家庭、中收入家庭和低收入家庭三部分组成,而所调查的指标与收入情况密切相关,所以应采用分层抽样;对于②,总体中的个体数较少,而且所调查内容对12名调查对象是平等的,应采用简单随机抽样;对于③,总体中的个体数较多,且个体之间差异不明显,样本中个体数也较多,应采用系统抽样.]1.对于分层抽样中的比值问题,常利用以下关系式解:(1)样本容量n 总体容量N =各层抽取的样本数该层的容量; (2)总体中各层容量之比=对应层抽取的样本数之比.2.选择抽样方法的规律:(1)当总体容量较小,样本容量也较小时,制签简单,号签容易搅匀,可采用抽签法.(2)当总体容量较大,样本容量较小时,可采用随机数法.(3)当总体容量较大,样本容量也较大时,可采用系统抽样法.(4)当总体是由差异明显的几部分组成时,可采用分层抽样法.1.思考辨析(1)分层抽样中每层抽样的可能性是不相等的.()(2)分层抽样时,样本是在各层中分别抽取.()(3)分层抽样时,如果总体个数不能被样本容量整除,那么应先剔除部分个体.()(4)系统抽样的分段段数与所抽取的样本容量的关系是相等.()(5)系统抽样时每个个体被抽到的机会不同.()(6)系统抽样时,如果总体个数不能被样本容量整除,那么应先剔除部分个体.()[解析](1)×,每个个体被抽到的可能性相同.(2)√,由分层抽样的概念知正确.(3)√,由于考虑到实际意义,需剔除部分个体.(4)√,系统抽样时,分段的段数由所抽样本容量确定.(5)×,无论是系统抽样还是分层抽样,每个个体被抽到的机会都相等.(6)√,系统抽样时为了保证间隔k为整数,应先剔除一部分个体.[答案](1)×(2)√(3)√(4)√(5)×(6)√2.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样C[由于该地区的中小学生人数比较多,不能采用简单随机抽样,排除选项A;由于小学、初中、高中三个学段的学生视力差异性比较大,可采取按照学段进行分层抽样,而男女生视力情况差异性不大,不能按照性别进行分层抽样,排除B和D.应选C.]3.某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况.用分层抽样的方法从该学生中抽取一个容量为n的样本.高中学生抽取70人,那么n的值为________.100[由题意,得703 500=n3 500+1 500,解得n=100.]4.从编号为0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量是5的样本,假设编号为28的产品在样本中,那么该样本中产品的最大编号为________.76[根据系统抽样的定义可得,样本中产品的编号间隔为16,再根据编号为28的产品在样本中,可得样本中产品的编号为12,28,44,60,76,故该样本中产品的最大编号为76.]。

高中数学 第一章 统计 1.2.1 简单随机抽样课时作业(含解析)北师大版必修3-北师大版高一必修3

高中数学 第一章 统计 1.2.1 简单随机抽样课时作业(含解析)北师大版必修3-北师大版高一必修3

课时作业2 简单随机抽样时间:45分钟满分:100分——基础巩固类——一、选择题(每小题5分,共40分)1.关于简单随机抽样,下列说法中不正确的是(B)A.当总体中个体数不多时,可以采用简单随机抽样B.采用简单随机抽样不会产生任何代表性差的样本C.利用随机数表抽取样本时,读数的方向可以向右,也可以向左、向下、向上等D.抽签法抽取样本对每个个体来说都是公平的解析:简单随机抽样可能产生代表性差的样本.故选B.2.抽签法中确保样本具有代表性的关键是(B)A.制签B.搅拌均匀C.逐一抽取D.抽取不放回解析:要确保样本具有代表性,用抽签法时,最重要的是要使总体“搅拌均匀”,使每个个体被抽到的可能性相等.使用抽签法制作号签后一定要搅拌均匀.3.下列说法正确的是(B)A.抽签法中可一次抽取两个个体B.随机数法中每次只取一个个体C.简单随机抽样是放回抽样D.抽签法中将号签放入箱子中,可以不搅拌直接抽取4.从总数为N的一批零件中抽取一个容量为30的样本,若每个零件被抽取的可能性为25%,则N为(D)A.150B.200C.100D.120解析:N=3025%=120.5.用随机数表法进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本;③选定开始的数字.这些步骤的先后顺序应为( B )A .①②③B .①③②C .③②①D .③①②解析:用随机数表法抽样应先将个体编号,然后从随机数表中选取开始的数字读数,得到符合条件的样本,对应样本的个体为所得的样本.6.在简单随机抽样中,某一个个体被抽到的可能是( C )A .与第n 次抽样有关,第一次被抽中的可能性大些B .与第n 次抽样有关,最后一次被抽中的可能性较大C .与第n 次抽样无关,每次被抽中的可能性相等D .与第n 次抽样无关,每次都是等可能被抽取,但各次被抽取的可能性不一样解析:在总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等.7.对于简单随机抽样,下列说法中正确的命题有( D )①它要求被抽取样本的总体的个数是有限的,以便对其中每个个体被抽取的概率进行分析;②它是从总体中逐个地进行抽取,以便在抽取实践中进行操作;③它是一种不放回抽样;④它是一种等概率抽样,不仅每次从总体中抽取一个个体时,每个个体被抽取的概率相等,而且在整个抽样过程中,每个个体被抽取的概率也相等,从而保证了这种抽样方法的公平性.A .①②③B .①②④C .①③④D .①②③④解析:命题①②③④都正确.8.某校高一共有10个班,编号为1~10,现用抽签法从中抽取3个班进行调查,每次抽取一个,共抽3次,设高一(5)班第一次被抽到的可能性为a ,第二次被抽到的可能性为b ,则( D )A .a =310,b =29B .a =110,b =19C .a =310,b =310D .a =110,b =110解析:由简单随机抽样的定义,知每个个体在每次抽取中都有相同的可能性被抽到,故高一(5)班在每次抽取中被抽到的可能性都是110. 二、填空题(每小题5分,共15分)9.为了了解某班学生的身高情况,决定从50名同学中选取10名进行测量(已编号为00~49),利用随机数法进行抽取,得到如下3组编号,你认为正确的是②.(填序号)①26,94,29,27,43,99,55,19,81,06;②20,26,31,40,24,36,19,34,03,48;③04,00,45,32,44,22,04,11,08,49.解析:获取的样本应跳过不在样本编号内的,并应去掉重复.10.用随机数法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的可能性是0.2.解析:因为样本容量为20,总体容量为100,所以总体中每一个个体被抽到的可能性都为20100=0.2. 11.用简单随机抽样的方法从含有6个个体的总体中,抽取一个容量为2的样本,某一个个体a “第一次被抽到的概率”,“第二次被抽到的概率”,“在整个抽样过程中被抽到的概率”分别是16,16,13. 解析:从6个个体中抽1个个体,每个个体被抽到的概率均为16,与抽取的次数无关,第二次被抽到的概率仍为16.但由于在整个抽样过程中是从6个个体中抽2个样本,故个体a 被抽到的概率为13. 三、解答题(共25分,解答应写出必要的文字说明、证明过程或演算步骤)12.(12分)某老现在课堂上对全班同学进行了两次模拟抽样,第一次采用抽签法,第二次采用随机数法.在这两次抽样中,小明第一次被抽到了,第二次没有被抽到,那么用这两种方法抽样时,小明被抽到的可能性一样吗?解:虽然都是简单随机抽样,但是每次抽出的结果可能会不相同,被抽到的可能性不是看最终结果,而是看在抽样前被抽到的可能性是不是相同,这主要取决于抽样是不是随机的,只要没有人为因素的干扰,在两次抽样中,小明被抽到的可能性都是一样的.13.(13分)现要从20名学生中抽取5名进行问卷调查,写出抽取样本的过程.解:简单随机抽样分两种:抽签法和随机数法.本题可采用抽签法进行抽取.(1)先将20名学生进行编号,从1编到20;(2)把写在形状、大小均相同的号签上;(3)将号签放在某个箱子中进行充分搅拌,力求均匀,然后依次从箱子中抽取5个号签,按这5个号签上的抽取对应的学生,即得样本.——能力提升类——14.(5分)从一群玩游戏的小孩中随机抽出k 人,一人分一个桃子后,让他们返回继续玩游戏,一会儿后,再从中任意抽出m 人,发现其中有n 个小孩曾分过桃子,估计一共有小孩子km n个. 解析:估计一共有小孩x 人,则有k x =n m, ∴x =km n. 15.(15分)公共汽车管理部门要考察一下其所管辖的30辆公共汽车的卫生状况,现决定从中抽取10辆进行检查.如果以抽签法做实验,请叙述具体的做法;如果该管理部门管辖的是70辆车,利用随机数法抽取一个简单随机样本,样本容量为30.解:(1)抽签法的步骤:第一步 编号.给所管辖的30辆车编号;第二步 定签.可以用各种不同的签,最简单的可以用纸条,将30辆车的编号写在纸条上;第三步 抽取.将纸条混合均匀,依次随机地抽取10个;第四步 调查.调查抽出的纸条所对应的车辆.(2)随机数法的步骤:第一步编号.将70辆车编上号:00,01,02, (69)第二步选数.由于总体是一个两位数的编号,所以从随机数表中随机选取一个位置开始,向某一方向依次选取两位数字,大于69的舍去,重复的舍去,直到取满30个数为止;第三步调查.调查抽出的数所对应的车辆.。

新教材2021-2022学年高一数学北师大版必修第一册学案:第1章 §3 3

新教材2021-2022学年高一数学北师大版必修第一册学案:第1章 §3 3

3.2基本不等式学习目标核心素养1.掌握基本不等式ab≤a+b2(a≥0,b≥0,当且仅当a=b时等号成立).(重点、易错点)2.结合具体实例,能用基本不等式解决简单的最大值或最小值问题.(难点)1.利用基本不等式求最值的应用,提升数学运算素养.2.借助基本不等式在实际问题中的应用,培养数学建模素养.1.基本不等式的内容是什么?2.算术平均值和几何平均值的概念是什么?3.基本不等式成立的条件是什么?4.利用基本不等式求最值时,应注意哪些问题?知识点1重要不等式与基本不等式1.重要不等式对任意实数x和y有x2+y22≥xy,当且仅当x=y时,等号成立.2.基本不等式设a≥0,b≥0,有a+b2≥ab,当且仅当a=b时,等号成立.其中,a+b2称为a,b的算术平均值,ab称为a,b的几何平均值.基本不等式又称为均值不等式,也可以表述为:两个非负实数的算术平均值大于或等于它们的几何平均值.(1)基本不等式中的a,b只能是具体的某个数吗?(2)基本不等式成立的条件“a≥0,b≥0”能省略吗?请举例说明.[提示](1)a,b既可以是具体的某个数,也可以是代数式.(2)不能,如(-3)+(-4)2≥(-3)×(-4)是不成立的.1.(多选)下列结论正确的是()A .对于任意a ,b ∈R ,a 2+b 2≥2ab ,a +b ≥2ab 均成立B .若a ,b 同号,则b a +ab ≥2 C .若a >0,b <0,则ab ≤a +b2恒成立 D .若a >0,b >0,且a ≠b ,则a +b >2ab [答案] BD2.不等式(x -2y )+1x -2y ≥2成立的前提条件为________.x >2y [因为不等式成立的前提条件是各项均为正,所以x -2y >0,即x >2y .] 知识点2 基本不等式与最值当x ,y 均为正数时,下面的命题均成立:(1)若x +y =s (s 为定值),则当且仅当x =y 时,xy 取得最大值s 24; (2)若xy =p (p 为定值),则当且仅当x =y 时,x +y 取得最小值2p .x +1x 的最小值是2吗? [提示] 当x >0时,x +1x 的最小值是2.当x <0时,x +1x 没有最小值.3.如果a >0,那么a +1a +2的最小值是________. 4 [因为a >0,所以a +1a +2≥2a ·1a +2=2+2=4,当且仅当a =1时,等号成立.]4.已知0<x <1,则x (1-x )的最大值为________,此时x =________. 14 12 [因为0<x <1, 所以1-x >0,所以x (1-x )≤⎣⎢⎡⎦⎥⎤x +(1-x )22=⎝ ⎛⎭⎪⎫122=14, 当且仅当x =1-x ,即x =12时“=”成立,即当x =12时,x (1-x )取得最大值14.]类型1 利用基本不等式证明不等式【例1】 已知a >0,b >0,c >0,且a +b +c =1.求证:⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥8. [证明] 因为a >0,b >0,c >0,且a +b +c =1, 所以1a -1=1-a a =b +c a ≥2bc a , 同理1b -1≥2ac b ,1c -1≥2ab c .上述三个不等式两边均为正,由不等式同向同正可乘性,分别相乘, 得⎝ ⎛⎭⎪⎫1a -1⎝ ⎛⎭⎪⎫1b -1⎝ ⎛⎭⎪⎫1c -1≥2bc a ·2ac b ·2abc =8. 当且仅当a =b =c =13时,等号成立.(变设问)在本例条件下,求证:1a +1b +1c ≥9. [证明] 因为a >0,b >0,c >0,且a +b +c =1, 所以1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9.当且仅当a =b =c =13时,等号成立.利用基本不等式证明不等式的策略与注意事项(1)策略:从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后转化为所求问题,其特征是以“已知”看“可知”,逐步推向“未知”.(2)注意事项:①多次使用基本不等式时,要注意等号能否成立;②累加法是不等式证明中的一种常用方法,证明不等式时注意使用; ③对不能直接使用基本不等式证明的可重新组合,构成基本不等式模型再使用.[跟进训练]1.已知a ,b ,c 均为正实数,求证:2b +3c -a a +a +3c -2b 2b +a +2b -3c 3c ≥3.[证明] ∵a ,b ,c 均为正实数,∴2b a +a2b ≥2(当且仅当a =2b 时等号成立), 3c a +a3c ≥2(当且仅当a =3c 时等号成立), 3c 2b +2b3c ≥2(当且仅当2b =3c 时等号成立),将上述三式相加得⎝ ⎛⎭⎪⎫2b a +a 2b +⎝ ⎛⎭⎪⎫3c a +a 3c +⎝ ⎛⎭⎪⎫3c 2b +2b 3c ≥6(当且仅当a =2b =3c时等号成立),∴⎝ ⎛⎭⎪⎫2b a +a 2b -1+⎝ ⎛⎭⎪⎫3c a +a 3c -1+⎝ ⎛⎭⎪⎫3c 2b +2b 3c -1≥3(当且仅当a =2b =3c 时等号成立),即2b +3c -a a +a +3c -2b 2b +a +2b -3c 3c ≥3(当且仅当a =2b =3c 时等号成立).类型2 利用基本不等式求最值 【例2】 (1)已知x >2,则x +4x -2的最小值为________. (2)若0<x <12,则12x (1-2x )的最大值是________.(3)若x >0,y >0,且x +4y =1,则1x +1y 的最小值为________. (1)6 (2)116 (3)9 [(1)因为x >2, 所以x -2>0,所以x+4x-2=x-2+4x-2+2≥2(x-2)·4x-2+2=6,当且仅当x-2=4x-2,即x=4时,等号成立.所以x+4x-2的最小值为6.(2)因为0<x<1 2,所以1-2x>0,所以12x(1-2x)=14×2x×(1-2x)≤14⎝⎛⎭⎪⎫2x+1-2x22=14×14=116,当且仅当2x=1-2x,即当x=14时,等号成立,所以12x(1-2x)的最大值为116.(3)因为x>0,y>0,x+4y=1,所以1x+1y=x+4yx+x+4yy=5+4yx+xy≥5+24yx·xy=9,当且仅当4yx=xy,即x=13,y=16时,等号成立,所以1x+1y的最小值为9.]利用基本不等式求最值的方法利用基本不等式,通过恒等变形及配凑,使“和”或“积”为定值.常见的变形方法有拆、并、配.(1)拆——裂项拆项对分子的次数不低于分母次数的分式进行整式分离——分离成整式与“真分式”的和,再根据分式中分母的情况对整式进行拆项,为应用基本不等式凑定积创造条件.(2)并——分组并项目的是分组后各组可以单独应用基本不等式;或分组后先对一组应用基本不等式,再在组与组之间应用基本不等式得出最值.(3)配——配式配系数有时为了挖掘出“积”或“和”为定值,常常需要根据题设条件采取合理配式、配系数的方法,使配式与待求式相乘后可以应用基本不等式得出定值,或配以恰当的系数后,使积式中的各项之和为定值.[跟进训练]2.已知x >0,y >0,且x +y =8,则(1+x )(1+y )的最大值为( ) A .16 B .25 C .9D .36B [因为x >0,y >0,且x +y =8,所以(1+x )·(1+y )=1+x +y +xy =9+xy ≤9+⎝⎛⎭⎪⎫x +y 22=9+42=25,当且仅当x =y =4时等号成立,所以(1+x )(1+y )的最大值为25.]类型3 利用基本不等式解应用题【例3】 某货轮匀速行驶在相距300海里的甲、乙两地间运输货物,运输成本由燃料费用和其他费用组成.已知该货轮每小时的燃料费用与其航行速度的平方成正比(比例系数为0.5),其他费用为每小时800元,且该货轮的最大航行速度为50海里/时.(1)请将该货轮从甲地到乙地的运输成本y (元)表示为航行速度x (海里/时)的函数;(2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶? [解] (1)由题意,每小时的燃料费用为0.5x 2元,从甲地到乙地所用的时间为300x 小时,则y =0.5x 2·300x +800·300x=150⎝ ⎛⎭⎪⎫x +1 600x (0<x ≤50).(2)由(1)得y =150⎝ ⎛⎭⎪⎫x +1 600x ≥300x ·1 600x =12 000,当且仅当x =1 600x ,即x =40时取等号.故当货轮的航行速度为40海里/时时,能使该货轮从甲地到乙地的运输成本最少.利用基本不等式解决实际问题要遵循以下几点:(1)在理解题意的基础上设变量,确定问题中量与量之间的关系,初步确定用怎样的函数模型;(2)建立相应的函数解+析式,将实际问题抽象为函数的最大值或最小值问题;(3)在定义域(使实际问题有意义的自变量的取值范围)内,求出函数的最大值或最小值;(4)回到实际问题中,检验并写出正确答案.[跟进训练]3.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则当每台机器运转________年时,年平均利润最大,最大值是________万元.5 8 [每台机器运转x 年的年平均利润为y x =18-⎝ ⎛⎭⎪⎫x +25x ,且x >0,故y x ≤18-225=8,当且仅当x =5时等号成立,此时年平均利润最大,最大值为8万元.]基本不等式的拓广应用阅读下列材料.二元基本不等式:设a ,b 为正数,则a +b2≥ab ,当且仅当a =b 时等式成立.证明:因为(a +b )2-4ab =(a -b )2≥0,所以(a +b )2≥4ab ,从而得a +b2≥ab ,当且仅当a =b 时等式成立.三元基本不等式:设a ,b ,c 为正数,则a +b +c 3≥3abc ,当且仅当a =b=c 时等式成立.证明:设d 为正数,由二元基本不等式, 得a +b +c +d 4=12⎝ ⎛⎭⎪⎫a +b 2+c +d 2≥ab +cd 2≥4abcd ,当且仅当a =b =c =d 时,等式成立.令d =a +b +c 3,即a +b +c =3d ,代入上述不等式,得d ≥4abcd , 由此推出d 3≥abc ,因此a +b +c 3≥3abc ,当且仅当a =b =c 时等式成立. [问题探究]当满足什么条件时,可以利用三元基本不等式求a +b +c3的最小值?[提示] 当a ,b ,c 均为正数,且a ,b ,c 能取到相等的值时,可以利用三元基本不等式求a +b +c3的最小值.1.不等式a 2+1≥2a 中等号成立的条件是( ) A .a =±1 B .a =1 C .a =-1D .a =0B [由a 2+1=2a ,得a =1,即a =1时,等号成立.] 2.已知a >0,b >0,则下列不等式中错误的是( ) A .ab ≤⎝⎛⎭⎪⎫a +b 22B .ab ≤a 2+b 22 C .1ab ≥2a 2+b 2D .1ab ≤⎝ ⎛⎭⎪⎫2a +b 2D [由基本不等式知A 、C 正确,由重要不等式知B 正确,由a +b2 ≥ab 得,ab ≤⎝⎛⎭⎪⎫a +b 22∴1ab ≥⎝ ⎛⎭⎪⎫2a +b 2,故选D.] 3.下列各不等式:①a 2+1>2a ;②⎪⎪⎪⎪⎪⎪x +1x ≥2;③a +b ab ≤2;④x 2+1x 2+1≥1,其中正确的个数是( )A .3B .2C.1 D.0B[仅②④正确.]4.已知a>0,b>0,a+2b=2,则ab的最大值是________.12[因为a+2b≥2a·2b.所以2a·2b≤2,所以ab≤12,当且仅当a=2b=1时取等号.]5.某工厂第一年的产量为A,第二年的增长率为a,第三年的增长率为b,则这两年的平均增长率x与增长率的平均值a+b2的大小关系为________.x≤a+b2[用两种方法求出第三年的产量分别为A(1+a)(1+b),A(1+x)2,则有(1+x)2=(1+a)(1+b).∴1+x=(1+a)(1+b)≤1+a+1+b2=1+a+b2,∴x≤a+b2.当且仅当a=b时等号成立.]。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年高中数学第一章统计相关性教案北师大版必修3
一、教学目标:
1.通过收集现实问题中两个变量的数据作出散点图,利用散点图直观认识变量间的相
关关系.
2.经历用不同的估算方法来描述两个变量线性相关的过程.
二、重难点:
利用散点图直观认识两个变量之间的线性相关关系
三、教学方法:
动手操作,师生合作交流
四、教学过程
(一)、创设情境导入新课
1、相关关系的理解
师:我们曾经研究过两个变量之间的函数关系:一个自变量对应着唯一的一个函数值,这两
者之间是一种确定关系。

生活中的任何两个变量之间是不是只有确定关系呢?
让学生举例,教师总结如:
生:不是。

师:能否举出反例?比如,年龄与身高。

生:身高与体重
生:教师水平与学生成绩。

生:网速与下载文件所需时间
师:不妨以教师水平与学生成绩为例,学生成绩与教师水平有关吗?
生:有,一般来说,教师水平越高,学生成绩越好
师:即“名师出高徒”,名师一定出高徒吗?生:不一定。

师:即学生成绩与教师水平之间存在着某种联系,但又不是必然联系,对于学生成绩与教师
水平之间的这种不确定关系,我们称之为相关关系。

这就是我们这节课要共同探讨的内容
变量间的相关关系。

(板书)
生活中还有很多描述相关关系的成语,如:“虎父无犬子”,“瑞雪兆丰年”
【设计意图:通过学生熟悉的函数关系,引导学生关注生活中两个变量之间还存在的相
关关系。

让学生体会研究变量之间相关关系的重要性。

感受数学来源于生活。


(二)、初步探索,直观感知
1、根据样本数据利用电子表格作出散点图,直观感知变量之间的相关关系
师:在研究相关关系前,同学们先回忆一下:函数的表示方法有哪些?
生:列表,画图象,求解析式。

师:下面我们就用这些方法来研究相关关系。

请同学们看这样一组数据:
探究: 在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据: 根据上述数据,人体的脂肪含量与年龄之间有怎样的关系?
生:随着年龄增长,脂肪含量在增加师:有没有更直观的方式?生:画图
师生:用x轴表示年龄,y轴表示脂肪。

一组样本数据就对应着一个点。

由于数据比较多,我们借用电子表格来作图,请大家注意观察。

教师演示作图方法,学生观察
师:这个图跟我们所学过的函数图象有区别,它叫作散点图。

2、判断正、负相关、线性相关 学生观察,比较,讨论。

师:请同学们观察这4幅图,看有什么特点?
生:图1呈上升趋势,图2呈下降趋势。

师生:这就像函数中的增函数和减函数。

即一个变量从小到大,另一个变量也从小到大,或从大到小。

对于图1中的两个变量的相关关系,我们称它为正相关。

图2中的两个变量的相
图1
2
图图
3图4
关关系,称为负相关。

师:我们还可以判断出:年龄与身高是正相关,网速与下载文件所需时间是负相关。

生:后面两个图很乱,前面两个图中点的分布呈条状。

师:从数学的角度来解释:即图1、2中的点的分布从整体上看大致在一条直线附近。

我们称图1、2中的两个变量具有线性相关关系。

这条直线叫做回归直线。

图3、4中的两个变量是非线性相关关系
师:这节课我们重点研究线性相关关系。

(板书) 设计意图 :数形结合,扫清了学生的思维障碍,体现数学的简约美。

(三)、循序渐进、延伸拓展 1、找回归直线
师:下面我们再来看一下年龄与脂肪的散点图,从整体上看,它们是线性相关的。

如果可以求出回归直线的方程,我们就可以清楚地了解年龄与体内脂肪含量的相关性。

这条直线可以作为两个变量具有线性相关关系的代表。

同学们能否画出这条直线?请完成数学实验1、画出回归直线。

(学生在计算机上用电子表格画回归直线) 数学实验1: 画出回归直线
学生方案二
学生方案三
生总结: 第二种方法好,因为所有的点离这条直线最近。

师:即,从整体上看,各点与此直线的距离和最小。

(四)、例题探析
例1: 在下列两个变量的关系中,哪些是相关关系?
①正方形边长与面积之间的关系;②作文水平与课外阅读量之间的关系;③人的身高与年龄之间的关系;④降雪量与交通事故的发生率之间的关系. 【 答案:②③④】 例2、 以下是某地搜集到的新房屋的销售价格和房屋的面积的数据: 房屋面积 (平方米)
61
70
115
110
80
135
105
销售价格 (万元)
12.2 15.3 24.8 21.6 18.4 29.2 22
画出数据对应的散点图,并指出销售价格与房屋面积这两个变量是正相关还是负相关。

(五)、小结与作业
1.对于两个变量之间的关系,有函数关系和相关关系两种,其中函数关系是一种确定性关系,相关关系是一种非确定性关系.
05101520
2530
3540
5
10
15
20
25
3035
40
45
50
55
60
65
年龄
脂肪含量
2.散点图能直观反映两个相关变量之间的大致变化趋势,利用计算机作散点图是简单可行的办法.
3.一般情况下两个变量之间的相关关系成正相关或负相关,类似于函数的单调性.
作业:略
五、教后反思:。

相关文档
最新文档