1994年考研数学(四)试题

合集下载

最新1994考研数一真题及解析资料

最新1994考研数一真题及解析资料

1994年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5个小题,每小题3分,满分15分.) (1) 011limcot ()sin x x x x→-=_____________. (2) 曲面23zz e xy -+=在点(1,2,0)处的切平面方程为_____________.(3) 设sin xx u e y -=,则2u x y ∂∂∂在点1(2,)π处的值为_____________.(4) 设区域D 为222x y R +≤,则2222()Dx y dxdy a b +=⎰⎰_____________.(5) 已知11(1,2,3),(1,,)23αβ==,设TA αβ=,其中T α是α的转置,则nA =_________.二、选择题(本题共5个小题,每小题3分,满分15分.)(1) 设4222sin cos 1x M xdx x ππ-=+⎰,3422(sin cos )N x x dx ππ-=+⎰,23422(sin cos )P x x x dx ππ-=-⎰, 则 ( )(A) N P M << (B) M P N << (C) N M P << (D) P M N <<(2) 二元函数(,)f x y 在点00(,)x y 处两个偏导数00(,)x f x y '、00(,)y f x y '存在是(,)f x y 在该点连续的 ( ) (A) 充分条件但非必要条件 (B) 必要条件而非充分条件(C) 充分必要条件 (D) 既非充分条件又非必要条件 (3) 设常数0λ>,且级数21n n a ∞=∑收敛,则级数1(1)nn ∞=-∑ ( )(A) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 收敛性与λ有关 (4) 2tan (1cos )lim2ln(12)(1)x x a x b x c x d e -→+-=-+-,其中220a c +≠,则必有 ( )(A) 4b d = (B) 4b d =- (C) 4a c = (D) 4a c =-(5) 已知向量组1234αααα、、、线性无关,则向量组 ( ) (A) 12αα+、23αα+、34αα+、41αα+线性无关(B) 12αα-、23αα-、34αα-、41αα-线性无关(C) 12αα+、23αα+、34αα+、41αα-线性无关 (D) 12αα+、23αα+、34αα-、41αα-线性无关三、(本题共3小题, 每小题5分,满分15分.)(1)设2221cos(),cos(),t x t y t t udu ⎧=⎪⎨=-⎪⎩⎰ 求dy dx 、22d y dx在t =. (2) 将函数111()ln arctan 412x f x x x x +=+--展开成x 的幂级数. (3) 求sin 22sin dxx x +⎰.四、(本题满分6分)计算曲面积分2222Sxdydz z dxdy x y z +++⎰⎰,其中S 是由曲面222x y R +=及两平面,z R = (0)z R R =->所围成立体表面的外侧.五、(本题满分9分)设()f x 具有二阶连续导数,(0)0,(0)1f f '==,且2[()()][()]0xy x y f x y dx f x x y dy '+-++=为一全微分方程,求()f x 及此全微分方程的通解.六、(本题满分8分)设()f x 在点0x =的某一领域内具有二阶连续导数,且0()lim0x f x x→=,证明级数 11()n f n∞=∑绝对收敛.七、(本题满分6分)已知点A 与B 的直角坐标分别为(1,0,0)与(0,1,1).线段AB 绕z 轴旋转一周所围成的旋转曲面为S .求由S 及两平面0,1z z ==所围成的立体体积.八、(本题满分8分)设四元线性齐次方程组()I 为12240,0,x x x x +=⎧⎨-=⎩ 又已知某线性齐次方程组()II 的通解为12(0,1,10)(1,2,2,1)k k +-.(1) 求线性方程组()I 的基础解系;(2) 问线性方程组()I 和()II 是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.九、(本题满分6分)设A 为n 阶非零方阵,*A 是A 的伴随矩阵,T A 是A 的转置矩阵,当*TA A =时,证明||0A ≠.十、填空题(本题共2小题, 每小题3分,满分6分.)(1) 已知A 、B 两个事件满足条件()()P AB P AB =,且()P A p =,则()P B =__________. (2) 设相互独立的两个随机变量X 、Y 具有同一分布律,且X 的分布律为则随机变量{}max ,Z X Y =的分布律为_______.十一、(本题满分6分)已知随机变量(,)X Y 服从二维正态分布,且X 和Y 分别服从正态分布2(1,3)N 和2(0,4)N ,X 与Y 的相关系数12XY ρ=-,设32X YZ =+,(1) 求Z 的数学期望()E Z 和方差()D Z ; (2) 求X 与Z 的相关系数XZ ρ; (3) 问X 与Z 是否相互独立?为什么?1994年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5个小题,每小题3分,满分15分.) (1)【答案】16【解析】原式变形后为“0”型的极限未定式,又分子分母在点0处导数都存在,所以连续应用两次洛必达法则,有原式20cos (sin )limsin x x x x x x →-=300sin limcos lim x x x xx x→→-=⋅ 2001cos sin 1lim lim 366x x x x x x →→-===. (由重要极限0sin lim 1x xx→=) (2)【答案】240x y +-=【解析】所求平面的法向量n 为平行于所给曲面在点(1,2,0)处法线方向的方向向量l ,取n l =,又平面过已知点(1,2,0)M .已知平面的法向量(,,)A B C 和过已知点000(,,)x y z 可唯一确定这个平面:000()()()0A x x B y y C z z -+-+-=.因点(1,2,0)在曲面(,,)0F x y z =上.曲面方程(,,)23zF x y z z e xy =-+-. 曲面在该点的法向量{}{}{}(1,2,0)(1,2,0),,2,2,14,2,022,1,0z F F F n y x e x y z ⎧⎫∂∂∂ ==-==⎨⎬∂∂∂⎩⎭, 故切平面方程为 2(1)(2)0x y -+-=, 即 240x y +-=.(3)【答案】22eπ【解析】由于混合偏导数在连续条件下与求导次序无关,为了简化运算,所以本题可以先求u y ∂∂,再求u x y ⎛⎫∂∂ ⎪∂∂⎝⎭. 2cos x u x xe y y y-∂=-∂,()2221112(2,)(2,)2cos x y x x u u uxe x x y y x x y xπππππ-===⎛⎫∂∂∂∂∂===- ⎪ ⎪∂∂∂∂∂∂∂⎝⎭2222((1)cos )0xx e x x e πππ-==--+=.(可边代值边计算,这样可以简化运算量.)【相关知识点】多元复合函数求导法则:如果函数(,),(,)u x y v x y ϕψ==都在点(,)x y 具有对x 及对y 的偏导数,函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数((,),(,))z f x y x y ϕψ=在点(,)x y 的两个偏导数存在,且有12z z u z v u v f f x u x v x x x∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂; 12z z u z v u v f f y u y v y y y∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂. (4)【答案】42211()4R a bπ+ 【解析】很显然,根据此题的特征用极坐标变换来计算: 原式2222222322220000cos sin cos sin RR d r rdr d r dr a b a b ππθθθθθθ⎛⎫⎛⎫=+=+⋅ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰.注意:22220cos sin d d ππθθθθπ==⎰⎰,则 原式4422221111144R R a b a b ππ⎛⎫⎛⎫=+⋅=+⎪ ⎪⎝⎭⎝⎭. (5)【答案】111123232133312n -⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦【解析】由矩阵乘法有结合律,注意 1111,,23233Tβα⎡⎤⎛⎫⎢⎥== ⎪⎢⎥⎝⎭⎢⎥⎣⎦是一个数,而 11123111221,,2123333312TA αβ⎡⎤⎢⎥⎡⎤⎢⎥⎛⎫⎢⎥⎢⎥=== ⎪⎢⎥⎢⎥⎝⎭⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦,(是一个三阶矩阵)于是,()()()()()()()n T T T T T T T TA αβαβαβαβαβαβαβαβ==11111232332133312n T n αβ--⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦.二、选择题(本题共5个小题,每小题3分,满分15分.)(1)【答案】(D)【解析】对于关于原点对称的区间上的积分,应该关注被积函数的奇偶性.由对称区间上奇偶函数积分的性质,被积函数是奇函数,积分区间关于原点对称,则积分为0,故0M =,且由定积分的性质,如果在区间[],a b 上,被积函数()0f x ≥,则()0 ()baf x dx a b ≥<⎰.所以 4202cos 0N xdx π=>⎰, 4202cos 0P xdx N π=-=-<⎰.因而 P M N <<,应选(D). (2)【答案】(D)【解析】(,)f x y 在点00(,)x y 连续不能保证(,)f x y 在点00(,)x y 存在偏导数00(,),x f x y '00(,)y f x y '.反之,(,)f x y 在点00(,)x y 存在这两个偏导数00(,),x f x y '00(,)y f x y '也不能保证(,)f x y 在点00(,)x y 连续,因此应选(D).二元函数(,)f x y 在点00(,)x y 处两个偏导数存在和在点00(,)x y 处连续并没有相关性. (3)【答案】(C)【解析】考查取绝对值后的级数.因2222111112222n n a a n n λ≤+<++, (第一个不等式是由2210,0,()2a b ab a b ≥≥≤+得到的.) 又21nn a ∞=∑收敛,2112n n ∞= ∑收敛,(此为p 级数:11p n n∞=∑当1p >时收敛;当1p ≤时发散.)所以2211122n n a n ∞=+∑收敛,由比较判别法,得1n ∞=收敛.故原级数绝对收敛,因此选(C). (4)【答案】(D)【解析】因为 22211cos (),1()2x xx o x e x o x --=-=,故 tan (1cos )(0)a x b x ax a +-≠,2ln(12)(1)2 (0)x c x d e cx c --+--≠,因此,原式左边0lim222x ax acx c→====--原式右边,4a c ⇒=-.当0,0a c =≠时,极限为0;当0,0a c ≠=时,极限为∞,均与题设矛盾,应选(D). 【相关知识点】1.无穷小的比较:设在同一个极限过程中,(),()x x αβ为无穷小且存在极限 ()lim.()x l x αβ= (1) 若0,l ≠称(),()x x αβ在该极限过程中为同阶无穷小; (2) 若1,l =称(),()x x αβ在该极限过程中为等价无穷小,记为()()x x αβ;(3) 若0,l =称在该极限过程中()x α是()x β的高阶无穷小,记为()()()x o x αβ=.若()lim()x x αβ不存在(不为∞),称(),()x x αβ不可比较. 2. 无穷小量的性质:当0x x →时,(),()x x αβ为无穷小,则()()()()(())x x x x o x αβαββ⇔=+.(5)【答案】(C)【解析】这一类题目应当用观察法.若不易用观察法时可转为计算行列式. (A):由于()()()()122334410αααααααα+-+++-+=,所以(A)线性相关. (B):由于()()()()122334410αααααααα-+-+-+-=,所以(B)线性相关.对于(C),实验几组数据不能得到0时,应立即计算由α的系数构成的行列式,即100111002001100011-=≠,由行列式不为0,知道(C)线性无关.故应选(C). 当然,在处理(C)有困难时,也可来看(D),由12233441()()()()0αααααααα+-++-+-=,知(D)线性相关,于是用排除法可确定选(C). 【相关知识点】12,,,s ααα线性相关的充分必要条件是存在某(1,2,,)i i s α=可以由111,,,,i i s αααα-+线性表出.12,,,s ααα线性无关的充分必要条件是任意一个(1,2,,)i i s α=均不能由111,,,,i i s αααα-+线性表出.三、(本题共3小题, 每小题5分,满分15分.)(1)【解析】dy dy dt dydx dt dt dx dt dx =⋅=222221cos 2sin cos 22(0),2sin t t t t t t t y t t t x t t--⋅'===>'- 同理 2()12sin x txx t y y x t t''''=='-, 代入参数值t =则xt y '=, xxt y ''=【相关知识点】1.复合函数求导法则:如果()u g x =在点x 可导,而()y f x =在点()u g x =可导,则复合函数[]()y f g x =在点x 可导,且其导数为()()dy f u g x dx ''=⋅ 或 dy dy du dx du dx=⋅. 2.对积分上限的函数的求导公式:若()()()()t t F t f x dx βα=⎰,()t α,()t β均一阶可导,则[][]()()()()()F t t f t t f t ββαα'''=⋅-⋅.(2)【解析】111()ln(1)ln(1)arctan 442f x x x x x =+--+-. 先求()f x '的展开式.将()f x 微分后,可得简单的展开式,再积分即得原函数的幂级数展开.所以由2(1)(1)(1)(1)1,2!!nn x x x x n ααααααα---++=+++++(11)x -<<该级数在端点1x =±处的收敛性,视α而定.特别地,当1α=-时,有2311(1),1n n x x x x x =-+-++-++ (11)x -<< 2311,1n x x x x x =++++++- (11)x -<< 得 2221111111111()114141212121f x x x x x x '=++-=+-+-+-+44401111(||1)1n n n n x x x x ∞∞===-=-=<-∑∑, 积分,由牛顿-莱布尼茨公式得4140011()(0)() (||1)41n xx nn n x f x f f x dx t dt x n +∞∞=='=+==<+∑∑⎰⎰.(3)【解析】方法1:利用三角函数的二倍角公式sin 22sin cos ααα=⋅,并利用换元积分,结合拆项法求积分,得sin 22sin 2sin (cos 1)dx dxx x x x =++⎰⎰22sin 11cos 2sin (cos 1)2(1)(1)xdx x u du x x u u ==-+-+⎰⎰ (22sin 1cos x x =-)221(1)(1)1112()4(1)(1)811(1)u u du du u u u u u ++-=-=-++-+-++⎰⎰12ln |1|ln |1|8(1)u u C u ⎡⎤=--+++⎢⎥+⎣⎦()()12ln 1cos ln 1cos 81cos x x C x ⎡⎤=--+++⎢⎥+⎣⎦, 其中C 为任意常数.方法2:换元cos x u =后,有原式22sin 12sin (cos 1)2sin (cos 1)2(1)(1)dx xdx dux x x x u u ===-++-+⎰⎰⎰.用待定系数法将被积函数分解:221(1)(1)11(1)A B Du u u u u =++-+-++22()(2)()(1)(1)A B u A D u A B D u u -+-+++=-+,1120,421A B A D A B D A B D -=⎧⎪⇒-=⇒===⎨⎪++=⎩.于是,2111212()ln 1ln 1811(1)81du u u C u u u u ⎡⎤-++=--+++⎢⎥-+++⎣⎦⎰原式= ()()12ln 1cos ln 1cos 81cos x x C x ⎡⎤=--+++⎢⎥+⎣⎦.四、(本题满分6分)【解析】求第二类曲面积分的基本方法:套公式将第二类曲面积分化为第一类曲面积分,再化为二重积分,或用高斯公式转化为求相应的三重积分或简单的曲面积分.这里曲面块的个数不多,积分项也不多,某些积分取零值,如若∑垂直yOz 平面,则0Pdydz ∑=⎰⎰.化为二重积分时要选择投影平面,注意利用对称性与奇偶性.先把积分化简后利用高斯公式也很方便的.方法1:注意 22220Sz dxdy x y z =++⎰⎰,(因为S 关于xy 平面对称,被积函数关于z 轴对称) 所以 222SxdydzI x y z =++⎰⎰. S 由上下底圆及圆柱面组成.分别记为123,,S S S . 12,S S 与平面yOz 垂直⇒122222220s s xdydz xdydzx y z x y z ==++++⎰⎰⎰⎰. 在3S 上将222x y R +=代入被积表达式⇒322s xdydzI R z =+⎰⎰. 3S 在yz 平面上投影区域为:,yz D R y R R z R -≤≤-≤≤,在3S 上,x =3S 关于yz 平面对称,被积函数对x 为奇函数,可以推出22002222yzR R D dz I R z==⨯⨯ +⎰⎰ 2201arctan 42Rz R R R R ππ1=8⋅⋅=.方法2:S 是封闭曲面,它围成的区域记为Ω,记 22SxdydzI R z =+⎰⎰. 再用高斯公式得 222222()1R R D z x dxdyI dV dV dz x R z R z R z -ΩΩ∂⎛⎫=== ⎪∂+++⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰ 222201122RRdz R R z ππ==+⎰(先一后二的求三重积分方法)其中()D z 是圆域:222x y R +≤.【相关知识点】高斯公式:设空间闭区域Ω是由分片光滑的闭曲面∑所围成,函数(,,)P x y z 、(,,)Q x y z 、(,,)R x y z 在Ω上具有一阶连续偏导数,则有,P Q R dv Pdydz Qdzdx Rdxdy x y z Ω∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰或()cos cos cos ,P Q R dv P Q R dS x y z αβγΩ∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰这里∑是Ω的整个边界曲面的外侧,cos α、cos β、cos γ是∑在点(,,)x y z 处的法向量的方向余弦.上述两个公式叫做高斯公式.五、(本题满分9分)【解析】由全微分方程的条件,有2[()()][()]xy x y f x y f x x y y x∂∂'+-=+∂∂, 即 22()()2x xy f x f x xy ''+-=+,亦即 2()()f x f x x ''+=.因而是初值问题 20,0,1,x x y y x y y ==''⎧+=⎪⎨'==⎪⎩ 的解,此方程为常系数二阶线性非齐次方程,对应的齐次方程的特征方程为210r +=的根为1,2r i =±,原方程右端202x x e x =⋅中的0λ=,不同于两个特征根,所以方程有特解形如 2Y Ax Bx C =++. 代入方程可求得 1,0,2A B C ===,则特解为22x -.由题给(0)0,(0)1f f '==,解得 2()2cos sin 2f x x x x =++-.()f x 的解析式代入原方程,则有22[2(2cos sin )][22sin cos ]0xy y x x y dx x y x x x dy +-+++-+=.先用凑微分法求左端微分式的原函数:222211()2()(2sin cos )(2sin cos )022y dx x dy ydx xdy yd x x x x dy +++----=, 221(2(cos 2sin ))02d x y xy y x x ++-=. 其通解为 2212(cos 2sin )2x y xy y x x C ++-= 其中C 为任意常数.【相关知识点】1.二阶线性非齐次方程解的结构:设*()y x 是二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解.()Y x 是与之对应的齐次方程 ()()0y P x y Q x y '''++=的通解,则*()()y Y x y x =+是非齐次方程的通解.2. 二阶常系数线性齐次方程通解的求解方法:对于求解二阶常系数线性齐次方程的通解()Y x ,可用特征方程法求解:即()()0y P x y Q x y '''++=中的()P x 、()Q x 均是常数,方程变为0y py qy '''++=.其特征方程写为20r pr q ++=,在复数域内解出两个特征根12,r r ; 分三种情况:(1) 两个不相等的实数根12,r r ,则通解为1212;rx r x y C eC e =+(2) 两个相等的实数根12r r =,则通解为()112;rxy C C x e =+(3) 一对共轭复根1,2r i αβ=±,则通解为()12cos sin .xy e C x C x αββ=+其中12,C C 为常数.3.对于求解二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解*()y x ,可用待定系数法,有结论如下:如果()(),x m f x P x e λ=则二阶常系数线性非齐次方程具有形如*()()k xm y x x Q x e λ=的特解,其中()m Q x 是与()m P x 相同次数的多项式,而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的重根依次取0、1或2.如果()[()cos ()sin ]xl n f x e P x x P x x λωω=+,则二阶常系数非齐次线性微分方程()()()y p x y q x y f x '''++=的特解可设为*(1)(2)[()cos ()sin ]k x m m y x e R x x R x x λωω=+,其中(1)()m R x 与(2)()m R x 是m 次多项式,{}max ,m l n =,而k 按i λω+(或i λω-)不是特征方程的根、或是特征方程的单根依次取为0或1.六、(本题满分8分) 【解析】0()lim0x f x x→=表明0x →时()f x 是比x 高阶的无穷小,若能进一步确定()f x 是x 的p 阶或高于p 阶的无穷小,1,p >从而1()f n也是1n的p 阶或高于p 阶的无穷小,这就证明了级数11()n f n∞=∑绝对收敛. 方法一:由0()lim0x f x x→=及()f x 的连续性得知(0)0,(0)0f f '==,再由()f x 在点0x =的某一领域内具有二阶连续导数以及洛必达法则,20()lim x f x x →为“0”型的极限未定式,又分子分母在点0处导数都存在,连续运用两次洛必达法则,有2000()()()1lim lim lim (0)222x x x f x f x f x f x x →→→'''''=== 2()1lim(0)2x f x f x →''⇒=. 由函数极限与数列极限的关系 21()1lim(0)2n f nf n →+∞''⇒=. 因211n n ∞=∑收敛11()n f n ∞=⇒∑收敛,即 11()n f n ∞=∑绝对收敛.方法二:由0()lim0x f x x→=得知(0)0,(0)0f f '==,可用泰勒公式来实现估计.()f x 在点0x =有泰勒公式:2211()(0)(0)()()(01,[,])22f x f f x f x x f x x x θθθδδ'''''= ++=<<∈- 因()f x 在点0x =的某一领域内具有二阶连续导数,0,()f x δ''⇒∃>在[,]x δδ∈-有界,即0M ∃>,有|()|,[,]f x M x δδ''≤∈-2211()(),[,]22f x f x x Mx x θδδ''⇒=≤∈-. 对此0δ>,,N n N ∃>时,211110()2f M n n nδ<<⇒≤. 又211n n ∞=∑收敛11()n f n ∞=⇒∑收敛,即 11()n f n ∞=∑绝对收敛.【相关知识点】正项级数的比较判别法:设1n n u ∞=∑和1n n v ∞=∑都是正项级数,且lim,nn nv A u →∞=则⑴ 当0A <<+∞时,1nn u∞=∑和1nn v∞=∑同时收敛或同时发散;⑵ 当0A =时,若1nn u∞=∑收敛,则1nn v∞=∑收敛;若1nn v∞=∑发散,则1nn u∞=∑发散;⑶ 当A =+∞时,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散.七、(本题满分6分)【解析】方法1:用定积分.设高度为z 处的截面z D 的面积为()S z ,则所求体积1()V S z dz =⎰.,A B 所在的直线的方向向量为()()01,10,101,1,1---=-,且过A 点,所以,A B 所在的直线方程为1111x y z-== - 或 1x z y z =-⎧⎨=⎩. 截面z D 是个圆形,其半径的平方 22222(1)R x y z z =+=-+,则面积222()[(1)]S z R z z ππ==-+,由此 1220[(1)]V z z dz π=-+⎰()120122z z dz π=-+⎰123023z z z π⎛⎫=-+ ⎪⎝⎭23π=.方法2:用三重积分.2123V dV d dz ππθΩ===⎰⎰⎰⎰⎰,或者 1122[(1)]zD V dV dz d z z dz σπΩ===-+⎰⎰⎰⎰⎰⎰⎰ ()120122z z dz π=-+⎰123023z z z π⎛⎫=-+ ⎪⎝⎭23π=.八、(本题满分8分)【解析】(1)由已知,()I 的系数矩阵,11000101A ⎡⎤=⎢⎥-⎣⎦.由于()2,n r A -=所以解空间的维数是2.取34,x x 为自由变量,分别令()()()34,1,0,0,1x x =,求出0Ax =的解. 故()I 的基础解系可取为 (0,0,1,0),(1,1,0,1)-. (2)方程组()I 和()II 有非零公共解.将()II 的通解 1221231242,2,2,x k x k k x k k x k =-=+=+=代入方程组()I ,则有212121222020k k k k k k k k -++=⎧⇒=-⎨+-=⎩. 那么当120k k =-≠时,向量121(0,1,1,0)(1,2,2,1)(1,1,1,1)k k k +-=---是()I 与()II 的非零公共解.九、(本题满分6分)【解析】证法一:由于 *TA A =,根据*A 的定义有(,1,2,,)ij ij A a i j n =∀=L ,其中ij A 是行列式||A 中ij a 的代数余子式.由于0A ≠,不妨设0ij a ≠,那么2222112212||0ij i i i i in in i i in A a A a A a A a a a a =+++=+++≥>L L ,故 ||0A ≠.证法二:(反证法)若||0A =,则*TAA AA ==||0A E =.设A 的行向量为(1,2,,)i i n α=L ,则 222120T i i i i in a a a αα=+++=L (1,2,,)i n =L .于是 12(,,,)0i i i in a a a α==L (1,2,,)i n =L . 进而有0A =,这与A 是非零矩阵相矛盾.故||0A ≠.十、填空题(本题共2小题, 每小题3分,满分6分.)(1)【解析】利用随机事件的概率运算性质进行化简.由概率的基本公式(广义加法公式),有()()1()P AB P A B P A B ==-U U1[()()()]P A P B P AB =-+- 1()()()P A P B P AB =--+.因题目已知 ()()P AB P AB =,故有()()1P A P B +=,()1()1P B P A p =-=-.(2)【解析】由于X 、Y 相互独立且同分布,只能取0、1两个数值,易见随机变量{}max ,Z X Y =只取0与1两个可能的值,且{}{}{}0max ,0P Z P X Y ==={}{}{}10,0004P X Y P X P Y =====⋅==,{}{}31104P Z P Z ==-==.所以随机变量{}max ,Z X Y =的分布律为:十一、(本题满分6分)【解析】此题的第一小问是求数学期望()E Z 和方差()D Z ,是个常规问题;(2)求相关系数XZ ρ,关键是计算X 与Z 的协方差;(3)考查相关系数为零与相互独立是否等价.(1) 由2(1,3)X N ,2(0,4)Y N ,知()1,()9,()0,()16E X D X E Y D Y ====.由数学期望和方差的性质:()()()E aX bY c aE X bE Y c ++=++,22()()()2Cov(,)D aX bY c a D X b D Y ab X Y ++=++,其中,,a b c 为常数. 得 111,323EZ EX EY =+=111Cov(,)943DZ DX DY X Y =++111916943XY ρ=⨯+⨯+115()34 3.32=+⨯-⨯⨯=(2) 因为11Cov(,)Cov(,)32X Z X X Y =+11Cov(,)Cov(,)32X X X Y =+2113(6)032=⋅+-= 所以 0XZ ρ==.(3) 由于(,)X Y 服从二维正态分布,则其线性组合构成的随机变量也服从二维正态分布,而32X YZ =+,0X X Y =+,故X 和Z 都是其线性组合,则(,)X Z 服从二维正态分布,根据 0XZ ρ==,所以X 与Z 是相互独立的.。

1994考研数四真题及解析

1994考研数四真题及解析

1994年全国硕士研究生入学统一考试数学四试题一、填空题(本题共5小题,每小题3分,满分15分.) (1)2222x xdx x -+=+⎰_____________.(2) 已知0()1f x '=-,则000lim(2)()x xf x x f x x →=---_____________.(3) 设方程2cos xye y x +=确定y 为x 的函数,则dydx=_____________. (4) 设121000000,00000n na a A a a -⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦其中0,1,2,,,i a i n ≠=则1A -=_____________.(5) 假设一批产品中一、二、三等品各占60%、30%、10%,从中随意取出一件,结果不是三等品,则取到的是一等品的概率为_____________.二、选择题(本题共5小题,每小题3分,满分15分.)(1) 曲线2121arctan (1)(2)x x x y e x x ++=+-的渐近线有 ( )(A) 1条 (B) 2条 (C) 3条 (D) 4条 (2) 设函数()f x 在闭区间[],a b 上连续,且()0f x >,则方程1()0()xxabf t dt dt f t +=⎰⎰在开区间(,)a b 内的根有 ( ) (A) 0个 (B) 1个 (C) 2个 (D) 无穷多个 (3) 设A 、B 都是n 阶非零矩阵,且0AB =,则A 和B 的秩 ( )(A) 必有一个等于零 (B) 都小于n (C) 一个小于n ,一个等于n (D) 都等于n (4) 设有向量组123(1,1,2,4),(0,3,1,2),(3,0,7,14),ααα=-==4(1,2,2,0),α=-5(2,1,5,10),α=则该向量组的极大线性无关组是 ( )(A) 123,,ααα (B) 124,,ααα(C) 125,,ααα (D) 1245,,,αααα(5) 设0()1,0()1,(|)(|)1P A P B P A B P A B <<<<+=,则 ( ) (A) 事件A 和B 互不相容 (B) 事件A 和B 相互对立 (C) 事件A 和B 互不独立 (D) 事件A 和B 相互独立三、(本题满分5分)求极限21lim[ln(1)]x x x x→∞-+.四、(本题满分5分)已知22(,)arctan arctan y x f x y x y x y=-,求2f x y ∂∂∂.五、(本题满分6分)已知sin xx是函数()f x 的一个原函数,求3()x f x dx '⎰.六、(本题满分8分)某养殖场养两种鱼,若甲种鱼放养x (万尾),乙种鱼放养y (万尾),收获时两种鱼的收获量分别为(3)x y x αβ--和(42)x y y βα-- (0)αβ>>,求使产鱼总量最大的放养数.七、(本题满分8分)已知曲线(0)y x a =>与曲线ln y x =00(,)x y 处有公共切线,求:(1) 常数a 及切点00(,)x y ;(2) 两曲线与x 轴围成的平面图形的面积S .八、(本题满分7分)设函数()f x 有导数,且10(0)0,()()xn n nf F x t f x t dt -==-⎰.证明:20()1lim(0)2nx F x f x n→'=.九、(本题满分8分)设123,,ααα是齐次线性方程组0Ax =的一个基础解系.证明122331,,αααααα+++也是该方程组的一个基础解系.十、(本题满分8分)设0011100A x y ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦有三个线性无关的特征向量,求x 和y 应满足的条件.十一、(本题满分7分)假设随机变量X 的概率密度为2,01,()0,x x f x <<⎧=⎨⎩其他. 现在对X 进行n 次独立重复观测,以n V 表示观测值不大于0.1的次数.试求随机变量n V 的概率分布.十二、(本题满分8分)假设由自动线加工的某种零件的内径X (毫米)服从正态分布(,1)N μ,内径小于10或大于12的为不合格品,其余为合格品,销售每件合格品获利,销售每件不合格品亏损.已知销售利润T (单位:元)与销售零件的内径X 有如下关系:1,10,20,1012,5,12.X T X X -<⎧⎪=≤≤⎨⎪->⎩问平均内径μ取何值时,销售一个零件的平均利润最大?1994年全国硕士研究生入学统一考试数学四试题解析一、填空题(本题共5小题,每小题3分,满分15分.) (1)【答案】ln 3 【解析】利用被积函数的奇偶性,当积分区间关于原点对称,被积函数为奇函数时,积分为 0,当被积函数为偶函数时,可以化为二倍的半区间上的积分.所以有原式22222220022222x x x dx dx dx x x x -=+=+++⎰⎰⎰ 22212dx x=+⎰22ln (2)ln 6ln 2ln 3.x =+=-=(2)【答案】1【解析】由此题极限的形式可构造导数的定义的形式,从而求得极限值.由于000(2)()limx f x x f x x x→---00000(2)()()()limx f x x f x f x x f x x→----+= 00000000(2)()()()(2)lim lim 2()() 1.2x x f x x f x f x x f x f x f x x x →→----''=-+=-+=--所以 原式0001lim1(2)()1x x f x x f x x →===---.【相关知识点】导数的定义:0000()()()limx f x x f x f x x∆→+∆-'=∆.(3)【答案】sin 2xy xyye xy xe y+'=-+ 【解析】将方程2cos xye y x +=看成关于x 的恒等式,即y 看作x 的函数. 两边对x 求导,得sin ()2sin 2xy xyxyye xe y xy yy x y xe y+'''++=-⇒=-+. 【相关知识点】两函数乘积的求导公式:[]()()()()()()f x g x f x g x f x g x '''⋅=⋅+⋅.(4)【答案】121100010001001000n n a a a a -⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦【解析】由分块矩阵求逆的运算性质,有公式11100A B B A---⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦, 且 11122111n n a a a a a a -⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦所以,本题对A 分块后可得1121100010001001000n n a a A a a --⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. (5)【答案】23【解析】设事件i A =“取到的是第i 等品”,1,2,3i =,则由题意有1{}0.6P A =, 2{}0.3P A =, 3{}0.1P A =.应用条件概率公式得3113133()()0.62(|).1()0.93()P A A P A P A A P A P A ====-二、选择题(本题共5小题,每小题3分,满分15分.) (1)【答案】(B)【解析】本题是关于求渐近线的问题.由于2121lim arctan (1)(2)4x x x x e x x π→∞++=+-,故4y π=为该曲线的一条水平渐近线.又 21201lim arctan (1)(2)x x x x e x x →++=∞+-.故0x =为该曲线的一条垂直渐近线,所以该曲线的渐近线有两条.故本题应选(B).【相关知识点】水平渐近线:若有lim ()x f x a →∞=,则y a =为水平渐近线;铅直渐近线:若有lim ()x af x →=∞,则x a =为铅直渐近线;斜渐近线:若有()lim,lim[()]x x f x a b f x ax x→∞→∞==-存在且不为∞,则y ax b =+为斜渐近线.(2)【答案】(B)【解析】方法1:令1()(),[,]()xxabF x f t dt dt x a b f t =+∈⎰⎰, 则1()()0.()F x f x f x '=+> 故()F x 在区间[],a b 内是单调递增的. 又 11()0()()ab ba F a dt dt f t f t ==-<⎰⎰, ()()0.b a F b f t dt =>⎰由介值定理知()0F x =在(),a b 内仅有一个根.应选(B). 方法2:排除法.由题设条件,可令()1f x =,此时方程1()0()xxabf t dt dt f t +=⎰⎰变为 ()()0x a x b -+-=,即2()0x a b -+=.该方程在(),a b 内仅有一个实根2a b+,则(A)、(C)、(D)均不正确.故本题应选(B).【相关知识点】对积分上限的函数的求导公式:若()()()()t t F t f x dx βα=⎰,()t α,()t β均一阶可导,则[][]()()()()()F t t f t t f t ββαα'''=⋅-⋅.(3)【答案】(B)【解析】本题主要考查矩阵秩的概念和性质,还涉及到矩阵运算、可逆,齐次方程组解的概念与性质等知识点.在中学的代数里,若0ab =,我们知道至少有一个数为0,而作为矩阵运算0AB =就不能说其中至少有一个矩阵是零矩阵,这种差异要搞清楚.例如1222000.241100-⎡⎤⎡⎤⎡⎤⋅==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦即 由0AB =不能得出0A =或0B =,那么再按矩阵秩的定义就知(A)错误.又()0r A n A =⇔≠A ⇔可逆.因此对于0AB =,若其中有一个矩阵的秩为n ,例如设()r A n =,则有1100.B A AB A --===与已知0B ≠相矛盾.从而可排除(C)、(D).对0AB =,把矩阵B 与零矩阵均按列分块1212(,,,)(,,,)(0,0,,0),n n AB A A A A ββββββ===于是0(1,2,,)i A i n β==,即i β是齐次方程组0Ax =的解.因此,0AB =,0B ≠表明0Ax =有非零解,从而()r A n <. 可以继续用非零解的观点来处理秩()r B ,方法如下:()00,T T T T B A AB ===从TA 非零,知()Tr B n <,故()r B n <.当然,本题最简单的方法是用命题:若A 是m n ⨯矩阵,B 是n s ⨯矩阵,0AB =,则()()r A r B n +≤. 再由A ,B 均非零,按秩得定义有()1r A ≥,()1r B ≥,也就不难看出应选(B). (4)【答案】(B)【解析】这是一道常规题,按一般方法求解即可.方法一:对()12345,,,,Tααααα作初等行变换,并记下每次变换的式子,有1231241512112411241124031203120312330714031200001220010401042215100312000αααααααααα---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥→→--⎢⎥⎢⎥⎢⎥------⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦ 现在已经可以看出秩为3,极大线性无关组是124,,ααα. 方法二:用列向量()12345,,,,TT T T T ααααα作行变换,有1031210312103121031213021033130110101101217250110103313000104214010022420224200000⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥→→→⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦每行第1个非0数在第1,2,4列,故124,,ααα是极大线性无关组. 故此题应选(B). (5)【答案】(D)【解析】事实上,当0()1P B <<时,(|)(|)P A B P A B =是事件A 与B 独立的充分必要条件,证明如下:若(|)(|)P A B P A B =,则()()()1()P AB P AB P B P B =-, ()()()()()P AB P B P AB P B P AB -=,()()[()()]()()P AB P B P AB P AB P B P A =⋅+=,由独立的定义,即得A 与B 相互独立.若A 与B 相互独立,直接应用乘法公式可以证明(|)(|)P A B P A B = .(|)1(|)(|)P A B P A B P A B =-=.由于事件B 的发生与否不影响事件A 发生的概率,直观上可以判断A 和B 相互独立. 所以本题选(D).三、(本题满分5分)【解析】根据本题极限式的特点,用换元法,令1t x=,x →∞换为0t →,则 原式220011ln(1)lim ln(1)lim t t t t t t t t →→-+⎡⎤=-+=⎢⎥⎣⎦, 现在已化为“”型的极限未定式,又分子分母在点0处导数都存在,运用洛必达法则,有 原式0011111limlim .22(1)2t t t t t →→-+===+四、(本题满分5分)【解析】由复合函数求导法,首先求fx∂∂,由题设可得2222212arctan 11f y x y y x x xx y y x x y ∂⎛⎫=+⋅--⋅ ⎪∂⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ 2322222arctan 2arctan y x y y yx x y x x y x y x=--=-++.再对y 求偏导数即得222222222212111fxx x y x yx x y x y y x ∂-=-=-=∂∂++⎛⎫+ ⎪⎝⎭. 【相关知识点】多元复合函数求导法则:如果函数(,),(,)u x y v x y ϕψ==都在点(,)x y 具有对x 及对y 的偏导数,函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数((,),(,))z f x y x y ϕψ=在点(,)x y 的两个偏导数存在,且有12z z u z v u v f f x u x v x x x∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂; 12z z u z v u v f f y u y v y y y∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂.五、(本题满分6分)【解析】由于sin x x 是函数()f x 的一个原函数,则sin ()x f x x '⎛⎫= ⎪⎝⎭2cos sin x x xx -=,利用不定积分的分部积分法求解本题.3332()()()3()xf x dx x df x x f x x f x dx '==-⎰⎰⎰3232sin sin ()3()32sin x x x f x x d x f x x xdx x x ⎛⎫⎡⎤=-=-⋅-⎪⎢⎥⎝⎭⎣⎦⎰⎰ 32cos sin 3sin 6cos x x xx x x x C x-=⋅--+ 2cos 4sin 6cos x x x x x C =--+,其中C 为任意常数.注:分部积分法的关键是要选好谁先进入积分号的问题,如果选择不当可能引起更繁杂的计算,最后甚至算不出结果来.在做题的时候应该好好总结,积累经验.【相关知识点】分部求导公式:假定()u u x =与()v v x =均具有连续的导函数,则,uv dx uv u vdx ''=-⎰⎰ 或者 .udv uv vdu =-⎰⎰六、(本题满分8分)【解析】设产鱼总量为z ,则产鱼总量的函数为22(3)(42)3422z x y x x y y x y x y xy αββαααβ=--+--=+---.由二元函数求极值的方法,为求驻点,令3220,4240.zx y xzx y yαββα∂⎧=--=⎪∂⎪⎨∂⎪=--=∂⎪⎩ 由于0αβ>>,知其系数行列式224(2)0αβ∆=->.故方程组有惟一解,即0022223243,22(2)x y αβαβαβαβ--==--. 容易验证000,0x y >>,且0000000003(,)(3)(42)2.2x z x y x y x x y y y αββα=--+--=+ 因为是实际问题,又由于驻点惟一,且实际问题必有最大值,故0x 和0y 分别为所求甲和乙两种鱼的放养数.七、(本题满分8分)【解析】利用00(,)x y 在两条曲线上及两曲线在00(,)x y 处切线斜率相等列出三个方程,由此,可求出00,,a x y ,然后再求平面图形的面积S .(1) 过曲线上已知点00(,)x y 的切线方程为00()y y k x x -=-,其中,当0()y x '存在时,0()k y x '=.由y x =2y x'=.由y x =知12y x'=. 由于两曲线在00(,)x y 处有公共切线,00122x x =,得021x a =. 将021x a =分别代入两曲线方程,有00222111ln 1ln y y a a a ====于是 20211,a x e e a ===, 从而切点为2(,1)e .(2) 两曲线与x 轴围成的平面图形的面积S 为12220()y S e e y dy =-⎰122301123y e e y ⎛⎫=- ⎪⎝⎭211.62e =-八、(本题满分7分)【解析】应用换元法,令n nx t u -=,则 11001()()()()().n x x n n nn n F x t f x t dt f u du F x x f x n --'=-=⇒=⎰⎰ 由于20()lim n x F x x → 为“00”型的极限未定式,又分子分母在点0处导数都存在,运用洛必达法则,得 122121000()()()lim lim lim 22n n n n n x x x F x F x x f x x nx nx ---→→→'== 001()1()(0)lim lim 220n n n n x x f x f x f n x n x →→-==-, 由导数的定义有 原式1(0)2f n'=. 【相关知识点】对积分上限的函数的求导公式:若()()()()t t F t f x dx βα=⎰,()t α,()t β均一阶可导,则[][]()()()()()F t t f t t f t ββαα'''=⋅-⋅.九、(本题满分8分)【解析】由1212()000,A A A αααα+=+=+=知12αα+是0Ax =的解.同理知 2331,αααα++也都是0Ax =的解.若112223331()()()0k k k αααααα+++++=,即311122233()()()0k k k k k k ααα+++++=.由于123,,ααα是基础解系,知123,,ααα线性无关.故知1312230,0,0.k k k k k k +=⎧⎪+=⎨⎪+=⎩因为系数行列式 10111020011=≠,所以方程组只有零解1230k k k ===.从而122331,,αααααα+++线性无关. 由已知,0Ax =的基础解系含三个线性无关的解向量,所以122331,,αααααα+++也是0Ax =的基础解系.【相关知识点】1.解的结构:若12,ηη是Ax b =对应齐次线性方程组0Ax =的基础解系,则Ax b =的通解形式为1122,k k ηηξ++其中ξ是Ax b =的一个特解.2.解的性质:如果12,ηη是0Ax =的两个解,则其线性组合1122k k ηη+仍是0Ax =的解;如果ξ是Ax b =的一个解,η是0Ax =的一个解,则ξη+仍是Ax b =的解.十、(本题满分8分)【解析】由A 的特征方程,按照第二列展开,有20111(1)(1)(1)0110E A x y λλλλλλλλλ---=---=-=-+=--, 得到A 的特征值为1231,1λλλ===-.由题设有三个线性无关的特征向量,因此,1λ=必有两个线性无关的特征向量, 从而()1r E A -=.这样才能保证方程组()0E A X -=解空间的维数是2, 即有两个线性无关的解向量.由初等行变换,将E A -第一行加到第三行上,第一行乘以x 后加到第二行上有101101000101000E A x y x y --⎡⎤⎡⎤⎢⎥⎢⎥-=--→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦, 由()1r E A -=,得x 和y 必须满足条件0x y +=.十一、(本题满分7分)【解析】已知随机变量X 的概率密度,依题意有概率0.10{0.1}20.01P X xdx ≤==⎰. 求得二项分布的概率参数后,在n 次独立重复观测中,事件{0.1}X ≤出现的次数n V 服从二项分布(,0.01)B n .所以有概率函数为{}(0.01)(0.99)m m n m n n P V m C -== (0,1,)m n =.【相关知识点】二项分布的概率计算公式:若(,)Y B n p ~,则{}(1)k k n k n P Y k C p p -==-, 0,1,,k n =.十二、(本题满分8分)【解析】依据数学期望的计算公式及一般正态分布的标准化方法,有{}{}{}()10201012512E T P X P X P X =-<+≤≤-> (10)20[(12)(10)]5[1(12)]μμμμ=-Φ-+Φ--Φ---Φ- 25(12)21(10) 5.μμ=Φ--Φ--此时数学期望依赖于参数μ,为使其达到最大值,令其一阶导数为0,有22(10)(12)22()25(12)21(10)25],2dE T e e d μμϕμϕμμπ----=--+-=- 令 ()0dE T d μ=,22(10)(12)22022μμππ----=, 即22(10)(12)2222μμππ----=.解上面的方程得 012511ln 10.9.221μμ==-≈ 得到唯一驻点010.9μμ=≈,因为此问题是实际问题,所以平均利润函数必然有最大值,而且这个最大值是唯一的.由题意知,当010.9μμ=≈毫米时,平均利润最大.。

1994考研数学一真题及答案解析

1994考研数学一真题及答案解析

1994年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5个小题,每小题3分,满分15分.) (1) 011limcot ()sin x x x x→-=_____________. (2) 曲面23zz e xy -+=在点(1,2,0)处的切平面方程为_____________.(3) 设sin xx u e y -=,则2u x y ∂∂∂在点1(2,)π处的值为_____________.(4) 设区域D 为222x y R +≤,则2222()Dx y dxdy a b +=⎰⎰_____________.(5) 已知11(1,2,3),(1,,)23αβ==,设TA αβ=,其中T α是α的转置,则nA =_________.二、选择题(本题共5个小题,每小题3分,满分15分.)(1) 设4222sin cos 1x M xdx x ππ-=+⎰,3422(sin cos )N x x dx ππ-=+⎰,23422(sin cos )P x x x dx ππ-=-⎰, 则 ( )(A) N P M << (B) M P N << (C) N M P << (D) P M N <<(2) 二元函数(,)f x y 在点00(,)x y 处两个偏导数00(,)x f x y '、00(,)y f x y '存在是(,)f x y 在该点连续的 ( ) (A) 充分条件但非必要条件 (B) 必要条件而非充分条件(C) 充分必要条件 (D) 既非充分条件又非必要条件 (3) 设常数0λ>,且级数21n n a ∞=∑收敛,则级数1(1)nn ∞=-∑ ( )(A) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 收敛性与λ有关 (4) 2tan (1cos )lim2ln(12)(1)x x a x b x c x d e -→+-=-+-,其中220a c +≠,则必有 ( )(A) 4b d = (B) 4b d =- (C) 4a c = (D) 4a c =-(5) 已知向量组1234αααα、、、线性无关,则向量组 ( ) (A) 12αα+、23αα+、34αα+、41αα+线性无关 (B) 12αα-、23αα-、34αα-、41αα-线性无关(C) 12αα+、23αα+、34αα+、41αα-线性无关 (D) 12αα+、23αα+、34αα-、41αα-线性无关 三、(本题共3小题, 每小题5分,满分15分.)(1)设2221cos(),cos(),t x t y t t udu ⎧=⎪⎨=-⎪⎩⎰ 求dy dx 、22d y dx在t =. (2) 将函数111()ln arctan 412x f x x x x +=+--展开成x 的幂级数. (3) 求sin 22sin dxx x +⎰.四、(本题满分6分)计算曲面积分2222Sxdydz z dxdy x y z +++⎰⎰,其中S 是由曲面222x y R +=及两平面,z R = (0)z R R =->所围成立体表面的外侧.五、(本题满分9分)设()f x 具有二阶连续导数,(0)0,(0)1f f '==,且2[()()][()]0xy x y f x y dx f x x y dy '+-++=为一全微分方程,求()f x 及此全微分方程的通解.六、(本题满分8分)设()f x 在点0x =的某一领域内具有二阶连续导数,且0()lim0x f x x→=,证明级数 11()n f n∞=∑绝对收敛. 七、(本题满分6分)已知点A 与B 的直角坐标分别为(1,0,0)与(0,1,1).线段AB 绕z 轴旋转一周所围成的旋转曲面为S .求由S 及两平面0,1z z ==所围成的立体体积. 八、(本题满分8分)设四元线性齐次方程组()I 为12240,0,x x x x +=⎧⎨-=⎩ 又已知某线性齐次方程组()II 的通解为12(0,1,10)(1,2,2,1)k k +-.(1) 求线性方程组()I 的基础解系;(2) 问线性方程组()I 和()II 是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.九、(本题满分6分)设A 为n 阶非零方阵,*A 是A 的伴随矩阵,T A 是A 的转置矩阵,当*T A A =时,证明||0A ≠.十、填空题(本题共2小题, 每小题3分,满分6分.)(1) 已知A 、B 两个事件满足条件()()P AB P AB =,且()P A p =,则()P B =__________. (2)则随机变量{}max ,Z X Y =的分布律为_______. 十一、(本题满分6分)已知随机变量(,)X Y 服从二维正态分布,且X 和Y 分别服从正态分布2(1,3)N 和2(0,4)N ,X 与Y 的相关系数12XY ρ=-,设32X YZ =+,(1) 求Z 的数学期望()E Z 和方差()D Z ; (2) 求X 与Z 的相关系数XZ ρ; (3) 问X 与Z 是否相互独立?为什么?1994年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5个小题,每小题3分,满分15分.) (1)【答案】16【解析】原式变形后为“0”型的极限未定式,又分子分母在点0处导数都存在,所以连续应用两次洛必达法则,有原式20cos (sin )limsin x x x x x x →-=300sin limcos lim x x x xx x→→-=⋅ 2001cos sin 1lim lim 366x x x x x x →→-===. (由重要极限0sin lim 1x x x→=) (2)【答案】240x y +-=【解析】所求平面的法向量n 为平行于所给曲面在点(1,2,0)处法线方向的方向向量l ,取n l =,又平面过已知点(1,2,0)M .已知平面的法向量(,,)A B C 和过已知点000(,,)x y z 可唯一确定这个平面:000()()()0A x x B y y C z z -+-+-=.因点(1,2,0)在曲面(,,)0F x y z =上.曲面方程(,,)23zF x y z z e xy =-+-. 曲面在该点的法向量{}{}{}(1,2,0)(1,2,0),,2,2,14,2,022,1,0z F F F n y x e x y z ⎧⎫∂∂∂ ==-==⎨⎬∂∂∂⎩⎭, 故切平面方程为 2(1)(2)0x y -+-=, 即 240x y +-=.(3)【答案】22eπ【解析】由于混合偏导数在连续条件下与求导次序无关,为了简化运算,所以本题可以先求u y ∂∂,再求u x y ⎛⎫∂∂ ⎪∂∂⎝⎭. 2cos x u x xe y y y-∂=-∂, 2222((1)cos )0xx e x x e πππ-==--+=.(可边代值边计算,这样可以简化运算量.)【相关知识点】多元复合函数求导法则:如果函数(,),(,)u x y v x y ϕψ==都在点(,)x y 具有对x 及对y 的偏导数,函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数((,),(,))z f x y x y ϕψ=在点(,)x y 的两个偏导数存在,且有12z z u z v u vf f x u x v x x x∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂; 12z z u z v u v f f y u y v y y y∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂. (4)【答案】42211()4R a b π+ 【解析】很显然,根据此题的特征用极坐标变换来计算: 原式222222232222000cos sin cos sin RR d r rdr d r dr a b a b ππθθθθθθ⎛⎫⎛⎫=+=+⋅ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰.注意:22220cos sin d d ππθθθθπ==⎰⎰,则 原式4422221111144R R a b a b ππ⎛⎫⎛⎫=+⋅=+⎪ ⎪⎝⎭⎝⎭. (5)【答案】111123232133312n -⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦【解析】由矩阵乘法有结合律,注意 1111,,23233Tβα⎡⎤⎛⎫⎢⎥== ⎪⎢⎥⎝⎭⎢⎥⎣⎦是一个数,而 11123111221,,2123333312T A αβ⎡⎤⎢⎥⎡⎤⎢⎥⎛⎫⎢⎥⎢⎥=== ⎪⎢⎥⎢⎥⎝⎭⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦,(是一个三阶矩阵) 于是,11111232332133312n T n αβ--⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 二、选择题(本题共5个小题,每小题3分,满分15分.)(1)【答案】(D)【解析】对于关于原点对称的区间上的积分,应该关注被积函数的奇偶性.由对称区间上奇偶函数积分的性质,被积函数是奇函数,积分区间关于原点对称,则积分为0,故0M =,且由定积分的性质,如果在区间[],a b 上,被积函数()0f x ≥,则()0 ()baf x dx a b ≥<⎰.所以 4202cos 0N xdx π=>⎰, 4202cos 0P xdx N π=-=-<⎰.因而 P M N <<,应选(D). (2)【答案】(D)【解析】(,)f x y 在点00(,)x y 连续不能保证(,)f x y 在点00(,)x y 存在偏导数00(,),x f x y '00(,)y f x y '.反之,(,)f x y 在点00(,)x y 存在这两个偏导数00(,),x f x y '00(,)y f x y '也不能保证(,)f x y 在点00(,)x y 连续,因此应选(D).二元函数(,)f x y 在点00(,)x y 处两个偏导数存在和在点00(,)x y 处连续并没有相关性. (3)【答案】(C)【解析】考查取绝对值后的级数.因2222111112222n n a a n n λ≤+<++, (第一个不等式是由2210,0,()2a b ab a b ≥≥≤+得到的.) 又21nn a ∞=∑收敛,2112n n ∞= ∑收敛,(此为p 级数:11p n n∞=∑当1p >时收敛;当1p ≤时发散.) 所以2211122n n a n ∞=+∑收敛,由比较判别法,得1n ∞=收敛.故原级数绝对收敛,因此选(C). (4)【答案】(D)【解析】因为 22211cos (),1()2x xx o x e x o x --=-=,故 tan (1cos )(0)a x b x ax a +-≠,2ln(12)(1)2 (0)x c x d e cx c --+--≠,因此,原式左边0lim222x ax acx c→====--原式右边,4a c ⇒=-.当0,0a c =≠时,极限为0;当0,0a c ≠=时,极限为∞,均与题设矛盾,应选(D). 【相关知识点】1.无穷小的比较:设在同一个极限过程中,(),()x x αβ为无穷小且存在极限 ()lim.()x l x αβ= (1) 若0,l ≠称(),()x x αβ在该极限过程中为同阶无穷小; (2) 若1,l =称(),()x x αβ在该极限过程中为等价无穷小,记为()()x x αβ;(3) 若0,l =称在该极限过程中()x α是()x β的高阶无穷小,记为()()()x o x αβ=.若()lim()x x αβ不存在(不为∞),称(),()x x αβ不可比较. 2. 无穷小量的性质:当0x x →时,(),()x x αβ为无穷小,则()()()()(())x x x x o x αβαββ⇔=+.(5)【答案】(C)【解析】这一类题目应当用观察法.若不易用观察法时可转为计算行列式. (A):由于()()()()122334410αααααααα+-+++-+=,所以(A)线性相关. (B):由于()()()()122334410αααααααα-+-+-+-=,所以(B)线性相关.对于(C),实验几组数据不能得到0时,应立即计算由α的系数构成的行列式,即100111002001100011-=≠,由行列式不为0,知道(C)线性无关.故应选(C). 当然,在处理(C)有困难时,也可来看(D),由12233441()()()()0αααααααα+-++-+-=,知(D)线性相关,于是用排除法可确定选(C). 【相关知识点】12,,,s ααα线性相关的充分必要条件是存在某(1,2,,)i i s α=可以由111,,,,i i s αααα-+线性表出.12,,,s ααα线性无关的充分必要条件是任意一个(1,2,,)i i s α=均不能由111,,,,i i s αααα-+线性表出.三、(本题共3小题, 每小题5分,满分15分.)(1)【解析】dy dy dt dy dx dtdt dx dt dx =⋅=222221cos 2sin cos 22(0),2sin t t t t t t t y t t t x t t--⋅'===>'- 同理 2()12sin x txx t y y x t t ''''=='-,代入参数值t =则xt y '=, xxt y ''=【相关知识点】1.复合函数求导法则:如果()u g x =在点x 可导,而()y f x =在点()u g x =可导,则复合函数[]()y f g x =在点x 可导,且其导数为()()dy f u g x dx ''=⋅ 或 dy dy du dx du dx=⋅. 2.对积分上限的函数的求导公式:若()()()()t t F t f x dx βα=⎰,()t α,()t β均一阶可导,则[][]()()()()()F t t f t t f t ββαα'''=⋅-⋅.(2)【解析】111()ln(1)ln(1)arctan 442f x x x x x =+--+-. 先求()f x '的展开式.将()f x 微分后,可得简单的展开式,再积分即得原函数的幂级数展开.所以由该级数在端点1x =±处的收敛性,视α而定.特别地,当1α=-时,有 得 2221111111111()114141212121f x x x x x x'=++-=+-+-+-+ 44401111(||1)1n n n n x x x x ∞∞===-=-=<-∑∑, 积分,由牛顿-莱布尼茨公式得4140011()(0)() (||1)41n xx nn n x f x f f x dx t dt x n +∞∞=='=+==<+∑∑⎰⎰.(3)【解析】方法1:利用三角函数的二倍角公式sin 22sin cos ααα=⋅,并利用换元积分,结合拆项法求积分,得(22sin 1cos x x =-)()()12ln 1cos ln 1cos 81cos x x C x ⎡⎤=--+++⎢⎥+⎣⎦, 其中C 为任意常数.方法2:换元cos x u =后,有原式22sin 12sin (cos 1)2sin (cos 1)2(1)(1)dx xdx dux x x x u u ===-++-+⎰⎰⎰.用待定系数法将被积函数分解:22()(2)()(1)(1)A B u A D u A B D u u -+-+++=-+,1120,421A B A D A B D A B D -=⎧⎪⇒-=⇒===⎨⎪++=⎩.于是,2111212()ln 1ln 1811(1)81du u u C u u u u ⎡⎤-++=--+++⎢⎥-+++⎣⎦⎰原式= ()()12ln 1cos ln 1cos 81cos x x C x ⎡⎤=--+++⎢⎥+⎣⎦. 四、(本题满分6分)【解析】求第二类曲面积分的基本方法:套公式将第二类曲面积分化为第一类曲面积分,再化为二重积分,或用高斯公式转化为求相应的三重积分或简单的曲面积分.这里曲面块的个数不多,积分项也不多,某些积分取零值,如若∑垂直yOz 平面,则0Pdydz ∑=⎰⎰.化为二重积分时要选择投影平面,注意利用对称性与奇偶性.先把积分化简后利用高斯公式也很方便的.方法1:注意 22220Sz dxdyx y z =++⎰⎰,(因为S 关于xy 平面对称,被积函数关于z 轴对称) 所以 222SxdydzI x y z =++⎰⎰. S 由上下底圆及圆柱面组成.分别记为123,,S S S . 12,S S 与平面yOz 垂直⇒122222220s s xdydz xdydzx y z x y z ==++++⎰⎰⎰⎰. 在3S 上将222x y R +=代入被积表达式⇒322s xdydzI R z =+⎰⎰. 3S 在yz 平面上投影区域为:,yz D R y R R z R -≤≤-≤≤,在3S 上,x =3S 关于yz 平面对称,被积函数对x 为奇函数,可以推出2201arctan 42Rz R R R R ππ1=8⋅⋅=.方法2:S 是封闭曲面,它围成的区域记为Ω,记 22SxdydzI R z =+⎰⎰. 再用高斯公式得 222222()1R R D z x dxdyI dV dV dz x R z R z R z -ΩΩ∂⎛⎫=== ⎪∂+++⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰ 222201122RRdz R R z ππ==+⎰(先一后二的求三重积分方法)其中()D z 是圆域:222x y R +≤.【相关知识点】高斯公式:设空间闭区域Ω是由分片光滑的闭曲面∑所围成,函数(,,)P x y z 、(,,)Q x y z 、(,,)R x y z 在Ω上具有一阶连续偏导数,则有或()cos cos cos ,P Q R dv P Q R dS x y z αβγΩ∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰这里∑是Ω的整个边界曲面的外侧,cos α、cos β、cos γ是∑在点(,,)x y z 处的法向量的方向余弦.上述两个公式叫做高斯公式.五、(本题满分9分)【解析】由全微分方程的条件,有2[()()][()]xy x y f x y f x x y y x∂∂'+-=+∂∂, 即 22()()2x xy f x f x xy ''+-=+,亦即 2()()f x f x x ''+=.因而是初值问题 200,0,1,x x y y x y y ==''⎧+=⎪⎨'==⎪⎩ 的解,此方程为常系数二阶线性非齐次方程,对应的齐次方程的特征方程为210r +=的根为1,2r i =±,原方程右端202x x e x =⋅中的0λ=,不同于两个特征根,所以方程有特解形如 2Y Ax Bx C =++. 代入方程可求得 1,0,2A B C ===,则特解为22x -.由题给(0)0,(0)1f f '==,解得 2()2cos sin 2f x x x x =++-.()f x 的解析式代入原方程,则有22[2(2cos sin )][22sin cos ]0xy y x x y dx x y x x x dy +-+++-+=.先用凑微分法求左端微分式的原函数:222211()2()(2sin cos )(2sin cos )022y dx x dy ydx xdy yd x x x x dy +++----=, 221(2(cos 2sin ))02d x y xy y x x ++-=. 其通解为 2212(cos 2sin )2x y xy y x x C ++-= 其中C 为任意常数.【相关知识点】1.二阶线性非齐次方程解的结构:设*()y x 是二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解.()Y x 是与之对应的齐次方程 ()()0y P x y Q x y '''++=的通解,则*()()y Y x y x =+是非齐次方程的通解.2. 二阶常系数线性齐次方程通解的求解方法:对于求解二阶常系数线性齐次方程的通解()Y x ,可用特征方程法求解:即()()0y P x y Q x y '''++=中的()P x 、()Q x 均是常数,方程变为0y py qy '''++=.其特征方程写为20r pr q ++=,在复数域内解出两个特征根12,r r ; 分三种情况:(1) 两个不相等的实数根12,r r ,则通解为1212;rx r x y C eC e =+(2) 两个相等的实数根12r r =,则通解为()112;rxy C C x e =+(3) 一对共轭复根1,2r i αβ=±,则通解为()12cos sin .xy e C x C x αββ=+其中12,C C 为常数.3.对于求解二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解*()y x ,可用待定系数法,有结论如下:如果()(),x m f x P x e λ=则二阶常系数线性非齐次方程具有形如*()()k xm y x x Q x e λ=的特解,其中()m Q x 是与()m P x 相同次数的多项式,而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的重根依次取0、1或2.如果()[()cos ()sin ]xl n f x e P x x P x x λωω=+,则二阶常系数非齐次线性微分方程()()()y p x y q x y f x '''++=的特解可设为*(1)(2)[()cos ()sin ]k x m m y x e R x x R x x λωω=+,其中(1)()m R x 与(2)()m R x 是m 次多项式,{}max ,m l n =,而k 按i λω+(或i λω-)不是特征方程的根、或是特征方程的单根依次取为0或1. 六、(本题满分8分)【解析】0()lim0x f x x→=表明0x →时()f x 是比x 高阶的无穷小,若能进一步确定()f x 是x 的p 阶或高于p 阶的无穷小,1,p >从而1()f n也是1n的p 阶或高于p 阶的无穷小,这就证明了级数11()n f n∞=∑绝对收敛. 方法一:由0()lim0x f x x→=及()f x 的连续性得知(0)0,(0)0f f '==,再由()f x 在点0x =的某一领域内具有二阶连续导数以及洛必达法则,20()lim x f x x →为“0”型的极限未定式,又分子分母在点0处导数都存在,连续运用两次洛必达法则,有2()1lim(0)2x f x f x →''⇒=. 由函数极限与数列极限的关系 21()1lim(0)12n f nf n→+∞''⇒=. 因211n n ∞=∑收敛11()n f n ∞=⇒∑收敛,即 11()n f n ∞=∑绝对收敛.方法二:由0()lim0x f x x→=得知(0)0,(0)0f f '==,可用泰勒公式来实现估计.()f x 在点0x =有泰勒公式:因()f x 在点0x =的某一领域内具有二阶连续导数,0,()f x δ''⇒∃>在[,]x δδ∈-有界,即0M ∃>,有|()|,[,]f x M x δδ''≤∈-2211()(),[,]22f x f x x Mx x θδδ''⇒=≤∈-. 对此0δ>,,N n N ∃>时,211110()2f M n n nδ<<⇒≤. 又211n n ∞=∑收敛11()n f n ∞=⇒∑收敛,即 11()n f n ∞=∑绝对收敛.【相关知识点】正项级数的比较判别法:设1n n u ∞=∑和1n n v ∞=∑都是正项级数,且lim,nn nv A u →∞=则⑴ 当0A <<+∞时,1nn u∞=∑和1nn v∞=∑同时收敛或同时发散;⑵ 当0A =时,若1nn u∞=∑收敛,则1nn v∞=∑收敛;若1nn v∞=∑发散,则1nn u∞=∑发散;⑶ 当A =+∞时,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散.七、(本题满分6分)【解析】方法1:用定积分.设高度为z 处的截面z D 的面积为()S z ,则所求体积1()V S z dz =⎰.,A B 所在的直线的方向向量为()()01,10,101,1,1---=-,且过A 点,所以,A B 所在的直线方程为1111x y z-== - 或 1x z y z=-⎧⎨=⎩. 截面z D 是个圆形,其半径的平方 22222(1)R x y z z =+=-+,则面积222()[(1)]S z R z z ππ==-+,由此 1220[(1)]V z z dz π=-+⎰()120122z z dz π=-+⎰123023z z z π⎛⎫=-+ ⎪⎝⎭23π=.方法2:用三重积分.2123V dV d dz ππθΩ===⎰⎰⎰⎰⎰, 或者 11220[(1)]zD V dV dz d z z dz σπΩ===-+⎰⎰⎰⎰⎰⎰⎰123023z z z π⎛⎫=-+ ⎪⎝⎭23π=.八、(本题满分8分)【解析】(1)由已知,()I 的系数矩阵,11000101A ⎡⎤=⎢⎥-⎣⎦.由于()2,n r A -=所以解空间的维数是2.取34,x x 为自由变量,分别令()()()34,1,0,0,1x x =,求出0Ax =的解.故()I 的基础解系可取为 (0,0,1,0),(1,1,0,1)-. (2)方程组()I 和()II 有非零公共解.将()II 的通解 1221231242,2,2,x k x k k x k k x k =-=+=+=代入方程组()I ,则有212121222020k k k k k k k k -++=⎧⇒=-⎨+-=⎩. 那么当120k k =-≠时,向量121(0,1,1,0)(1,2,2,1)(1,1,1,1)k k k +-=---是()I 与()II 的非零公共解.九、(本题满分6分)【解析】证法一:由于 *T A A =,根据*A 的定义有(,1,2,,)ij ij A a i j n =∀=,其中ij A 是行列式||A 中ij a 的代数余子式.由于0A ≠,不妨设0ij a ≠,那么2222112212||0ij i i i i in in i i in A a A a A a A a a a a =+++=+++≥>,故 ||0A ≠.证法二:(反证法)若||0A =,则*TAA AA ==||0A E =. 设A 的行向量为(1,2,,)i i n α=,则 222120T i i i i in a a a αα=+++= (1,2,,)i n =.于是 12(,,,)0i i i in a a a α== (1,2,,)i n =.进而有0A =,这与A 是非零矩阵相矛盾.故||0A ≠. 十、填空题(本题共2小题, 每小题3分,满分6分.)(1)【解析】利用随机事件的概率运算性质进行化简.由概率的基本公式(广义加法公式),有1()()()P A P B P AB =--+.因题目已知 ()()P AB P AB =,故有()()1P A P B +=,()1()1P B P A p =-=-.(2)【解析】由于X 、Y 相互独立且同分布,只能取0、1两个数值,易见随机变量{}max ,Z X Y =只取0与1两个可能的值,且{}{}{}0max ,0P Z P X Y ==={}{}{}10,0004P X Y P X P Y =====⋅==,{}{}31104P Z P Z ==-==. 所以随机变量{}max ,Z X Y =的分布律为:十一、(本题满分6分)【解析】此题的第一小问是求数学期望()E Z 和方差()D Z ,是个常规问题;(2)求相关系数XZ ρ,关键是计算X 与Z 的协方差;(3)考查相关系数为零与相互独立是否等价.(1) 由2(1,3)XN ,2(0,4)Y N ,知()1,()9,()0,()16E X D X E Y D Y ====.由数学期望和方差的性质:()()()E aX bY c aE X bE Y c ++=++,22()()()2Cov(,)D aX bY c a D X b D Y ab X Y ++=++,其中,,a b c 为常数.得 111,323EZ EX EY =+= (2) 因为11Cov(,)Cov(,)32X Z X X Y =+所以 0XZ ρ==.(3) 由于(,)X Y 服从二维正态分布,则其线性组合构成的随机变量也服从二维正态分布,而32X YZ =+,0X X Y =+,故X 和Z 都是其线性组合,则(,)X Z 服从二维正态分布,根据 0XZ ρ==,所以X 与Z 是相互独立的.。

1994考研数学一真题及答案详解

1994考研数学一真题及答案详解

1994年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5个小题,每小题3分,满分15分.) (1) _______1sin 1cot lim 0=⎪⎭⎫⎝⎛-→x x x x . (2) 曲面32=+-xy e z z 在点()0,2,1处的切平面方程为_______.(3) 设y x e u xsin -=,则y x u ∂∂∂2在点⎪⎭⎫⎝⎛π1,2处的值为_______.(4) 设区域D 为222R y x ≤+,则_______2222=⎪⎪⎭⎫⎝⎛+⎰⎰dxdy b y a x D .(5) 已知()⎪⎭⎫⎝⎛==31,21,1,3,2,1βα,设βαTA =,其中T α是α的转置,则_____=n A .二、选择题(本题共5个小题,每小题3分,满分15分.)(1) 设xdx x x M 4222cos 1sin ⎰-+=ππ,dx x N )cos (sin 4223⎰-+=ππ,dx x x x P )cos sin (42232-=⎰-ππ,则 ( )(A) M P N << (B) N P M << (C) P M N << (D) N M P << (2) 二元函数()y x f ,在点()00,y x 处两个偏导数()00,y x f x '()00,y x f y '存在是()y x f ,在该点连续的 ( ) (A) 充分条件但非必要条件 (B) 必要条件而非充分条件(C) 充分必要条件 (D) 既非充分条件又非必要条件 (3) 设常数0>λ,且级数∑∞=12n n a 收敛,则级数()λ+-∑∞=211n a n nn ( )(A) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 收敛性与λ有关 (4) ()()()2121ln cos 1tan lim2=-+--+-→xx e d x c x b x a ,其022≠+c a ,则必有 ( )(A) d b 4= (B) d b 4-= (C) c a 4= (D) c a 4-=(5) 已知向量组4321,,,αααα线性无关,则向量组 ( ) (A) 21αα+、32αα+、43αα+、14αα+线性无关(B) 21αα-、32αα-、43αα-、14αα-线性无关(C) 21αα+、32αα+、43αα+、14αα-线性无关 (D) 21αα+、32αα+、43αα-、14αα-线性无关三、(本题共3小题, 每小题5分,满分15分.)(1) 设 ()()⎪⎩⎪⎨⎧-==⎰2122,cos 21cos cos t udu u t t y t x 求dx dy 、22dx y d 在2π=t 的值. (2) 将函数()x x x x x f -+-+=arctan 2111ln 41展开成x 的幂级数. (3) 求⎰+x x dxsin 22sin .四、(本题满分6分)计算曲面积分⎰⎰+++S z y x dxdyz xdydz 2222,其中S 是由曲面222R y x =+及两平面R z =, ()0>-=R R z 所围成立体表面的外侧.五、(本题满分9分)设()x f 具有二阶连续导数,()()10,00='=f f ,且()()[]()[]02=+'+-+dy y x x f dx y x f y x xy 为一全微分方程,求及此全微分方程()x f 的通解.六、(本题满分8分)设()x f 在点0=x 的某一领域内具有二阶连续导数,且()0lim=→xx f x ,证明级数 ∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛.七、(本题满分6分)已知点A 与B 的直角坐标分别为()0,0,1与()1,1,0.线段AB 绕z 轴旋转一周所围成的旋转曲面为S .求由S 及两平面1,0==z z 所围成的立体体积.八、(本题满分8分)设四元线性齐次方程组()I 为⎩⎨⎧=-=+,0,04221x x x x 又已知某线性齐次方程组()II 的通解为()()1,2,2,10,1,1,021-+k k .(1) 求线性方程组()I 的基础解系;(2) 问线性方程组()I 和()II 是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.九、(本题满分6分)设A 为n 阶非零方阵,*A 是A 的伴随矩阵,TA 是A 的转置矩阵,当TA A =*时,证明0≠A .十、填空题(本题共2小题, 每小题3分,满分6分.)(1) 已知A 、B 两个事件满足条件()()B A P AB P =,且()p A P =,则()_____=B P . (2) 设相互独立的两个随机变量X 、Y 具有同一分布律,且X 的分布律为则随机变量{}Y X Z ,max =的分布律为_______.十一、(本题满分6分)已知随机变量()Y X ,服从二维正态分布,且X 和Y 分别服从正态分布()23,1N 和()24,0N ,X 与Y 的相关系数21-=XY ρ,设23YX Z +=, (1) 求Z 的数学期望()Z E 和方差()Z D ; (2) 求X 与Z 的相关系数XY ρ; (3) 问X 与Z 是否相互独立?为什么?1994年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5个小题,每小题3分,满分15分.) (1)【答案】16【解析】原式变形后为“0”型的极限未定式,又分子分母在点0处导数都存在,所以连续应用两次洛必达法则,有原式20cos (sin )limsin x x x x x x →-=300sin lim cos lim x x x xx x→→-=⋅ 2001cos sin 1lim lim 366x x x x x x →→-===. (由重要极限0sin lim 1x x x→=) (2)【答案】240x y +-=【解析】所求平面的法向量n 为平行于所给曲面在点(1,2,0)处法线方向的方向向量l ,取n l =,又平面过已知点(1,2,0)M .已知平面的法向量(,,)A B C 和过已知点000(,,)x y z 可唯一确定这个平面:000()()()0A x x B y y C z z -+-+-=.因点(1,2,0)在曲面(,,)0F x y z =上.曲面方程(,,)23z F x y z z e xy =-+-. 曲面在该点的法向量{}{}{}(1,2,0)(1,2,0),,2,2,14,2,022,1,0z F F F n y x e x y z ⎧⎫∂∂∂ ==-==⎨⎬∂∂∂⎩⎭, 故切平面方程为 2(1)(2)0x y -+-=, 即 240x y +-=.(3)【答案】22eπ【解析】由于混合偏导数在连续条件下与求导次序无关,为了简化运算,所以本题可以先求u y ∂∂,再求u x y ⎛⎫∂∂ ⎪∂∂⎝⎭. 2cos x u x xe y y y-∂=-∂, ()2221112(2,)(2,)2cos xy x x u u uxe x x y y x x y x ππππ-===⎛⎫∂∂∂∂∂===-⎪ ⎪∂∂∂∂∂∂∂⎝⎭2222((1)cos )0xx e x x e πππ-==--+=.(可边代值边计算,这样可以简化运算量.)【相关知识点】多元复合函数求导法则:如果函数(,),(,)u x y v x y ϕψ==都在点(,)x y 具有对x 及对y 的偏导数,函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数((,),(,))z f x y x y ϕψ=在点(,)x y 的两个偏导数存在,且有12z z u z v u v f f x u x v x x x∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂; 12z z u z v u v f f y u y v y y y∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂. (4)【答案】42211()4R a bπ+ 【解析】很显然,根据此题的特征用极坐标变换来计算: 原式2222222322220000cos sin cos sin RR d r rdr d r dr ab a b ππθθθθθθ⎛⎫⎛⎫=+=+⋅ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰. 注意:22220cos sin d d ππθθθθπ==⎰⎰,则 原式4422221111144R R a b a b ππ⎛⎫⎛⎫=+⋅=+⎪ ⎪⎝⎭⎝⎭. (5)【答案】111123232133312n -⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦【解析】由矩阵乘法有结合律,注意 1111,,23233Tβα⎡⎤⎛⎫⎢⎥== ⎪⎢⎥⎝⎭⎢⎥⎣⎦是一个数,而 11123111221,,2123333312TA αβ⎡⎤⎢⎥⎡⎤⎢⎥⎛⎫⎢⎥⎢⎥=== ⎪⎢⎥⎢⎥⎝⎭⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦,(是一个三阶矩阵)于是,()()()()()()()n T T T T T T T TA αβαβαβαβαβαβαβαβ==11111232332133312n T n αβ--⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦.二、选择题(本题共5个小题,每小题3分,满分15分.)(1)【答案】(D)【解析】对于关于原点对称的区间上的积分,应该关注被积函数的奇偶性.由对称区间上奇偶函数积分的性质,被积函数是奇函数,积分区间关于原点对称,则积分为0,故0M =,且由定积分的性质,如果在区间[],a b 上,被积函数()0f x ≥,则()0 ()baf x dx a b ≥<⎰.所以 4202cos 0N xdx π=>⎰, 4202cos 0P xdx N π=-=-<⎰.因而 P M N <<,应选(D). (2)【答案】(D)【解析】(,)f x y 在点00(,)x y 连续不能保证(,)f x y 在点00(,)x y 存在偏导数00(,),x f x y '00(,)y f x y '.反之,(,)f x y 在点00(,)x y 存在这两个偏导数00(,),x f x y '00(,)y f x y '也不能保证(,)f x y 在点00(,)x y 连续,因此应选(D).二元函数(,)f x y 在点00(,)x y 处两个偏导数存在和在点00(,)x y 处连续并没有相关性. (3)【答案】(C)【解析】考查取绝对值后的级数.因2222111112222n n a a n n λ≤+<++, (第一个不等式是由2210,0,()2a b ab a b ≥≥≤+得到的.) 又21nn a ∞=∑收敛,2112n n ∞= ∑收敛,(此为p 级数:11p n n∞=∑当1p >时收敛;当1p ≤时发散.)所以2211122n n a n ∞=+∑收敛,由比较判别法,得1n ∞=收敛.故原级数绝对收敛,因此选(C). (4)【答案】(D)【解析】因为 22211cos (),1()2x xx o x e x o x --=-=,故 tan (1cos )(0)a x b x ax a +-≠,2ln(12)(1)2 (0)x c x d e cx c --+--≠,因此,原式左边0lim222x ax acx c→====--原式右边,4a c ⇒=-.当0,0a c =≠时,极限为0;当0,0a c ≠=时,极限为∞,均与题设矛盾,应选(D). 【相关知识点】1.无穷小的比较:设在同一个极限过程中,(),()x x αβ为无穷小且存在极限 ()lim.()x l x αβ= (1) 若0,l ≠称(),()x x αβ在该极限过程中为同阶无穷小; (2) 若1,l =称(),()x x αβ在该极限过程中为等价无穷小,记为()()x x αβ;(3) 若0,l =称在该极限过程中()x α是()x β的高阶无穷小,记为()()()x o x αβ=.若()lim()x x αβ不存在(不为∞),称(),()x x αβ不可比较. 2. 无穷小量的性质:当0x x →时,(),()x x αβ为无穷小,则()()()()(())x x x x o x αβαββ⇔=+.(5)【答案】(C)【解析】这一类题目应当用观察法.若不易用观察法时可转为计算行列式. (A):由于()()()()122334410αααααααα+-+++-+=,所以(A)线性相关. (B):由于()()()()122334410αααααααα-+-+-+-=,所以(B)线性相关.对于(C),实验几组数据不能得到0时,应立即计算由α的系数构成的行列式,即100111002001100011-=≠,由行列式不为0,知道(C)线性无关.故应选(C). 当然,在处理(C)有困难时,也可来看(D),由12233441()()()()0αααααααα+-++-+-=,知(D)线性相关,于是用排除法可确定选(C). 【相关知识点】12,,,s ααα线性相关的充分必要条件是存在某(1,2,,)i i s α=可以由111,,,,i i s αααα-+线性表出.12,,,s ααα线性无关的充分必要条件是任意一个(1,2,,)i i s α=均不能由111,,,,i i s αααα-+线性表出.三、(本题共3小题, 每小题5分,满分15分.)(1)【解析】dy dy dt dy dx dtdt dx dt dx =⋅=222221cos 2sin cos 22(0),2sin t t t t t t t y t t t x t t--⋅'===>'- 同理 2()12sin x txx t y y x t t''''=='-, 代入参数值t =则xt y '=, xxt y ''=【相关知识点】1.复合函数求导法则:如果()u g x =在点x 可导,而()y f x =在点()u g x =可导,则复合函数[]()y f g x =在点x 可导,且其导数为()()dy f u g x dx ''=⋅ 或 dy dy du dx du dx=⋅. 2.对积分上限的函数的求导公式:若()()()()t t F t f x dx βα=⎰,()t α,()t β均一阶可导,则[][]()()()()()F t t f t t f t ββαα'''=⋅-⋅.(2)【解析】111()ln(1)ln(1)arctan 442f x x x x x =+--+-. 先求()f x '的展开式.将()f x 微分后,可得简单的展开式,再积分即得原函数的幂级数展开.所以由2(1)(1)(1)(1)1,2!!nn x x x x n ααααααα---++=+++++(11)x -<<该级数在端点1x =±处的收敛性,视α而定.特别地,当1α=-时,有2311(1),1n n x x x x x =-+-++-++ (11)x -<< 2311,1n x x x x x =++++++- (11)x -<< 得 2221111111111()114141212121f x x x x x x '=++-=+-+-+-+ 44401111(||1)1n n n n x x x x ∞∞===-=-=<-∑∑, 积分,由牛顿-莱布尼茨公式得4140011()(0)() (||1)41n xx nn n x f x f f x dx t dt x n +∞∞=='=+==<+∑∑⎰⎰.(3)【解析】方法1:利用三角函数的二倍角公式sin 22sin cos ααα=⋅,并利用换元积分,结合拆项法求积分,得sin 22sin 2sin (cos 1)dx dxx x x x =++⎰⎰22sin 11cos 2sin (cos 1)2(1)(1)xdx x u du x x u u ==-+-+⎰⎰ (22sin 1cos x x =-)221(1)(1)1112()4(1)(1)811(1)u u du du u u u u u ++-=-=-++-+-++⎰⎰12ln |1|ln |1|8(1)u u C u ⎡⎤=--+++⎢⎥+⎣⎦()()12ln 1cos ln 1cos 81cos x x C x ⎡⎤=--+++⎢⎥+⎣⎦, 其中C 为任意常数.方法2:换元cos x u =后,有原式22sin 12sin (cos 1)2sin (cos 1)2(1)(1)dx xdx dux x x x u u ===-++-+⎰⎰⎰.用待定系数法将被积函数分解:221(1)(1)11(1)A B Du u u u u =++-+-++ 22()(2)()(1)(1)A B u A D u A B D u u -+-+++=-+, 01120,421A B A D A B D A B D -=⎧⎪⇒-=⇒===⎨⎪++=⎩.于是,2111212()ln 1ln 1811(1)81du u u C u u u u ⎡⎤-++=--+++⎢⎥-+++⎣⎦⎰原式= ()()12ln 1cos ln 1cos 81cos x x C x ⎡⎤=--+++⎢⎥+⎣⎦.四、(本题满分6分)【解析】求第二类曲面积分的基本方法:套公式将第二类曲面积分化为第一类曲面积分,再化为二重积分,或用高斯公式转化为求相应的三重积分或简单的曲面积分.这里曲面块的个数不多,积分项也不多,某些积分取零值,如若∑垂直yOz 平面,则0Pdydz ∑=⎰⎰.化为二重积分时要选择投影平面,注意利用对称性与奇偶性.先把积分化简后利用高斯公式也很方便的.方法1:注意 22220Sz dxdy x y z =++⎰⎰,(因为S 关于xy 平面对称,被积函数关于z 轴对称) 所以 222SxdydzI x y z =++⎰⎰. S 由上下底圆及圆柱面组成.分别记为123,,S S S . 12,S S 与平面yOz 垂直⇒122222220s s xdydz xdydzx y z x y z ==++++⎰⎰⎰⎰. 在3S 上将222x y R +=代入被积表达式⇒322s xdydzI R z =+⎰⎰. 3S 在yz 平面上投影区域为:,yz D R y R R z R -≤≤-≤≤,在3S 上,x =,3S 关于yz 平面对称,被积函数对x 为奇函数,可以推出22002222yzR D dz I R z==⨯⨯ +⎰⎰ 2201arctan 42Rz R R R R ππ1=8⋅⋅=.方法2:S 是封闭曲面,它围成的区域记为Ω,记 22SxdydzI R z =+⎰⎰. 再用高斯公式得 222222()1R R D z x dxdyI dV dV dz x R z R z R z -ΩΩ∂⎛⎫=== ⎪∂+++⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰ 222201122RRdz R R z ππ==+⎰(先一后二的求三重积分方法)其中()D z 是圆域:222x y R +≤.【相关知识点】高斯公式:设空间闭区域Ω是由分片光滑的闭曲面∑所围成,函数(,,)P x y z 、(,,)Q x y z 、(,,)R x y z 在Ω上具有一阶连续偏导数,则有,P Q R dv Pdydz Qdzdx Rdxdy x y z Ω∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰或()cos cos cos ,P Q R dv P Q R dS x y z αβγΩ∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰这里∑是Ω的整个边界曲面的外侧,cos α、cos β、cos γ是∑在点(,,)x y z 处的法向量的方向余弦.上述两个公式叫做高斯公式.五、(本题满分9分)【解析】由全微分方程的条件,有2[()()][()]xy x y f x y f x x y y x∂∂'+-=+∂∂, 即 22()()2x xy f x f x xy ''+-=+,亦即 2()()f x f x x ''+=.因而是初值问题 200,0,1,x x y y x y y ==''⎧+=⎪⎨'==⎪⎩ 的解,此方程为常系数二阶线性非齐次方程,对应的齐次方程的特征方程为210r +=的根为1,2r i =±,原方程右端202x x e x =⋅中的0λ=,不同于两个特征根,所以方程有特解形如 2Y Ax Bx C =++. 代入方程可求得 1,0,2A B C ===,则特解为22x -.由题给(0)0,(0)1f f '==,解得 2()2cos sin 2f x x x x =++-.()f x 的解析式代入原方程,则有22[2(2cos sin )][22sin cos ]0xy y x x y dx x y x x x dy +-+++-+=.先用凑微分法求左端微分式的原函数:222211()2()(2sin cos )(2sin cos )022y dx x dy ydx xdy yd x x x x dy +++----=, 221(2(cos 2sin ))02d x y xy y x x ++-=. 其通解为 2212(cos 2sin )2x y xy y x x C ++-= 其中C 为任意常数.【相关知识点】1.二阶线性非齐次方程解的结构:设*()y x 是二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解.()Y x 是与之对应的齐次方程 ()()0y P x y Q x y '''++=的通解,则*()()y Y x y x =+是非齐次方程的通解.2. 二阶常系数线性齐次方程通解的求解方法:对于求解二阶常系数线性齐次方程的通解()Y x ,可用特征方程法求解:即()()0y P x y Q x y '''++=中的()P x 、()Q x 均是常数,方程变为0y py qy '''++=.其特征方程写为20r pr q ++=,在复数域内解出两个特征根12,r r ;分三种情况:(1) 两个不相等的实数根12,r r ,则通解为1212;rx r x y C eC e =+(2) 两个相等的实数根12r r =,则通解为()112;rxy C C x e =+(3) 一对共轭复根1,2r i αβ=±,则通解为()12cos sin .xy e C x C x αββ=+其中12,C C 为常数.3.对于求解二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解*()y x ,可用待定系数法,有结论如下:如果()(),xm f x P x e λ=则二阶常系数线性非齐次方程具有形如*()()kxm y x x Q x e λ= 的特解,其中()m Q x 是与()m P x 相同次数的多项式,而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的重根依次取0、1或2.如果()[()cos ()sin ]x l n f x e P x x P x x λωω=+,则二阶常系数非齐次线性微分方程()()()y p x y q x y f x '''++=的特解可设为*(1)(2)[()cos ()sin ]k x m m y x e R x x R x x λωω=+,其中(1)()m R x 与(2)()m R x 是m 次多项式,{}max ,m l n =,而k 按i λω+(或i λω-)不是特征方程的根、或是特征方程的单根依次取为0或1.六、(本题满分8分) 【解析】0()lim0x f x x→=表明0x →时()f x 是比x 高阶的无穷小,若能进一步确定()f x 是x 的p 阶或高于p 阶的无穷小,1,p >从而1()f n 也是1n的p 阶或高于p 阶的无穷小,这就证明了级数11()n f n∞=∑绝对收敛. 方法一:由0()lim0x f x x→=及()f x 的连续性得知(0)0,(0)0f f '==,再由()f x 在点0x =的某一领域内具有二阶连续导数以及洛必达法则,20()lim x f x x →为“00”型的极限未定式,又分子分母在点0处导数都存在,连续运用两次洛必达法则,有2000()()()1lim lim lim (0)222x x x f x f x f x f x x →→→'''''=== 2()1lim(0)2x f x f x →''⇒=. 由函数极限与数列极限的关系 21()1lim (0)12n f nf n →+∞''⇒=.因211n n ∞=∑收敛11()n f n ∞=⇒∑收敛,即 11()n f n ∞=∑绝对收敛.方法二:由0()lim0x f x x→=得知(0)0,(0)0f f '==,可用泰勒公式来实现估计.()f x 在点0x =有泰勒公式:2211()(0)(0)()()(01,[,])22f x f f x f x x f x x x θθθδδ'''''= ++=<<∈- 因()f x 在点0x =的某一领域内具有二阶连续导数,0,()f x δ''⇒∃>在[,]x δδ∈-有界,即0M ∃>,有|()|,[,]f x M x δδ''≤∈- 2211()(),[,]22f x f x x Mx x θδδ''⇒=≤∈-. 对此0δ>,,N n N ∃>时,211110()2f M n n nδ<<⇒≤. 又211n n ∞=∑收敛11()n f n ∞=⇒∑收敛,即 11()n f n ∞=∑绝对收敛.【相关知识点】正项级数的比较判别法:设1n n u ∞=∑和1n n v ∞=∑都是正项级数,且lim,nn nv A u →∞=则⑴ 当0A <<+∞时,1nn u∞=∑和1nn v∞=∑同时收敛或同时发散;⑵ 当0A =时,若1nn u∞=∑收敛,则1nn v∞=∑收敛;若1nn v∞=∑发散,则1nn u∞=∑发散;⑶ 当A =+∞时,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散.七、(本题满分6分)【解析】方法1:用定积分.设高度为z 处的截面z D 的面积为()S z ,则所求体积1()V S z dz =⎰.,A B 所在的直线的方向向量为()()01,10,101,1,1---=-,且过A 点,所以,A B 所在的直线方程为1111x y z-== - 或 1x z y z =-⎧⎨=⎩. 截面z D 是个圆形,其半径的平方 22222(1)R x y z z =+=-+,则面积222()[(1)]S z R z z ππ==-+,由此 1220[(1)]V z z dz π=-+⎰()120122z z dz π=-+⎰123023z z z π⎛⎫=-+ ⎪⎝⎭23π=. 方法2:用三重积分.2123V dV d dz ππθΩ===⎰⎰⎰⎰⎰,或者 1122[(1)]zD V dV dz d z z dz σπΩ===-+⎰⎰⎰⎰⎰⎰⎰ ()120122z z dz π=-+⎰123023z z z π⎛⎫=-+ ⎪⎝⎭23π=.八、(本题满分8分)【解析】(1)由已知,()I 的系数矩阵,11000101A ⎡⎤=⎢⎥-⎣⎦.由于()2,n r A -=所以解空间的维数是2.取34,x x 为自由变量,分别令()()()34,1,0,0,1x x =,求出0Ax =的解. 故()I 的基础解系可取为 (0,0,1,0),(1,1,0,1)-. (2)方程组()I 和()II 有非零公共解.将()II 的通解 1221231242,2,2,x k x k k x k k x k =-=+=+=代入方程组()I ,则有212121222020k k k k k k k k -++=⎧⇒=-⎨+-=⎩. 那么当120k k =-≠时,向量121(0,1,1,0)(1,2,2,1)(1,1,1,1)k k k +-=---是()I 与()II 的非零公共解.九、(本题满分6分)【解析】证法一:由于 *TA A =,根据*A 的定义有(,1,2,,)ij ij A a i j n =∀=L ,其中ij A 是行列式||A 中ij a 的代数余子式.由于0A ≠,不妨设0ij a ≠,那么2222112212||0ij i i i i in in i i in A a A a A a A a a a a =+++=+++≥>L L ,故 ||0A ≠.证法二:(反证法)若||0A =,则*TAA AA ==||0A E =.设A 的行向量为(1,2,,)i i n α=L ,则 222120T i i i i in a a a αα=+++=L (1,2,,)i n =L .于是 12(,,,)0i i i in a a a α==L (1,2,,)i n =L . 进而有0A =,这与A 是非零矩阵相矛盾.故||0A ≠.十、填空题(本题共2小题, 每小题3分,满分6分.)(1)【解析】利用随机事件的概率运算性质进行化简.由概率的基本公式(广义加法公式),有()()1()P AB P A B P A B ==-U U1[()()()]P A P B P AB =-+- 1()()()P A P B P AB =--+.因题目已知 ()()P AB P AB =,故有()()1P A P B +=,()1()1P B P A p =-=-.(2)【解析】由于X 、Y 相互独立且同分布,只能取0、1两个数值,易见随机变量{}max ,Z X Y =只取0与1两个可能的值,且{}{}{}0max ,0P Z P X Y ==={}{}{}10,0004P X Y P X P Y =====⋅==, {}{}31104P Z P Z ==-==. 所以随机变量{}max ,Z X Y =的分布律为:十一、(本题满分6分)【解析】此题的第一小问是求数学期望()E Z 和方差()D Z ,是个常规问题;(2)求相关系数XZ ρ,关键是计算X 与Z 的协方差;(3)考查相关系数为零与相互独立是否等价.(1) 由2(1,3)XN ,2(0,4)Y N ,知()1,()9,()0,()16E X D X E Y D Y ====.由数学期望和方差的性质:()()()E aX bY c aE X bE Y c ++=++,22()()()2Cov(,)D aX bY c a D X b D Y ab X Y ++=++,其中,,a b c 为常数.得 111,323EZ EX EY =+= 111Cov(,)943DZ DX DY X Y =++111916943XY ρ=⨯+⨯+115()34 3.32=+⨯-⨯⨯=(2) 因为11Cov(,)Cov(,)32X Z X X Y =+11Cov(,)Cov(,)32X X X Y =+2113(6)032=⋅+-= 所以 0XZ ρ==.(3) 由于(,)X Y 服从二维正态分布,则其线性组合构成的随机变量也服从二维正态分布,而32X YZ =+,0X X Y =+,故X 和Z 都是其线性组合,则(,)X Z 服从二维正态分布,根据 0XZ ρ==,所以X 与Z 是相互独立的.。

1994年考研数学试题详解及评分参考

1994年考研数学试题详解及评分参考

该点连续的
(A) 充分条件而非必要条件 (C) 充分必要条件
(B) 必要条件而非充分条件 (D) 既非充分条件又非必要条件
【答】 应选 (D) .
【解】

f
ì xy
(x,
y)
=
ï í
x2
+
y2
, x2
+
y2
¹0
,易见
fx¢(0, 0),
fy¢(0, 0) 存在,但
f
(x, y) 在
ïî0,
x2 + y2 = 0
)dxdy
+
D
(
y2 a2
+
x2 b2
)dxdy]
1994 年 • 第 1 页
郝海龙:考研数学复习大全·配套光盘·1994 年数学试题详解及评分参考
òò ò ò =
1 2
×
(
1 a2
+
1 b2
)
D
(x2
+
y2 )dxdy
=
1 2
(
1 a2
+
1 b2
)
2p dq
0
R 0
r2
×
rdr
=
1 4
p
R
4
(
1 a2
,其中
S
是由曲面
x2
+
y2
=
R2
及两平面
z = R, z = -R (R > 0) 所围成立体表面的外侧.
1994 年 • 第 4 页
郝海龙:考研数学复习大全·配套光盘·1994 年数学试题详解及评分参考
解:设 S1,S2 ,S3 依次为 S 的上、下底和圆柱面部分,则

[VIP专享]1994年全国硕士研究生入学统一考试数学一试题

[VIP专享]1994年全国硕士研究生入学统一考试数学一试题

z2dxdy y2 z2
xdydz
x2
S
88.8918÷1.2990÷.1=4214÷3922=.0034=1÷15251371=8535.78.208÷023.2173c00÷1*m=29030.3922c=.1÷20m3=2÷120252.=3535=42314c)*523m240341*31.252=31*.1.535.*031342.*9205221.04.455=+213*05*2022.02.854850.3150.*+58c12*5m1*202+.050+0.014*85.20*051000+0+03/8T.+0÷+=55+1*011+010+91÷01454050*0010200+5+0+080+400*+4**1*1510.3910%*C%-*6+÷M(=*M=5÷50)*30*31(÷3110*5+**÷4*1m243.%71e=78%n0)8=8s.5=77.93c.6c0mmc.4*m1*31,0w199o.k2.m4c-cem.5mn2csp26m659*.0.34-50.60c5*pm.3c85m9,c05g.m.05i0rp-l.s.85p6/c50bcm0.om7py.c.6spm5c+mc;0m..7.cmk ; 1+1k+12+1+k2234=1c+m1++4+4+2
【解析】所求平面的法向量 n 为平行于所给曲面在点 (1,2,0) 处法线方向的方向向量 l ,
取 n l ,又平面过已知点 M (1,2,0) .
已知平面的法向量 ( A, B, C) 和过已知点 (x0 , y0 , z0 ) 可唯一确定这个平面:

1994年普通高等学校招生全国统一考试数学试题

1994年普通高等学校招生全国统一考试数学试题

1994年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷(选择题共65分)一、选择题:本大题共15小题;第(1) (10)题每小题4分,第(11) (15)题每小题5分,共65分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则(A){0} (B){0,1} (C){0,1,4} (D){0,1,2,3,4}【】[Key] 一、选择题(本题考查基本知识和基本运算)1.C(2)如果方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是(A)(0,+∞) (B)(0,2) (C)(1,+∞) (D)(0,1)【】[Key] 2.D(A)双曲线(B)椭圆(C)抛物线(D)圆【】[Key] 3.D(4)设θ是第二象限的角,则必有【】[Key] 4.A(5)某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过3小时,这种细菌由1个可繁殖成(A)511个(B)512个(C)1023个(D)1024个【】[Key] 5.B(A)y=sin2x+cos4x (B)y=sin2xcos4x(C)y=sin2x+cos2x (D)y=sin2xcos2x【】[Key] 6.D(7)已知正六棱台的上、下底面边长分别为2和4,高为2,则其体积为【】[Key] 7.B∠F1PF2=90°,则△F1PF2的面积是【】[Key] 8.A(9)如果复数z满足│z+i│+│z-i│=2,那么│z+i+1│的最小值是【】[Key] 9.A(10)有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担.从10人中选派4人承担这三项任务,不同的选法共有(A)1260种(B)2025种(C)2520种(D)5040种【】[Key] 10.C(11)对于直线m、n和平面α、β,α⊥β的一个充分条件是【】[Key] 11.C【】[Key] 12.B(13)已知过球面上A、B、C三点的截面和球心的距离等于球半径的一半,且AB=BC=CA=2,则球面面积是【】[Key] 13.D【】[Key] 14.B(15)定义在(-∞,+∞)上的任意函数f(x)都可以表示成一个奇函数g(x)和一个偶函数h(x)之和,如果f(x)=lg(10x+1),x∈(-∞,+∞),那么【】[Key] 15.C第Ⅱ卷(非选择题共85分)二、填空题(本大题共5小题,共6个空格;每空格4分,共24分.把答案填在题中横线上)16.在(3-x)7的展开式中,x5的系数是.(用数字作答)17.抛物线y2=8-4x的准线方程是,圆心在该抛物线的顶点且与其准线相切的圆的方程是.19.设圆锥底面圆周上两点A、B间的距离为2,圆锥顶点到直线AB的20.在测量某物理量的过程中,因仪器和观察的误差,使得n次测量分别得到a1,a2,…a n,共n个数据,我们规定所测量物理量的"最佳近似值"a是这样一个量:与其他近似值比较,a与各数据的差的平方和最小.依此规定,从a1,a2,…,a n推出的a= .[Key] 二、填空题(本题考查基本知识和基本运算)三、解答题(本大题共5小题,共61分;解答应写出文字说明、证明过程或推演步骤)21.(本小题满分11分)已知z=1+i.[Key] 三、解答题21.本小题考查共轭复数、复数的三角形式等基础知识及运算能力.解:(1)由z=1+i,有ω的三角形式是(2)由z=1+i,有由题设条件知(a+2)-(a+b)i=1-i.22.(本小题满分12分)[Key] 22.本小题考查三角函数基础知识、三角函数性质及推理能力. 证明:且0<cos(x1-x2)<1,从而有0<cos(x1+x2)+cos(x1-x2)<1+cos(x1+x2),23.(本小题满分12分)如图,已知A1B1C1-ABC是正三棱柱,D是AC中点.(1)证明AB1∥平面DBC1;(2)假设AB1⊥BC1,求以BC1为棱,DBC1与CBC1为面的二面角α的度数.[Key] 23.本小题考查空间线面关系、正棱柱的性质、空间想象能力和逻辑推理能力.(1)证明:∵A1B1C1-ABC是正三棱柱,∴四边形B1BCC1是矩形.连结B1C交BC1于E,则B1E=EC.连结DE.在△AB1C中,∵AD=DC,∴DE∥AB1.∴AB1∥平面DBC1.(2)解:作DF⊥BC,垂足为F,则DF⊥面B1BCC1,连结EF,则EF是ED在平面B1BCC1上的射影.∵AB1⊥BC1,由(1)知AB1∥DE,∴DE⊥BC1,则BC1⊥EF,∴∠DEF是二面角α的平面角.∵△ABC是正三角形,∴在Rt△DCF中,取BC中点G.∵EB=EC,∴EG⊥BC.在Rt△BEF中,∴∠DEF=45°.故二面角α为45°.24.(本小题满分12分)已知直线l过坐标原点,抛物线C顶点在原点,焦点在x轴正半轴上.若点A(-1,0)和点B(0,8)关于l的对称点都在C上,求直线l和抛物线C的方程.[Key] 24.本小题考查直线与抛物线的基本概念和性质,解析几何的基本思想方法以及综合运用知识解决问题的能力.解法一:依题设抛物线C的方程可写为y2=2px (p>0),且x轴和y轴不是所求直线,又l过原点,因而可设l的方程为y=kx (k≠0). ①设A'、B'分别是A、B关于l的对称点,因而A'A⊥l,直线A'A的方程为②又M为AA'的中点,从而点A'的坐标为③同理得点B'的坐标为④又A'、B'均在抛物线y2=2px(p>0)上,由③得.,整理得k2-k-1=0.所以直线方程为抛物线方程为解法二:设点A、B关于l的对称点分别为A'(x1、y1)、B'(x2,y2),则│OA'│=│OA│=1,│OB'│=│OB│=8.设由x轴正向到OB'的转角为α,则x2=8cosα,y2=8sinα. ①因为A'、B'为A、B关于直线l的对称点,而∠BOA为直角,故∠B'OA'为直角,因此由题意知x1>0,x2>0,故α为第一象限角.因为A'、B'都在抛物线y2=2px上,将①、②代入得cos2α=2p·sinα,64sin2α=2p·8cosα.∴8sin3α=cos3α,∴2sinα=cosα,因为直线l平分∠B'OB,故l的斜率25.(本小题满分14分)设{a n}是正数组成的数列,其前n项和为S n,并且对于所有的自然数n,a n与2的等差中项等于S n 与2的等比中项.(1)写出数列{a n}的前3项;(2)求数列{a n}的通项公式(写出推证过程);[Key] 25.本小题考查等差数列、等比数列、数列极限等基础知识考查逻辑推理能力和分析问题与解决问题的能力.解得a1=2.(a2-2)2=16.由a2>0,解得a2=6.(a3-2)2=64.由a3>0,解得a3=10.故该数列的前3项为2,6,10.(2)解法一:由(1)猜想数列{a n}有通项公式a n=4n-2.下面用数学归纳法证明数列{a n}的通项公式是a n=4n-2 (n∈N).①当n=1时,因为4×1-2=2,又在(1)中已求出a1=2,所以上述结论成立.②假设n=k时结论成立,即有a k=4k-2.由题意,有S k=2k2.由题意,有由a k+1>0,解得a k+1=2+4k.所以a k+1=2+4k=4(k+1)-2.这就是说,当n=k+1时,上述结论成立.根据①、②,上述结论对所有的自然数n成立.由题意知a n+1+a n≠0,∴a n+1-a n=4.即数列{a n}为等差数列,其中a1=2,公差d=4.∴a n=a1+(n-1)d=2+4(n-1),即通项公式为a n=4n-2.(3)解:令c n=b n-1,则。

1994年高考数学试卷及详解【独家收藏,绝对珍品!】

1994年高考数学试卷及详解【独家收藏,绝对珍品!】

1994年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷(选择题共65分)一、选择题:本大题共15小题;第(1) (10)题每小题4分,第(11) (15)题每小题5分,共65分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则(A){0} (B){0,1} (C){0,1,4} (D){0,1,2,3,4}【】[Key] 一、选择题(本题考查基本知识和基本运算)1.C(2)如果方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是(A)(0,+∞) (B)(0,2) (C)(1,+∞) (D)(0,1)【】[Key] 2.D(A)双曲线(B)椭圆(C)抛物线(D)圆【】[Key] 3.D(4)设θ是第二象限的角,则必有【】[Key] 4.A(5)某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过3小时,这种细菌由1个可繁殖成(A)511个(B)512个(C)1023个(D)1024个【】[Key] 5.B(A)y=sin2x+cos4x (B)y=sin2xcos4x(C)y=sin2x+cos2x (D)y=sin2xcos2x【】[Key] 6.D(7)已知正六棱台的上、下底面边长分别为2和4,高为2,则其体积为【】[Key] 7.B∠F1PF2=90°,则△F1PF2的面积是【】[Key] 8.A(9)如果复数z满足│z+i│+│z-i│=2,那么│z+i+1│的最小值是【】[Key] 9.A(10)有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担.从10人中选派4人承担这三项任务,不同的选法共有(A)1260种(B)2025种(C)2520种(D)5040种【】[Key] 10.C(11)对于直线m、n和平面α、β,α⊥β的一个充分条件是【】[Key] 11.C【】[Key] 12.B(13)已知过球面上A、B、C三点的截面和球心的距离等于球半径的一半,且AB=BC=CA=2,则球面面积是【】[Key] 13.D【】[Key] 14.B(15)定义在(-∞,+∞)上的任意函数f(x)都可以表示成一个奇函数g(x)和一个偶函数h(x)之和,如果f(x)=lg(10x+1),x∈(-∞,+∞),那么【】[Key] 15.C第Ⅱ卷(非选择题共85分)二、填空题(本大题共5小题,共6个空格;每空格4分,共24分.把答案填在题中横线上)16.在(3-x)7的展开式中,x5的系数是.(用数字作答)17.抛物线y2=8-4x的准线方程是,圆心在该抛物线的顶点且与其准线相切的圆的方程是.19.设圆锥底面圆周上两点A、B间的距离为2,圆锥顶点到直线AB的20.在测量某物理量的过程中,因仪器和观察的误差,使得n次测量分别得到a1,a2,…a n,共n个数据,我们规定所测量物理量的"最佳近似值"a是这样一个量:与其他近似值比较,a与各数据的差的平方和最小.依此规定,从a1,a2,…,a n推出的a= .[Key] 二、填空题(本题考查基本知识和基本运算)三、解答题(本大题共5小题,共61分;解答应写出文字说明、证明过程或推演步骤)21.(本小题满分11分)已知z=1+i.[Key] 三、解答题21.本小题考查共轭复数、复数的三角形式等基础知识及运算能力.解:(1)由z=1+i,有ω的三角形式是(2)由z=1+i,有由题设条件知(a+2)-(a+b)i=1-i.22.(本小题满分12分)[Key] 22.本小题考查三角函数基础知识、三角函数性质及推理能力. 证明:且0<cos(x1-x2)<1,从而有0<cos(x1+x2)+cos(x1-x2)<1+cos(x1+x2),23.(本小题满分12分)如图,已知A1B1C1-ABC是正三棱柱,D是AC中点.(1)证明AB1∥平面DBC1;(2)假设AB1⊥BC1,求以BC1为棱,DBC1与CBC1为面的二面角α的度数.[Key] 23.本小题考查空间线面关系、正棱柱的性质、空间想象能力和逻辑推理能力.(1)证明:∵A1B1C1-ABC是正三棱柱,∴四边形B1BCC1是矩形.连结B1C交BC1于E,则B1E=EC.连结DE.在△AB1C中,∵AD=DC,∴DE∥AB1.∴AB1∥平面DBC1.(2)解:作DF⊥BC,垂足为F,则DF⊥面B1BCC1,连结EF,则EF是ED在平面B1BCC1上的射影.∵AB1⊥BC1,由(1)知AB1∥DE,∴DE⊥BC1,则BC1⊥EF,∴∠DEF是二面角α的平面角.∵△ABC是正三角形,∴在Rt△DCF中,取BC中点G.∵EB=EC,∴EG⊥BC.在Rt△BEF中,∴∠DEF=45°.故二面角α为45°.24.(本小题满分12分)已知直线l过坐标原点,抛物线C顶点在原点,焦点在x轴正半轴上.若点A(-1,0)和点B(0,8)关于l 的对称点都在C上,求直线l和抛物线C的方程.[Key] 24.本小题考查直线与抛物线的基本概念和性质,解析几何的基本思想方法以及综合运用知识解决问题的能力.解法一:依题设抛物线C的方程可写为y2=2px (p>0),且x轴和y轴不是所求直线,又l过原点,因而可设l的方程为y=kx (k≠0). ①设A'、B'分别是A、B关于l的对称点,因而A'A⊥l,直线A'A的方程为②又M为AA'的中点,从而点A'的坐标为③同理得点B'的坐标为④又A'、B'均在抛物线y2=2px(p>0)上,由③得.,整理得k2-k-1=0.所以直线方程为抛物线方程为解法二:设点A、B关于l的对称点分别为A'(x1、y1)、B'(x2,y2),则│OA'│=│OA│=1,│OB'│=│OB│=8.设由x轴正向到OB'的转角为α,则x2=8cosα,y2=8sinα. ①因为A'、B'为A、B关于直线l的对称点,而∠BOA为直角,故∠B'OA'为直角,因此由题意知x1>0,x2>0,故α为第一象限角.因为A'、B'都在抛物线y2=2px上,将①、②代入得cos2α=2p·sinα,64sin2α=2p·8cosα.∴8sin3α=cos3α,∴2sinα=cosα,因为直线l平分∠B'OB,故l的斜率25.(本小题满分14分)设{a n}是正数组成的数列,其前n项和为S n,并且对于所有的自然数n,a n与2的等差中项等于S n 与2的等比中项.(1)写出数列{a n}的前3项;(2)求数列{a n}的通项公式(写出推证过程);[Key] 25.本小题考查等差数列、等比数列、数列极限等基础知识考查逻辑推理能力和分析问题与解决问题的能力.解得a1=2.(a2-2)2=16.由a2>0,解得a2=6.(a3-2)2=64.由a3>0,解得a3=10.故该数列的前3项为2,6,10.(2)解法一:由(1)猜想数列{a n}有通项公式a n=4n-2.下面用数学归纳法证明数列{a n}的通项公式是a n=4n-2 (n∈N).①当n=1时,因为4×1-2=2,又在(1)中已求出a1=2,所以上述结论成立.②假设n=k时结论成立,即有a k=4k-2.由题意,有S k=2k2.由题意,有由a k+1>0,解得a k+1=2+4k.所以a k+1=2+4k=4(k+1)-2.这就是说,当n=k+1时,上述结论成立.根据①、②,上述结论对所有的自然数n成立.由题意知a n+1+a n≠0,∴a n+1-a n=4.即数列{a n}为等差数列,其中a1=2,公差d=4.∴a n=a1+(n-1)d=2+4(n-1),即通项公式为a n=4n-2.(3)解:令c n=b n-1,则中国特级教师高考复习方法指导〈数学复习版〉中国教育开发网。

[考试必备]武汉大学数学分析考研试题集锦(1992,1994-2012年)

[考试必备]武汉大学数学分析考研试题集锦(1992,1994-2012年)

(3)在 (0,0) 附近,是否存在过在 (0,0) 的唯一连续隐函数?为什么?
(3)若存在隐函数过 (0,0) 点,问其导函数为何?
武汉大学数学分析 1996
1.设 an → a(n → +∞) ,令
a
+ n
=
⎩⎨⎧a0n,,
an an
> ≤
0 ,a
0
=
⎧a, ⎩⎨0,
a>0 a≤0
证明:
a
+ n
4.设 u = u(t, x, y, z) 有二阶连续偏导数, Ω 为 (x, y, z) 空间的一有界闭集,它有光滑边界
∂Ω , ∂Ω 处的单位外法向矢量为 ν ,证明:
∫∫∫ Ω
∂u ∂t

∆udxdydz
=
∫∫
∂Ω
∂u ∂t

∂u ∂ν
dS

1 2
d dt
∫∫∫ Ω
∇u
2
dxdydz
(外侧)
其中 N > 0 为一常数,且逐点有 fn (x) → f (x) (当 n → +∞ )。证明: (1) f (x) 在[a,b] 上连续。
(2) fn (x)→ f (x) 。
6.设
f
(x,
y)
=
⎪⎪⎧ g ( x, ⎨
y ) sin
⎪0,
⎪⎩
1, x2 + y2
(x, y) ≠ (0,0)
,证明

a+ (n

+∞) 。
( ) 2.设 lim ( x, y)→( x0 , y0 )
f
(x,
y)

1994考研数学一真题及答案详解

1994考研数学一真题及答案详解

1994年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5个小题,每小题3分,满分15分.) (1) 011lim cot ()sin x x x x→-=_____________. (2) 曲面23z z e xy -+=在点(1,2,0)处的切平面方程为_____________.(3) 设sin xx u e y -=,则2ux y∂∂∂在点1(2,)π处的值为_____________.(4) 设区域D 为222x y R +≤,则2222()Dx y dxdy a b +=⎰⎰_____________.(5) 已知11(1,2,3),(1,,)23αβ==,设TA αβ=,其中T α是α的转置,则n A =_________.二、选择题(本题共5个小题,每小题3分,满分15分.)(1) 设4222sin cos 1x M xdx x ππ-=+⎰,3422(sin cos )N x x dx ππ-=+⎰,23422(sin cos )P x x x dx ππ-=-⎰, 则 ( )(A) N P M << (B) M P N << (C) N M P << (D) P M N <<(2) 二元函数(,)f x y 在点00(,)x y 处两个偏导数00(,)x f x y '、00(,)y f x y '存在是(,)f x y 在该点连续的 ( ) (A) 充分条件但非必要条件 (B) 必要条件而非充分条件(C) 充分必要条件 (D) 既非充分条件又非必要条件 (3) 设常数0λ>,且级数21n n a ∞=∑收敛,则级数1(1)nn ∞=-∑ ( )(A) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 收敛性与λ有关 (4) 2tan (1cos )lim2ln(12)(1)x x a x b x c x d e -→+-=-+-,其中220a c +≠,则必有 ( )(A) 4b d = (B) 4b d =- (C) 4a c = (D) 4a c =-(5) 已知向量组1234αααα、、、线性无关,则向量组 ( ) (A) 12αα+、23αα+、34αα+、41αα+线性无关(B) 12αα-、23αα-、34αα-、41αα-线性无关(C) 12αα+、23αα+、34αα+、41αα-线性无关 (D) 12αα+、23αα+、34αα-、41αα-线性无关三、(本题共3小题, 每小题5分,满分15分.)(1)设2221cos(),cos(),t x t y t t udu ⎧=⎪⎨=-⎪⎩⎰ 求dy dx 、22d y dx在t =. (2) 将函数111()ln arctan 412x f x x x x +=+--展开成x 的幂级数. (3) 求sin 22sin dxx x +⎰.四、(本题满分6分)计算曲面积分2222Sxdydz z dxdyx y z +++⎰⎰,其中S 是由曲面222x y R +=及两平面,z R = (0)z R R =->所围成立体表面的外侧.五、(本题满分9分)设()f x 具有二阶连续导数,(0)0,(0)1f f '==,且2[()()][()]0xy x y f x y dx f x x y dy '+-++=为一全微分方程,求()f x 及此全微分方程的通解.六、(本题满分8分)设()f x 在点0x =的某一领域内具有二阶连续导数,且0()lim0x f x x→=,证明级数 11()n f n∞=∑绝对收敛.七、(本题满分6分)已知点A 与B 的直角坐标分别为(1,0,0)与(0,1,1).线段AB 绕z 轴旋转一周所围成的旋转曲面为S .求由S 及两平面0,1z z ==所围成的立体体积.八、(本题满分8分)设四元线性齐次方程组()I 为12240,0,x x x x +=⎧⎨-=⎩ 又已知某线性齐次方程组()II 的通解为12(0,1,10)(1,2,2,1)k k +-.(1) 求线性方程组()I 的基础解系;(2) 问线性方程组()I 和()II 是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.九、(本题满分6分)设A 为n 阶非零方阵,*A 是A 的伴随矩阵,TA 是A 的转置矩阵,当*TA A =时,证明||0A ≠.十、填空题(本题共2小题, 每小题3分,满分6分.)(1) 已知A 、B 两个事件满足条件()()P AB P AB =,且()P A p =,则()P B =__________. (2) 设相互独立的两个随机变量X 、Y 具有同一分布律,且X 的分布律为则随机变量{}max ,Z X Y =的分布律为_______.十一、(本题满分6分)已知随机变量(,)X Y 服从二维正态分布,且X 和Y 分别服从正态分布2(1,3)N 和2(0,4)N ,X 与Y 的相关系数12XY ρ=-,设32X YZ =+,(1) 求Z 的数学期望()E Z 和方差()D Z ; (2) 求X 与Z 的相关系数XZ ρ; (3) 问X 与Z 是否相互独立?为什么?1994年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5个小题,每小题3分,满分15分.) (1)【答案】16【解析】原式变形后为“0”型的极限未定式,又分子分母在点0处导数都存在,所以连续应用两次洛必达法则,有原式20cos (sin )limsin x x x x x x →-=300sin lim cos lim x x x xx x→→-=⋅ 2001cos sin 1lim lim 366x x x x x x →→-===. (由重要极限0sin lim 1x x x→=) (2)【答案】240x y +-=【解析】所求平面的法向量n 为平行于所给曲面在点(1,2,0)处法线方向的方向向量l ,取n l =,又平面过已知点(1,2,0)M .已知平面的法向量(,,)A B C 和过已知点000(,,)x y z 可唯一确定这个平面:000()()()0A x x B y y C z z -+-+-=.因点(1,2,0)在曲面(,,)0F x y z =上.曲面方程(,,)23z F x y z z e xy =-+-. 曲面在该点的法向量{}{}{}(1,2,0)(1,2,0),,2,2,14,2,022,1,0z F F F n y x e x y z ⎧⎫∂∂∂ ==-==⎨⎬∂∂∂⎩⎭, 故切平面方程为 2(1)(2)0x y -+-=, 即 240x y +-=.(3)【答案】22eπ【解析】由于混合偏导数在连续条件下与求导次序无关,为了简化运算,所以本题可以先求u y ∂∂,再求u x y ⎛⎫∂∂ ⎪∂∂⎝⎭. 2cos x u x xe y y y-∂=-∂, ()2221112(2,)(2,)2cos xy x x u u uxe x x y y x x y x ππππ-===⎛⎫∂∂∂∂∂===-⎪ ⎪∂∂∂∂∂∂∂⎝⎭2222((1)cos )0xx e x x e πππ-==--+=.(可边代值边计算,这样可以简化运算量.)【相关知识点】多元复合函数求导法则:如果函数(,),(,)u x y v x y ϕψ==都在点(,)x y 具有对x 及对y 的偏导数,函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数((,),(,))z f x y x y ϕψ=在点(,)x y 的两个偏导数存在,且有12z z u z v u v f f x u x v x x x∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂; 12z z u z v u v f f y u y v y y y∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂. (4)【答案】42211()4R a bπ+ 【解析】很显然,根据此题的特征用极坐标变换来计算: 原式2222222322220000cos sin cos sin RR d r rdr d r dr ab a b ππθθθθθθ⎛⎫⎛⎫=+=+⋅ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰. 注意:22220cos sin d d ππθθθθπ==⎰⎰,则 原式4422221111144R R a b a b ππ⎛⎫⎛⎫=+⋅=+⎪ ⎪⎝⎭⎝⎭. (5)【答案】111123232133312n -⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦【解析】由矩阵乘法有结合律,注意 1111,,23233Tβα⎡⎤⎛⎫⎢⎥== ⎪⎢⎥⎝⎭⎢⎥⎣⎦是一个数,而 11123111221,,2123333312TA αβ⎡⎤⎢⎥⎡⎤⎢⎥⎛⎫⎢⎥⎢⎥=== ⎪⎢⎥⎢⎥⎝⎭⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦,(是一个三阶矩阵)于是,()()()()()()()n T T T T T T T TA αβαβαβαβαβαβαβαβ==11111232332133312n T n αβ--⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦.二、选择题(本题共5个小题,每小题3分,满分15分.)(1)【答案】(D)【解析】对于关于原点对称的区间上的积分,应该关注被积函数的奇偶性.由对称区间上奇偶函数积分的性质,被积函数是奇函数,积分区间关于原点对称,则积分为0,故0M =,且由定积分的性质,如果在区间[],a b 上,被积函数()0f x ≥,则()0 ()baf x dx a b ≥<⎰.所以 4202cos 0N xdx π=>⎰, 4202cos 0P xdx N π=-=-<⎰.因而 P M N <<,应选(D). (2)【答案】(D)【解析】(,)f x y 在点00(,)x y 连续不能保证(,)f x y 在点00(,)x y 存在偏导数00(,),x f x y '00(,)y f x y '.反之,(,)f x y 在点00(,)x y 存在这两个偏导数00(,),x f x y '00(,)y f x y '也不能保证(,)f x y 在点00(,)x y 连续,因此应选(D).二元函数(,)f x y 在点00(,)x y 处两个偏导数存在和在点00(,)x y 处连续并没有相关性. (3)【答案】(C)【解析】考查取绝对值后的级数.因2222111112222n n a a n n λ≤+<++, (第一个不等式是由2210,0,()2a b ab a b ≥≥≤+得到的.) 又21nn a ∞=∑收敛,2112n n ∞= ∑收敛,(此为p 级数:11p n n∞=∑当1p >时收敛;当1p ≤时发散.)所以2211122n n a n ∞=+∑收敛,由比较判别法,得1n ∞=收敛.故原级数绝对收敛,因此选(C). (4)【答案】(D)【解析】因为 22211cos (),1()2x xx o x e x o x --=-=,故 tan (1cos )(0)a x b x ax a +-≠,2ln(12)(1)2 (0)x c x d e cx c --+--≠,因此,原式左边0lim222x ax acx c→====--原式右边,4a c ⇒=-.当0,0a c =≠时,极限为0;当0,0a c ≠=时,极限为∞,均与题设矛盾,应选(D). 【相关知识点】1.无穷小的比较:设在同一个极限过程中,(),()x x αβ为无穷小且存在极限 ()lim.()x l x αβ= (1) 若0,l ≠称(),()x x αβ在该极限过程中为同阶无穷小; (2) 若1,l =称(),()x x αβ在该极限过程中为等价无穷小,记为()()x x αβ;(3) 若0,l =称在该极限过程中()x α是()x β的高阶无穷小,记为()()()x o x αβ=.若()lim()x x αβ不存在(不为∞),称(),()x x αβ不可比较. 2. 无穷小量的性质:当0x x →时,(),()x x αβ为无穷小,则()()()()(())x x x x o x αβαββ⇔=+.(5)【答案】(C)【解析】这一类题目应当用观察法.若不易用观察法时可转为计算行列式. (A):由于()()()()122334410αααααααα+-+++-+=,所以(A)线性相关. (B):由于()()()()122334410αααααααα-+-+-+-=,所以(B)线性相关.对于(C),实验几组数据不能得到0时,应立即计算由α的系数构成的行列式,即100111002001100011-=≠,由行列式不为0,知道(C)线性无关.故应选(C). 当然,在处理(C)有困难时,也可来看(D),由12233441()()()()0αααααααα+-++-+-=,知(D)线性相关,于是用排除法可确定选(C). 【相关知识点】12,,,s ααα线性相关的充分必要条件是存在某(1,2,,)i i s α=可以由111,,,,i i s αααα-+线性表出.12,,,s ααα线性无关的充分必要条件是任意一个(1,2,,)i i s α=均不能由111,,,,i i s αααα-+线性表出.三、(本题共3小题, 每小题5分,满分15分.)(1)【解析】dy dy dt dy dx dtdt dx dt dx =⋅=222221cos 2sin cos 22(0),2sin t t t t t t t y t t t x t t--⋅'===>'- 同理 2()12sin x txx t y y x t t''''=='-, 代入参数值t =则xt y '=, xxt y ''=【相关知识点】1.复合函数求导法则:如果()u g x =在点x 可导,而()y f x =在点()u g x =可导,则复合函数[]()y f g x =在点x 可导,且其导数为()()dy f u g x dx ''=⋅ 或 dy dy du dx du dx=⋅. 2.对积分上限的函数的求导公式:若()()()()t t F t f x dx βα=⎰,()t α,()t β均一阶可导,则[][]()()()()()F t t f t t f t ββαα'''=⋅-⋅.(2)【解析】111()ln(1)ln(1)arctan 442f x x x x x =+--+-. 先求()f x '的展开式.将()f x 微分后,可得简单的展开式,再积分即得原函数的幂级数展开.所以由2(1)(1)(1)(1)1,2!!nn x x x x n ααααααα---++=+++++(11)x -<<该级数在端点1x =±处的收敛性,视α而定.特别地,当1α=-时,有2311(1),1n n x x x x x =-+-++-++ (11)x -<< 2311,1n x x x x x =++++++- (11)x -<< 得 2221111111111()114141212121f x x x x x x '=++-=+-+-+-+ 44401111(||1)1n n n n x x x x ∞∞===-=-=<-∑∑, 积分,由牛顿-莱布尼茨公式得4140011()(0)() (||1)41n xx nn n x f x f f x dx t dt x n +∞∞=='=+==<+∑∑⎰⎰.(3)【解析】方法1:利用三角函数的二倍角公式sin 22sin cos ααα=⋅,并利用换元积分,结合拆项法求积分,得sin 22sin 2sin (cos 1)dx dxx x x x =++⎰⎰22sin 11cos 2sin (cos 1)2(1)(1)xdx x u du x x u u ==-+-+⎰⎰ (22sin 1cos x x =-)221(1)(1)1112()4(1)(1)811(1)u u du du u u u u u ++-=-=-++-+-++⎰⎰12ln |1|ln |1|8(1)u u C u ⎡⎤=--+++⎢⎥+⎣⎦()()12ln 1cos ln 1cos 81cos x x C x ⎡⎤=--+++⎢⎥+⎣⎦, 其中C 为任意常数.方法2:换元cos x u =后,有原式22sin 12sin (cos 1)2sin (cos 1)2(1)(1)dx xdx dux x x x u u ===-++-+⎰⎰⎰.用待定系数法将被积函数分解:221(1)(1)11(1)A B Du u u u u =++-+-++ 22()(2)()(1)(1)A B u A D u A B D u u -+-+++=-+, 01120,421A B A D A B D A B D -=⎧⎪⇒-=⇒===⎨⎪++=⎩.于是,2111212()ln 1ln 1811(1)81du u u C u u u u ⎡⎤-++=--+++⎢⎥-+++⎣⎦⎰原式= ()()12ln 1cos ln 1cos 81cos x x C x ⎡⎤=--+++⎢⎥+⎣⎦.四、(本题满分6分)【解析】求第二类曲面积分的基本方法:套公式将第二类曲面积分化为第一类曲面积分,再化为二重积分,或用高斯公式转化为求相应的三重积分或简单的曲面积分.这里曲面块的个数不多,积分项也不多,某些积分取零值,如若∑垂直yOz 平面,则0Pdydz ∑=⎰⎰.化为二重积分时要选择投影平面,注意利用对称性与奇偶性.先把积分化简后利用高斯公式也很方便的.方法1:注意 22220Sz dxdy x y z =++⎰⎰,(因为S 关于xy 平面对称,被积函数关于z 轴对称) 所以 222SxdydzI x y z =++⎰⎰. S 由上下底圆及圆柱面组成.分别记为123,,S S S . 12,S S 与平面yOz 垂直⇒122222220s s xdydz xdydzx y z x y z ==++++⎰⎰⎰⎰. 在3S 上将222x y R +=代入被积表达式⇒322s xdydzI R z =+⎰⎰. 3S 在yz 平面上投影区域为:,yz D R y R R z R -≤≤-≤≤,在3S 上,x =,3S 关于yz 平面对称,被积函数对x 为奇函数,可以推出22002222yzR R D dz I R z==⨯⨯ +⎰⎰ 2201arctan 42Rz R R R R ππ1=8⋅⋅=.方法2:S 是封闭曲面,它围成的区域记为Ω,记 22SxdydzI R z =+⎰⎰. 再用高斯公式得 222222()1R R D z x dxdyI dV dV dz x R z R z R z -ΩΩ∂⎛⎫=== ⎪∂+++⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰ 222201122RRdz R R z ππ==+⎰(先一后二的求三重积分方法)其中()D z 是圆域:222x y R +≤.【相关知识点】高斯公式:设空间闭区域Ω是由分片光滑的闭曲面∑所围成,函数(,,)P x y z 、(,,)Q x y z 、(,,)R x y z 在Ω上具有一阶连续偏导数,则有,P Q R dv Pdydz Qdzdx Rdxdy x y z Ω∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰或()cos cos cos ,P Q R dv P Q R dS x y z αβγΩ∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰这里∑是Ω的整个边界曲面的外侧,cos α、cos β、cos γ是∑在点(,,)x y z 处的法向量的方向余弦.上述两个公式叫做高斯公式.五、(本题满分9分)【解析】由全微分方程的条件,有2[()()][()]xy x y f x y f x x y y x∂∂'+-=+∂∂, 即 22()()2x xy f x f x xy ''+-=+,亦即 2()()f x f x x ''+=.因而是初值问题 200,0,1,x x y y x y y ==''⎧+=⎪⎨'==⎪⎩ 的解,此方程为常系数二阶线性非齐次方程,对应的齐次方程的特征方程为210r +=的根为1,2r i =±,原方程右端202x x e x =⋅中的0λ=,不同于两个特征根,所以方程有特解形如 2Y Ax Bx C =++. 代入方程可求得 1,0,2A B C ===,则特解为22x -.由题给(0)0,(0)1f f '==,解得 2()2cos sin 2f x x x x =++-.()f x 的解析式代入原方程,则有22[2(2cos sin )][22sin cos ]0xy y x x y dx x y x x x dy +-+++-+=.先用凑微分法求左端微分式的原函数:222211()2()(2sin cos )(2sin cos )022y dx x dy ydx xdy yd x x x x dy +++----=, 221(2(cos 2sin ))02d x y xy y x x ++-=. 其通解为 2212(cos 2sin )2x y xy y x x C ++-= 其中C 为任意常数.【相关知识点】1.二阶线性非齐次方程解的结构:设*()y x 是二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解.()Y x 是与之对应的齐次方程 ()()0y P x y Q x y '''++=的通解,则*()()y Y x y x =+是非齐次方程的通解.2. 二阶常系数线性齐次方程通解的求解方法:对于求解二阶常系数线性齐次方程的通解()Y x ,可用特征方程法求解:即()()0y P x y Q x y '''++=中的()P x 、()Q x 均是常数,方程变为0y py qy '''++=.其特征方程写为20r pr q ++=,在复数域内解出两个特征根12,r r ;分三种情况:(1) 两个不相等的实数根12,r r ,则通解为1212;rx r x y C eC e =+(2) 两个相等的实数根12r r =,则通解为()112;rxy C C x e =+(3) 一对共轭复根1,2r i αβ=±,则通解为()12cos sin .xy e C x C x αββ=+其中12,C C 为常数.3.对于求解二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解*()y x ,可用待定系数法,有结论如下:如果()(),xm f x P x e λ=则二阶常系数线性非齐次方程具有形如*()()kxm y x x Q x e λ= 的特解,其中()m Q x 是与()m P x 相同次数的多项式,而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的重根依次取0、1或2.如果()[()cos ()sin ]x l n f x e P x x P x x λωω=+,则二阶常系数非齐次线性微分方程()()()y p x y q x y f x '''++=的特解可设为*(1)(2)[()cos ()sin ]k x m m y x e R x x R x x λωω=+,其中(1)()m R x 与(2)()m R x 是m 次多项式,{}max ,m l n =,而k 按i λω+(或i λω-)不是特征方程的根、或是特征方程的单根依次取为0或1.六、(本题满分8分) 【解析】0()lim0x f x x→=表明0x →时()f x 是比x 高阶的无穷小,若能进一步确定()f x 是x 的p 阶或高于p 阶的无穷小,1,p >从而1()f n 也是1n的p 阶或高于p 阶的无穷小,这就证明了级数11()n f n∞=∑绝对收敛. 方法一:由0()lim0x f x x→=及()f x 的连续性得知(0)0,(0)0f f '==,再由()f x 在点0x =的某一领域内具有二阶连续导数以及洛必达法则,20()lim x f x x →为“00”型的极限未定式,又分子分母在点0处导数都存在,连续运用两次洛必达法则,有2000()()()1lim lim lim (0)222x x x f x f x f x f x x →→→'''''=== 2()1lim(0)2x f x f x →''⇒=. 由函数极限与数列极限的关系 21()1lim (0)12n f nf n →+∞''⇒=.因211n n ∞=∑收敛11()n f n ∞=⇒∑收敛,即 11()n f n ∞=∑绝对收敛.方法二:由0()lim0x f x x→=得知(0)0,(0)0f f '==,可用泰勒公式来实现估计.()f x 在点0x =有泰勒公式:2211()(0)(0)()()(01,[,])22f x f f x f x x f x x x θθθδδ'''''= ++=<<∈- 因()f x 在点0x =的某一领域内具有二阶连续导数,0,()f x δ''⇒∃>在[,]x δδ∈-有界,即0M ∃>,有|()|,[,]f x M x δδ''≤∈- 2211()(),[,]22f x f x x Mx x θδδ''⇒=≤∈-. 对此0δ>,,N n N ∃>时,211110()2f M n n nδ<<⇒≤. 又211n n ∞=∑收敛11()n f n ∞=⇒∑收敛,即 11()n f n ∞=∑绝对收敛.【相关知识点】正项级数的比较判别法:设1n n u ∞=∑和1n n v ∞=∑都是正项级数,且lim,nn nv A u →∞=则⑴ 当0A <<+∞时,1nn u∞=∑和1nn v∞=∑同时收敛或同时发散;⑵ 当0A =时,若1nn u∞=∑收敛,则1nn v∞=∑收敛;若1nn v∞=∑发散,则1nn u∞=∑发散;⑶ 当A =+∞时,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散.七、(本题满分6分)【解析】方法1:用定积分.设高度为z 处的截面z D 的面积为()S z ,则所求体积1()V S z dz =⎰.,A B 所在的直线的方向向量为()()01,10,101,1,1---=-,且过A 点,所以,A B 所在的直线方程为1111x y z-== - 或 1x z y z =-⎧⎨=⎩. 截面z D 是个圆形,其半径的平方 22222(1)R x y z z =+=-+,则面积222()[(1)]S z R z z ππ==-+,由此 1220[(1)]V z z dz π=-+⎰()120122z z dz π=-+⎰123023z z z π⎛⎫=-+ ⎪⎝⎭23π=. 方法2:用三重积分.2123V dV d dz ππθΩ===⎰⎰⎰⎰⎰,或者 1122[(1)]zD V dV dz d z z dz σπΩ===-+⎰⎰⎰⎰⎰⎰⎰ ()120122z z dz π=-+⎰123023z z z π⎛⎫=-+ ⎪⎝⎭23π=.八、(本题满分8分)【解析】(1)由已知,()I 的系数矩阵,11000101A ⎡⎤=⎢⎥-⎣⎦.由于()2,n r A -=所以解空间的维数是2.取34,x x 为自由变量,分别令()()()34,1,0,0,1x x =,求出0Ax =的解. 故()I 的基础解系可取为 (0,0,1,0),(1,1,0,1)-. (2)方程组()I 和()II 有非零公共解.将()II 的通解 1221231242,2,2,x k x k k x k k x k =-=+=+=代入方程组()I ,则有212121222020k k k k k k k k -++=⎧⇒=-⎨+-=⎩. 那么当120k k =-≠时,向量121(0,1,1,0)(1,2,2,1)(1,1,1,1)k k k +-=---是()I 与()II 的非零公共解.九、(本题满分6分)【解析】证法一:由于 *TA A =,根据*A 的定义有(,1,2,,)ij ij A a i j n =∀=L ,其中ij A 是行列式||A 中ij a 的代数余子式.由于0A ≠,不妨设0ij a ≠,那么2222112212||0ij i i i i in in i i in A a A a A a A a a a a =+++=+++≥>L L ,故 ||0A ≠.证法二:(反证法)若||0A =,则*TAA AA ==||0A E =.设A 的行向量为(1,2,,)i i n α=L ,则 222120T i i i i in a a a αα=+++=L (1,2,,)i n =L .于是 12(,,,)0i i i in a a a α==L (1,2,,)i n =L . 进而有0A =,这与A 是非零矩阵相矛盾.故||0A ≠.十、填空题(本题共2小题, 每小题3分,满分6分.)(1)【解析】利用随机事件的概率运算性质进行化简.由概率的基本公式(广义加法公式),有()()1()P AB P A B P A B ==-U U1[()()()]P A P B P AB =-+- 1()()()P A P B P AB =--+.因题目已知 ()()P AB P AB =,故有()()1P A P B +=,()1()1P B P A p =-=-.(2)【解析】由于X 、Y 相互独立且同分布,只能取0、1两个数值,易见随机变量{}max ,Z X Y =只取0与1两个可能的值,且{}{}{}0max ,0P Z P X Y ==={}{}{}10,0004P X Y P X P Y =====⋅==, {}{}31104P Z P Z ==-==. 所以随机变量{}max ,Z X Y =的分布律为:十一、(本题满分6分)【解析】此题的第一小问是求数学期望()E Z 和方差()D Z ,是个常规问题;(2)求相关系数XZ ρ,关键是计算X 与Z 的协方差;(3)考查相关系数为零与相互独立是否等价.(1) 由2(1,3)XN ,2(0,4)Y N ,知()1,()9,()0,()16E X D X E Y D Y ====.由数学期望和方差的性质:()()()E aX bY c aE X bE Y c ++=++,22()()()2Cov(,)D aX bY c a D X b D Y ab X Y ++=++,其中,,a b c 为常数.得 111,323EZ EX EY =+= 111Cov(,)943DZ DX DY X Y =++111916943XY ρ=⨯+⨯+115()34 3.32=+⨯-⨯⨯=(2) 因为11Cov(,)Cov(,)32X Z X X Y =+11Cov(,)Cov(,)32X X X Y =+2113(6)032=⋅+-= 所以 0XZ ρ==.(3) 由于(,)X Y 服从二维正态分布,则其线性组合构成的随机变量也服从二维正态分布,而32X YZ =+,0X X Y =+,故X 和Z 都是其线性组合,则(,)X Z 服从二维正态分布,根据 0XZ ρ==,所以X 与Z 是相互独立的.。

1994考研数学一真题及答案详解

1994考研数学一真题及答案详解

1994年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5个小题,每小题3分,满分15分.) (1) _______1sin 1cot lim 0=⎪⎭⎫⎝⎛-→x x x x . (2) 曲面32=+-xy e z z 在点()0,2,1处的切平面方程为_______.(3) 设y x e u xsin -=,则y x u ∂∂∂2在点⎪⎭⎫⎝⎛π1,2处的值为_______.(4) 设区域D 为222R y x ≤+,则_______2222=⎪⎪⎭⎫⎝⎛+⎰⎰dxdy b y a x D .(5) 已知()⎪⎭⎫⎝⎛==31,21,1,3,2,1βα,设βαTA =,其中T α是α的转置,则_____=n A .二、选择题(本题共5个小题,每小题3分,满分15分.)(1) 设xdx x x M 4222cos 1sin ⎰-+=ππ,dx x N )cos (sin 4223⎰-+=ππ,dx x x x P )cos sin (42232-=⎰-ππ,则 ( )(A) M P N << (B) N P M << (C) P M N << (D) N M P << (2) 二元函数()y x f ,在点()00,y x 处两个偏导数()00,y x f x '()00,y x f y '存在是()y x f ,在该点连续的 ( ) (A) 充分条件但非必要条件 (B) 必要条件而非充分条件(C) 充分必要条件 (D) 既非充分条件又非必要条件 (3) 设常数0>λ,且级数∑∞=12n n a 收敛,则级数()λ+-∑∞=211n a n nn ( )(A) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 收敛性与λ有关 (4) ()()()2121ln cos 1tan lim2=-+--+-→xx e d x c x b x a ,其022≠+c a ,则必有 ( )(A) d b 4= (B) d b 4-= (C) c a 4= (D) c a 4-=(5) 已知向量组4321,,,αααα线性无关,则向量组 ( ) (A) 21αα+、32αα+、43αα+、14αα+线性无关(B) 21αα-、32αα-、43αα-、14αα-线性无关(C) 21αα+、32αα+、43αα+、14αα-线性无关 (D) 21αα+、32αα+、43αα-、14αα-线性无关三、(本题共3小题, 每小题5分,满分15分.)(1) 设 ()()⎪⎩⎪⎨⎧-==⎰2122,cos 21cos cos t udu u t t y t x 求dx dy 、22dx y d 在2π=t 的值. (2) 将函数()x x x x x f -+-+=arctan 2111ln 41展开成x 的幂级数. (3) 求⎰+x x dxsin 22sin .四、(本题满分6分)计算曲面积分⎰⎰+++S z y x dxdyz xdydz 2222,其中S 是由曲面222R y x =+及两平面R z =, ()0>-=R R z 所围成立体表面的外侧.五、(本题满分9分)设()x f 具有二阶连续导数,()()10,00='=f f ,且()()[]()[]02=+'+-+dy y x x f dx y x f y x xy 为一全微分方程,求及此全微分方程()x f 的通解.六、(本题满分8分)设()x f 在点0=x 的某一领域内具有二阶连续导数,且()0lim=→xx f x ,证明级数 ∑∞=⎪⎭⎫⎝⎛11n n f 绝对收敛.七、(本题满分6分)已知点A 与B 的直角坐标分别为()0,0,1与()1,1,0.线段AB 绕z 轴旋转一周所围成的旋转曲面为S .求由S 及两平面1,0==z z 所围成的立体体积.八、(本题满分8分)设四元线性齐次方程组()I 为⎩⎨⎧=-=+,0,04221x x x x 又已知某线性齐次方程组()II 的通解为()()1,2,2,10,1,1,021-+k k .(1) 求线性方程组()I 的基础解系;(2) 问线性方程组()I 和()II 是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.九、(本题满分6分)设A 为n 阶非零方阵,*A 是A 的伴随矩阵,TA 是A 的转置矩阵,当TA A =*时,证明0≠A .十、填空题(本题共2小题, 每小题3分,满分6分.)(1) 已知A 、B 两个事件满足条件()()B A P AB P =,且()p A P =,则()_____=B P . (2) 设相互独立的两个随机变量X 、Y 具有同一分布律,且X 的分布律为则随机变量{}Y X Z ,max =的分布律为_______.十一、(本题满分6分)已知随机变量()Y X ,服从二维正态分布,且X 和Y 分别服从正态分布()23,1N 和()24,0N ,X 与Y 的相关系数21-=XY ρ,设23YX Z +=, (1) 求Z 的数学期望()Z E 和方差()Z D ; (2) 求X 与Z 的相关系数XY ρ; (3) 问X 与Z 是否相互独立?为什么?1994年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5个小题,每小题3分,满分15分.) (1)【答案】16【解析】原式变形后为“0”型的极限未定式,又分子分母在点0处导数都存在,所以连续应用两次洛必达法则,有原式20cos (sin )limsin x x x x x x →-=300sin lim cos lim x x x xx x→→-=⋅ 2001cos sin 1lim lim 366x x x x x x →→-===. (由重要极限0sin lim 1x x x→=) (2)【答案】240x y +-=【解析】所求平面的法向量n 为平行于所给曲面在点(1,2,0)处法线方向的方向向量l ,取n l =,又平面过已知点(1,2,0)M .已知平面的法向量(,,)A B C 和过已知点000(,,)x y z 可唯一确定这个平面:000()()()0A x x B y y C z z -+-+-=.因点(1,2,0)在曲面(,,)0F x y z =上.曲面方程(,,)23z F x y z z e xy =-+-. 曲面在该点的法向量{}{}{}(1,2,0)(1,2,0),,2,2,14,2,022,1,0z F F F n y x e x y z ⎧⎫∂∂∂ ==-==⎨⎬∂∂∂⎩⎭, 故切平面方程为 2(1)(2)0x y -+-=, 即 240x y +-=.(3)【答案】22eπ【解析】由于混合偏导数在连续条件下与求导次序无关,为了简化运算,所以本题可以先求u y ∂∂,再求u x y ⎛⎫∂∂ ⎪∂∂⎝⎭. 2cos x u x xe y y y-∂=-∂, ()2221112(2,)(2,)2cos xy x x u u uxe x x y y x x y x ππππ-===⎛⎫∂∂∂∂∂===-⎪ ⎪∂∂∂∂∂∂∂⎝⎭2222((1)cos )0xx e x x e πππ-==--+=.(可边代值边计算,这样可以简化运算量.)【相关知识点】多元复合函数求导法则:如果函数(,),(,)u x y v x y ϕψ==都在点(,)x y 具有对x 及对y 的偏导数,函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数((,),(,))z f x y x y ϕψ=在点(,)x y 的两个偏导数存在,且有12z z u z v u v f f x u x v x x x∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂; 12z z u z v u v f f y u y v y y y∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂. (4)【答案】42211()4R a bπ+ 【解析】很显然,根据此题的特征用极坐标变换来计算: 原式2222222322220000cos sin cos sin RR d r rdr d r dr ab a b ππθθθθθθ⎛⎫⎛⎫=+=+⋅ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰. 注意:22220cos sin d d ππθθθθπ==⎰⎰,则 原式4422221111144R R a b a b ππ⎛⎫⎛⎫=+⋅=+⎪ ⎪⎝⎭⎝⎭. (5)【答案】111123232133312n -⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦【解析】由矩阵乘法有结合律,注意 1111,,23233Tβα⎡⎤⎛⎫⎢⎥== ⎪⎢⎥⎝⎭⎢⎥⎣⎦是一个数,而 11123111221,,2123333312TA αβ⎡⎤⎢⎥⎡⎤⎢⎥⎛⎫⎢⎥⎢⎥=== ⎪⎢⎥⎢⎥⎝⎭⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦,(是一个三阶矩阵)于是,()()()()()()()n T T T T T T T TA αβαβαβαβαβαβαβαβ==11111232332133312n T n αβ--⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦.二、选择题(本题共5个小题,每小题3分,满分15分.)(1)【答案】(D)【解析】对于关于原点对称的区间上的积分,应该关注被积函数的奇偶性.由对称区间上奇偶函数积分的性质,被积函数是奇函数,积分区间关于原点对称,则积分为0,故0M =,且由定积分的性质,如果在区间[],a b 上,被积函数()0f x ≥,则()0 ()baf x dx a b ≥<⎰.所以 4202cos 0N xdx π=>⎰, 4202cos 0P xdx N π=-=-<⎰.因而 P M N <<,应选(D). (2)【答案】(D)【解析】(,)f x y 在点00(,)x y 连续不能保证(,)f x y 在点00(,)x y 存在偏导数00(,),x f x y '00(,)y f x y '.反之,(,)f x y 在点00(,)x y 存在这两个偏导数00(,),x f x y '00(,)y f x y '也不能保证(,)f x y 在点00(,)x y 连续,因此应选(D).二元函数(,)f x y 在点00(,)x y 处两个偏导数存在和在点00(,)x y 处连续并没有相关性. (3)【答案】(C)【解析】考查取绝对值后的级数.因2222111112222n n a a n n λ≤+<++, (第一个不等式是由2210,0,()2a b ab a b ≥≥≤+得到的.) 又21nn a ∞=∑收敛,2112n n ∞= ∑收敛,(此为p 级数:11p n n∞=∑当1p >时收敛;当1p ≤时发散.)所以2211122n n a n ∞=+∑收敛,由比较判别法,得1n ∞=收敛.故原级数绝对收敛,因此选(C). (4)【答案】(D)【解析】因为 22211cos (),1()2x xx o x e x o x --=-=,故 tan (1cos )(0)a x b x ax a +-≠,2ln(12)(1)2 (0)x c x d e cx c --+--≠,因此,原式左边0lim222x ax acx c→====--原式右边,4a c ⇒=-.当0,0a c =≠时,极限为0;当0,0a c ≠=时,极限为∞,均与题设矛盾,应选(D). 【相关知识点】1.无穷小的比较:设在同一个极限过程中,(),()x x αβ为无穷小且存在极限 ()lim.()x l x αβ= (1) 若0,l ≠称(),()x x αβ在该极限过程中为同阶无穷小; (2) 若1,l =称(),()x x αβ在该极限过程中为等价无穷小,记为()()x x αβ;(3) 若0,l =称在该极限过程中()x α是()x β的高阶无穷小,记为()()()x o x αβ=.若()lim()x x αβ不存在(不为∞),称(),()x x αβ不可比较. 2. 无穷小量的性质:当0x x →时,(),()x x αβ为无穷小,则()()()()(())x x x x o x αβαββ⇔=+.(5)【答案】(C)【解析】这一类题目应当用观察法.若不易用观察法时可转为计算行列式. (A):由于()()()()122334410αααααααα+-+++-+=,所以(A)线性相关. (B):由于()()()()122334410αααααααα-+-+-+-=,所以(B)线性相关.对于(C),实验几组数据不能得到0时,应立即计算由α的系数构成的行列式,即100111002001100011-=≠,由行列式不为0,知道(C)线性无关.故应选(C). 当然,在处理(C)有困难时,也可来看(D),由12233441()()()()0αααααααα+-++-+-=,知(D)线性相关,于是用排除法可确定选(C). 【相关知识点】12,,,s ααα线性相关的充分必要条件是存在某(1,2,,)i i s α=可以由111,,,,i i s αααα-+线性表出.12,,,s ααα线性无关的充分必要条件是任意一个(1,2,,)i i s α=均不能由111,,,,i i s αααα-+线性表出.三、(本题共3小题, 每小题5分,满分15分.)(1)【解析】dy dy dt dy dx dtdt dx dt dx =⋅=222221cos 2sin cos 22(0),2sin t t t t t t t y t t t x t t--⋅'===>'- 同理 2()12sin x txx t y y x t t''''=='-, 代入参数值t =则xt y '=, xxt y ''=【相关知识点】1.复合函数求导法则:如果()u g x =在点x 可导,而()y f x =在点()u g x =可导,则复合函数[]()y f g x =在点x 可导,且其导数为()()dy f u g x dx ''=⋅ 或 dy dy du dx du dx=⋅. 2.对积分上限的函数的求导公式:若()()()()t t F t f x dx βα=⎰,()t α,()t β均一阶可导,则[][]()()()()()F t t f t t f t ββαα'''=⋅-⋅.(2)【解析】111()ln(1)ln(1)arctan 442f x x x x x =+--+-. 先求()f x '的展开式.将()f x 微分后,可得简单的展开式,再积分即得原函数的幂级数展开.所以由2(1)(1)(1)(1)1,2!!nn x x x x n ααααααα---++=+++++(11)x -<<该级数在端点1x =±处的收敛性,视α而定.特别地,当1α=-时,有2311(1),1n n x x x x x =-+-++-++ (11)x -<< 2311,1n x x x x x =++++++- (11)x -<< 得 2221111111111()114141212121f x x x x x x '=++-=+-+-+-+ 44401111(||1)1n n n n x x x x ∞∞===-=-=<-∑∑, 积分,由牛顿-莱布尼茨公式得4140011()(0)() (||1)41n xx nn n x f x f f x dx t dt x n +∞∞=='=+==<+∑∑⎰⎰.(3)【解析】方法1:利用三角函数的二倍角公式sin 22sin cos ααα=⋅,并利用换元积分,结合拆项法求积分,得sin 22sin 2sin (cos 1)dx dxx x x x =++⎰⎰22sin 11cos 2sin (cos 1)2(1)(1)xdx x u du x x u u ==-+-+⎰⎰ (22sin 1cos x x =-)221(1)(1)1112()4(1)(1)811(1)u u du du u u u u u ++-=-=-++-+-++⎰⎰12ln |1|ln |1|8(1)u u C u ⎡⎤=--+++⎢⎥+⎣⎦()()12ln 1cos ln 1cos 81cos x x C x ⎡⎤=--+++⎢⎥+⎣⎦, 其中C 为任意常数.方法2:换元cos x u =后,有原式22sin 12sin (cos 1)2sin (cos 1)2(1)(1)dx xdx dux x x x u u ===-++-+⎰⎰⎰.用待定系数法将被积函数分解:221(1)(1)11(1)A B Du u u u u =++-+-++ 22()(2)()(1)(1)A B u A D u A B D u u -+-+++=-+, 01120,421A B A D A B D A B D -=⎧⎪⇒-=⇒===⎨⎪++=⎩.于是,2111212()ln 1ln 1811(1)81du u u C u u u u ⎡⎤-++=--+++⎢⎥-+++⎣⎦⎰原式= ()()12ln 1cos ln 1cos 81cos x x C x ⎡⎤=--+++⎢⎥+⎣⎦.四、(本题满分6分)【解析】求第二类曲面积分的基本方法:套公式将第二类曲面积分化为第一类曲面积分,再化为二重积分,或用高斯公式转化为求相应的三重积分或简单的曲面积分.这里曲面块的个数不多,积分项也不多,某些积分取零值,如若∑垂直yOz 平面,则0Pdydz ∑=⎰⎰.化为二重积分时要选择投影平面,注意利用对称性与奇偶性.先把积分化简后利用高斯公式也很方便的.方法1:注意 22220Sz dxdy x y z =++⎰⎰,(因为S 关于xy 平面对称,被积函数关于z 轴对称) 所以 222SxdydzI x y z =++⎰⎰. S 由上下底圆及圆柱面组成.分别记为123,,S S S . 12,S S 与平面yOz 垂直⇒122222220s s xdydz xdydzx y z x y z ==++++⎰⎰⎰⎰. 在3S 上将222x y R +=代入被积表达式⇒322s xdydzI R z =+⎰⎰. 3S 在yz 平面上投影区域为:,yz D R y R R z R -≤≤-≤≤,在3S 上,x =,3S 关于yz 平面对称,被积函数对x 为奇函数,可以推出22002222yzR D dz I R z==⨯⨯ +⎰⎰ 2201arctan 42Rz R R R R ππ1=8⋅⋅=.方法2:S 是封闭曲面,它围成的区域记为Ω,记 22SxdydzI R z =+⎰⎰. 再用高斯公式得 222222()1R R D z x dxdyI dV dV dz x R z R z R z -ΩΩ∂⎛⎫=== ⎪∂+++⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰ 222201122RRdz R R z ππ==+⎰(先一后二的求三重积分方法)其中()D z 是圆域:222x y R +≤.【相关知识点】高斯公式:设空间闭区域Ω是由分片光滑的闭曲面∑所围成,函数(,,)P x y z 、(,,)Q x y z 、(,,)R x y z 在Ω上具有一阶连续偏导数,则有,P Q R dv Pdydz Qdzdx Rdxdy x y z Ω∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰或()cos cos cos ,P Q R dv P Q R dS x y z αβγΩ∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰这里∑是Ω的整个边界曲面的外侧,cos α、cos β、cos γ是∑在点(,,)x y z 处的法向量的方向余弦.上述两个公式叫做高斯公式.五、(本题满分9分)【解析】由全微分方程的条件,有2[()()][()]xy x y f x y f x x y y x∂∂'+-=+∂∂, 即 22()()2x xy f x f x xy ''+-=+,亦即 2()()f x f x x ''+=.因而是初值问题 200,0,1,x x y y x y y ==''⎧+=⎪⎨'==⎪⎩ 的解,此方程为常系数二阶线性非齐次方程,对应的齐次方程的特征方程为210r +=的根为1,2r i =±,原方程右端202x x e x =⋅中的0λ=,不同于两个特征根,所以方程有特解形如 2Y Ax Bx C =++. 代入方程可求得 1,0,2A B C ===,则特解为22x -.由题给(0)0,(0)1f f '==,解得 2()2cos sin 2f x x x x =++-.()f x 的解析式代入原方程,则有22[2(2cos sin )][22sin cos ]0xy y x x y dx x y x x x dy +-+++-+=.先用凑微分法求左端微分式的原函数:222211()2()(2sin cos )(2sin cos )022y dx x dy ydx xdy yd x x x x dy +++----=, 221(2(cos 2sin ))02d x y xy y x x ++-=. 其通解为 2212(cos 2sin )2x y xy y x x C ++-= 其中C 为任意常数.【相关知识点】1.二阶线性非齐次方程解的结构:设*()y x 是二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解.()Y x 是与之对应的齐次方程 ()()0y P x y Q x y '''++=的通解,则*()()y Y x y x =+是非齐次方程的通解.2. 二阶常系数线性齐次方程通解的求解方法:对于求解二阶常系数线性齐次方程的通解()Y x ,可用特征方程法求解:即()()0y P x y Q x y '''++=中的()P x 、()Q x 均是常数,方程变为0y py qy '''++=.其特征方程写为20r pr q ++=,在复数域内解出两个特征根12,r r ;分三种情况:(1) 两个不相等的实数根12,r r ,则通解为1212;rx r x y C eC e =+(2) 两个相等的实数根12r r =,则通解为()112;rxy C C x e =+(3) 一对共轭复根1,2r i αβ=±,则通解为()12cos sin .xy e C x C x αββ=+其中12,C C 为常数.3.对于求解二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解*()y x ,可用待定系数法,有结论如下:如果()(),xm f x P x e λ=则二阶常系数线性非齐次方程具有形如*()()kxm y x x Q x e λ= 的特解,其中()m Q x 是与()m P x 相同次数的多项式,而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的重根依次取0、1或2.如果()[()cos ()sin ]x l n f x e P x x P x x λωω=+,则二阶常系数非齐次线性微分方程()()()y p x y q x y f x '''++=的特解可设为*(1)(2)[()cos ()sin ]k x m m y x e R x x R x x λωω=+,其中(1)()m R x 与(2)()m R x 是m 次多项式,{}max ,m l n =,而k 按i λω+(或i λω-)不是特征方程的根、或是特征方程的单根依次取为0或1.六、(本题满分8分) 【解析】0()lim0x f x x→=表明0x →时()f x 是比x 高阶的无穷小,若能进一步确定()f x 是x 的p 阶或高于p 阶的无穷小,1,p >从而1()f n 也是1n的p 阶或高于p 阶的无穷小,这就证明了级数11()n f n∞=∑绝对收敛. 方法一:由0()lim0x f x x→=及()f x 的连续性得知(0)0,(0)0f f '==,再由()f x 在点0x =的某一领域内具有二阶连续导数以及洛必达法则,20()lim x f x x →为“00”型的极限未定式,又分子分母在点0处导数都存在,连续运用两次洛必达法则,有2000()()()1lim lim lim (0)222x x x f x f x f x f x x →→→'''''=== 2()1lim(0)2x f x f x →''⇒=. 由函数极限与数列极限的关系 21()1lim (0)12n f nf n →+∞''⇒=.因211n n ∞=∑收敛11()n f n ∞=⇒∑收敛,即 11()n f n ∞=∑绝对收敛.方法二:由0()lim0x f x x→=得知(0)0,(0)0f f '==,可用泰勒公式来实现估计.()f x 在点0x =有泰勒公式:2211()(0)(0)()()(01,[,])22f x f f x f x x f x x x θθθδδ'''''= ++=<<∈- 因()f x 在点0x =的某一领域内具有二阶连续导数,0,()f x δ''⇒∃>在[,]x δδ∈-有界,即0M ∃>,有|()|,[,]f x M x δδ''≤∈- 2211()(),[,]22f x f x x Mx x θδδ''⇒=≤∈-. 对此0δ>,,N n N ∃>时,211110()2f M n n nδ<<⇒≤. 又211n n ∞=∑收敛11()n f n ∞=⇒∑收敛,即 11()n f n ∞=∑绝对收敛.【相关知识点】正项级数的比较判别法:设1n n u ∞=∑和1n n v ∞=∑都是正项级数,且lim,nn nv A u →∞=则⑴ 当0A <<+∞时,1nn u∞=∑和1nn v∞=∑同时收敛或同时发散;⑵ 当0A =时,若1nn u∞=∑收敛,则1nn v∞=∑收敛;若1nn v∞=∑发散,则1nn u∞=∑发散;⑶ 当A =+∞时,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散.七、(本题满分6分)【解析】方法1:用定积分.设高度为z 处的截面z D 的面积为()S z ,则所求体积1()V S z dz =⎰.,A B 所在的直线的方向向量为()()01,10,101,1,1---=-,且过A 点,所以,A B 所在的直线方程为1111x y z-== - 或 1x z y z =-⎧⎨=⎩. 截面z D 是个圆形,其半径的平方 22222(1)R x y z z =+=-+,则面积222()[(1)]S z R z z ππ==-+,由此 1220[(1)]V z z dz π=-+⎰()120122z z dz π=-+⎰123023z z z π⎛⎫=-+ ⎪⎝⎭23π=. 方法2:用三重积分.2123V dV d dz ππθΩ===⎰⎰⎰⎰⎰,或者 1122[(1)]zD V dV dz d z z dz σπΩ===-+⎰⎰⎰⎰⎰⎰⎰ ()120122z z dz π=-+⎰123023z z z π⎛⎫=-+ ⎪⎝⎭23π=.八、(本题满分8分)【解析】(1)由已知,()I 的系数矩阵,11000101A ⎡⎤=⎢⎥-⎣⎦.由于()2,n r A -=所以解空间的维数是2.取34,x x 为自由变量,分别令()()()34,1,0,0,1x x =,求出0Ax =的解. 故()I 的基础解系可取为 (0,0,1,0),(1,1,0,1)-. (2)方程组()I 和()II 有非零公共解.将()II 的通解 1221231242,2,2,x k x k k x k k x k =-=+=+=代入方程组()I ,则有212121222020k k k k k k k k -++=⎧⇒=-⎨+-=⎩. 那么当120k k =-≠时,向量121(0,1,1,0)(1,2,2,1)(1,1,1,1)k k k +-=---是()I 与()II 的非零公共解.九、(本题满分6分)【解析】证法一:由于 *TA A =,根据*A 的定义有(,1,2,,)ij ij A a i j n =∀=L ,其中ij A 是行列式||A 中ij a 的代数余子式.由于0A ≠,不妨设0ij a ≠,那么2222112212||0ij i i i i in in i i in A a A a A a A a a a a =+++=+++≥>L L ,故 ||0A ≠.证法二:(反证法)若||0A =,则*TAA AA ==||0A E =.设A 的行向量为(1,2,,)i i n α=L ,则 222120T i i i i in a a a αα=+++=L (1,2,,)i n =L .于是 12(,,,)0i i i in a a a α==L (1,2,,)i n =L . 进而有0A =,这与A 是非零矩阵相矛盾.故||0A ≠.十、填空题(本题共2小题, 每小题3分,满分6分.)(1)【解析】利用随机事件的概率运算性质进行化简.由概率的基本公式(广义加法公式),有()()1()P AB P A B P A B ==-U U1[()()()]P A P B P AB =-+- 1()()()P A P B P AB =--+.因题目已知 ()()P AB P AB =,故有()()1P A P B +=,()1()1P B P A p =-=-.(2)【解析】由于X 、Y 相互独立且同分布,只能取0、1两个数值,易见随机变量{}max ,Z X Y =只取0与1两个可能的值,且{}{}{}0max ,0P Z P X Y ==={}{}{}10,0004P X Y P X P Y =====⋅==, {}{}31104P Z P Z ==-==. 所以随机变量{}max ,Z X Y =的分布律为:十一、(本题满分6分)【解析】此题的第一小问是求数学期望()E Z 和方差()D Z ,是个常规问题;(2)求相关系数XZ ρ,关键是计算X 与Z 的协方差;(3)考查相关系数为零与相互独立是否等价.(1) 由2(1,3)XN ,2(0,4)Y N ,知()1,()9,()0,()16E X D X E Y D Y ====.由数学期望和方差的性质:()()()E aX bY c aE X bE Y c ++=++,22()()()2Cov(,)D aX bY c a D X b D Y ab X Y ++=++,其中,,a b c 为常数.得 111,323EZ EX EY =+= 111Cov(,)943DZ DX DY X Y =++111916943XY ρ=⨯+⨯+115()34 3.32=+⨯-⨯⨯=(2) 因为11Cov(,)Cov(,)32X Z X X Y =+11Cov(,)Cov(,)32X X X Y =+2113(6)032=⋅+-= 所以 0XZ ρ==.(3) 由于(,)X Y 服从二维正态分布,则其线性组合构成的随机变量也服从二维正态分布,而32X YZ =+,0X X Y =+,故X 和Z 都是其线性组合,则(,)X Z 服从二维正态分布,根据 0XZ ρ==,所以X 与Z 是相互独立的.。

概率第四章考研真题及解答

概率第四章考研真题及解答

第4章 统计估值1. (1994年、数学三、选择)设),,,(21n X X X 是来自总体),(2N 的简单随机样本,X 是样本均值,记22121)(11 i i X X n S ,22122)(1 i i X X n S ,22123)(11 i i X n S ,22124)(1 i i X n S 则服从自由度1 n 的t 分布的随机变量是 T ( )。

A .11n S X B .12n S X C .nS X 3D .nS X 4[答案:选B ]当2212)(11 i i X X n S 时,服从自由度1 n 的t 分布的随机变量应为T nSX A 、由222121)(11S X X n S i i ,111n SX n S X T 而不是nSX TB 、由212221221)(111)(1S nn X X n n n X X n S n i ii i nSX n SX n S X T nn1112。

2. (1997年、数学三、填空)设随机变量Y X ,相互独立,均服从)3,0(2N 分布且91,,X X 与91,,Y Y 分别是来自总体Y X ,的简单随机样本,则统计量292191Y Y X X U服从参数为( )的( )分布。

[答案:参数为(9)的(t )分布]由Y X ,相互独立,均服从)3,0(2N 分布,又91,,X X 与91,,Y Y 分别来自总体Y X ,,可知91,,X X 与91,,Y Y 之间均相互独立,均服从分布)3,0(2N 因而)39,0(~291N X i i ,)1,0(~9191N X X i i ,)1,0(~3N Y i ,)9(~32912 i i Y ,且 9191i i X X 与 9123i i Y 相互独立,因而292191912919123919191Y Y X X Y XXi ii ii Y i ii服从参数为9的t 分布。

3. (1998年、数学三、填空)设),,,(4321X X X X 是取自正态总体)2,0(~2N X 的简单随机样本且 Y 243221)43()2(X X b X X a ,则 a ( ), b ( )时,统计量Y 服从2分布,其自由度为( )。

1994年普通高等学校招生全国统一考试.理科数学试题及答案

1994年普通高等学校招生全国统一考试.理科数学试题及答案

1994年高校招生全国数学统一考试(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第I卷(选择题共65分)一、选择题(本大题共15小题;第1—10题每小题4分,第11—15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则A.{0}B.{0,1}C.{0,1,4}D.{0,1,2,3,4}2.如果方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)3.极坐标方程ρ=cos(π/4-θ)所表示的曲线是A.双曲线B.椭圆C.抛物线D.圆4.设θ是第二象限的角,则必有A.tg(θ/2)>ctg(θ/2)B.tg(θ/2)<ctg(θ/2)C.sin(θ/2)>cos(θ/2)D.sin(θ/2)<cos(θ/2)5.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过3个小时,这种细菌由1个可繁殖成A.511个B.512个C.1023个D.1024个6.在下列函数中,以π/2为周期的函数是A.y=sin2x+cos4xB.y=sin2xcos4xC.y=sin2x+cos2xD.y=sin2xcos2x7.已知正六棱台的上,下底面边长分别为2和4,高为2,则其体积为A.32B.28C.24D.208.设F1和F2为双曲线x2/4-y2=1的两个焦点,点P在双曲线上且满足∠F1PF2=90°,则△F1PF2的面积是A.1B./2C.2D.9.如果复数Z满足│Z+i│+│Z-i│=2,那么│Z+i+1│最小值是A.1B.C.2D.10.有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这三项任务,不同的选法共有A.1260种B.2025种C.2520种D.5040种11.对于直线m、n和平面α、β,α⊥β的一个充分条件是12.设函数f(x)=1-(-1≤x≤0),则函数y=f-1(x)的图象是13.已知过球面上A、B、C三点的截面和球心的距离等于球半径的一半,且AB=BC=CA=2,则球面面积是A.16π/9B.8π/3C.4πD.64π/914.函数y=arccos(sinx)(-π/3<x<2π/3)的值域是A.(π/6,5π/6)B.[0,5π/6)C.(π/3,2π/3)D.(π/6,2π/3)15.定义在(-∞,+∞)上的任意函数f(x)都可以表示成一个奇函数g(x)和一个偶函数h(x)之和.如果f(x)=lg(10x+1),x∈(-∞,+∞),那么第Ⅱ卷(非选择题共85分)二、填空题(本大题共5小题,共6个空格;每空格4分,共24分.把答案填在题中横线上)(16) 在(3-x)7的展开式中,x5的系数是(用数字作答)(17) 抛物线y 2=8-4x 的准线方程是 ,圆心在该抛物线的顶点且与其准线相切的圆的方程是(18) 已知sin θ +cos θ =51,θ∈(0,π),则ctg θ的值是_____________ (19) 设圆锥底面圆周上两点A 、B 间的距离为2,圆锥顶点到直线AB 的距离为3,AB 和圆锥的轴的距离为1,则该圆锥的体积为_________(20) 在测量某物理量的过程中,因仪器和观察的误差,使得n 次测量分别得到a 1,a 2,…a n ,共n 个数据,我们规定所测量物理量的“最佳近似值” a 是这样一个量:与其他近似值比较,a 与各数据的差的平方和最小.依此规定,从a 1,a 2,…,a n 推出的a =三、解答题(本大题共5小题,共61分;解答应写出文字说明、证明过程或推演步骤)(21) (本小题满分11分) 已知z =1+i .(1)设ω=z 2+3z -4,求ω的三角形式;(2)如果i z z baz z -=+-++1122,求实数a ,b 的值. (22) (本小题满分12分) 已知函数f (x )=tg x ,x ∈(0,2π).若x 1,x 2∈(0,2π),且x 1≠x 2,证明21[f (x 1)+f (x 2)]>f (221x x +)(23) (本小题满分12分)如图,已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点. (1)证明AB 1∥平面DBC 1;(2)假设AB 1⊥BC 1,求以BC 1为棱,DBC 1与CBC 1为面的二面角α的度数.(24) (本小题满分12分)已知直线l 过坐标原点,抛物线C 顶点在原点,焦点在x 轴正半轴上.若点)0,1(-A 和点B (0,8)关于l 的对称点都在C 上,求直线l 和抛物线C 的方程.(25) (本小题满分14分)设{a n }是正数组成的数列,其前n 项和为S n ,并且对于所有的自然数n ,a n 与2的等差中项等于S n 与2的等比中项.(1)写出数列{a n }的前3项;(2)求数列{a n }的通项公式(写出推证过程); (3)令()N ∈⎪⎪⎭⎫ ⎝⎛+=++n a a a a b n n n n n 1121,求().lim 21n b b b n n -+++∞→1994年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答一、选择题(本题考查基本知识和基本运算)1.C 2.D 3.D 4.A 5.B 6.D 7.B 8.A 9.A 10.C 11.C 12.B 13.D 14.B 15.C二、填空题(本题考查基本知识和基本运算)16.-189 17.x =3,(x -2)2+y 2=1 18.43- 19. π322 20.()n a a a n+++ 211三、解答题21.本小题考查共轭复数、复数的三角形式等基础知识及运算能力. 解:(1)由z =1+i ,有 ω=z 2+3z -4 =(1+i )2+3()i +1-4 =2i +3(1-i )-4=-1-i ,ω的三角形式是⎪⎭⎫ ⎝⎛+ππ45sin 45cos 2i . (2)由z =1+i ,有()()()()1111112222++-+++++=+-++i i b i a i z z b a z z =()()ii a b a 2+++()()i b a a +-+=2 由题设条件知(a +2)-(a +b )i =1-i . 根据复数相等的定义,得⎩⎨⎧-=+-=+1)(12b a a解得⎩⎨⎧=-=.2,1b a22.本小题考查三角函数基础知识、三角函数性质及推理能力. 证明:tg x 1+tg x 2=2211cos sin cos sin x x x x + 212121cos cos sin cos cos sin x x x x x x +=()2121cos cos sin x x x x +=()()()212121cos cos sin 2x x x x x x -+++=∵x 1,x 2∈(0,2π),x 1≠x 2, ∴2sin(x 1+x 2)>0,cos x 1cos x 2>0,且0<cos (x 1-x 2)<1, 从而有0<cos (x 1+x 2)+cos (x 1-x 2)<1+cos (x 1+x 2), 由此得tg x 1+tg x 2>()()2121cos 1sin 2x x x x +++=,∴21( tg x 1+tg x 2)>tg 221x x +,即21[f (x 1)+f (x 2)]>f (221x x +)23.本小题考查空间线面关系、正棱柱的性质、空间想象能力和逻辑推理能力.(1)证明:∵A 1B 1C 1-ABC 是正三棱柱,∴四边形B 1BCC 1是矩形. 连结B 1C 交BC 1于E ,则B 1E =EC .连结DE . 在△AB 1C 中,∵AD =DC ,∴DE ∥AB 1.又AB 1⊄平面DBC 1,DE ⊂平面DBC 1,∴AB 1∥平面DBC 1.(2)解:作DF ⊥BC ,垂足为F ,则DF ⊥面B 1BCC 1,连结EF ,则EF 是ED 在平面B 1BCC 1上的射影.∵AB 1⊥BC 1,由(1)知AB 1∥DE ,∴DE ⊥BC 1,则BC 1⊥EF ,∴∠DEF 是二面角α的平面角. 设AC =1,则DC =21.∵△ABC 是正三角形,∴在Rt △DCF 中, DF =DC ·sin C =43,CF =DC ·cos C =41.取BC 中点G .∵EB =EC ,∴EG ⊥BC . 在Rt △BEF 中,EF 2=BF ·GF ,又BF =BC -FC =43,GF =41, ∴EF 2=43·41,即EF =43.∴tg ∠DEF =14343==EF DF .∴∠DEF =45°. 故二面角α为45°.24.本小题考查直线与抛物线的基本概念和性质,解析几何的基本思想方法以及综合运用知识解决问题的能力.解法一:依题设抛物线C 的方程可写为y 2=2px (p >0),且x 轴和y 轴不是所求直线,又l 过原点,因而可设l 的方程为y =kx (k ≠0).①设A '、B '分别是A 、B 关于l 的对称点,因而A 'A ⊥l ,直线A 'A 的方程为()11+-=x ky ②由①、②联立解得AA '与l 的交点M 的坐标为⎪⎭⎫ ⎝⎛+-+-11122k k k ,. 又M 为AA '的中点,从而点A '的坐标为x A '=111112222+-=+⎪⎭⎫ ⎝⎛+-k k k , y A '=1201222+-=+⎪⎭⎫⎝⎛+-k k k k . ③ 同理得点B '的坐标为x B '=1162+k k, y B '= ()11822+-k k . ④ 又A '、B '均在抛物线y 2=2px (p >0)上,由③得112122222+-⋅=⎪⎭⎫ ⎝⎛+-k k p k k ,由此知k ≠±1, 即 1242-=k k p ⑤同理由④得()11621182222+⋅=⎪⎪⎭⎫ ⎝⎛+-k k p k k . 即 ()()kk k p 112222+-=. 从而 1242-k k =()()kk k 112222+-,整理得 k 2-k -1=0. 解得.25125121-=+=k k , 但当251-=k 时,由③知055<-='A x , 这与A '在抛物线y 2=2px (p >0)上矛盾,故舍去2512-=k . 设251+=k ,则直线l 的方程为x y 251+=.将251+=k 代入⑤,求得552=p .所以直线方程为x y 251+=. 抛物线方程为x y 5542=. 解法二:设点A 、B 关于l 的对称点分别为A '(x 1、y 1)、B '(x 2,y 2),则|OA '|=|OA |=1,|OB '|=|OB |=8.设由x 轴正向到OB '的转角为α,则x 2=8cos α,y 2=8s in α. ①因为A '、B '为A 、B 关于直线l 的对称点,而∠BOA 为直角,故∠B 'OA '为直角,因此 x 1=cos ⎪⎭⎫⎝⎛-2πα=sin α,y 1=sin ⎪⎭⎫ ⎝⎛-2πα=-cos α, ② 由题意知x 1>0,x 2>0,故α为第一象限角. 因为A '、B '都在抛物线y 2=2px 上,将①、②代入得cos 2α=2p ·sin α,64sin 2α=2p ·8cos α.∴8sin 3α=cos 3α, ∴2sin α=cos α, 解得 52cos 51sin ==αα,.将52cos 51sin ==αα,代入cos 2α=2p sin α得552sin 2cos 2==ααp ,∴抛物线C 的方程为x y 5542=. 因为直线l 平分∠B 'OB ,故l 的斜率⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=42221πααπαtg tg k 251sin 1cos 2cos 12sin +=-=⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+=ααπαπα ∴直线l 的方程为x y 215+=. 25.本小题考查等差数列、等比数列、数列极限等基础知识考查逻辑推理能力和分析问题与解决问题的能力.解:(1)由题意,当n =1时有11222S a =+,S 1=a 1, ∴11222a a =+, 解得a 1=2.当n =2时有22222S a =+,S 2=a 1+ a 2,a 1=2代入,整理得 (a 2-2)2=16.由a 2>0,解得 a 2=6. 当n =3时有33222S a =+,S 3=a 1+ a 2+ a 3,将a 1=2,a 2=6代入,整理得 (a 3-2)2=64.由a 3>0,解得 a 3=10. 故该数列的前3项为2,6,10.(2)解法一:由(1)猜想数列{a n }有通项公式a n =4n -2. 下面用数学归纳法证明数列{ a n }的通项公式是a n =4n -2 (n ∈N ).①当n =1时,因为4×1-2=2,又在(1)中已求出a 1=2,所以上述结论成立. ②假设n =k 时结论成立,即有a k =4k -2.由题意,有k k S a 222=+, 将a k =4k -2代入上式,得2k = k S 2,解得S k =2k 2. 由题意,有11222++=+k k S a ,S k +1=S k +a k +1, 将S k =2k 2代入,得2122⎪⎭⎫ ⎝⎛++k a =2(a k +1+2k 2),整理得21+k a -4 a k +1+4-16 k 2=0. 由a k +1>0,解得a k +1=2+4k .所以a k +1=2+4k =4(k +1)-2. 这就是说,当n =k +1时,上述结论成立.根据①、②,上述结论对所有的自然数n 成立. 解法二:由题意,有()N n S a n n ∈=+222,整理得S n =81(a n +2)2, 由此得 S n +1 =81(a n +1+2)2, ∴a n +1= S n +1-S n =81[(a n +1+2)2-(a n +2)2], 整理得(a n +1+ a n )( a n +1-a n -4)=0,由题意知 a n +1+a n ≠0,∴a n +1-a n =4.即数列{ a n }为等差数列,其中a 1=2,公差d =4.∴a n =a 1+(n -1)d =2+4(n -1), 即通项公式为a n =4n -2.(3)解:令c n =b n -1,则⎪⎪⎭⎫ ⎝⎛-+=++22111n n n n n a a a a c ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛--+=112121121221n n n n 121121+--=n n , b 1+b 2+…+b n -n =c 1+c 2+…+c n =⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1211215131311n n 1211+-=n .∴()11211lim lim 21=⎪⎭⎫ ⎝⎛+-=-+++∞→∞→n n b b b n n n。

1994考研数学一真题及答案详解

1994考研数学一真题及答案详解

1994年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5个小题,每小题3分,满分15分.) (1) 011limcot ()sin x x x x→-=_____________. (2) 曲面23zz e xy -+=在点(1,2,0)处的切平面方程为_____________.(3) 设sin xx u e y -=,则2ux y∂∂∂在点1(2,)π处的值为_____________.(4) 设区域D 为222x y R +≤,则2222()Dx y dxdy a b +=⎰⎰_____________.(5) 已知11(1,2,3),(1,,)23αβ==,设T A αβ=,其中T α是α的转置,则n A =_________.二、选择题(本题共5个小题,每小题3分,满分15分.)(1) 设4222sin cos 1x M xdx x ππ-=+⎰,3422(sin cos )N x x dx ππ-=+⎰,23422(sin cos )P x x x dx ππ-=-⎰, 则 ( ) (A) NP M << (B) M P N <<(C) N M P << (D) P M N <<(2) 二元函数(,)f x y 在点00(,)x y 处两个偏导数00(,)x f x y '、00(,)y f x y '存在是(,)f x y 在该点连续的 ( ) (A) 充分条件但非必要条件 (B) 必要条件而非充分条件(C) 充分必要条件 (D) 既非充分条件又非必要条件 (3) 设常数0λ>,且级数21n n a ∞=∑收敛,则级数1(1)nn ∞=-∑ ( )(A) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 收敛性与λ有关 (4) 2tan (1cos )lim2ln(12)(1)x x a x b x c x d e -→+-=-+-,其中220a c +≠,则必有 ( )(A) 4b d = (B) 4b d =- (C) 4a c = (D) 4a c =-(5) 已知向量组1234αααα、、、线性无关,则向量组 ( ) (A) 12αα+、23αα+、34αα+、41αα+线性无关 (B) 12αα-、23αα-、34αα-、41αα-线性无关(C) 12αα+、23αα+、34αα+、41αα-线性无关 (D) 12αα+、23αα+、34αα-、41αα-线性无关 三、(本题共3小题, 每小题5分,满分15分.)(1)设2221cos(),cos(),t x t y t t udu ⎧=⎪⎨=-⎪⎩⎰ 求dy dx 、22d y dx在t =. (2) 将函数111()ln arctan 412x f x x x x +=+--展开成x 的幂级数.(3) 求sin 22sin dxx x+⎰.四、(本题满分6分)计算曲面积分2222Sxdydz z dxdy x y z +++⎰⎰,其中S 是由曲面222x y R +=及两平面,z R = (0)z R R =->所围成立体表面的外侧.五、(本题满分9分)设()f x 具有二阶连续导数,(0)0,(0)1f f '==,且2[()()][()]0xy x y f x y dx f x x y dy '+-++=为一全微分方程,求()f x 及此全微分方程的通解.六、(本题满分8分)设()f x 在点0x =的某一领域内具有二阶连续导数,且0()lim0x f x x→=,证明级数 11()n f n∞=∑绝对收敛. 七、(本题满分6分)已知点A 与B 的直角坐标分别为(1,0,0)与(0,1,1).线段AB 绕z 轴旋转一周所围成的旋转曲面为S .求由S 及两平面0,1z z ==所围成的立体体积. 八、(本题满分8分)设四元线性齐次方程组()I 为12240,0,x x x x +=⎧⎨-=⎩ 又已知某线性齐次方程组()II 的通解为12(0,1,10)(1,2,2,1)k k +-.(1) 求线性方程组()I 的基础解系;(2) 问线性方程组()I 和()II 是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由. 九、(本题满分6分)设A 为n 阶非零方阵,*A 是A 的伴随矩阵,TA 是A 的转置矩阵,当*T AA =时,证明||0A ≠.十、填空题(本题共2小题, 每小题3分,满分6分.)(1) 已知A 、B 两个事件满足条件()()P AB P AB =,且()P A p =,则()P B =__________.(2)则随机变量{}max ,ZX Y =的分布律为_______.十一、(本题满分6分)已知随机变量(,)X Y 服从二维正态分布,且X 和Y 分别服从正态分布2(1,3)N 和2(0,4)N ,X 与Y 的相关系数12XY ρ=-,设32X YZ =+,(1) 求Z 的数学期望()E Z 和方差()D Z ; (2) 求X 与Z 的相关系数XZ ρ; (3) 问X 与Z 是否相互独立?为什么?1994年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5个小题,每小题3分,满分15分.) (1)【答案】16【解析】原式变形后为“0”型的极限未定式,又分子分母在点0处导数都存在,所以连续应用两次洛必达法则,有原式20cos (sin )limsin x x x x x x →-=300sin limcos lim x x x xx x→→-=⋅ 2001cos sin 1lim lim 366x x x x x x →→-===. (由重要极限0sin lim 1x x x→=) (2)【答案】240x y +-=【解析】所求平面的法向量n 为平行于所给曲面在点(1,2,0)处法线方向的方向向量l ,取n l =,又平面过已知点(1,2,0)M .已知平面的法向量(,,)A B C 和过已知点000(,,)x y z 可唯一确定这个平面:000()()()0A x x B y y C z z -+-+-=.因点(1,2,0)在曲面(,,)0F x y z =上.曲面方程(,,)23zF x y z z e xy =-+-. 曲面在该点的法向量{}{}{}(1,2,0)(1,2,0),,2,2,14,2,022,1,0z F F F n y x e x y z ⎧⎫∂∂∂ ==-==⎨⎬∂∂∂⎩⎭, 故切平面方程为 2(1)(2)0x y -+-=, 即 240x y +-=.(3)【答案】22eπ【解析】由于混合偏导数在连续条件下与求导次序无关,为了简化运算,所以本题可以先求u y ∂∂,再求u x y ⎛⎫∂∂ ⎪∂∂⎝⎭. 2cos x u x xe y y y-∂=-∂, 2222((1)cos )0xx e x x e πππ-==--+=.(可边代值边计算,这样可以简化运算量.)【相关知识点】多元复合函数求导法则:如果函数(,),(,)u x y v x y ϕψ==都在点(,)x y 具有对x 及对y 的偏导数,函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数((,),(,))z f x y x y ϕψ=在点(,)x y 的两个偏导数存在,且有12z z u z v u vf f x u x v x x x∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂; 12z z u z v u v f f y u y v y y y∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂. (4)【答案】42211()4R a b π+ 【解析】很显然,根据此题的特征用极坐标变换来计算: 原式222222232222000cos sin cos sin RR d r rdr d r dr a b a b ππθθθθθθ⎛⎫⎛⎫=+=+⋅ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰.注意:22220cos sin d d ππθθθθπ==⎰⎰,则 原式4422221111144R R a b a b ππ⎛⎫⎛⎫=+⋅=+⎪ ⎪⎝⎭⎝⎭. (5)【答案】111123232133312n -⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦【解析】由矩阵乘法有结合律,注意 1111,,23233Tβα⎡⎤⎛⎫⎢⎥== ⎪⎢⎥⎝⎭⎢⎥⎣⎦是一个数,而 11123111221,,2123333312TA αβ⎡⎤⎢⎥⎡⎤⎢⎥⎛⎫⎢⎥⎢⎥=== ⎪⎢⎥⎢⎥⎝⎭⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦,(是一个三阶矩阵) 于是,11111232332133312n T n αβ--⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 二、选择题(本题共5个小题,每小题3分,满分15分.)(1)【答案】(D)【解析】对于关于原点对称的区间上的积分,应该关注被积函数的奇偶性.由对称区间上奇偶函数积分的性质,被积函数是奇函数,积分区间关于原点对称,则积分为0,故0M=,且由定积分的性质,如果在区间[],a b 上,被积函数()0f x ≥,则()0 ()ba f x dx ab ≥<⎰.所以 422cos 0N xdx π=>⎰, 4202cos 0P xdx N π=-=-<⎰.因而 P MN <<,应选(D).(2)【答案】(D)【解析】(,)f x y 在点00(,)x y 连续不能保证(,)f x y 在点00(,)x y 存在偏导数00(,),x f x y '00(,)y f x y '.反之,(,)f x y 在点00(,)x y 存在这两个偏导数00(,),x f x y '00(,)y f x y '也不能保证(,)f x y 在点00(,)x y 连续,因此应选(D).二元函数(,)f x y 在点00(,)x y 处两个偏导数存在和在点00(,)x y 处连续并没有相关性. (3)【答案】(C)【解析】考查取绝对值后的级数.因2222111112222n n a a n n λ≤+<++, (第一个不等式是由2210,0,()2a b ab a b ≥≥≤+得到的.) 又21nn a ∞=∑收敛,2112n n ∞= ∑收敛,(此为p 级数:11pn n∞=∑当1p >时收敛;当1p ≤时发散.) 所以2211122n n a n ∞=+∑收敛,由比较判别法,得n ∞=收敛. 故原级数绝对收敛,因此选(C). (4)【答案】(D)【解析】因为 22211cos (),1()2x xx o x e x o x --=-=,故 tan (1cos )(0)a x b x ax a +-≠,2ln(12)(1)2 (0)x c x d e cx c --+--≠,因此,原式左边0lim222x ax acx c→====--原式右边,4a c ⇒=-.当0,0a c =≠时,极限为0;当0,0a c ≠=时,极限为∞,均与题设矛盾,应选(D). 【相关知识点】1.无穷小的比较:设在同一个极限过程中,(),()x x αβ为无穷小且存在极限 ()lim.()x l x αβ= (1) 若0,l ≠称(),()x x αβ在该极限过程中为同阶无穷小; (2) 若1,l =称(),()x x αβ在该极限过程中为等价无穷小,记为()()x x αβ;(3) 若0,l =称在该极限过程中()x α是()x β的高阶无穷小,记为()()()x o x αβ=.若()lim()x x αβ不存在(不为∞),称(),()x x αβ不可比较. 2. 无穷小量的性质:当0x x →时,(),()x x αβ为无穷小,则()()()()(())x x x x o x αβαββ⇔=+.(5)【答案】(C)【解析】这一类题目应当用观察法.若不易用观察法时可转为计算行列式. (A):由于()()()()122334410αααααααα+-+++-+=,所以(A)线性相关. (B):由于()()()()122334410αααααααα-+-+-+-=,所以(B)线性相关.对于(C),实验几组数据不能得到0时,应立即计算由α的系数构成的行列式,即100111002001100011-=≠, 由行列式不为0,知道(C)线性无关.故应选(C). 当然,在处理(C)有困难时,也可来看(D),由12233441()()()()0αααααααα+-++-+-=,知(D)线性相关,于是用排除法可确定选(C). 【相关知识点】12,,,s ααα线性相关的充分必要条件是存在某(1,2,,)i i s α=可以由111,,,,i i s αααα-+线性表出.12,,,s ααα线性无关的充分必要条件是任意一个(1,2,,)i i s α=均不能由111,,,,i i s αααα-+线性表出.三、(本题共3小题, 每小题5分,满分15分.)(1)【解析】dy dy dt dy dx dtdt dx dt dx =⋅=222221cos 2sin cos 22(0),2sin t t t t t t t y t t t x t t--⋅'===>'- 同理 2()12sin x txx t y y x t t ''''=='-,代入参数值t =则xt y '=xxt y ''=【相关知识点】1.复合函数求导法则:如果()u g x =在点x 可导,而()y f x =在点()u g x =可导,则复合函数[]()y f g x =在点x 可导,且其导数为()()dy f u g x dx ''=⋅ 或 dy dy du dx du dx=⋅. 2.对积分上限的函数的求导公式:若()()()()t t F t f x dx βα=⎰,()t α,()t β均一阶可导,则[][]()()()()()F t t f t t f t ββαα'''=⋅-⋅.(2)【解析】111()ln(1)ln(1)arctan 442f x x x x x =+--+-.先求()f x '的展开式.将()f x 微分后,可得简单的展开式,再积分即得原函数的幂级数展开.所以由该级数在端点1x =±处的收敛性,视α而定.特别地,当1α=-时,有 得 2221111111111()114141212121f x x x x x x'=++-=+-+-+-+ 44401111(||1)1n n n n x x x x ∞∞===-=-=<-∑∑, 积分,由牛顿-莱布尼茨公式得4140011()(0)() (||1)41n xx nn n x f x f f x dx t dt x n +∞∞=='=+==<+∑∑⎰⎰.(3)【解析】方法1:利用三角函数的二倍角公式sin 22sin cos ααα=⋅,并利用换元积分,结合拆项法求积分,得(22sin 1cos x x =-)()()12ln 1cos ln 1cos 81cos x x C x ⎡⎤=--+++⎢⎥+⎣⎦, 其中C 为任意常数.方法2:换元cos x u =后,有原式22sin 12sin (cos 1)2sin (cos 1)2(1)(1)dx xdx dux x x x u u ===-++-+⎰⎰⎰.用待定系数法将被积函数分解:22()(2)()(1)(1)A B u A D u A B D u u -+-+++=-+,1120,421A B A D A B D A B D -=⎧⎪⇒-=⇒===⎨⎪++=⎩.于是,2111212()ln 1ln 1811(1)81du u u C u u u u ⎡⎤-++=--+++⎢⎥-+++⎣⎦⎰原式= ()()12ln 1cos ln 1cos 81cos x x C x ⎡⎤=--+++⎢⎥+⎣⎦. 四、(本题满分6分)【解析】求第二类曲面积分的基本方法:套公式将第二类曲面积分化为第一类曲面积分,再化为二重积分,或用高斯公式转化为求相应的三重积分或简单的曲面积分.这里曲面块的个数不多,积分项也不多,某些积分取零值,如若∑垂直yOz 平面,则0Pdydz ∑=⎰⎰.化为二重积分时要选择投影平面,注意利用对称性与奇偶性.先把积分化简后利用高斯公式也很方便的.方法1:注意 22220Sz dxdyx y z =++⎰⎰,(因为S 关于xy 平面对称,被积函数关于z 轴对称) 所以 222SxdydzI x y z =++⎰⎰. S 由上下底圆及圆柱面组成.分别记为123,,S S S . 12,S S 与平面yOz 垂直⇒122222220s s xdydz xdydzx y z x y z ==++++⎰⎰⎰⎰. 在3S 上将222x y R +=代入被积表达式⇒322s xdydzIR z =+⎰⎰.3S 在yz 平面上投影区域为:,yz D R y R R z R -≤≤-≤≤,在3S 上,x =3S 关于yz 平面对称,被积函数对x 为奇函数,可以推出2201arctan 42Rz R R R R ππ1=8⋅⋅=.方法2:S 是封闭曲面,它围成的区域记为Ω,记 22SxdydzI R z =+⎰⎰. 再用高斯公式得 222222()1R R D z x dxdyIdV dV dz x R z R z R z -ΩΩ∂⎛⎫=== ⎪∂+++⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰ 222201122RRdz R R z ππ==+⎰(先一后二的求三重积分方法)其中()D z 是圆域:222x y R +≤.【相关知识点】高斯公式:设空间闭区域Ω是由分片光滑的闭曲面∑所围成,函数(,,)P x y z 、(,,)Q x y z 、(,,)R x y z 在Ω上具有一阶连续偏导数,则有或()cos cos cos ,P Q R dv P Q R dS x y z αβγΩ∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰这里∑是Ω的整个边界曲面的外侧,cos α、cos β、cos γ是∑在点(,,)x y z 处的法向量的方向余弦.上述两个公式叫做高斯公式. 五、(本题满分9分)【解析】由全微分方程的条件,有2[()()][()]xy x y f x y f x x y y x∂∂'+-=+∂∂, 即 22()()2x xy f x f x xy ''+-=+,亦即 2()()f x f x x ''+=.因而是初值问题 200,0,1,x x y y x y y ==''⎧+=⎪⎨'==⎪⎩ 的解,此方程为常系数二阶线性非齐次方程,对应的齐次方程的特征方程为210r +=的根为1,2r i =±,原方程右端202xx e x =⋅中的0λ=,不同于两个特征根,所以方程有特解形如 2Y Ax Bx C =++. 代入方程可求得 1,0,2A B C ===,则特解为22x -.由题给(0)0,(0)1f f '==,解得 2()2cos sin 2f x x x x =++-.()f x 的解析式代入原方程,则有22[2(2cos sin )][22sin cos ]0xy y x x y dx x y x x x dy +-+++-+=.先用凑微分法求左端微分式的原函数:222211()2()(2sin cos )(2sin cos )022y dx x dy ydx xdy yd x x x x dy +++----=, 221(2(cos 2sin ))02d x y xy y x x ++-=. 其通解为 2212(cos 2sin )2x y xy y x x C ++-= 其中C 为任意常数.【相关知识点】1.二阶线性非齐次方程解的结构:设*()y x 是二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解.()Y x 是与之对应的齐次方程 ()()0y P x y Q x y '''++=的通解,则*()()y Y x y x =+是非齐次方程的通解.2. 二阶常系数线性齐次方程通解的求解方法:对于求解二阶常系数线性齐次方程的通解()Y x ,可用特征方程法求解:即()()0y P x y Q x y '''++=中的()P x 、()Q x 均是常数,方程变为0y py qy '''++=.其特征方程写为20r pr q ++=,在复数域内解出两个特征根12,r r ;分三种情况:(1) 两个不相等的实数根12,r r ,则通解为1212;rx r x y C e C e =+(2) 两个相等的实数根12r r =,则通解为()112;rx y C C x e =+(3) 一对共轭复根1,2r i αβ=±,则通解为()12cos sin .x y e C x C x αββ=+其中12,C C 为常数.3.对于求解二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解*()y x ,可用待定系数法,有结论如下:如果()(),xm f x P x e λ=则二阶常系数线性非齐次方程具有形如*()()kxm y x x Q x eλ=的特解,其中()m Q x 是与()m P x 相同次数的多项式,而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的重根依次取0、1或2.如果()[()cos ()sin ]xl n f x e P x x P x x λωω=+,则二阶常系数非齐次线性微分方程()()()y p x y q x y f x '''++=的特解可设为*(1)(2)[()cos ()sin ]k x m m y x e R x x R x x λωω=+,其中(1)()m R x 与(2)()m R x 是m 次多项式,{}max ,m l n =,而k 按i λω+(或i λω-)不是特征方程的根、或是特征方程的单根依次取为0或1. 六、(本题满分8分)【解析】0()lim0x f x x→=表明0x →时()f x 是比x 高阶的无穷小,若能进一步确定()f x 是x 的p 阶或高于p 阶的无穷小,1,p >从而1()f n 也是1n的p 阶或高于p 阶的无穷小,这就证明了级数11()n f n∞=∑绝对收敛. 方法一:由0()lim0x f x x→=及()f x 的连续性得知(0)0,(0)0f f '==,再由()f x 在点0x =的某一领域内具有二阶连续导数以及洛必达法则,20()lim x f x x →为“0”型的极限未定式,又分子分母在点0处导数都存在,连续运用两次洛必达法则,有2()1lim(0)2x f x f x →''⇒=. 由函数极限与数列极限的关系 21()1lim(0)2n f nf n→+∞''⇒=. 因211n n ∞=∑收敛11()n f n ∞=⇒∑收敛,即 11()n f n ∞=∑绝对收敛.方法二:由0()lim0x f x x→=得知(0)0,(0)0f f '==,可用泰勒公式来实现估计.()f x 在点0x =有泰勒公式:因()f x 在点0x =的某一领域内具有二阶连续导数,0,()f x δ''⇒∃>在[,]x δδ∈-有界,即0M ∃>,有|()|,[,]f x M x δδ''≤∈-2211()(),[,]22f x f x x Mx x θδδ''⇒=≤∈-. 对此0δ>,,N n N ∃>时,211110()2f M n n nδ<<⇒≤. 又211n n ∞=∑收敛11()n f n ∞=⇒∑收敛,即 11()n f n ∞=∑绝对收敛.【相关知识点】正项级数的比较判别法:设1n n u ∞=∑和1n n v ∞=∑都是正项级数,且lim,nn nv A u →∞=则⑴ 当0A <<+∞时,1n n u ∞=∑和1n n v ∞=∑同时收敛或同时发散;⑵ 当0A =时,若1nn u∞=∑收敛,则1nn v∞=∑收敛;若1nn v∞=∑发散,则1nn u∞=∑发散;⑶ 当A =+∞时,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散.七、(本题满分6分)【解析】方法1:用定积分.设高度为z 处的截面z D 的面积为()S z ,则所求体积1()V S z dz =⎰.,A B 所在的直线的方向向量为()()01,10,101,1,1---=-,且过A 点,所以,A B 所在的直线方程为1111x y z-== - 或 1x z y z=-⎧⎨=⎩. 截面z D 是个圆形,其半径的平方 22222(1)R x y z z =+=-+,则面积222()[(1)]S z R z z ππ==-+,由此 1220[(1)]V z z dz π=-+⎰()120122z z dz π=-+⎰123023z z z π⎛⎫=-+ ⎪⎝⎭23π=.方法2:用三重积分.2123V dV d dz ππθΩ===⎰⎰⎰⎰⎰, 或者 11220[(1)]zD V dV dz d z z dz σπΩ===-+⎰⎰⎰⎰⎰⎰⎰123023z z z π⎛⎫=-+ ⎪⎝⎭23π=.八、(本题满分8分)【解析】(1)由已知,()I 的系数矩阵,11000101A ⎡⎤=⎢⎥-⎣⎦.由于()2,n r A -=所以解空间的维数是2. 取34,x x 为自由变量,分别令()()()34,1,0,0,1x x =,求出0Ax =的解.故()I 的基础解系可取为 (0,0,1,0),(1,1,0,1)-. (2)方程组()I 和()II 有非零公共解.将()II 的通解 1221231242,2,2,x k x k k x k k x k =-=+=+=代入方程组()I ,则有212121222020k k k k k k k k -++=⎧⇒=-⎨+-=⎩. 那么当120k k =-≠时,向量121(0,1,1,0)(1,2,2,1)(1,1,1,1)k k k +-=---是()I 与()II 的非零公共解.九、(本题满分6分) 【解析】证法一:由于 *T AA =,根据*A 的定义有(,1,2,,)ij ij A a i j n =∀=L ,其中ij A 是行列式||A 中ij a 的代数余子式.由于0A ≠,不妨设0ij a ≠,那么2222112212||0iji i i i in in i i in A a A a A a A a a a a =+++=+++≥>L L , 故 ||0A ≠.证法二:(反证法)若||0A =,则*T AAAA ==||0A E =.设A 的行向量为(1,2,,)i i n α=L ,则 222120Ti i i i in a a a αα=+++=L (1,2,,)i n =L . 于是 12(,,,)0i i i in a a a α==L (1,2,,)i n =L . 进而有0A =,这与A 是非零矩阵相矛盾.故||0A ≠. 十、填空题(本题共2小题, 每小题3分,满分6分.)(1)【解析】利用随机事件的概率运算性质进行化简.由概率的基本公式(广义加法公式),有1()()()P A P B P AB =--+.因题目已知 ()()P AB P AB =,故有()()1P A P B +=,()1()1P B P A p =-=-.(2)【解析】由于X 、Y 相互独立且同分布,只能取0、1两个数值,易见随机变量{}max ,Z X Y =只取0与1两个可能的值,且{}{}{}0max ,0P Z P X Y ==={}{}{}10,0004P X Y P X P Y =====⋅==,{}{}31104P Z P Z ==-==. 所以随机变量{}max ,ZX Y =的分布律为:十一、(本题满分6分)【解析】此题的第一小问是求数学期望()E Z 和方差()D Z ,是个常规问题;(2)求相关系数XZ ρ,关键是计算X 与Z 的协方差;(3)考查相关系数为零与相互独立是否等价. (1) 由2(1,3)XN ,2(0,4)Y N ,知()1,()9,()0,()16E X D X E Y D Y ====.由数学期望和方差的性质:()()()E aX bY c aE X bE Y c ++=++,22()()()2Cov(,)D aX bY c a D X b D Y ab X Y ++=++,其中,,a b c 为常数.得 111,323EZ EX EY =+= (2) 因为11Cov(,)Cov(,)32X Z X X Y =+所以 0XZ ρ==.(3) 由于(,)X Y 服从二维正态分布,则其线性组合构成的随机变量也服从二维正态分布,而32X YZ =+,0X X Y =+,故X 和Z 都是其线性组合,则(,)X Z 服从二维正态分布,根据 0XZ ρ==,所以X 与Z 是相互独立的.。

1994年、1995年、1996年全国硕士研究生入学统一考试数学一真题合集

1994年、1995年、1996年全国硕士研究生入学统一考试数学一真题合集

1994年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)= _____________. (2)曲面在点处的切平面方程为_____________.(3)设则在点处的值为_____________.(4)设区域为则=_____________.(5)已知设其中是的转置,则=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设则有 (A)(B) (C) (D)(2)二元函数在点处两个偏导数、存在是在该点连续的(A)充分条件而非必要条件 (B)必要条件而非充分条件(C)充分必要条件(D)既非充分条件又非必要条件(3)设常数且级数收敛,则级数(A)发散 (B)条件收敛(C)绝对收敛(D)收敛性与有关(4)其中则必有(A) (B) (C) (D)(5)已知向量组线性无关,则向量组011limcot ()sin x x x π→-e 23x z xy -+=(1,2,0)e sin ,xx u y -=2u x y ∂∂∂1(2,)πD 222,x y R +≤2222()Dx y dxdy a b +⎰⎰11[1,2,3],[1,,],23==αβ,'=A αβ'ααn A 4342342222222sin cos ,(sin cos ),(sin cos ),1x M xdx N x x dx P x x x dx x ππππππ---==+=-+⎰⎰⎰N P M <<M P N <<N M P <<P M N <<(,)f x y 00(,)x y 00(,)x f x y '00(,)y f x y '(,)f x y 0,λ>21nn a ∞=∑1(1)nn ∞=-∑λ2tan (1cos )lim2,ln(12)(1)x x a x b x c x d e -→+-=-+-220,a c +≠4b d =4b d =-4a c =4a c =-1234,,,αααα(A)线性无关 (B)线性无关 (C)线性无关(D)线性无关三、(本题共3小题,每小题5分,满分15分) (1)设 ,求、在. (2)将函数展开成的幂级数.(3)求12233441,,,++++αααααααα12233441,,,----αααααααα12233441,,,+++-αααααααα12233441,,,++--αααααααα2221cos()cos()t x t y t t udu==-⎰dy dx 22d y dx t =111()ln arctan 412x f x x x x +=+--x .sin(2)2sin dxx x +⎰四、(本题满分6分)计算曲面积分其中是由曲面及两平面所围成立体表面的外侧.五、(本题满分9分)设具有二阶连续函数且为一全微分方程,求及此全微分方程的通解.2222,Sxdydz z dxdy x y z +++⎰⎰S 222x y R +=,(0)z R z R R ==->()f x ,(0)0,(0)1,f f '==2[()()][()]0xy x y f x y dx f x x y dy '+-++=()f x设在点的某一邻域内具有二阶连续导数,且证明级数绝对收敛.七、(本题满分6分)已知点与的直角坐标分别为与线段绕轴旋转一周所成的旋转曲面为求由及两平面所围成的立体体积.()f x 0x =0()lim 0,x f x x →=11()n f n ∞=∑A B (1,0,0)(0,1,1).AB x .S S 0,1z z ==设四元线性齐次方程组(Ⅰ)为,又已知某线性齐次方程组(Ⅱ)的通解为(1)求线性方程组(Ⅰ)的基础解析. (2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.九、(本题满分6分)设为阶非零方阵是的伴随矩阵是的转置矩阵,当时,证明122400x x x x +=-=12(0,1,1,0)(1,2,2,1).k k +-A n *,A A ,'A A *'=A A 0.≠A十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)已知、两个事件满足条件且则=____________. (2)设相互独立的两个随机变量具有同一分布率,且的分布率为则随机变量的分布率为____________.十一、(本题满分6分)设随机变量和分别服从正态分布和且与的相关系数设(1)求的数学期望和方差.(2)求与的相关系数 (3)问与是否相互独立?为什么?A B ()(),P AB P AB =(),P A p =()P B ,X Y X max{,}Z X Y =X Y 2(1,3)N 2(0,4),N X Y 1,2xy ρ=-,32X Y Z =+Z EZ DZ X Z .xz ρX Y1995年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)=_____________.(2)= _____________.(3)设则=_____________. (4)幂级数的收敛半径=_____________. (5)设三阶方阵满足关系式且则=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设有直线,及平面则直线(A)平行于 (B)在上 (C)垂直于(D)与斜交(2)设在上则或的大小顺序是 (A) (B) (C)(D)(3)设可导则是在处可导的 (A)充分必要条件 (B)充分条件但非必要条件(C)必要条件但非充分条件(D)既非充分条件又非必要条件(4)设则级数 2sin 0lim(13)xx x →+202cos x d x t dt dx⎰()2,⨯=a b c g [()()]()+⨯++a b b c c a g 2112(3)n n nn n x ∞-=+-∑R ,A B 16,-=+A BA A BA 100310,41007⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A B :L 321021030x y z x y z +++=--+=:4220,x y z π-+-=L ππππ[0,1]()0,f x ''>(0),(1),(1)(0)f f f f ''-(0)(1)f f -(1)(0)(1)(0)f f f f ''>>-(1)(1)(0)(0)f f f f ''>->(1)(0)(1)(0)f f f f ''->>(1)(0)(1)(0)f f f f ''>->()f x ,()()(1sin ),F x f x x =+(0)0f =()F x 0x =(1)ln(1n n u =-+(A)与都收敛(B)与都发散(C)收敛,而发散(D)收敛,而发散(5)设则必有 (A) (B) (C)(D)三、(本题共2小题,每小题5分,满分10分)(1)设其中都具有一阶连续偏导数,且求(2)设函数在区间上连续,并设求1n n u ∞=∑21n n u ∞=∑1n n u ∞=∑21n n u ∞=∑1n n u ∞=∑21n n u ∞=∑1n n u ∞=∑21n n u ∞=∑11121311121321222321222312313233313233010100,,100,010,001101a a a a a a a a a a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦A B P P 12AP P =B 21AP P =B 12P P A =B 21P P A =B 2(,,),(,e ,)0,sin ,y u f x y z x z y x ϕ===,f ϕ0.zϕ∂≠∂.du dx ()f x [0,1]1(),f x dx A =⎰110()().xdx f x f y dy ⎰⎰四、(本题共2小题,每小题6分,满分12分) (1)计算曲面积分其中为锥面在柱体内的部分. (2)将函数展开成周期为4的余弦函数.五、(本题满分7分)设曲线位于平面的第一象限内上任一点处的切线与轴总相交,交点记为已知且过点求的方程.,zdS ∑⎰⎰∑z 222x y x +≤()1(02)f x x x =-≤≤L xOy ,L M y .A ,MA OA =L 33(,),22L六、(本题满分8分)设函数在平面上具有一阶连续偏导数,曲线积分与路径无关,并且对任意恒有求七、(本题满分8分)假设函数和在上存在二阶导数,并且试证: (1)在开区间内(2)在开区间内至少存在一点使(,)Q x y xOy 2(,)L xydx Q x y dy +⎰t (,1)(1,)(0,0)(0,0)2(,)2(,),t t xydx Q x y dy xydx Q x y dy +=+⎰⎰(,).Q x y ()f x ()g x [,]a b ()0,()()()()0,g x f a f b g a g b ''≠====(,)a b ()0.g x ≠(,)a b ,ξ()().()()f f g g ξξξξ''=''八、(本题满分7分)设三阶实对称矩阵的特征值为对应于的特征向量为求九、(本题满分6分)设为阶矩阵,满足是阶单位矩阵是的转置矩阵求A 1231,1,λλλ=-==1λ101,1⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ξ.A A n ('=AA I I n ,'A A ),0,<A .+A I十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上) (1)设表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4, 则的数学期望=____________.(2)设和为两个随机变量,且则____________.十一、(本题满分6分) 设随机变量的概率密度为,求随机变量的概率密度X 2X 2()E X X Y 34{0,0},{0}{0},77P X Y P X P Y ≥≥=≥=≥={max(,)0}P X Y ≥=X ()X f x =e 0x -00x x ≥<e X Y =().Y f y1996年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设则=_____________.(2)设一平面经过原点及点且与平面垂直,则此平面方程为_____________.(3)微分方程的通解为_____________.(4)函数在点处沿点指向点方向的方向导数为_____________.(5)设是矩阵,且的秩而则=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)已知为某函数的全微分,则等于 (A)-1 (B)0 (C)1(D)2(2)设具有二阶连续导数,且则 (A)是的极大值 (B)是的极小值 (C)是曲线的拐点(D)不是的极值也不是曲线的拐点(3)设且收敛,常数则级数(A)绝对收敛 (B)条件收敛2lim()8,xx x a x a→∞+=-a (6,3,2),-428x y z -+=22e x y y y '''-+=ln(u x =(1,0,1)A A (3,2,2)B -A 43⨯A ()2,r =A 102020,103⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B ()r AB 2()()x ay dx ydyx y +++a ()f x 0()(0)0,lim 1,x f x f x→'''==(0)f ()f x (0)f ()f x (0,(0))f ()y f x =(0)f ()f x ,(0,(0))f ()y f x =0(1,2,),n a n >=L 1n n a ∞=∑(0,),2πλ∈21(1)(tan )n n n n a n λ∞=-∑(C)发散 (D)散敛性与有关(4)设有连续的导数且当时与是同阶无穷小,则等于(A)1 (B)2 (C)3 (D)4(5)四阶行列式的值等于(A)(B) (C)(D)三、(本题共2小题,每小题5分,满分10分) (1)求心形线的全长,其中是常数.(2)设试证数列极限存在,并求此极限.λ()f x 220,(0)0,(0)0,()()(),xf f F x x t f t dt '=≠=-⎰0x →,()F x 'k x k 1122334400000000a b a b a b b a 12341234a a a a b b b b -12341234a a a a b b b b +12123434()()a a b b a a b b --23231414()()a a b b a a b b --(1cos )r a θ=+0a>1110,1,2,),n x x n +===L {}n x四、(本题共2小题,每小题6分,满分12分)(1)计算曲面积分其中为有向曲面其法向量与轴正向的夹角为锐角.(2)设变换 可把方程简化为求常数五、(本题满分7分) 求级数的和.(2),Sx z dydz zdxdy ++⎰⎰S 22(01),z x y x =+≤≤z 2u x y v x ay =-=+2222260z z z x x y y ∂∂∂+-=∂∂∂∂20,zu v∂=∂∂.a 211(1)2nn n ∞=-∑设对任意曲线上点处的切线在轴上的截距等于求的一般表达式.七、(本题满分8分)设在上具有二阶导数,且满足条件其中都是非负常数是内任意一点.证明0,x >()y f x =(,())x f x y 01(),xf t dt x⎰()f x ()f x [0,1](),(),f x a f x b ''≤≤,a b ,c(0,1)()2.2b f c a '≤+设其中是阶单位矩阵是维非零列向量是的转置.证明 (1)的充分条件是 (2)当时是不可逆矩阵. 九、(本题满分8分)已知二次型的秩为2, (1)求参数及此二次型对应矩阵的特征值. (2)指出方程表示何种二次曲面.,T A =-I ξξI n ,ξn ,T ξξ2=A A 1.T =ξξ1T =ξξ,A 222123123121323(,,)55266f x x x x x cx x x x x x x =++-+-c 123(,,)1f x x x =十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)设工厂和工厂的产品的次品率分别为1%和2%,现从由和的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属生产的概率是____________.(2)设是两个相互独立且均服从正态分布的随机变量,则随机变量的数学期望=____________.十一、(本题满分6分)设是两个相互独立且服从同一分布的两个随机变量,已知的分布率为又设(1)(2)求随机变量的数学期望A B A B A ,ξη2)N ξη-()E ξη-,ξηξ1(),1,2,3.3P i i ξ===max(,),min(,).X Y ξηξη==X ().E X。

(详细解析)1994年普通高等学校招生全国统一考试数学试题及答案(理)

(详细解析)1994年普通高等学校招生全国统一考试数学试题及答案(理)

1994年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷(选择题共65分)一、选择题:本大题共15小题;第(1)—(10)题每小题4分,第(11)—(15)题每小题5分,共65分,在每小题给出的四个选项中,只有一项是符合题目要求的1.设全集{0,1,2,3,4}I =,集合{0,1,2,3}A =,集合{2,3,4}B =,则ABA .{0}B .{0,1}C .{0,1,4}D .{0,1,2,3,4} 【答案】C【解析】由于{4},{0,1}A B ==,所以{0,1,4}A B =.2.如果方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是 A .(0,)+∞ B .(0,2) C .(1,)+∞ D .((0,1) 【答案】D【解析】222x ky +=化为22122x y k+=,则22k >且0k >,所以(0,1)k ∈.3.极坐标方程cos()4πρθ=-所表示的曲线是A .双曲线B .椭圆C .抛物线D .圆 【答案】D【解析】cos()sin )()4x yπθθθρρ-=+=+,即22)0x y x y ++=.4.设θ是第二象限的角,则必有 A .tan cot 22θθ> B .tan cot 22θθ< C .2cos2sinθθ> D .2cos2sinθθ<【答案】A 【解析】22()2k k k Z ππθππ+<<+∈,()422k k k Z πθπππ+<<+∈,所以tan1cot22θθ>>.5.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过3小时,这种细菌由1个可繁殖成A .511个B .512个C .1023个D .1024个 【答案】B 【解析】18092022512==.6.在下列函数中,以2π为周期的函数是 A .sin 2cos 4y x x =+ B .sin 2cos 4y x x = C .sin 2cos 2y x x =+ D .sin 2cos 2y x x = 【答案】D【解析】A 、B 、C 中函数周期均为π;而1sin 2cos 2sin 42y x x x ==,周期为2π.7.已知正六棱台的上、下底面边长分别为2和4,高为2,则其体积为A .B .C .D .【答案】B【解析】上下底面的面积分别为11()33V S S h ==下上2+⨯=8.设1F 和2F 为双曲线2214x y -=的两个焦点,点P 在双曲线上且满足1290F PF ∠=︒,则12F PF ∆的面积是A .1B .25C .2D .5 【答案】A【解析】由题设222121212,2,PF PF F F PF PF a ⎧+=⎪⎨-=⎪⎩则22121220,4,PF PF PF PF ⎧+=⎪⎨-=⎪⎩,可得122PF PF ⋅=,面积为12112S PF PF =⋅=.9.如果复数z 满足2z i z i ++-=,那么1z i ++的最小值是 A .1 B .2 C .2 D .5 【答案】A【解析】本题考查复数的几何意义.满足2z i z i ++-=的复数z 对应的点表示以点(0,1)-以及(0,1)为端点的线段,1z i ++表示该线段上的点到点(1,1)--的距离,从而知距离的最小值为1.10.有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担.从10人中选派4人承担这三项任务,不同的选法共有A .1260种B .2025种C .2520种D .5040种 【答案】C【解析】按分步计数原理考虑:第一步安排甲任务有210C 种方法,第二步安排乙任务有18C 种方法,第三步安排丙任务有17C 种方法,所以总共有2111087C C C 种.11.对于直线,m n 和平面,αβ,αβ⊥的一个充分条件是 A .,//,//m n m n αβ⊥ B .,,m n m m αβα⊥=⊂C .//,,m n n m βα⊥⊂D .//,,m n m n αβ⊥⊥【答案】C 【解析】略.12.设函数()110)f x x =-≤≤,则函数1()y f x -=的图像是【答案】B【解析】当10x -≤≤时,()1(0,1)f x =,所以易知1()f x -=(0,1)x ∈.13.已知过球面上,,A B C 三点的截面和球心的距离等于球半径的一半,且AB BC ==2CA =,则球面面积是A .169π B .83π C .4π D .649π【答案】D【解析】如图,设球的半径为R ,O '是ABC ∆的外心,外接圆半径为r ,则OO '⊥面ABC .在Rt ACD ∆中,CD =,则O C '=,所以R ==,则43R =,所以球面面积为26449S R ππ==.14.函数2arccos(sin )()33y x x ππ=-<<的值域是 A .⎪⎭⎫⎝⎛656ππ, B .⎪⎭⎫⎢⎣⎡650π,C .⎪⎭⎫ ⎝⎛323ππ, D .⎪⎭⎫⎢⎣⎡326ππ, 【答案】B【解析】由已知sin 1x <≤,因余弦函数在[0,]π上递减,所以值域是⎪⎭⎫⎢⎣⎡650π,.15.定义在(,)-∞+∞上的任意函数()f x 都可以表示成一个奇函数()g x 和一个偶函数()h x 之和,如果()lg(101),(,)x f x x =+∈-∞+∞,那么 A .(),()lg(10102)x x g x x h x -==++B .11()[(101)],()[(101)]22x x g x x h x x =++=+- C .(),()lg(101)22xx x g x h x ==+-D .(),()lg(10122xx x g x h x =-=++【答案】C【解析】根据题意()()()()()22f x f x f x f x f x --+-=+.()()lg(101)lg(101)()222x x f x f x xg x ---+-+===,lg(101)lg(101)()lg(101)22x x x xh x -+++==+-.第Ⅱ卷(非选择题共85分)二、填空题 (本大题共5小题,共6个空格;每空格4分,共24分.把答案填在题中横线上)16.在7(3)x -的展开式中,5x 的系数是 .(用数字作答) 【答案】189-【解析】771773()(1)3r r r r r r r r T C x C x --+=⋅⋅-=-⋅⋅,5x 的系数是57557(1)3189C --⋅=-.17.抛物线284y x =-的准线方程是 ,圆心在该抛物线的顶点且与其准线相切的圆的方程是 . 【答案】223,(2)1x x y =-+=【解析】原方程化为24(2)y x =-,其顶点为(2,0),准线方程是3x =;圆的方程是22(2)1x y -+=.18.已知1sin cos ,(0,)5θθθπ+=∈,则cot θ的值是 . 【答案】43-【解析】221112sin cos (sin cos )()sin cos 5525θθθθθθ+=⇒+=⇒=-,则(,)2πθπ∈, 从而得7sin cos 5θθ-=解得43sin ,cos 55θθ==-,故cos 3cot sin 4θθθ==-.19.设圆锥底面圆周上两点,A B 间的距离为2,圆锥顶点到直线AB 的距离为3,AB 和圆锥的轴的距离为1,则该圆锥的体积为 . 【答案】π322π322.20.在测量某物理量的过程中,因仪器和观察的误差,使得n 次测量分别得到12,,...,n a a a ,共n 个数据,我们规定所测量物理量的“最佳近似值”a 是这样一个量:与其他近似值比较,a 与各数据的差的平方和最小.依此规定,从12,,...,n a a a 推出的a = . 【答案】121()n a a a n+++【解析】本题考查构建二次函数求最值.由已知即求22212()()...()n y a a a a a a =-+-++-的最小值,上式化简为2222121212()()(...nn a a a a a a y n a a a nn++++++=--+++2)n a +,当12na a a a n+++=时,y 取最小值.三、解答题(本大题共5小题,共61分;解答应写出文字说明、证明过程或推演步骤)21.(本小题满分11分)已知1z i =+.(Ⅰ)设234z z ω=+-,求ω的三角形式;(Ⅱ)如果i z z baz z -=+-++1122,求实数,a b 的值. 【解】本小题考查共轭复数、复数的三角形式等基础知识及运算能力. (Ⅰ)由1z i =+,有2234(1)3(1)423(1)41z z i i i i i ω=+-=+++-=+--=--,ω55sin )44i ππ+.(Ⅱ)由1z i =+,有()()()()()()2222112(2)()1111i a i b a b a iz az b a a b i z z i i i +++++++++===+-+-++-++. 由题设条件知(2)()1a a b i i +-+=-.根据复数相等的定义,得21,() 1.a a b +=⎧⎨-+=-⎩解得⎩⎨⎧=-=.2,1b a22.(本小题满分12分)已知函数()tan ,(0,)2f x x x π=∈.若12,(0,)2x x π∈,且12x x ≠,证明11[()2f x + 122()]()2x x f x f +>. 【证明】本小题考查三角函数基础知识、三角函数性质及推理能力.()1212121212121212sin sin sin sin cos cos sin tan tan cos cos cos cos cos cos x x x x x x x x x x x x x x x x +++=+== ()()()1212122sin cos cos x x x x x x +=++-.∵12,(0,)2x x π∈,12x x ≠,∴()12122sin 0,cos cos 0x x x x +>>,且()120cos 1x x <-<, 从而有()()()1212120cos cos 1cos x x x x x x <++-<++, 由此得()()1212122sin tan tan 1cos x x x x x x ++>++,∴12121(tan tan )tan 22x x x x ++>,即12121[()()]()22x x f x f x f ++>.23.(本小题满分12分)如图,已知111A B C ABC -是正三棱柱,D 是AC 中点. (Ⅰ)证明1//AB 平面1DBC ;(Ⅱ)假设11AB BC ⊥,求以1BC 为棱,1DBC 与1CBC 为面的二面角α的度数.【解】本小题考查空间线面关系、正棱柱的性质、空间想象能力和逻辑推理能力.(Ⅰ)证明:∵111A B C ABC -是正三棱柱,∴四边形11B BCC 是矩形.连结1B C 交1BC 于E ,则1B E EC =.连结DE . 在1AB C ∆中,∵AD DC =,∴1//DE AB . 又1AB ⊄平面1DBC ,DE ⊂平面1DBC , ∴1//AB 平面1DBC .(Ⅱ)作DF BC ⊥,垂足为F ,则DF ⊥面11B BCC ,连结EF ,则EF 是ED 在平面11B BCC 上的射影.∵11AB BC ⊥,由(Ⅰ)知1//AB DE ,∴1DE BC ⊥,则1BC EF ⊥, ∴DEF ∠是二面角α的平面角. 设1AC =,则12DC =. ∵ABC ∆是正三角形,∴在Rt DCF ∆中,1sin cos 4DF DC C CF DC C =⋅==⋅=. 取BC 中点G .∵EB EC =,∴EG BC ⊥.在Rt BEF ∆中,2EF BF GF =⋅,又31,44BF BC FC GF =-==, ∴23144EF =⋅,即EF =.∴tan 1DFDEF EF ∠===.∴45DEF ∠=︒. 故二面角α为45︒.24.(本小题满分12分)已知直线l 过坐标原点,抛物线C 顶点在原点,焦点在x 轴正半轴上.若点)0,1(-A 和点(0,8)B 关于l 的对称点都在C 上,求直线l 和抛物线C 的方程.【解】本小题考查直线与抛物线的基本概念和性质,解析几何的基本思想方法以及综合运用知识解决问题的能力. 解法一:依题设抛物线C 的方程可写为22(0)y px p =>,且x 轴和y 轴不是所求直线,又l 过原点,因而可设l 的方程为(0)y kx k =≠). ①设,A B ''分别是,A B 关于l 的对称点,因而AA l '⊥,直线AA '方程为()11+-=x ky ② 由①、②联立解得AA '与l 的交点M 的坐标为⎪⎭⎫ ⎝⎛+-+-11122k k k ,. 又M 为AA '的中点,从而点A '的坐标为2222211221,201111A A k k k x y k k k k ''--⎛⎫⎛⎫=-+==+=- ⎪ ⎪++++⎝⎭⎝⎭. ③ 同理得点B '的坐标为222168(1),11B B k k x y k k ''-==++. ④ 又,A B ''均在抛物线22(0)y px p =>上,由③得112122222+-⋅=⎪⎭⎫ ⎝⎛+-k k p k k , 由此知1k ≠±,即1242-=k k p . ⑤同理由④得()11621182222+⋅=⎪⎪⎭⎫ ⎝⎛+-k k p k k .即()()k k k p 112222+-=. 从而1242-k k =()()kk k 112222+-,整理得210k k --=.解得12k k ==. 但当251-=k 时,由③知055<-='A x , 这与A'在抛物线22(0)y px p =>上矛盾,故舍去2512-=k . 设251+=k ,则直线l 的方程为x y 251+=. 将251+=k 代入⑤,求得552=p .所以直线方程为x y 251+=.抛物线方程为x y 5542=. 解法二:设点,A B 关于l 的对称点分别为1122(,),(,)A x y B x y '',则1,8OA OA OB OB ''====.设由x 轴正向到OB '的转角为α,则228cos ,8sin x y αα==. ①因为,A B ''为,A B 关于直线l 的对称点,而BOA ∠为直角,故B OA ''∠为直角,因此 11cos()sin ,sin()cos 22x y ππαααα=-==-=-, ② 由题意知120,0x x >>,故α为第一象限角.因为,A B ''都在抛物线22y px =上,将①、②代入得 22cos 2sin ,64sin 28cos p p αααα=⋅=⋅.∴338sin cos αα=,∴2sin cos αα=,解得52cos 51sin ==αα,. 将52cos 51sin ==αα,代入2cos 2sin p αα=⋅得552sin 2cos 2==ααp , ∴抛物线C 的方程为x y 5542=. 因为直线l 平分B OB '∠,故l 的斜率sin 1cos 222241sin 1cos 2k tg tg παπαπαααπαα⎛⎫+ ⎪⎡⎤⎛⎫⎛⎫⎝⎭=+-=+=== ⎪ ⎪⎢⎥-⎛⎫⎝⎭⎝⎭⎣⎦++ ⎪⎝⎭ ∴直线l 的方程为x y 215+=.25.(本小题满分14分)设{}n a 是正数组成的数列,其前n 项和为n S ,并且对于所有的自然数n ,n a 与2的等差中项等于n S 与2的等比中项.(Ⅰ)写出数列{}n a 的前3项;(Ⅱ)求数列{}n a 的通项公式(写出推证过程); (Ⅲ)令()N ∈⎪⎪⎭⎫ ⎝⎛+=++n a a a a b n n n n n 1121,求12lim()n n b b b n →∞+++-.【解】本小题考查等差数列、等比数列、数列极限等基础知识考查逻辑推理能力和分析问题与解决问题的能力.(Ⅰ)由题意,当1n =时有11222S a =+,11S a =,∴11222a a =+,解得12a =. 当2n =时有22222S a =+,212S a a =+,将12a =代入,整理得22(2)16a -=. 由20a >,解得26a =.当3n =时有33222S a =+,3123S a a a =++,将122,6a a ==代入, 整理得23(2)64a -=.由30a >,解得310a =.故该数列的前3项为2,6,10.(Ⅱ)解法一:由(Ⅰ)猜想数列{}n a 有通项公式42n a n =-.下面用数学归纳法证明数列{}n a 的通项公式是42()n a n n N =-∈.①当1n =时,因为4122⨯-=,又在(Ⅰ)中已求出12a =,所以上述结论成立. ②假设n k =时结论成立,即有42k a k =-.由题意,有k k S a 222=+, 将42k a k =-代入上式,得2k =,解得22k S k =. 由题意,有11222++=+k k S a ,11k k k S S a ++=+, 将22k S k =代入,得221122(2)2k k a a k +++⎛⎫=+ ⎪⎝⎭,整理得221144160k k a a k ++-+-=.由10k a +>,解得124k a k +=+.所以1244(1)2k a k k +=+=+-. 这就是说,当1n k =+时,上述结论成立.根据①、②,上述结论对所有的自然数n 成立. 解法二:由题意,有)22n a n N +=∈,整理得21(2)8n n S a =+, 由此得2111(2)8n n S a ++=+, ∴2211111[(2)(2)]88n n n n n a S S a a +++=-=+-+, 整理得11()(4)0n n n n a a a a +++--=,由题意知10n n a a ++≠,∴14n n a a +-=. 即数列{}n a 为等差数列,其中12a =,公差4d =. ∴1(1)24(2)n a a n d n =+-=+-,即通项公式为42n a n =-. (Ⅲ)令1n n c b =-,则11112121112112221212121n n n n n a a n n c a a n n n n ++⎛⎫⎡+-⎤⎛⎫⎛⎫=+-=-+-=- ⎪ ⎪ ⎪⎢⎥-+-+⎝⎭⎝⎭⎣⎦⎝⎭, 12121111113352121n n b b b n c c c n n ⎛⎫⎛⎫⎛⎫+++-=+++=-+-++- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭ 1211+-=n . ∴()121lim lim 1121n n n b b b n n →∞→∞⎛⎫+++-=-= ⎪+⎝⎭.。

1994考研数学一真题及答案详解

1994考研数学一真题及答案详解

1994年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5个小题,每小题3分,满分15分.) (1) 011lim cot ()sin x x x x→-=_____________. (2) 曲面23z z e xy -+=在点(1,2,0)处的切平面方程为_____________.(3) 设sin xx u e y -=,则2ux y∂∂∂在点1(2,)π处的值为_____________.(4) 设区域D 为222x y R +≤,则2222()Dx y dxdy a b +=⎰⎰_____________.(5) 已知11(1,2,3),(1,,)23αβ==,设TA αβ=,其中T α是α的转置,则n A =_________.二、选择题(本题共5个小题,每小题3分,满分15分.)(1) 设4222sin cos 1x M xdx x ππ-=+⎰,3422(sin cos )N x x dx ππ-=+⎰,23422(sin cos )P x x x dx ππ-=-⎰, 则 ( )(A) N P M << (B) M P N << (C) N M P << (D) P M N <<(2) 二元函数(,)f x y 在点00(,)x y 处两个偏导数00(,)x f x y '、00(,)y f x y '存在是(,)f x y 在该点连续的 ( ) (A) 充分条件但非必要条件 (B) 必要条件而非充分条件(C) 充分必要条件 (D) 既非充分条件又非必要条件 (3) 设常数0λ>,且级数21n n a ∞=∑收敛,则级数1(1)nn ∞=-∑ ( )(A) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 收敛性与λ有关 (4) 2tan (1cos )lim2ln(12)(1)x x a x b x c x d e -→+-=-+-,其中220a c +≠,则必有 ( )(A) 4b d = (B) 4b d =- (C) 4a c = (D) 4a c =-(5) 已知向量组1234αααα、、、线性无关,则向量组 ( ) (A) 12αα+、23αα+、34αα+、41αα+线性无关(B) 12αα-、23αα-、34αα-、41αα-线性无关(C) 12αα+、23αα+、34αα+、41αα-线性无关 (D) 12αα+、23αα+、34αα-、41αα-线性无关三、(本题共3小题, 每小题5分,满分15分.)(1)设2221cos(),cos(),t x t y t t udu ⎧=⎪⎨=-⎪⎩⎰ 求dy dx 、22d y dx在t =. (2) 将函数111()ln arctan 412x f x x x x +=+--展开成x 的幂级数. (3) 求sin 22sin dxx x +⎰.四、(本题满分6分)计算曲面积分2222Sxdydz z dxdyx y z +++⎰⎰,其中S 是由曲面222x y R +=及两平面,z R = (0)z R R =->所围成立体表面的外侧.五、(本题满分9分)设()f x 具有二阶连续导数,(0)0,(0)1f f '==,且2[()()][()]0xy x y f x y dx f x x y dy '+-++=为一全微分方程,求()f x 及此全微分方程的通解.六、(本题满分8分)设()f x 在点0x =的某一领域内具有二阶连续导数,且0()lim0x f x x→=,证明级数 11()n f n∞=∑绝对收敛.七、(本题满分6分)已知点A 与B 的直角坐标分别为(1,0,0)与(0,1,1).线段AB 绕z 轴旋转一周所围成的旋转曲面为S .求由S 及两平面0,1z z ==所围成的立体体积.八、(本题满分8分)设四元线性齐次方程组()I 为12240,0,x x x x +=⎧⎨-=⎩ 又已知某线性齐次方程组()II 的通解为12(0,1,10)(1,2,2,1)k k +-.(1) 求线性方程组()I 的基础解系;(2) 问线性方程组()I 和()II 是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.九、(本题满分6分)设A 为n 阶非零方阵,*A 是A 的伴随矩阵,TA 是A 的转置矩阵,当*TA A =时,证明||0A ≠.十、填空题(本题共2小题, 每小题3分,满分6分.)(1) 已知A 、B 两个事件满足条件()()P AB P AB =,且()P A p =,则()P B =__________. (2) 设相互独立的两个随机变量X 、Y 具有同一分布律,且X 的分布律为则随机变量{}max ,Z X Y =的分布律为_______.十一、(本题满分6分)已知随机变量(,)X Y 服从二维正态分布,且X 和Y 分别服从正态分布2(1,3)N 和2(0,4)N ,X 与Y 的相关系数12XY ρ=-,设32X YZ =+,(1) 求Z 的数学期望()E Z 和方差()D Z ; (2) 求X 与Z 的相关系数XZ ρ; (3) 问X 与Z 是否相互独立?为什么?1994年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5个小题,每小题3分,满分15分.) (1)【答案】16【解析】原式变形后为“0”型的极限未定式,又分子分母在点0处导数都存在,所以连续应用两次洛必达法则,有原式20cos (sin )limsin x x x x x x →-=300sin lim cos lim x x x xx x→→-=⋅ 2001cos sin 1lim lim 366x x x x x x →→-===. (由重要极限0sin lim 1x x x→=) (2)【答案】240x y +-=【解析】所求平面的法向量n 为平行于所给曲面在点(1,2,0)处法线方向的方向向量l ,取n l =,又平面过已知点(1,2,0)M .已知平面的法向量(,,)A B C 和过已知点000(,,)x y z 可唯一确定这个平面:000()()()0A x x B y y C z z -+-+-=.因点(1,2,0)在曲面(,,)0F x y z =上.曲面方程(,,)23z F x y z z e xy =-+-. 曲面在该点的法向量{}{}{}(1,2,0)(1,2,0),,2,2,14,2,022,1,0z F F F n y x e x y z ⎧⎫∂∂∂ ==-==⎨⎬∂∂∂⎩⎭, 故切平面方程为 2(1)(2)0x y -+-=, 即 240x y +-=.(3)【答案】22eπ【解析】由于混合偏导数在连续条件下与求导次序无关,为了简化运算,所以本题可以先求u y ∂∂,再求u x y ⎛⎫∂∂ ⎪∂∂⎝⎭. 2cos x u x xe y y y-∂=-∂, ()2221112(2,)(2,)2cos xy x x u u uxe x x y y x x y x ππππ-===⎛⎫∂∂∂∂∂===-⎪ ⎪∂∂∂∂∂∂∂⎝⎭2222((1)cos )0xx e x x e πππ-==--+=.(可边代值边计算,这样可以简化运算量.)【相关知识点】多元复合函数求导法则:如果函数(,),(,)u x y v x y ϕψ==都在点(,)x y 具有对x 及对y 的偏导数,函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数((,),(,))z f x y x y ϕψ=在点(,)x y 的两个偏导数存在,且有12z z u z v u v f f x u x v x x x∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂; 12z z u z v u v f f y u y v y y y∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂. (4)【答案】42211()4R a bπ+ 【解析】很显然,根据此题的特征用极坐标变换来计算: 原式2222222322220000cos sin cos sin RR d r rdr d r dr ab a b ππθθθθθθ⎛⎫⎛⎫=+=+⋅ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰. 注意:22220cos sin d d ππθθθθπ==⎰⎰,则 原式4422221111144R R a b a b ππ⎛⎫⎛⎫=+⋅=+⎪ ⎪⎝⎭⎝⎭. (5)【答案】111123232133312n -⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦【解析】由矩阵乘法有结合律,注意 1111,,23233Tβα⎡⎤⎛⎫⎢⎥== ⎪⎢⎥⎝⎭⎢⎥⎣⎦是一个数,而 11123111221,,2123333312TA αβ⎡⎤⎢⎥⎡⎤⎢⎥⎛⎫⎢⎥⎢⎥=== ⎪⎢⎥⎢⎥⎝⎭⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦,(是一个三阶矩阵)于是,()()()()()()()n T T T T T T T TA αβαβαβαβαβαβαβαβ==11111232332133312n T n αβ--⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦.二、选择题(本题共5个小题,每小题3分,满分15分.)(1)【答案】(D)【解析】对于关于原点对称的区间上的积分,应该关注被积函数的奇偶性.由对称区间上奇偶函数积分的性质,被积函数是奇函数,积分区间关于原点对称,则积分为0,故0M =,且由定积分的性质,如果在区间[],a b 上,被积函数()0f x ≥,则()0 ()baf x dx a b ≥<⎰.所以 4202cos 0N xdx π=>⎰, 4202cos 0P xdx N π=-=-<⎰.因而 P M N <<,应选(D). (2)【答案】(D)【解析】(,)f x y 在点00(,)x y 连续不能保证(,)f x y 在点00(,)x y 存在偏导数00(,),x f x y '00(,)y f x y '.反之,(,)f x y 在点00(,)x y 存在这两个偏导数00(,),x f x y '00(,)y f x y '也不能保证(,)f x y 在点00(,)x y 连续,因此应选(D).二元函数(,)f x y 在点00(,)x y 处两个偏导数存在和在点00(,)x y 处连续并没有相关性. (3)【答案】(C)【解析】考查取绝对值后的级数.因2222111112222n n a a n n λ≤+<++, (第一个不等式是由2210,0,()2a b ab a b ≥≥≤+得到的.) 又21nn a ∞=∑收敛,2112n n ∞= ∑收敛,(此为p 级数:11p n n∞=∑当1p >时收敛;当1p ≤时发散.)所以2211122n n a n ∞=+∑收敛,由比较判别法,得1n ∞=收敛.故原级数绝对收敛,因此选(C). (4)【答案】(D)【解析】因为 22211cos (),1()2x xx o x e x o x --=-=,故 tan (1cos )(0)a x b x ax a +-≠,2ln(12)(1)2 (0)x c x d e cx c --+--≠,因此,原式左边0lim222x ax acx c→====--原式右边,4a c ⇒=-.当0,0a c =≠时,极限为0;当0,0a c ≠=时,极限为∞,均与题设矛盾,应选(D). 【相关知识点】1.无穷小的比较:设在同一个极限过程中,(),()x x αβ为无穷小且存在极限 ()lim.()x l x αβ= (1) 若0,l ≠称(),()x x αβ在该极限过程中为同阶无穷小; (2) 若1,l =称(),()x x αβ在该极限过程中为等价无穷小,记为()()x x αβ;(3) 若0,l =称在该极限过程中()x α是()x β的高阶无穷小,记为()()()x o x αβ=.若()lim()x x αβ不存在(不为∞),称(),()x x αβ不可比较. 2. 无穷小量的性质:当0x x →时,(),()x x αβ为无穷小,则()()()()(())x x x x o x αβαββ⇔=+.(5)【答案】(C)【解析】这一类题目应当用观察法.若不易用观察法时可转为计算行列式. (A):由于()()()()122334410αααααααα+-+++-+=,所以(A)线性相关. (B):由于()()()()122334410αααααααα-+-+-+-=,所以(B)线性相关.对于(C),实验几组数据不能得到0时,应立即计算由α的系数构成的行列式,即100111002001100011-=≠,由行列式不为0,知道(C)线性无关.故应选(C). 当然,在处理(C)有困难时,也可来看(D),由12233441()()()()0αααααααα+-++-+-=,知(D)线性相关,于是用排除法可确定选(C). 【相关知识点】12,,,s ααα线性相关的充分必要条件是存在某(1,2,,)i i s α=可以由111,,,,i i s αααα-+线性表出.12,,,s ααα线性无关的充分必要条件是任意一个(1,2,,)i i s α=均不能由111,,,,i i s αααα-+线性表出.三、(本题共3小题, 每小题5分,满分15分.)(1)【解析】dy dy dt dy dx dtdt dx dt dx =⋅=222221cos 2sin cos 22(0),2sin t t t t t t t y t t t x t t--⋅'===>'- 同理 2()12sin x txx t y y x t t''''=='-, 代入参数值t =则xt y '=, xxt y ''=【相关知识点】1.复合函数求导法则:如果()u g x =在点x 可导,而()y f x =在点()u g x =可导,则复合函数[]()y f g x =在点x 可导,且其导数为()()dy f u g x dx ''=⋅ 或 dy dy du dx du dx=⋅. 2.对积分上限的函数的求导公式:若()()()()t t F t f x dx βα=⎰,()t α,()t β均一阶可导,则[][]()()()()()F t t f t t f t ββαα'''=⋅-⋅.(2)【解析】111()ln(1)ln(1)arctan 442f x x x x x =+--+-. 先求()f x '的展开式.将()f x 微分后,可得简单的展开式,再积分即得原函数的幂级数展开.所以由2(1)(1)(1)(1)1,2!!nn x x x x n ααααααα---++=+++++(11)x -<<该级数在端点1x =±处的收敛性,视α而定.特别地,当1α=-时,有2311(1),1n n x x x x x =-+-++-++ (11)x -<< 2311,1n x x x x x =++++++- (11)x -<< 得 2221111111111()114141212121f x x x x x x '=++-=+-+-+-+ 44401111(||1)1n n n n x x x x ∞∞===-=-=<-∑∑, 积分,由牛顿-莱布尼茨公式得4140011()(0)() (||1)41n xx nn n x f x f f x dx t dt x n +∞∞=='=+==<+∑∑⎰⎰.(3)【解析】方法1:利用三角函数的二倍角公式sin 22sin cos ααα=⋅,并利用换元积分,结合拆项法求积分,得sin 22sin 2sin (cos 1)dx dxx x x x =++⎰⎰22sin 11cos 2sin (cos 1)2(1)(1)xdx x u du x x u u ==-+-+⎰⎰ (22sin 1cos x x =-)221(1)(1)1112()4(1)(1)811(1)u u du du u u u u u ++-=-=-++-+-++⎰⎰12ln |1|ln |1|8(1)u u C u ⎡⎤=--+++⎢⎥+⎣⎦()()12ln 1cos ln 1cos 81cos x x C x ⎡⎤=--+++⎢⎥+⎣⎦, 其中C 为任意常数.方法2:换元cos x u =后,有原式22sin 12sin (cos 1)2sin (cos 1)2(1)(1)dx xdx dux x x x u u ===-++-+⎰⎰⎰.用待定系数法将被积函数分解:221(1)(1)11(1)A B Du u u u u =++-+-++ 22()(2)()(1)(1)A B u A D u A B D u u -+-+++=-+, 01120,421A B A D A B D A B D -=⎧⎪⇒-=⇒===⎨⎪++=⎩.于是,2111212()ln 1ln 1811(1)81du u u C u u u u ⎡⎤-++=--+++⎢⎥-+++⎣⎦⎰原式= ()()12ln 1cos ln 1cos 81cos x x C x ⎡⎤=--+++⎢⎥+⎣⎦.四、(本题满分6分)【解析】求第二类曲面积分的基本方法:套公式将第二类曲面积分化为第一类曲面积分,再化为二重积分,或用高斯公式转化为求相应的三重积分或简单的曲面积分.这里曲面块的个数不多,积分项也不多,某些积分取零值,如若∑垂直yOz 平面,则0Pdydz ∑=⎰⎰.化为二重积分时要选择投影平面,注意利用对称性与奇偶性.先把积分化简后利用高斯公式也很方便的.方法1:注意 22220Sz dxdy x y z =++⎰⎰,(因为S 关于xy 平面对称,被积函数关于z 轴对称) 所以 222SxdydzI x y z =++⎰⎰. S 由上下底圆及圆柱面组成.分别记为123,,S S S . 12,S S 与平面yOz 垂直⇒122222220s s xdydz xdydzx y z x y z ==++++⎰⎰⎰⎰. 在3S 上将222x y R +=代入被积表达式⇒322s xdydzI R z =+⎰⎰. 3S 在yz 平面上投影区域为:,yz D R y R R z R -≤≤-≤≤,在3S 上,x =,3S 关于yz 平面对称,被积函数对x 为奇函数,可以推出22002222yzR R D dz I R z==⨯⨯ +⎰⎰ 2201arctan 42Rz R R R R ππ1=8⋅⋅=.方法2:S 是封闭曲面,它围成的区域记为Ω,记 22SxdydzI R z =+⎰⎰. 再用高斯公式得 222222()1R R D z x dxdyI dV dV dz x R z R z R z -ΩΩ∂⎛⎫=== ⎪∂+++⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰ 222201122RRdz R R z ππ==+⎰(先一后二的求三重积分方法)其中()D z 是圆域:222x y R +≤.【相关知识点】高斯公式:设空间闭区域Ω是由分片光滑的闭曲面∑所围成,函数(,,)P x y z 、(,,)Q x y z 、(,,)R x y z 在Ω上具有一阶连续偏导数,则有,P Q R dv Pdydz Qdzdx Rdxdy x y z Ω∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰或()cos cos cos ,P Q R dv P Q R dS x y z αβγΩ∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰这里∑是Ω的整个边界曲面的外侧,cos α、cos β、cos γ是∑在点(,,)x y z 处的法向量的方向余弦.上述两个公式叫做高斯公式.五、(本题满分9分)【解析】由全微分方程的条件,有2[()()][()]xy x y f x y f x x y y x∂∂'+-=+∂∂, 即 22()()2x xy f x f x xy ''+-=+,亦即 2()()f x f x x ''+=.因而是初值问题 200,0,1,x x y y x y y ==''⎧+=⎪⎨'==⎪⎩ 的解,此方程为常系数二阶线性非齐次方程,对应的齐次方程的特征方程为210r +=的根为1,2r i =±,原方程右端202x x e x =⋅中的0λ=,不同于两个特征根,所以方程有特解形如 2Y Ax Bx C =++. 代入方程可求得 1,0,2A B C ===,则特解为22x -.由题给(0)0,(0)1f f '==,解得 2()2cos sin 2f x x x x =++-.()f x 的解析式代入原方程,则有22[2(2cos sin )][22sin cos ]0xy y x x y dx x y x x x dy +-+++-+=.先用凑微分法求左端微分式的原函数:222211()2()(2sin cos )(2sin cos )022y dx x dy ydx xdy yd x x x x dy +++----=, 221(2(cos 2sin ))02d x y xy y x x ++-=. 其通解为 2212(cos 2sin )2x y xy y x x C ++-= 其中C 为任意常数.【相关知识点】1.二阶线性非齐次方程解的结构:设*()y x 是二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解.()Y x 是与之对应的齐次方程 ()()0y P x y Q x y '''++=的通解,则*()()y Y x y x =+是非齐次方程的通解.2. 二阶常系数线性齐次方程通解的求解方法:对于求解二阶常系数线性齐次方程的通解()Y x ,可用特征方程法求解:即()()0y P x y Q x y '''++=中的()P x 、()Q x 均是常数,方程变为0y py qy '''++=.其特征方程写为20r pr q ++=,在复数域内解出两个特征根12,r r ;分三种情况:(1) 两个不相等的实数根12,r r ,则通解为1212;rx r x y C eC e =+(2) 两个相等的实数根12r r =,则通解为()112;rxy C C x e =+(3) 一对共轭复根1,2r i αβ=±,则通解为()12cos sin .xy e C x C x αββ=+其中12,C C 为常数.3.对于求解二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解*()y x ,可用待定系数法,有结论如下:如果()(),xm f x P x e λ=则二阶常系数线性非齐次方程具有形如*()()kxm y x x Q x e λ= 的特解,其中()m Q x 是与()m P x 相同次数的多项式,而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的重根依次取0、1或2.如果()[()cos ()sin ]x l n f x e P x x P x x λωω=+,则二阶常系数非齐次线性微分方程()()()y p x y q x y f x '''++=的特解可设为*(1)(2)[()cos ()sin ]k x m m y x e R x x R x x λωω=+,其中(1)()m R x 与(2)()m R x 是m 次多项式,{}max ,m l n =,而k 按i λω+(或i λω-)不是特征方程的根、或是特征方程的单根依次取为0或1.六、(本题满分8分) 【解析】0()lim0x f x x→=表明0x →时()f x 是比x 高阶的无穷小,若能进一步确定()f x 是x 的p 阶或高于p 阶的无穷小,1,p >从而1()f n 也是1n的p 阶或高于p 阶的无穷小,这就证明了级数11()n f n∞=∑绝对收敛. 方法一:由0()lim0x f x x→=及()f x 的连续性得知(0)0,(0)0f f '==,再由()f x 在点0x =的某一领域内具有二阶连续导数以及洛必达法则,20()lim x f x x →为“00”型的极限未定式,又分子分母在点0处导数都存在,连续运用两次洛必达法则,有2000()()()1lim lim lim (0)222x x x f x f x f x f x x →→→'''''=== 2()1lim(0)2x f x f x →''⇒=. 由函数极限与数列极限的关系 21()1lim (0)12n f nf n →+∞''⇒=.因211n n ∞=∑收敛11()n f n ∞=⇒∑收敛,即 11()n f n ∞=∑绝对收敛.方法二:由0()lim0x f x x→=得知(0)0,(0)0f f '==,可用泰勒公式来实现估计.()f x 在点0x =有泰勒公式:2211()(0)(0)()()(01,[,])22f x f f x f x x f x x x θθθδδ'''''= ++=<<∈- 因()f x 在点0x =的某一领域内具有二阶连续导数,0,()f x δ''⇒∃>在[,]x δδ∈-有界,即0M ∃>,有|()|,[,]f x M x δδ''≤∈- 2211()(),[,]22f x f x x Mx x θδδ''⇒=≤∈-. 对此0δ>,,N n N ∃>时,211110()2f M n n nδ<<⇒≤. 又211n n ∞=∑收敛11()n f n ∞=⇒∑收敛,即 11()n f n ∞=∑绝对收敛.【相关知识点】正项级数的比较判别法:设1n n u ∞=∑和1n n v ∞=∑都是正项级数,且lim,nn nv A u →∞=则⑴ 当0A <<+∞时,1nn u∞=∑和1nn v∞=∑同时收敛或同时发散;⑵ 当0A =时,若1nn u∞=∑收敛,则1nn v∞=∑收敛;若1nn v∞=∑发散,则1nn u∞=∑发散;⑶ 当A =+∞时,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散.七、(本题满分6分)【解析】方法1:用定积分.设高度为z 处的截面z D 的面积为()S z ,则所求体积1()V S z dz =⎰.,A B 所在的直线的方向向量为()()01,10,101,1,1---=-,且过A 点,所以,A B 所在的直线方程为1111x y z-== - 或 1x z y z =-⎧⎨=⎩. 截面z D 是个圆形,其半径的平方 22222(1)R x y z z =+=-+,则面积222()[(1)]S z R z z ππ==-+,由此 1220[(1)]V z z dz π=-+⎰()120122z z dz π=-+⎰123023z z z π⎛⎫=-+ ⎪⎝⎭23π=. 方法2:用三重积分.2123V dV d dz ππθΩ===⎰⎰⎰⎰⎰,或者 1122[(1)]zD V dV dz d z z dz σπΩ===-+⎰⎰⎰⎰⎰⎰⎰ ()120122z z dz π=-+⎰123023z z z π⎛⎫=-+ ⎪⎝⎭23π=.八、(本题满分8分)【解析】(1)由已知,()I 的系数矩阵,11000101A ⎡⎤=⎢⎥-⎣⎦.由于()2,n r A -=所以解空间的维数是2.取34,x x 为自由变量,分别令()()()34,1,0,0,1x x =,求出0Ax =的解. 故()I 的基础解系可取为 (0,0,1,0),(1,1,0,1)-. (2)方程组()I 和()II 有非零公共解.将()II 的通解 1221231242,2,2,x k x k k x k k x k =-=+=+=代入方程组()I ,则有212121222020k k k k k k k k -++=⎧⇒=-⎨+-=⎩. 那么当120k k =-≠时,向量121(0,1,1,0)(1,2,2,1)(1,1,1,1)k k k +-=---是()I 与()II 的非零公共解.九、(本题满分6分)【解析】证法一:由于 *TA A =,根据*A 的定义有(,1,2,,)ij ij A a i j n =∀=L ,其中ij A 是行列式||A 中ij a 的代数余子式.由于0A ≠,不妨设0ij a ≠,那么2222112212||0ij i i i i in in i i in A a A a A a A a a a a =+++=+++≥>L L ,故 ||0A ≠.证法二:(反证法)若||0A =,则*TAA AA ==||0A E =.设A 的行向量为(1,2,,)i i n α=L ,则 222120T i i i i in a a a αα=+++=L (1,2,,)i n =L .于是 12(,,,)0i i i in a a a α==L (1,2,,)i n =L . 进而有0A =,这与A 是非零矩阵相矛盾.故||0A ≠.十、填空题(本题共2小题, 每小题3分,满分6分.)(1)【解析】利用随机事件的概率运算性质进行化简.由概率的基本公式(广义加法公式),有()()1()P AB P A B P A B ==-U U1[()()()]P A P B P AB =-+- 1()()()P A P B P AB =--+.因题目已知 ()()P AB P AB =,故有()()1P A P B +=,()1()1P B P A p =-=-.(2)【解析】由于X 、Y 相互独立且同分布,只能取0、1两个数值,易见随机变量{}max ,Z X Y =只取0与1两个可能的值,且{}{}{}0max ,0P Z P X Y ==={}{}{}10,0004P X Y P X P Y =====⋅==, {}{}31104P Z P Z ==-==. 所以随机变量{}max ,Z X Y =的分布律为:十一、(本题满分6分)【解析】此题的第一小问是求数学期望()E Z 和方差()D Z ,是个常规问题;(2)求相关系数XZ ρ,关键是计算X 与Z 的协方差;(3)考查相关系数为零与相互独立是否等价.(1) 由2(1,3)XN ,2(0,4)Y N ,知()1,()9,()0,()16E X D X E Y D Y ====.由数学期望和方差的性质:()()()E aX bY c aE X bE Y c ++=++,22()()()2Cov(,)D aX bY c a D X b D Y ab X Y ++=++,其中,,a b c 为常数.得 111,323EZ EX EY =+= 111Cov(,)943DZ DX DY X Y =++111916943XY ρ=⨯+⨯+115()34 3.32=+⨯-⨯⨯=(2) 因为11Cov(,)Cov(,)32X Z X X Y =+11Cov(,)Cov(,)32X X X Y =+2113(6)032=⋅+-= 所以 0XZ ρ==.(3) 由于(,)X Y 服从二维正态分布,则其线性组合构成的随机变量也服从二维正态分布,而32X YZ =+,0X X Y =+,故X 和Z 都是其线性组合,则(,)X Z 服从二维正态分布,根据 0XZ ρ==,所以X 与Z 是相互独立的.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1994 年数学四试题 一、填空题
2 x+ x
∫ (1) −2 2 + x2 dx =_____________.
(2)
已知
f
′(x0
)
=
−1,则
lim
x→ 0
x f ( x0 − 2x) −
= __________. f ( x0 − x)
(3) 设方程 exy + y2 = cos x 确定 y 为 x 的函数,则 dy = _________. dx
⎪⎩−5, X > 12.
问平均内径 µ 取何值时,销售一个零件的平均利润最大?
(A) 事件 A和 B 互不相容 (C) 事件 A和 B 互不独立
(B) 事件 A和 B 相互对立 (D) 事件 A和 B 相互独立
三、求极限 lim[ x − x2 ln(1 + 1 )].
x →∞
x
四、已知 f (x, y) = x2 arctan y − y2 arctan x ,求 ∂2 f .
(1) 常数 a 及切点 ( x0, y0) ;
(2) 两曲线与 x 轴围成的平面图形的面积 S .
∫ 八、设函数
f (x) 有导数,且 f (0) =0, F( x) =
xt n−1 f
0
(x n
−t
n)dt
,证明
F (x)
lim
x →0
x2n
=
1 2n
f
′(0) .
九、设α1,α2,α3是齐次线性方程组 Ax = 0的一个基础解系.
证明α1 +α2 ,α2 +α3 , α3 +α1 也是该方程组的一个基础解系.
⎡0 0 1 ⎤
十、设
A
=
⎢ ⎢
x
1
y⎥⎥ 有三个线性无关的特征向量,求 x 和 y 应满足的条件.
⎢⎣1 0 0 ⎥⎦
十一、假设随机变量
X
的概率密度为
f
(x)
=
⎧2x,
⎨ ⎩
0,
0 < x < 1, 其他.
现在对 X 进行 n 次独立重复观测,以Vn表示观测值不大于 0.1 的次数.试求随机
变量 Vn 的概率分布 .
十二、假设由自动线加工的某种零件的内径 X (毫米)服从正态分布 N (µ,1) ,内径
小于 10 或大于 12 的为不合格品,其余为合格品,销售每件合格品获利,销售每件 不合格品亏损.已知销售利润 T (单位:元)与销售零件的内径 X 有如下关系:
⎧−1, X < 10, T = ⎪⎨20, 10 ≤ X ≤ 12,
二、选择题
1
(1) 曲线 y = ex2 arctan
x2 + x +1 的渐近线有
(x + 1)(x − 2)
()
(A) 1 条
(B) 2 条
(C) 3 条
(D) 4 条
(2)
设函数
f
(x)在闭区间 [a,b] 上连续,且
f
x
(x) > 0 ,则方程 ∫a
x
f(t)dt +∫b
1 dt =0 f (t)
在开区间 (a, b) 内的根有 ( )
(A) 0 个
(B) 1 个
(C) 2 个
(3) 设 A、 B 都是 n 阶非零矩阵,且 AB = 0,则 A和 B 的秩(
(A) 必有一个等于零
(B) 都小于 n
(C) 一个小于 n ,一个等于 n
(D) 都等于 n
(D) 无穷多个 )
(4) 设有向量组 α1 = (1, −1, 2, 4),α2 = (0,3,1, 2), α3 =(3, 0, 7,14), α4 = (1,−2, 2, 0),
x
y ∂x∂y
∫ 五、已知 sin x 是函数 f (x) 的一个原函数,求 x3 f ′(x)dx . x
六、某养殖场养两种鱼,若甲种鱼放养 x (万尾),乙种鱼放养 y (万尾),收获时两
种鱼的收获量分别为 (3−αx − β y)x 和 (4− β x− 2α y) y (α > β > 0) ,求使产鱼总 量最大的放养数. 七、已知曲线 y = a x(a > 0) 与曲线 y = ln x 在点 ( x0, y0) 处有公共切线,求:
α5 = (2,1, 5,10), 则该向量组的极大线性无关组是( )
(A) α1 ,α2 ,α3
(B) α1 ,α2 ,α4
(C) α1 ,α2 ,α5
(D) α1 ,α2 ,αA) <1, 0 < P( B) <1, P( A| B) + P( A| B) =1 ,则( )
⎡0
⎢⎢0 (4) 设 A = ⎢⋮
⎢⎢0
a0 1
⋯0⎤
0
a2

0
⎥ ⎥
⋮ 0
⋮ 0

⋮⎥ an−1⎥⎥
,
其中 ai

0,i
=
1, 2,⋯ ,n,则
A−1
= ______.
⎢⎣an 0 0 ⋯ 0 ⎥⎦
(5) 假设一批产品中一、二、三等品各占 60%、30%、10%,从中随意取出一件,
结果不是三等品,则取到的是一等品的概率为__________.
相关文档
最新文档