求数列通项公式的十种方法(例题+详解)
求数列通项公式的十种方法(例题+详解)
求数列通项公式的十种方法一、公式法例1 已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。
评注:本题解题的关键是把递推关系式1232n n n a a +=+⨯转化为113222n n n na a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。
二、利用{1(2)1(1)n n S S n S n n a --≥==例2.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式;解: 22(1)4231a n a d S n n n n =-+∴=-=-=--23435T S n n n n n ∴=+=-- (2)分 当1,35811n T b ===--=-时当2,626 2.1n b T T n b n n n n n ≥=-=--∴=---时……4分练习:1。
已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3又10S n -1=a n -12+5a n -1+6(n ≥2),②由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2)当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3;当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3三、累加法例3 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
数列通项公式的完整求法,还有例题详解
一.不雅察法例1:依据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2) ,17164,1093,542,211(3) ,52,21,32,1(4) ,54,43,32,21-- 解:(1)变形为:101-1,102―1,103―1,104―1,……∴通项公式为:110-=n n a(2);122++=n n n a n(3);12+=n a n (4)1)1(1+⋅-=+n na n n .点评:症结是找出各项与项数n的关系.二.公式法:当已知前提中有a n 和s n 的递推关系时,往往运用公式:a n =1*1(1)(2,)n n s n s s n n N -=⎧⎪⎨-≥∈⎪⎩来求数列的通项公式. 例1: 已知数列{a n }是公役为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),(1)求数列{ a n }和{ b n }的通项公式;解:(1)∵a 1=f (d -1) = (d -2)2,a 3 = f (d +1)= d 2,∴a 3-a 1=d 2-(d -2)2=2d ,∴d =2,∴a n =a 1+(n -1)d = 2(n -1);又b 1= f (q +1)= q 2,b 3 =f (q -1)=(q -2)2,∴2213)2(q q b b -==q 2,由q ∈R ,且q ≠1,得q =-2,∴b n =b ·qn -1=4·(-2)n -1例2. 等差数列{}n a 是递减数列,且432a a a ⋅⋅=48,432a a a ++=12,则数列的通项公式是( )(A)122-=n a n (B)42+=n a n (C)122+-=n a n(D)102+-=n a n解析:设等差数列的公役位d,由已知⎩⎨⎧==+⋅⋅+12348)()(3333a d a a d a ,解得⎩⎨⎧±==243d a ,又{}n a 是递减数列,∴2-=d ,81=a ,∴=--+=)2)(1(8n a n 102+-n ,故选(D).例 3. 已知等比数列{}n a 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n na ab ,求数列{}n b 的通项公式.解析:由题意,321++++=n n n a a b ,又{}n a 是等比数列,公比为q ∴q a a a a b b n n n n n n =++=+++++21321,故数列{}n b 是等比数列,)1(211321+=+=+=q q q a q a a a b ,∴)1()1(1+=⋅+=-q q q q q b n n n点评:当已知数列为等差或等比数列时,可直接运用等差或等比数列的通项公式,只需求得首项及公役公比.例4: 已知无限数列{}n a 的前n 项和为n S ,并且*1()n n a S n N +=∈,求{}n a 的通项公式?【解析】:1n n S a =-,∴111n n n n n a S S a a +++=-=-,∴112n n a a +=,又112a =, ∴12nn a ⎛⎫= ⎪⎝⎭.反思:运用相干数列{}n a 与{}n S 的关系:11a S =,1n n n a S S -=-(2)n ≥与提设前提,树立递推关系,是本题求解的症结.{}n a 的前n 项和n S ,知足关系()1lg nS n +=(1,2)n =⋅⋅⋅.试证数列{}n a 是等比数列.例5:已知数列{}n a 前n 项的和为s n =23a n -3,求这个数列的通项公式.剖析:用a n 调换s n -s 1-n (n ≥2)得到数列项与项的递推关系来求.解: a 1=23a 1-3, ∴ a 1=6s n =23a n -3 (n ∈N *) ① ∴s 1-n =23a 1-n -3 (n ≥2且n ∈N *) ②①- ②得:a n =23a n -23a 1-n∴21 a n =23a 1-n ,即1-n n a a =3(n ≥2且n ∈N *) ∴数列{}na 是以a 1=6,公比q 为3的等比数列. ∴a n=a 1q 1-n =6⨯31-n =2⨯3n.例6:已知正项数列{}n a 中,s n =21(a n +na 1),求数列{}n a 的通项公式.剖析:用s n -s 1-n (n ≥2)调换a n 得到数列n s 与1n s -的递推关系来求较易.解 s n =21(a n +na 1),∴a 1=21( a 1+11a )∴ a 1=1又a n = s n -s 1-n (n ≥2且n ∈N *)∴ s n =21(s n -s 1-n +1n s 1--n s )∴2s n =s n -s 1-n +1n s 1--n s∴sn+s 1-n =1n s 1--n s∴ s n2-s 1-n 2=1 (n ≥2且n ∈N *)∴数列{}2n s 是以a 21=1为首项,公役为1的等差数列. ∴ s n 2=1+(n -1)⨯1=n,即s n=n ,当n ≥2时,s n -s 1-n =a n =n -1-n 将n =1代入上式得a n =n -1-n演习:数列{}n a 前n 项和为n S ,已知n a =5n S -3(*n N ∈),求n a 三.累加法:求形如1n a +=n a +f(n)的递推数列的通项公式的根本办法.(个中f(n)能求前n 项和即可)运用1211()()n n n a a a a a a -=+-+⋅⋅⋅-求通项公式的办法称为累加法.累加法是求型如1()n n a a f n +=+的递推数列通项公式的根本办法(()f n 可求前n 项和).例1.已知数列{}n a 中,1129,21,(2,*)n n a a a n n n N -==+-≥∈,求这个数列的通项公式.剖析:由已知121n n a a n -=+-,得121n n a a n --=-,留意到数列{}n a 的递推公式的情势与等差数列的递推公式相似,因而,可累加法求数列的通项.解:数列{}n a 中,1129,21,(2,*)n n a a a n n n N -==+-≥∈,可得:以上各式相加,将n =1代入上式得228n a n =+演习:已知数列{}n a 中,113,2,(*)n n n a a a n N ==+∈+,求n a例2:已知数列6,9,14,21,30,…求此数列的一个通项. 解易知,121-=--n a a n n ∵,312=-a a ,523=-a a ,734=-a a ……,121-=--n a a n n各式相加得)12(7531-++++=-n a a n ∴)(52N n n a n ∈+=点评:一般地,对于型如)(1n f a a n n +=+类的通项公式,只要)()2()1(n f f f +++ 能进行乞降,则宜采取此办法求解.例3. 若在数列{}n a 中,31=a ,n a a n n +=+1,求通项n a . 解析:由na a n n +=+1得na a n n =-+1,所以11-=--n a a n n ,221-=---n a a n n ,…,112=-a a ,将以上各式相加得:1)2()1(1+⋅⋅⋅+-+-=-n n a a n ,又31=a 所以n a =32)1(+-n n例4已知无限数列{}n a 的的通项公式是12nn a ⎛⎫= ⎪⎝⎭,若数列{}n b 知足11b =,(1)n ≥,求数列{}n b 的通项公式.【解析】:11b =,112nn n b b +⎛⎫-= ⎪⎝⎭(1)n ≥,∴1211()()n n n b b b b b b -=+-+⋅⋅⋅-=1+12+⋅⋅+112n -⎛⎫⎪⎝⎭=1122n -⎛⎫- ⎪⎝⎭.反思:用累加法求通项公式的症结是将递推公式变形为1()n n a a f n +=+.112a =,112nn n a a +⎛⎫=+ ⎪⎝⎭*()n N ∈,求数列{}n a 通项公式.3.累乘法:求形如1n a +=g(n)n a 的递推数列通项公式的根本办法.(个中g(n)可求前n 项 积即可).运用恒等式321121(0,2)n n n n a a a a a a n a a a -=⋅⋅⋅≠≥求通项公式的办法称为累乘法,累乘法是求型如: 1()n n a g n a +=的递推数列通项公式的根本办法(数列()g n 可求前n 项积). 例1.若知足111,(*),1n n a na n N a n +==∈+求这个数列的通项公式. 剖析:由11n na n a n +=+知数列{}n a 不是等比数列,但其递推公式的情势与等比数列递推公式相似,因而,可累加法求数列的通项.解: 111,(*),1n n a na n N a n +==∈+ 以上各式相乘得:11231...234n a n a n -=⨯⨯⨯⨯1n a n∴=(2)n ≥∈*且n N将n =1代入上式得1n a n=变式演习:设{}n a 是首项为1的正数构成的数列,且2211(1)0(12)n n n n n a na a a n +++-+==,,…,则它的通项公式为n a =. 例2:在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式.解:由(n+1)·1+n a =n ·n a 得11+=+n n a a n n ,1a an =12a a ·23a a ·34a a …1-n n a a =n n n 11433221=-⋅⋅ 所以n a n 1=例3 已知数列{}n a 中,311=a ,前n 项和n S 与n a 的关系是n n a n n S )12(-= ,试求通项公式n a .解析:起首由n n a n n S )12(-=易求的递推公式:1232,)32()12(11+-=∴-=+--n n a a a n a n n n n n 5112521221=--=∴--a a n n a a n n 将上面n —1个等式相乘得:点评:一般地,对于型如1+n a =f (n)·n a 类的通项公式,当)()2()1(n f f f ⋅⋅ 的值可以求得时,宜采取此办法.例四 已知11a =,1()n n n a n a a +=-*()n N ∈,求数列{}n a 通项公式. 【解析】:1()n n n a n a a +=-,∴11n n a n a n++=,又有321121(0,2)n n n n a a a a a a n a a a -=⋅⋅⋅≠≥= 1×23n×××12n-1⋅⋅⋅=n ,当1n =时11a =,知足n a n =,∴n a n =. 反思: 用累乘法求通项公式的症结是将递推公式变形为1()n n a g n a +=.{}n a 知足11a =,123123(1)(2)n n a a a a n a n -=+++⋅⋅⋅+-≥.则{}n a 的通项公式是.4.结构新数列:经由过程变换递推关系,可将非等差数列或等比数列转化为等差或等比数列而求得通项公式的办法.(待定系数法)例题5:已知数列{}n a 中知足11a =,*123()n n a a n N +=-∈,求数列{}n a 的通项公式.剖析:将一阶线性递推关系形如1(0,1)n n a Aa B A B A B +=+≠≠、为常数,可转化为111(),111n n n n Ba B B A a A a A B A A a A +++-+=+=--+-即的一个新的等比数列或消常数项转化为212111()n n n n n n n na aa a A a a A a a ++++++--=-=-,即的一个等比数列.解法1:数列{}n a 中11=a ,321-=+n n a a (n 1≥)∴数列{}331--+n n a a 是以首项231-=-a ,公比为2的等比数列解法2: 数列{}n a 中11=a ,321-=+n n a a ① ∴3212-=++n n a a ②②-①得)(=-n n n n a a a a -++122又 21231a a =-=-∴数列{}1n n a a --是以首项212,a a -=-公比为2的等比数列∴11122,2n n n n n n a a a a ----⨯-=-=-即,(再运用累加法可求数列的通项公式,以下解法略)可求得()*23n n a n N =-∈+ (倒数法)例题6:已知数列{}n a 中知足11a =,131nn n a a a +=+,求数列的通项n a .剖析:可将形如一阶分式递推公式1nn n Ca a Aa B+=+,(A.B.C 为知足前提的常数),等式双方取倒数得:111.n n B Aa C a C+=+,又可运用求形如1''n n a A a B +=+(A ’.B ’为常数)的办法来求数列的通项.解:数列 {}n a 中, 11a =,131n n n aa a +=+∴1113n n a a +=+,即1113n na a +-= ∴数列1n a ⎧⎫⎨⎬⎩⎭是以111,a =公役为3的等差数列.变式演习:知数列{}n a 中知足11a =,1231nn n a a a +=+,求数列的通项.例题7:已知数列{}n a 中知足11a =,122(n n n a a n N ++=+∈),求数列{}n a 的通项公式.剖析:形如递推公式1.(1,1)n n n a q a d q d d +=+≠≠、为非零常数,q 可转化为111.n n n n a a q d d d d ++=+,若令nnn a b d =,则转化为形如1.(n n a A a B A B +=+、为常数)的办法来求数列的通项.(提醒:将122(n n n a a n N ++=+∈)转化为111222n n n n a a ++-=,解法略.)别的,数列通项求法还稀有学归纳猜测法,可以先求出数列的前n 项,然后不雅察前n 项的纪律,再进行归纳.猜测出通项,最后予以证实,例如:数列{}n a 知足a 1=4,n a =4-14n a -(n ≥2),求n a (理科请求,解略);还有对数变换法,例如:形如1(0,0,01)p n n na Ca a Cpp +=≠且可转化为1lg lg lg n n a p a C +=+问题解决;当然还有特点方程法等等. 六.待定系数法:例10:设数列}{n c 的各项是一个等差数列与一个等比数列对应项的和,若c 1=2,c 2=4,c 3=7,c 4=12,求通项公式c n解:设1)1(-+-+=n n bq d n a c 132211121237242-+=⇒⎪⎪⎩⎪⎪⎨⎧=====⎪⎪⎩⎪⎪⎨⎧=++=++=++=+∴n n n c a b d q bq d a bq d a bq d a b a 例11.已知数列{}n c 中,b b c +=11,bbc b c n n ++⋅=-11,个中b 是与n 无关的常数,且1±≠b .求出用n 和b 暗示的a n 的关系式.解析:递推公式必定可暗示为)(1λλ-=--n n c b c 的情势.由待定系数法知:bbb ++=1λλ 故数列⎭⎬⎫⎩⎨⎧--21b b c n 是首项为112221-=--b b b b c ,公比为b 的等比数列,故111121211222--=∴-=-=--++-b b b c b b b b b b b c n n n n n点评:用待定系数法解题时,常先假定通项公式或前n 项和公式为某一多项式,一般地,若数列}{n a 为等差数列:则c bn a n +=,cn bn s n +=2(b.c为常数),若数列}{n a 为等比数列,则1-=n n Aq a ,)1,0(≠≠-=q Aq A Aq s n n .七.帮助数列法例12:已知数}{n a 的递推关系为121+=+n n a a ,且11=a 求通项n a .解:∵121+=+n n a a ∴)1(211+=++n n a a 令1+=n n a b 则帮助数列}{n b 是公比为2的等比数列∴11-=n n q b b 即n n n q a a 2)1(111=+=+-∴12-=n n a例13:在数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a . 解析:在n n n a a a 313212+=++双方减去1+n a ,得)(31112n n n n a a a a --=-+++ ∴{}n n a a -+1是认为112=-a a 首项,认为31-公比的等比数列,∴11)31(-+-=-n n n a a ,由累加法得na =112211)()()(a a a a a a a n n n n +-+⋅⋅⋅+-+---- =+--2)31(n +--3)31(n …11)31(++-=311)31(11+---n =1])31(1[431+---n = 1)31(4347---n 例14: 已知数列{n a }中11=a 且11+=+n nn a a a (N n ∈),,求数列的通项公式.解:∵11+=+n n n a a a ∴11111+=+=+n n n n a a a a , 设nn a b 1=,则11+=+n n b b故{n b }是认为1111==a b 首项,1为公役的等差数列 ∴n n b n =-+=)1(1∴nb a n n 11==点评:这种办法相似于换元法, 重要用于已知递推关系式求通项公式.五 结构新数列: 类型1 )(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,运用累加法(逐差相加法)求解.例1:已知数列{}n a 知足211=a ,nn a a n n ++=+211,求n a .解:由前提知:111)1(1121+-=+=+=-+n n n n n n a a n n分离令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累加之,即)()()()(1342312--+⋅⋅⋅⋅⋅⋅+-+-+-n n a a a a a a a a)111()4131()3121()211(nn --+⋅⋅⋅⋅⋅⋅+-+-+-= 所以n a a n 111-=-211=a ,nn a n 1231121-=-+=∴类型2 n n a n f a )(1=+解法:把原递推公式转化为)(1n f a a nn =+,运用累乘法(逐商相乘法)求解.例2:已知数列{}n a 知足321=a ,n n a n na 11+=+,求n a . 解:由前提知11+=+n na a n n ,分离令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n个等式累乘之,即1342312-•⋅⋅⋅⋅⋅⋅•••n n a a a a a a a a nn 1433221-⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯=n a a n 11=⇒ 又321=a ,na n 32=∴ 例3:已知31=a ,n n a n n a 23131+-=+)1(≥n ,求n a .解:123132231232)2(31)2(32)1(31)1(3a n n n n a n +-•+⨯-⨯•⋅⋅⋅•+---•+---=3437526331348531n n n n n --=⋅⋅⋅⋅=---.变式:(2004,全国I,)已知数列{a n },知足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a (n ≥2),则{a n }的通项1___n a ⎧=⎨⎩12n n =≥ 解:由已知,得n n n na a n a a a a +-+⋅⋅⋅+++=-+13211)1(32,用此式减去已知式,得当2≥n 时,n n n na a a =-+1,即n n a n a )1(1+=+,又112==a a ,n a a a aa a a a a n n =⋅⋅⋅====∴-13423121,,4,3,1,1,将以上n 个式子相乘,得2!n a n =)2(≥n 类型3 q pa a n n +=+1(个中p,q 均为常数,)0)1((≠-p pq ).解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,个中pqt -=1,再运用换元法转化为等比数列求解. 例4:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .解:设递推公式321+=+n n a a 可以转化为)(21t a t a n n -=-+即321-=⇒-=+t t a a n n .故递推公式为)3(231+=++n n a a ,令3+=n n a b ,则4311=+=a b ,且23311=++=++n n n n a a b b .所所以{}n b 认为41=b 首项,2为公比的等比数列,则11224+-=⨯=n n n b ,所以321-=+n n a . 变式:(2006,重庆,文,14)在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a =_______________(key:321-=+n n a )类型 4 n n n q pa a +=+1(个中p,q 均为常数,)0)1)(1((≠--q p pq ). (或1n n n a pa rq +=+,个中p,q, r 均为常数) .解法:一般地,要先在原递推公式双方同除以1+n q ,得:q q a q p q a n n n n 111+•=++引入帮助数列{}n b (个中nnnq a b =),得:qb q pb n n 11+=+再待定系数法解决.例5:已知数列{}n a 中,651=a ,11)21(31+++=n n n a a ,求n a .解:在11)21(31+++=n n n a a 双方乘以12+n 得:1)2(32211+•=•++n n n n a a令n n n a b •=2,则1321+=+n n b b ,解之得:n n b )32(23-= 所以nn nn n b a )31(2)21(32-== 类型5 递推公式为n n n qa pa a +=++12(个中p,q 均为常数).解 (特点根法):对于由递推公式n n n qa pa a +=++12,βα==21,a a 给出的数列{}n a ,方程02=--q px x ,叫做数列{}n a 的特点方程. 若21,x x 是特点方程的两个根,当21x x ≠时,数列{}n a 的通项为1211--+=n n n Bx Ax a ,个中A,B 由βα==21,a a 决议(即把2121,,,x x a a 和2,1=n ,代入1211--+=n n n Bx Ax a ,得到关于A.B 的方程组);当21x x =时,数列{}n a 的通项为11)(-+=n n x Bn A a ,个中A,B 由βα==21,a a 决议(即把2121,,,x x a a 和2,1=n ,代入11)(-+=n n x Bn A a ,得到关于A.B 的方程组).例6: 数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求n a 解(特点根法):的特点方程是:02532=+-x x .32,121==x x ,∴1211--+=n n n Bx Ax a 1)32(-⋅+=n B A .又由b a a a ==21,,于是⎩⎨⎧-=-=⇒⎪⎩⎪⎨⎧+=+=)(32332b a B a b A B A b BA a 故1)32)((323--+-=n nb a a b a 演习:已知数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a .1731:()443n n key a -=--. 变式:(2006,福建,文,22)已知数列{}n a 知足*12211,3,32().n n n a a a a a n N ++===-∈求数列{}n a 的通项公式;(I )解: 112211()()...()n n n n n a a a a a a a a ---∴=-+-++-+ 类型6 递推公式为n S 与n a 的关系式.(或()n n S f a =)解法:运用⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n nn 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解.例7:数列{}n a 前n 项和2214---=n n n a S .(1)求1+n a 与n a 的关系;(2)求通项公式n a . 解:(1)由2214---=n n n a S 得:111214-++--=n n n a S于是)2121()(1211--++-+-=-n n n n n n a a S S所以11121-+++-=n n n n a a a nnn a a 21211+=⇒+.(2)运用类型4(n n n q pa a +=+1(个中p,q 均为常数,)0)1)(1((≠--q p pq ))的办法,上式双方同乘以12+n 得:22211+=++n n n n a a由1214121111=⇒--==-a a S a .于是数列{}n na 2是以2为首项,2为公役的等差数列,所以n n a n n 2)1(222=-+=12-=⇒n n na归纳法:。
求数列通项公式的十种方法,例题答案详解
求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二. 四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三. 求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。
四. 求数列通项的基本方法是:累加法和累乘法。
五. 数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1. ---------------------------------------------- 适用于:。
心=“"+/(,?)这是广义的等差数列累加法是最基本的二个方法之一。
2. 若%+]-%= /(〃)(〃 > 2),«2 - a\ =/(1)则I*)两边分别相加得。
心一明 =文/0?)A.1例1已知数列{%}满足。
心=% + 2n + 1, %=1,求数列{%}的通项公式。
解:由S =缶+2// + 1得《土一%= 2〃 +1则% =(% 一%)+(%.| - %.2)+ •・• +(% - 务)+(% - 角)+ % =[2(〃一1) + 1] + [2(〃一2)+ 1] +…+ (2x2 + 1) +(2x1+ 1) + 1 =2[(〃一1) + (〃一2)+ …+ 2 +1] + (〃一1) +1(fi-l)n ,八, =2 +(〃一1) + 1=(〃一1)(〃+ 1) + 1=,?-所以数列{劣}的通项公式为% =〃七例2已知数列{%}满足%|=%+2x3"+l,《=3,求数列{丹}的通项公式。
解法一:由““I =ci n +2x3" +1 得为+[ -%=2x3" +1 则% =(% 一《I)+ (%| —《一2)+ • • • + (% - 缶)+(缶一妃 + % =(2X3”T +1)+(2X3"-2 +1)+ ...+(2x3?+ l) + (2x3】+1) + 3= 2(3/,-1+3n-2+.-- + 32+31) + (n-l) + 33(1—3”T)=2•- ]-、一 + (〃_1) + 3=3”一3+ 〃一1 + 3=3”+〃一1所以a n = 3" +〃一1.解法二:“,*=3%+2x3”+1两边除以3”“,得参=3 + : +名,an =(% _ 4-1)+(勺― , 3-2 %-3a3〃 3" )+(22^_4)+ ・.. +(查一 *%】a . 3〃-2 明 3〃-3 32 313/2 1、,2 1、,2 1、 2 13(—+ ) + ( — + r) + (— H + ■ . ■ + (— + -^r) + —3 3” 3 3〃-】 3 3心 3 32 32(n-1) ,11 1 11、「3 3" 3〃 3”-' 3〃-2 323“ 因此色=翌1 +剥一3")+1=空+- 1-33 2 2x3〃3〃32 1 1贝 ij a n = —x 〃x3" + —x3"——・3 2 2评注:已知4 =",匕由一。
求数列通项公式的十种办法
求数列通项公式的十种办法求数列的通项公式是数学中的一项重要工作。
下面列举了十种常用的求解数列通项公式的方法:1.递推法:这是最常见的一种方法。
通过观察数列中的规律,找出前一项与后一项之间的关系,并将其表达成递推公式,从而求得数列的通项。
例如斐波那契数列:F(n)=F(n-1)+F(n-2),其中F(n)表示第n项,F(n-1)表示第n-1项,F(n-2)表示第n-2项。
2.数列差法:如果数列的前后两项之间的差值有规律可循,可以通过观察差的变化规律来得到通项公式。
例如等差数列:a(n)=a(1)+(n-1)d,其中a(n)表示第n项,a(1)表示首项,d表示公差。
3.数列比法:如果数列的前后两项之间的比值有规律可循,可以通过观察比的变化规律来得到通项公式。
例如等比数列:a(n)=a(1)*r^(n-1),其中a(n)表示第n项,a(1)表示首项,r表示公比。
4.代数方程法:数列中的数可以看作方程中的未知数,通过列方程组求解,得到方程的解即为数列的通项公式。
例如斐波那契数列可以通过矩阵的特征值和特征向量求得。
5.数列求和法:如果数列是由一个个项的和组成的,可以通过数列的求和公式求得通项公式。
例如等差数列的前n项和:S(n)=[n/2]*[2a(1)+(n-1)d],其中[n/2]表示n除以2的整数部分,a(1)表示首项,d表示公差。
6.数列积法:如果数列可以表达为一系列项的连乘积的形式,可以通过求取连乘积的对数,再利用对数运算得到通项公式。
例如等比数列的前n项积:P(n)=a(1)^n*(r^n-1)/(r-1),其中a(1)表示首项,r表示公比。
7.查表法:如果数列的部分项已知,可以通过列出表格的方式观察规律,推测出通项公式。
例如自然数列:1,2,3,...,通过观察可得到通项公式:a(n)=n。
8.数学归纳法:数学归纳法是一种证明方法,但也可以用来求数列的通项公式。
首先证明数列的通项公式对n=1成立,然后假设对n=k也成立,通过数学归纳法证明对n=k+1也成立,从而得到通项公式。
数列史上最全求通项公式10种方法并配大量习题及答案
数列通项公式的求法10种求数列的通项公式方法非常众多,而且这个问题基本上都是高考试卷中第一问,也就是说这一问题做不出来或没有思路,那么即使后面的问题比如求前N 项和的问题,会做也是无济于事的。
我们逐个讲解一下这些重要的方法。
递推公式法:递推公式法是指利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,这样的问题有两种类型,(1)题目中给出的是()n S f n =的形式,也就是n S 的表达式是一个关于n 的函数,要将n 改成n-1,包括角标,这样加上题中给出的式子就得到两个式子,两式子做差,即可整理出通项公式。
这种情况是比较简单的,但是也有值得我们注意的地方,那就是求出的通项公式一定要检验是否需要写成分段的形式,即验证一下1a 和1S 是否相等,若不相等,则需要写成分段的形式,只要题中涉及到角标n 不能从n=1开始取值的,都需要检验。
(2)第二种情况是非常常见的,即11(,)n n n a a a -+与n S (1n S -,1n S +)同时存在于一个等式中,我们的思路是将n 改写成n-1,又得到另一个式子,这两个式子做差,在做差相减的过程中,要将等式的一端通过移项等措施处理为零,这样整理,容易得出我们想要的关系式。
累加法(迭、叠加法):累加法是在教材上推导等差数列通项公式和前n 项和公式的时候使用的一种方法,其实这个方法不仅仅适用于等差数列,它的使用范围是非常广泛的,我们可以总结为,只要适合:1()n n a a f n -=+的形式,都是可以使用累加法的,基本的书写步骤是:21324312,(2)3,(3)4,(4)......,()n n n a a f n a a f n a a f n n a a f n -=-==-==-==-=将上述展开后的式子左边累加后总是得到1(2)(3)(4)......()n a a f f f f n -=++++所以重点就是会求后边这部分累加式子的和,而这部分累加的式子,绝大部分都是三种情况之一,要么是一个等差数列的前n-1项的和,要么是一个等比数列前n-1项的和,要么就是能够在累加过程能够中消掉,比如使用裂项相消法等。
求数列的通项公式的十种方法
求数列通项公式的十种方法一.SA 法⎩⎨⎧≥-==-)2(1)(n11n S S S S n nn 注意具体可分为两种方法 1.改写相减,消去S n2.S n -S n-1直接替换掉a n ,求出S n ,再求出a n例 1. 已知各项均为正数的数列{n a }的前n 项和为n S 满足1S >1且6n S =(1)(2)n n a a ++ n ∈N * 求{n a }的通项公式。
的通项公式和,求数列项和为的前,数列项和为的前:已知数列例}{}{2}{22}{12n n n n n n n b a b T n b n n S n a -=+=的通项公式求各项均为正数,满足:已知数列例}{,21}{2n n nn n a S a a a =+的通项公式并求数列试确定常数最大值为的且项和的前:已知数列练习}{,.8),(21}{12n n n n a k S N k kn n S n a *∈+-=nn n n n a S a n n S 求)已知(求)已知(:练习,2232,732122-⋅=-+-=二.累加累乘法(也可用迭代法求解)用“累加”形如二用“累乘”形如一)()(),()(11n f a a n f a a n n n n +==++的通项公式求满足:已知数列例}{,1,21}{1211n n n n a nn a a a a ++==+的通项公式求项和前中,:已知数列例}{,32,1}{21n n n a a n S n a a +==的通项公式求,满足:已知数列练习n n n n a n a n n a a a ),1(23133}{111≥+-==+的通项公式求数列满足:已知数列练习}{a ,a a ,5a }{a 2n 2)1(311nn nn n ++==三.差商法实质是已知数列的前n 项和或前n 项积,求数列的通项公式的通项公式求数列满足:已知数列例}{),(4444}{113221n n n n a N n na a a a a *-∈=+++}{,2,1}{223211n n n a n a a a a n N n a a 求时都有且对所有中,:已知数列例=⋅⋅≥∈=*四.构造法”“)(1n f pa a n n +=+ ,只能用此法。
(完整版)求数列通项公式的十种方法
求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、换元法(目的是去递推关系式中出现的根号)、 数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、 特征根法二。
四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。
2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=L L两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2n a n =。
例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
高中数学必须掌握的十种数列通项公式的解题方法和典型例题
高中数学必须掌握的十种数列通项公式的解题方法和典型例题
在高考中数列部分的考查既是重点又是难点,不论是选择题或填空题中对基础知识的考查,还是压轴题中与其他章节知识的综合,抓住数列的通项公式通常是解题的关键和解决数列难题的瓶颈。
求通项公式也是学习数列时的一个难点。
由于求通项公式时渗透多种数学思想方法,因此求解过程中往往显得方法多、灵活度大、技巧性强。
通项公式普通的求法:
(1)构造等比数列:凡是出现关于后项和前项的一次递推式都可以构造等比数列求通项公式;
(2)构造等差数列:递推式不能构造等比数列时,构造等差数列;
(3)递推:即按照后项和前项的对应规律,再往前项推写对应式。
已知递推公式求通项常见方法:
①已知a1=a,a n+1=qa n+b,求a n时,利用待定系数法求解,其关键是确定待定系数λ,使a n+1+λ=q(a n+λ)进而得到λ。
②已知a1=a,a n=a n-1+f(n)(n≥2),求a n时,利用累加法求解,即
a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)的方法。
③已知a1=a,a n=f(n)a n-1(n≥2),求a n时,利用累乘法求解。
非常实用的十大解题方法及典型例题
方法一数学归纳法
方法二 Sn 法
方法三累加法
方法四累乘法
方法五构造法一
方法六构造法二
方法七构造法三
方法八构造法四
方法九构造五
方法十构造六。
求数列通项公式的十种方法,例题答案详解
欢迎阅读求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 1 21n n +则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =。
例2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则(2(1)3(1)3a n n ++⨯+-+-+评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项na .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。
例3.已知数列}{n a 中, 0>n a 且)(21n n n a n a S +=,求数列}{n a 的通项公式.解:由已知)(21n n n a n a S +=得)(2111---+-=n n n n n S S nS S S ,化简有nS S n n =--212,由类型(1)有nS S n ++++= 32212,又11a S =得11=a ,所以2)1(2+=n n S n ,又0>n a ,2)1(2+=n n s n ,1.21(2)n aa +=,,例4 11n n +n 1n na +1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯例5.设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a a na a n (n =1,2, 3,…),则它的通项公式是n a =________.解:已知等式可化为:[]0)1()(11=-++++n n n n na a n a a0>n a (*N n ∈)∴(n+1)01=-+n n na a , 即11+=+n na a nnn a n 1-=na 与a 基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。
数列通项公式的十种求法
数列通项公式的十种求法方法一:直接法对于一些简单的数列,可以通过观察数列的规律,直接写出通项公式。
例如,对于等差数列an=3n+1,可以观察到每一项都是前一项加上3,因此可以直接写出通项公式。
方法二:递推法递推法是通过数列前一项和通项之间的关系式来推导通项公式。
例如,对于斐波那契数列an=an-1+an-2,可以通过给出前两项的值,然后通过关系式不断求解后续项的值,得到通项公式。
方法三:代数法对于一些特殊的数列,可以通过代数方式求解通项公式。
例如,对于等比数列an=2^n,可以通过代数方法得到通项公式。
方法四:数学归纳法数学归纳法是通过证明法来得到通项公式。
首先证明数列的前几项符合一些表达式,然后假设n=k时表达式成立,再证明n=k+1时也成立,从而得到通项公式。
方法五:求和法有些数列的通项公式可以通过求和公式得到。
例如,对于等差数列an=3n+1,可以通过求和公式求得前n项和Sn=3n(n+1)/2,然后推导出通项公式。
方法六:线性递推法对于一些特殊的数列,可以通过线性递推法求解通项公式。
线性递推法是通过设定通项公式的形式,然后求解出相应的系数。
例如,对于一阶等差数列an=ax+b,可以通过线性递推法求解出通项公式。
方法七:矩阵法矩阵法是通过将数列表示成矩阵的形式,然后通过矩阵运算求解出通项公式。
例如,对于数列an=2n+1,可以将其表示为一个2×2的矩阵,然后通过矩阵运算得到通项公式。
方法八:生成函数法生成函数法是通过定义一个函数来表示数列,然后通过函数运算求解出通项公式。
例如,对于斐波那契数列an=an-1+an-2,可以定义一个生成函数F(x)=a0+a1x+a2x^2+...,然后通过函数运算得到通项公式。
方法九:离散动力系统法离散动力系统法是通过建立数列的动力系统方程,然后求解出通项公式。
例如,对于一阶等差数列an=ax+b,可以将其表示为一个离散动力系统方程xn+1=axn+b,然后通过求解方程得到通项公式。
求数列通项公式的十种方法(例题+详解)
求数列通项公式的十种方法一、公式法例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n na a ++-=,故数列{}2n n a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。
评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。
二、利用{1(2)1(1)n n S S n S n n a --≥==例2.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式;解:22(1)4231a n a d S n n n n =-+∴=-=-=--23435T S n n n n n ∴=+=--……2分 当1,35811n T b ===--=-时当2,626 2.1n b T T n b n n n n n ≥=-=--∴=---时……4分练习:1. 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3 又10S n -1=a n -12+5a n -1+6(n ≥2),②由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2)当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3;当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3三、累加法例3 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
高中数学解题方法系列:数列中求通项的10种方法
高中数学解题方法系列:数列中求通项的10种方法一、公式法例1已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。
二、累加法)(1n f a a n n =--例2已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。
例3已知数列{}n a 满足1132313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解:13231nn n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++,则111213333n n n n n a a +++-=+三、累乘法)(1n f a a n n=-例4已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式。
解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯ 所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯例5已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥ ,,求{}n a 的通项公式。
史上最全的数列通项公式的求法15种
最全的数列通项公式的求法数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。
而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。
本文给出了求数列通项公式的常用方法。
◆一、直接法根据数列的特征,使用作差法等直接写出通项公式。
例1. 根据下列数列的前几项,说出数列的通项公式: 1、1.3.7.15.31……… 2、1,2,5,8,12………3、21212,1,,,,3253………4、1,-1,1,-1………5、1、0、1、0………◆二、公式法①利用等差数列或等比数列的定义求通项②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n nn 求解. (注意:求完后一定要考虑合并通项)例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S nn n .求数列{}n a 的通项公式.②已知数列{}n a 的前n 项和n S 满足21nS n n =+-,求数列{}n a 的通项公式.③ 已知等比数列{}n a 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n n a a b ,求数列{}n b 的通项公式。
③解析:由题意,321++++=n n n a a b ,又{}n a 是等比数列,公比为q ∴q a a a a b b n n n n n n =++=+++++21321,故数列{}n b 是等比数列,)1(211321+=+=+=q q q a q a a a b , ∴ )1()1(1+=⋅+=-q q q q q b nn n◆三、归纳猜想法如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。
(完整版)求数列通项公式的十种方法
求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11 种方法:累加法、累乘法、待定系数法、阶差法(逐差法) 、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号) 、数学归纳法、不动点法(递推式是一个数列通项的分式表达式) 、特征根法二。
四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
、累加法1.适用于:a n 1 a n f (n) ------------------ 这是广义的等差数列累加法是最基本的二个方法之一。
2.若a n 1 a n f (n) (n 2) ,a2 a1 f (1)a3 a2 f (2) LLa n 1 a n f ( n)n两边分别相加得a n 1 a1 f (n )k1例1已知数列{a n }满足a n 1a n 2n 1, a i 1,求数列{a n }的通项公式。
解:由 a n 1 a n 2n 1 得 a n 1 a n 2n 1 则a n (a n a n 1) (a n 1 a n 2) L @3a 2) (a 2 aja 1 [2( n 1) 1] [2( n 2) 1]L (2 21) (2 11) 12[(n 1) (n 2) L 2 1] (n 1) 1 (n 1)n 2 (n 1) 12(n 1)( n 1) 1 2n2所以数列{a n }的通项公式为a n n 。
例2已知数列{a n }满足a n 1 a n 2 3n 1,印3,求数列 佝}的通项公式。
解法一:由a n 1 a n n 2 31 得 a n 1a n n2 31则a n (a * an 1)(a n 1 a n 2) L(a 3 a 2) (a 2 a 1) a 1n (2 3 1 1) (2 3n 21)L (2 32 31 1) (2 31) 312(33n2L 32 ;31)(n 1)3「(1 3n1)2(n 1) 31 3n3 3 n 133 n1所以a n 3n n 1.解法二:时3an 2 3 1两边除以3n1,得鄴J 3 3a n 2 n3 32132)3 32 3a3na n 3a n 1)a n 1(an 1a n 1a n 2) (a n 2(尹z a2 q 色(3231)33n )1)12门22(n 1)313n 3n13n2Lan 13n22答案:n数、分式函数,求通项 an .① 若f(n)是关于n 的一次函数,累加后可转化为等差数列求和 ② 若f(n)是关于n 的二次函数,累加后可分组求和 ; ③ 若f(n)是关于n 的指数函数,累加后可转化为等比数列求和 ④ 若f(n)是关于n 的分式函数,累加后可裂项求和。
数列史上最全求通项公式10种方法并配大量习题及答案
数列通项公式的求法10种求数列的通项公式的方法非常众多,而且这个问题基本上都是高考试卷中的第一问,也就是说这一问题做不出来或没有思路,那么即使后面的问题比如求前N 项和的问题,会做也是无济于事的。
我们逐个讲解一下这些重要的方法。
递推公式法:递推公式法是指利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,这样的问题有两种类型,(1)题目中给出的是()n S f n =的形式,也就是n S 的表达式是一个关于n 的函数,要将n 改成n-1,包括角标,这样加上题中给出的式子就得到两个式子,两式子做差,即可整理出通项公式。
这种情况是比较简单的,但是也有值得我们注意的地方,那就是求出的通项公式一定要检验是否需要写成分段的形式,即验证一下1a 和1S 是否相等,若不相等,则需要写成分段的形式,只要题中涉及到角标n 不能从n=1开始取值的,都需要检验。
(2)第二种情况是非常常见的,即11(,)n n n a a a -+与n S (1n S -,1n S +)同时存在于一个等式中,我们的思路是将n 改写成n-1,又得到另一个式子,这两个式子做差,在做差相减的过程中,要将等式的一端通过移项等措施处理为零,这样整理,容易得出我们想要的关系式。
累加法(迭、叠加法):累加法是在教材上推导等差数列通项公式和前n 项和公式的时候使用的一种方法,其实这个方法不仅仅适用于等差数列,它的使用范围是非常广泛的,我们可以总结为,只要适合:1()n n a a f n -=+的形式,都是可以使用累加法的,基本的书写步骤是:21324312,(2)3,(3)4,(4)......,()n n n a a f n a a f n a a f n n a a f n -=-==-==-==-=将上述展开后的式子左边累加后总是得到1(2)(3)(4)......()n a a f f f f n -=++++所以重点就是会求后边这部分累加式子的和,而这部分累加的式子,绝大部分都是三种情况之一,要么是一个等差数列的前n-1项的和,要么是一个等比数列的前n-1项的和,要么就是能够在累加过程能够中消掉,比如使用裂项相消法等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求数列通项公式的十种方法一、公式法例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。
评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。
二、利用{1(2)1(1)n n S S n S n n a --≥==例2.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式;解:22(1)4231a n a d S n n n n =-+∴=-=-=--23435T S n n n n n ∴=+=--……2分 当1,35811n T b ===--=-时当2,626 2.1n b T T n b n n n n n ≥=-=--∴=---时……4分练习:1. 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3 又10S n -1=a n -12+5a n -1+6(n ≥2),②由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2)当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3;当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3三、累加法例3 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。
例4 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解:由1231n n n a a +=+⨯+得1231nn n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.nn a n =+-评注:本题解题的关键是把递推关系式1231n n n a a +=+⨯+转化为1231nn n a a +-=⨯+,进而求出11232211()()()()n n n n n a a a a a a a a a a ---=-+-++-+-+,即得数列{}n a 的通项公式。
四、累乘法例6 已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式。
解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯评注:本题解题的关键是把递推关系12(1)5nn n a n a +=+⨯转化为12(1)5n n na n a +=+,进而求出13211221n n n n a a a a a a a a a ---⋅⋅⋅⋅⋅,即得数列{}n a 的通项公式。
例7已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式。
解:因为123123(1)(2)n n a a a a n a n -=++++-≥①所以1123123(1)n n n a a a a n a na +-=++++-+②用②式-①式得1.n n n a a na +-= 则1(1)(2)n n a n a n +=+≥故11(2)n na n n a +=+≥ 所以13222122![(1)43].2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=③由123123(1)(2)n n a a a a n a n -=++++-≥,21222n a a a ==+取得,则21a a =,又知11a =,则21a =,代入③得!13452n n a n =⋅⋅⋅⋅⋅=。
所以,{}n a 的通项公式为!.2n n a =评注:本题解题的关键是把递推关系式1(1)(2)n n a n a n +=+≥转化为11(2)n na n n a +=+≥,进而求出132122n n n n a a a a a a a ---⋅⋅⋅⋅,从而可得当2n n a ≥时,的表达式,最后再求出数列{}n a 的通项公式。
五.构造等差或等比1n n a pa q +=+或1()n n a pa f n +=+例8(2006年福建卷)已知数列{}n a 满足*111,21().n n a a a n N +==+∈ 求数列{}n a 的通项公式; 解:*121(),n n a a n N +=+∈112(1),n n a a +∴+=+{}1n a ∴+是以112a +=为首项,2为公比的等比数列。
12.n n a ∴+=即2*21().n a n N =-∈例9.已知数列{}n a 中,11a =,1111()22n n n a a ++=+,求n a 。
解:在1111()22n n n a a ++=+两边乘以12+n 得:112(2)1n n n n a a ++•=•+ 令n n n a b •=2,则11n n b b +-=,解之得:111n b b n n =+-=- 所以122n n n n b n a -== 练习. 已知数列}a {n 满足)(2n 12a 2a n 1n n ≥-+=-,且81a 4=。
(1)求321a a a ,,;(2)求数列}a {n 的通项公式。
解: (1)33a 13a 5a 321===,,(2)n 1n n n 1n n 2)1a (21a 12a 2a +-=-⇒-+=--1n 21a 121a 21a nn 1n 1n nn +=-⇒+-=-⇒--∴12)1n (a n n ++=六、待定系数法例10已知数列{}n a 满足112356nn n a a a +=+⨯=,,求数列{}n a 的通项公式。
解:设1152(5)n n n n a x a x +++⨯=+⨯④将1235n n n a a +=+⨯代入④式,得12355225n n nn n a x a x ++⨯+⨯=+⨯,等式两边消去2n a ,得135525n n n x x +⋅+⋅=⋅,两边除以5n ,得352,1,x x x +==-则代入④式得1152(5)n n n n a a ++-=-⑤由1156510a -=-=≠及⑤式得50nn a -≠,则11525n n nn a a ++-=-,则数列{5}n n a -是以1151a -=为首项,以2为公比的等比数列,则152n n n a --=,故125n n n a -=+。
评注:本题解题的关键是把递推关系式1235n n n a a +=+⨯转化为1152(5)n nn n a a ++-=-,从而可知数列{5}n n a -是等比数列,进而求出数列{5}nn a -的通项公式,最后再求出数列{}n a 的通项公式。
例12 已知数列{}n a 满足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式。
解:设221(1)(1)2()n n a x n y n z a xn yn z ++++++=+++ ⑧将212345n n a a n n +=+++代入⑧式,得2222345(1)(1)2()n n a n n x n y n z a xn yn z ++++++++=+++,则 222(3)(24)(5)2222n n a x n x y n x y z a xn yn z +++++++++=+++等式两边消去2n a ,得22(3)(24)(5)222x n x y n x y z xn yn z ++++++++=++,解方程组3224252x x x y y x y z z +=⎧⎪++=⎨⎪+++=⎩,则31018x y z =⎧⎪=⎨⎪=⎩,代入⑧式,得2213(1)10(1)182(31018)n n a n n a n n ++++++=+++ ⑨由213110118131320a +⨯+⨯+=+=≠及⑨式,得2310180n a n n +++≠则2123(1)10(1)18231018n n a n n a n n ++++++=+++,故数列2{31018}n a n n +++为以21311011813132a +⨯+⨯+=+=为首项,以2为公比的等比数列,因此2131018322n n a n n -+++=⨯,则42231018n n a n n +=---。