求函数极限的八种方法

合集下载

高数中求极限的16种方法

高数中求极限的16种方法

高数中求极限的16种方法——好东西首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)二、求极限的方法如下:1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。

全部熟记(x趋近无穷的时候还原成无穷小)2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0注意:罗比达法则分为3种情况0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!)E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则,最大项除分子分母!!!!!!!!!!!5.无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6.夹逼定理(主要对付数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

求函数的极限值的方法总结

求函数的极限值的方法总结

求函数的极限值的方法总结在数学中,函数的极限值是指函数在某一特定区间上取得的最大值或最小值。

求解函数的极限值是数学分析中经常遇到的问题之一,下面将总结一些常用的方法来求解函数的极限值。

一、导数法对于给定的函数,可以通过求导数来判断函数在某一点附近的单调性和极值情况。

导数表示了函数在某一点处的变化率,通过求导数可以获得函数的驻点(导数为零的点)以及极值点。

一般来说,当函数从单调递增变为单调递减时,即导数由正变负,函数的极大值出现;当函数从单调递减变为单调递增时,即导数由负变正,函数的极小值出现。

所以,通过求导数可以找到函数的极值点,然后通过比较极值点和边界点的函数值,即可确定函数的极限值。

二、二阶导数法在某些特殊情况下,求函数的二阶导数可以提供更加准确的信息来确定函数的极限值。

当函数的二阶导数恒为正时,表示函数处于凸型,此时函数可能有极小值但没有极大值;当函数的二阶导数恒为负时,表示函数处于凹型,此时函数可能有极大值但没有极小值。

通过对二阶导数进行符号判断,可以帮助确定函数的极限值。

三、极限值存在性判定对于一些特殊的函数,通过判定函数的极限值是否存在可以快速确定函数的极限值。

当函数在某一区间上连续且存在最大最小值时,函数的极限值也会存在。

因此,可以通过求解函数在区间端点的函数值,并比较这些函数值来确定函数的极限值。

四、拉格朗日乘数法拉格朗日乘数法是一种通过引入约束条件来求解极值的方法,特别适用于求解带有约束条件的函数的极值。

通过构造拉格朗日函数,将原始问题转化为无约束的极值问题,然后通过求解极值问题来确定函数的极限值。

五、切线法切线法是一种直观而有效的求解函数极值的方法。

通过观察函数图像,在极值附近找到一条切线,使得切线与函数图像的接触点的函数值最大或最小。

通过近似切线与函数图像的接触点,可以获得函数的极值的近似值。

六、数值法数值法是一种通过计算机进行数值逼近的方法来求解函数的极限值。

通过将函数离散化,并在离散点上进行计算,可以得到函数在这些离散点上的函数值,然后通过比较这些函数值来确定函数的极限值。

极限的求解方法总结

极限的求解方法总结

千里之行,始于足下。

极限的求解方法总结极限是数学中一个重要的概念,它描述了函数在某一点或某一趋势中的趋于无穷的行为。

在求解极限问题时,我们可以使用多种方法来获得精确的结果。

下面将对常见的求解极限问题的方法进行总结。

1. 代入法:代入法是求解极限问题中最简洁和直接的方法。

它适用于大多数简洁的极限问题,只需要将极限中的变量代入函数中,计算得到的函数值就是极限的结果。

但是需要留意的是,代入法只适用于那些在给定点四周有定义的函数。

2. 夹逼准则:夹逼准则常用于求解函数极限时。

该方法的基本思想是通过构造两个函数,一个渐渐趋近于极限,并且一个渐渐远离于极限。

若两个函数的极限都存在且相等,则可以得到原函数的极限。

3. 分式分解与有理化:对于一些简单的极限问题,我们可以通过将分式进行分解,或利用有理化的方法简化问题。

分式分解的方法适用于含有多项式的极限问题,将分式拆解成更简洁的形式,然后进行计算。

有理化的方法则适用于含有根式的极限问题,通过去除分母中的根式,将问题转化为含有多项式的形式。

4. 泰勒级数开放:泰勒级数开放是一种将函数用无穷级数形式进行表示的方法。

通过该方法,我们可以将一个简单的函数开放成一个无穷级数,然后利用级数的性质来求解极限问题。

泰勒级数开放的方法适用于对于某一点四周的函数近似求极限的问题。

第1页/共2页锲而不舍,金石可镂。

5. 极限性质和公式:在求解简单的极限问题时,我们可以利用极限的性质和公式来简化计算。

例如,极限的和差性、积性、倒数性、幂等性等公式都可以用来简化极限问题的计算。

6. L'Hospital法则:L'Hospital法则是一种通过对函数的导数进行操作来求解极限问题的方法。

该方法适用于极限的形式为0/0或无穷/无穷的问题。

依据L'Hospital法则,假如函数f(x)和g(x)在给定点四周连续可导,并且f(x)/g(x)的极限存在,那么f(x)/g(x)的极限等于f'(x)/g'(x)的极限。

求函数极限的八种方法

求函数极限的八种方法

求函数极限的八种方法
常见的求函数极限的方法有八种:
1.定义域内求函数极限:在函数的定义域内直接计算函数值,即可得到函数的极限值。

2.不存在极限:若函数在某一点的极限不存在,则在该点处函数没有极限。

3.左右极限存在且相等:若函数在某一点处的左右极限都存在且相等,则在该点处函数的
极限等于左右极限的值。

4.不等式法求极限:通过不等式将函数的上下界确定,从而确定函数的极限值。

5.函数的单调性求极限:通过函数的单调性可以确定函数在某一点处的极限值。

6.函数连续性求极限:通过函数的连续性可以确定函数在某一点处的极限值。

7.函数导数存在求极限:通过函数的导数存在性可以确定函数在某一点处的极限值。

8.无穷小量法求极限:通过考虑无穷小量对函数值的影响,可以确定函数在某一点处的极
限值。

这八种方法都可以用来求解函数的极限,但是在实际应用中,不同的方法适用于不同的情况。

例如,当函数的定义域内有足够的数据时,定义域内求函数极限是最直接的方法;如果函数在某一点处的左右极限都存在且相等,则可以直接使用左右极限的值作为函数在该点处的极限值;如果函数有明显的单调性或连续性,则可以利用这些性质来求解函数的极限;如果函数的导数存在,则可以利用导数的性质来求解函数的极限。

总之,求函数极限有许多方法,选择哪种方法取决于函数的性质和特点。

在实际应用中,应该根据函数的具体情况选择适当的方法,以得到最准确的结果。

求极限的几种方法

求极限的几种方法

求极限的几种方法在数学分析中,求极限是一种重要的技巧和方法,用于研究数列、函数的收敛性和特性。

对于求极限的方法,可以总结为以下几类:代入法、夹逼法、等价无穷小代换法、洛必达法则、泰勒展开精确到n次、换元法、分数分解法、递归关系法等。

一、代入法:代入法是求函数极限的最基本的方法之一,适用于绝大多数最简单的函数。

通过将自变量值代入函数中,得到具体的函数值,看函数的值是否有限并趋于确定的值,如果有限且趋于确定的值,则可以认为该函数极限存在,并等于该确定的值。

当然,代入法只是一种相对简单和直观的方法,并不适用于复杂函数的极限计算。

二、夹逼法:夹逼法也被称为迫敛法或挤压定理,适用于数列或函数的极限计算。

当数列或函数存在上、下界,且上、下界的极限都为所求极限时,可以通过夹逼法来证明所求极限的存在并求得。

三、等价无穷小代换法:等价无穷小代换法是一种常用的得到极限的方法之一,将一个复杂的极限问题转化成一个简单的等价无穷小求极限问题。

其主要思想是将原函数与理论已知的函数进行比较,找出它们之间的等价关系,进而得到原函数的极限。

常用的等价无穷小有:指数、对数、三角函数等。

四、洛必达法则:洛必达法则是求函数极限的常用方法之一,主要用于求解0/0型或∞/∞型的极限。

其基本思想是将函数的极限转化成求导数的极限。

通常情况下,通过不断使用洛必达法则,可以通过求多次极限最终得到函数的极限。

五、泰勒展开精确到n次:对于有限次求导的函数,可以使用泰勒展开式来近似估计函数极限。

泰勒展开式是用若干项之和来逼近一个函数的方法,通过将函数展开成多项式形式,可以在一定程度上表示出原函数的性质。

通常情况下,使用泰勒展开精确到n次可以更加准确地求得函数的极限。

六、换元法:换元法也称为特殊换元法,通过选择合适的换元变量,将原来复杂的极限问题转化成更加简单的极限计算问题。

常见的换元方法有:取代法、正弦替换法、余弦替换法、平方根替换法等。

七、分数分解法:分数分解法是一种常用的计算复杂函数极限的方法,通过将极限问题利用分式相除的形式,将复杂的极限表达式化简成多个简单函数之比的极限表达式,进而进行求解。

求极限的方法总结

求极限的方法总结

求极限的几种常用方法一、 约去零因子求极限例如求极限limx→1x4-1x-1,本例中当x→1时,x-1→0,表明x 与1无限接近,但x≠1,所以x-1这一因子可以约去。

二、 分子分母同除求极限求极限limx→∞x3-x23x3+1∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。

limx→∞x3-x23x3+1=limx→∞1-1x3+1x3=13三、 分子(母)有理化求极限例:求极限limx→∞(x3+3-x2+1)分子或分母有理化求极限,是通过有理化化去无理式。

()()()()131313lim 13lim 22222222+++++++-+=+-++∞→+∞→x x x x x x xx x x 0132lim 22=+++=+∞→x x x例:求极限limx→01+tanx -1+sinxx330sin 1tan 1lim x x x x +-+→=()x x x x x x sin 1tan 1sin tan lim 30+++-→ =300sin tan lim sin 1tan 11lim x x x x x x x -+++→→=41sin tan lim 2130=-→x x x x 本题除了使用分子有理化方法外,及时分离极限式中的非零因子是解题的关键。

四、 应用两个重要极限求极限(2)limx→∞(1+1x)x=limx→0(1+x)1x=e在这一类型题中,一般也不能直接运用公式,需要恒等变形进行化简后才可以利用公式。

例:求极限limx→∞(x+1x-1)x第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑1+1x,最后凑指数部分。

limx→∞(x+1x-1)x=limx→∞(1+2x-1)x=limx→∞[1+1x-122x-1(1+ 2x-1)12]2=e2五、利用无穷小量的性质求极限无穷小量的性质:无穷小量与有界量的乘积还是无穷小量。

这种方法可以处理一个函数极限不存在但有界,和另一个函数的极限是零的极限的乘积的问题。

求极限的13种方法

求极限的13种方法

求极限的13种方法求极限的方法有很多种,以下列举了常见的13种方法和技巧,以帮助解决各种极限问题。

1.代入法:将极限中的变量代入表达式中,简化计算。

这通常适用于简单的多项式函数。

2.夹逼定理:当一个函数夹在两个趋向于相同极限的函数之间时,函数的极限也趋向于相同的值。

3.式子分解:通过将复杂的函数分解成更简单的部分,可以更容易地计算极限。

4.求导法则:使用导数的性质和规则来计算函数的极限。

这适用于涉及导数的函数。

5.递归关系:如果一个函数的递归关系式成立,可以使用递归关系来计算函数的极限。

6.级数展开:将函数展开成无穷级数的形式,可以使用级数的性质来计算函数的极限。

7.泰勒级数:对于可微的函数,可以通过使用泰勒级数来近似计算函数的极限。

8. 洛必达法则:如果一个函数的极限形式是$\frac{0}{0}$或$\frac{\infty}{\infty}$,可以使用洛必达法则来计算极限。

该法则涉及对分子分母同时求导的操作。

9.极限存在性证明:通过证明一个函数在一些点上的左极限和右极限存在且相等,可以证明函数在该点上的极限存在。

10.收敛性证明:对于一个序列极限,可以通过证明序列是有界且单调递增或单调递减的来证明其极限存在。

11.极限值的判断:根据函数的性质,可以判断函数在一些点上的极限是多少。

12.替换法:通过将变量替换为一个新的变量,可以使函数更容易计算极限。

13.反证法:通过假设极限不存在或不等于一些特定值,来推导出矛盾的结论,从而证明极限存在或等于一些特定值。

这些方法并非完整的极限求解技巧列表,但是它们是最常见和基本的方法。

在实际问题中,可能需要结合使用多种方法来求解复杂的极限。

16种求极限方法及一般题型解题思路分享

16种求极限方法及一般题型解题思路分享

16种求极限方法及一般题型解题思路分享求极限是微积分中的重要内容之一,常见于各种数学和工程科学中。

为了求出一个函数在某一点的极限,需要使用合适的方法。

下面介绍16种常用的求极限方法,以及一般题型解题思路。

一、直接代入法对于多项式函数和分式函数,可以直接将自变量代入函数表达式中计算极限。

例如,求函数 f(x) = 2x + 3 在 x = 1 处的极限,直接代入即可得到结果。

二、分解因式法对于分式函数,可以通过分解因式来简化计算,特别适用于分子和分母都是多项式的情况。

例如,求函数 f(x) = (x^2 - 1)/(x - 1) 在 x = 1 处的极限,可以将分子进行因式分解,得到 f(x) = (x - 1)(x + 1)/(x - 1),然后约去公因式,即可得到结果。

三、夹逼定理夹逼定理用于解决复杂函数在某一点处的极限问题。

如果一个函数在某一点附近被两个其他函数夹住,并且这两个函数的极限都存在且相等,那么原函数的极限也存在且等于这个相等的极限。

例如,对于函数 f(x) = x*sin(1/x),当 x 趋近于 0 时,f(x) 被两个函数 g(x) = x 和 h(x) = -x 夹住,且 g(x) 和 h(x) 的极限都是 0,所以 f(x) 的极限也是 0。

四、变量代换法第1页/共5页对于一些特殊的函数,可以通过变量代换来简化计算。

例如,对于函数f(x) = sin(1/√x),当 x 趋近于 0 时,可以将√x = t,那么 x = t^2,且当 x 趋近于 0 时,t 也趋近于 0,所以求 f(x) 在 x = 0 处的极限可以转化为求 g(t) = sin(1/t) 在 t = 0 处的极限。

五、洛必达法则洛必达法则是一种常用的求函数极限的方法,特别适用于形如 0/0 或∞/∞的不定式。

根据洛必达法则,如果一个不定式的分子和分母的极限都存在且为 0 或∞,那么可以分别对分子和分母求导后再次求极限,直到找到一个不是 0/0 或∞/∞的形式。

高数中求极限的16种方法

高数中求极限的16种方法

千里之行,始于足下。

高数中求极限的16种方法在高等数学中,求极限是一个格外重要的技巧和考点。

为了解决各种极限问题,数学家们总结出了很多方法和技巧。

以下是高数中求极限的16种方法:1.代换法:将极限中的变量进行代换,使其变成简洁计算的形式。

2.夹逼准则:当函数处于两个已知函数之间时,可以通过比较已知函数的极限来确定未知函数的极限。

3.无穷小量比较法:比较两个函数的无穷小量的大小,以确定它们的极限。

4.利用函数性质:利用函数的对称性、奇偶性等性质来计算极限。

5.利用恒等变形:将极限式子进行恒等变形,以将其转化为简洁计算的形式。

6.利用泰勒开放:将函数开放成无穷级数的形式,以求出极限。

7.利用洛必达法则:对于某些不定型的极限,可以利用洛必达法则将其转化为可计算的形式。

8.利用级数或累次求和:将极限式子转化为级数或累次求和的形式,以求出极限。

9.利用积分计算:将极限式子进行积分计算,以求出极限。

10.利用微分方程:将极限问题转化为求解微分方程的问题,以求出极限。

第1页/共2页锲而不舍,金石可镂。

11.利用积素等价:将极限式子进行积素等价,以求出极限。

12.利用无穷增减变异法:通过凑出一个等价变形,将极限问题转化为比较某些函数值的大小。

13.利用不等式:通过找到合适的不等式,对函数进行估量,以求得极限。

14.利用递推公式:对于递归定义的函数,可以通过递推公式求出极限。

15.利用导数性质:利用函数的导数性质,对极限进行计算。

16.利用对数和指数函数的性质:利用对数和指数函数的特性,求出极限。

除了上述方法外,还有很多其他的方法和技巧,可以依据具体问题来选择使用。

这些方法和技巧的使用需要机敏把握,通过大量的练习和思考,可以在求解极限问题中得到娴熟应用。

求极限的几种方法

求极限的几种方法

一、求函数极限的方法 1、运用极限的定义 例: 用极限定义证明:1223lim 22=-+-→x x x x 证: 由244122322-+-=--+-x x x x x x()2222-=--=x x x0>∀ε取εδ= 则当δ<-<20x 时,就有ε<--+-12232x x x由函数极限δε-定义有:1223lim 22=-+-→x x x x 2、利用极限的四则运算性质若A x f x x =→)(lim 0B x g x x =→)(lim 0(I)[]=±→)()(lim 0x g x f x x )(lim 0x f x x →±B A x g x x ±=→)(lim 0(II)[]B A x g x f x g x f x x x x x x ⋅=⋅=⋅→→→)(lim )(lim )()(lim 0(III)若 B ≠0 则:BAx g x f x g x f x x x x x x ==→→→)(lim )(lim )()(lim 000(IV )cA x f c x f c x x x x =⋅=⋅→→)(lim )(lim 0(c 为常数)上述性质对于时也同样成立-∞→+∞→∞→x x x ,,例:求 453lim 22+++→x x x x解: 453lim 22+++→x x x x =254252322=++⋅+3、约去零因式(此法适用于型时0,0x x →例: 求121672016lim 23232+++----→x x x x x x x解:原式=()())12102(65)2062(103lim2232232+++++--+---→x x x x xx x x x x x=)65)(2()103)(2(lim 222+++--+-→x x x x x x x=)65()103(lim 222++---→x x x x x =)3)(2()2)(5(lim 2+++--→x x x x x=2lim-→x 735-=+-x x4、通分法(适用于∞-∞型) 例: 求 )2144(lim 22xx x ---→解: 原式=)2()2()2(4lim2x x x x -⋅++-→=)2)(2()2(lim2x x x x -+-→=4121lim2=+→x x5、利用无穷小量性质法(特别是利用无穷小量与有界量之乘积仍为无穷小量的性质) 设函数f(x)、g(x) 满足:(I )0)(lim 0=→x f x x(II)M x g ≤)( (M 为正整数)则:0)()(lim 0=→x f x g x x例: 求 xx x 1sinlim⋅→ 解: 由 0lim=→x x 而 11sin≤x故 原式 =01sinlim=⋅→xx x6、利用无穷小量与无穷大量的关系。

函数极限的十种求法

函数极限的十种求法

函数极限的十种求法函数极限是高等数学中的一个重要概念,在数学分析、微积分、实变函数、复变函数等领域均有应用。

函数极限的求法有很多种,以下将介绍其中的十种方法。

一、代数方法利用现有函数的代数性质,根据极限的定义求解。

例如,对于函数 f(x)=2x+1-x,当 x 趋近于 1 时,有:lim f(x) = lim (2x+1-x) = lim x+1 = 2x→1 x→1 x→1 x→1二、夹逼定理夹逼定理也称为夹逼准则或夹逼定律。

当f(x)≤g(x)≤h(x),且lim f(x)=lim h(x)=l 时,有 lim g(x)=l。

例如,对于函数 f(x)=sin(x)/x 和 g(x)=1,当 x 趋近于 0 时,有:-1 ≤sin(x)/x ≤ 1lim -1 ≤ lim sin(x)/x ≤ lim 1x→0 x→0 x→0 x→0lim sin(x)/x = 1三、单调有界准则单调有界准则也称收敛定理。

当一个数列同时满足单调有界性质,即数列单调递增或单调递减且有上(下)界时,该数列必定收敛。

对于函数而言,只需要证明其单调有界的性质,即可用该准则求出其极限值。

例如,对于函数 f(x)=sin(x)/x,当 x 趋近于 0 时,此时 f(x) 没有极限值,但是根据单调有界准则,可以求得其极限是 1。

四、洛必达法则洛必达法则是一种有效的求函数极限值的方法,通常用在0/0形式的极限中。

对于连续可导的函数 f(x) 和 g(x),若 lim f(x)/g(x)存在,则有:lim f(x) lim f'(x)lim ——— = lim ———x→a g(x) x→a g'(x)其中“lim” 表示极限符号,f'(x) 表示 f(x) 的导数,g'(x) 表示 g(x) 的导数。

如果上式右边的极限存在,那么左边的极限也存在,并且二者相等。

例如,对于函数 f(x)=x^2+2x 和 g(x)=x+1,当 x 趋近于 1 时,有:lim (x^2+2x) lim (2x+2)lim ———— = lim ———— = 4x→1 x+1 x+1五、泰勒公式泰勒公式是求解函数在某点处的极限值的有效方法之一。

求极限的方法总结

求极限的方法总结

求极限的几种常用方法一、 约去零因子求极限例如求极限limx→1x 4−1x−1,本例中当x →1时,x −1→0,表明x 与1无限接近,但x ≠1,所以x −1这一因子可以约去。

二、 分子分母同除求极限求极限lim x→∞x 3−x 23x 3+1∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。

lim x→∞x 3−x 23x 3+1=lim x→∞1−1x 3+1x3=13三、 分子(母)有理化求极限例:求极限lim x→∞(√x 3+3−√x 2+1)分子或分母有理化求极限,是通过有理化化去无理式。

()()()()131313lim13lim22222222+++++++-+=+-++∞→+∞→x xx xx xxxx x132lim22=+++=+∞→x x x例:求极限limx→0√1+tanx−√1+sinxx 330sin 1tan 1lim x x x x +-+→=()x x x x x x sin 1tan 1sin tan lim30+++-→ =300sin tan lim sin 1tan 11limx x x x x x x -+++→→=41sin tan lim 2130=-→x x x x 本题除了使用分子有理化方法外,及时分离极限式中的非零因子是解题的关键。

四、 应用两个重要极限求极限两个重要的极限(1)limx→0sinx x=1(2)lim x→∞(1+1x)x=lim x→0(1+x)1x=e在这一类型题中,一般也不能直接运用公式,需要恒等变形进行化简后才可以利用公式。

例:求极限lim x→∞(x+1x−1)x第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑1+1x ,最后凑指数部分。

lim x→∞(x +1x −1)x =lim x→∞(1+2x −1)x =lim x→∞[(1+1x −12)2x−1(1+2x −1)12]2=e 2五、 利用无穷小量的性质求极限无穷小量的性质:无穷小量与有界量的乘积还是无穷小量。

求函数极限的方法和技巧

求函数极限的方法和技巧

函数极限的方法和技巧求函数极限的方法1、运用极限的定义 例: 用极限定义证明:1223lim 22=-+-→x x x x 证: 由244122322-+-=--+-x x x x x x ()2222-=--=x x x0>∀ε 取εδ= 则当δ<-<20x 时,就有ε<--+-12232x x x由函数极限δε-定义有:1223lim 22=-+-→x x x x 2、利用极限的四则运算性质若 A x f x x =→)(lim 0B x g x x =→)(lim 0(I)[]=±→)()(lim 0x g x f x x )(lim 0x f x x →±B A x g x x ±=→)(lim 0(II)[]B A x g x f x g x f x x x x x x ⋅=⋅=⋅→→→)(lim )(lim )()(lim 0(III)若 B ≠0 则:BAx g x f x g x f x x x x x x ==→→→)(lim )(lim )()(lim 000(IV )cA x f c x f c x x x x =⋅=⋅→→)(lim )(lim 0(c 为常数)上述性质对于时也同样成立-∞→+∞→∞→x x x ,,例:求 453lim 22+++→x x x x解: 453lim 22+++→x x x x =254252322=++⋅+3、约去零因式(此法适用于型时0,0x x →)例: 求121672016lim 23232+++----→x x x x x x x解:原式=()())12102(65)2062(103lim2232232+++++--+---→x x x x xx x x x xx =)65)(2()103)(2(lim 222+++--+-→x x x x x x x=)65()103(lim 222++---→x x x x x =)3)(2()2)(5(lim 2+++--→x x x x x =2lim -→x 735-=+-x x4、通分法(适用于∞-∞型) 例: 求 )2144(lim 22xx x ---→解: 原式=)2()2()2(4lim2x x x x -⋅++-→=)2)(2()2(lim2x x x x -+-→=4121lim2=+→x x5、利用无穷小量性质法(特别是利用无穷小量与有界量之乘积仍为无穷小量的性质)设函数f(x)、g(x) 满足: (I )0)(lim 0=→x f x x(II) M x g ≤)( (M 为正整数) 则:0)()(lim 0=→x f x g x x例: 求 xx x 1sinlim 0⋅→ 解: 由 0lim 0=→x x 而 11sin≤x故 原式 =01sinlim 0=⋅→xx x6、利用无穷小量与无穷大量的关系。

求极限方法总结

求极限方法总结

求极限方法总结求极限是微积分的重要内容之一,需要通过特定的方法来计算。

下面对常见的求极限方法进行总结。

1. 代入法:将极限中的变量直接代入函数中,求出函数在该点处的函数值,作为极限的近似值。

这种方法适用于简单的极限。

2. 分子有理化法:当极限的分子、分母含有根式时,可以通过有理化的方法,将根式分子分母有理化,然后进行化简,化简后求极限。

这种方法适用于分子分母含有根式的情况。

3. 夹逼法:当函数的极限不存在或难以直接求出时,可以通过构造一个上界函数和下界函数,使得它们的极限都存在且相等,且夹住函数的极限。

然后通过夹逼原理,求出该极限。

这种方法适用于极限存在且难以直接求出的情况。

4. L'Hopital法则:当极限为形式为“∞/∞”、“0/0”、“1^∞”、“0^0”等无穷型与无穷型的不定式时,可以通过求导的方法,将其转化为可直接计算的形式。

这种方法适用于无穷型与无穷型的不定式。

5. 推广L'Hopital法则:当极限为形式为“∞*0”、“∞-∞”等不定型不定式时,可以通过引入参数,将其转化为可直接计算的形式。

这种方法适用于不定型不定式。

6. 换元法:当极限为特殊函数形式时,可以通过换元的方法,将其转化为可直接计算的形式。

比如将极限中的自变量换成1/自变量或sin(1/自变量)等函数形式。

这种方法适用于特殊函数形式的极限。

7. Taylor展开法:当极限为函数值在某点的展开式时,可以通过泰勒展开的方法,将其转化为可直接计算的形式。

这种方法适用于函数值在某点的展开式。

8. 综合运用:对于复杂的极限问题,可以综合运用以上方法,逐步化简。

先运用代入法、分子有理化法,再运用夹逼法、L'Hopital法则等,逐步逼近极限的值。

在实际应用中,根据题目的要求和已知条件,选择适合的方法来求解极限。

对于复杂的问题,可以采用逐步化简的方法,一步步逼近极限的值。

同时,对于无法通过常见方法求解的特殊问题,还可以借助数值计算的方法,利用计算机进行近似计算。

关于极限及若干种计算方法

关于极限及若干种计算方法

关于极限的若干种计算方法本文将极限的几种计算方法介绍如下: 一 代入求值法:这种方法只适用于在0x 点连续的函数求极限.例1、计算3121lim 1x x x x →-+-解:321()11x x F x x x -+==+在处有定义且连续, 例2、计算:22ln lim sin x x x x →2222ln 2ln 24ln :lim sin sin 2sin 2x x x x →==解二 倒数法:这种方法是利用无穷小量与无穷大量的关系来处理的.例3、2232lim 531n n n n n →∞-++-解:因为分子分母的极限均不存在,故不能运用商的极限运算法那么,可先将分子分母分别除以2n ,然后取极限.于是例4、求2143lim54x x x x →--+ 解:因为分母极限为零,分子极限不为零,故先考虑1()f x 的极限. 因为 21540lim0431x x x x →-+==- 所以 2143lim54x x x x →-=∞-+〔无穷小量的倒数是无穷大量.〕 例5、计算111lim[]1335(21)(21)n n n →∞+++⋅⋅-+解:由于极限的运算法那么不适用于无限和的情形,故本题宜先求和,再求极限. 因为1111()(21)(21)22121k k k k =--+-+所以 111lim[]1335(21)(21)n n n →∞+++⋅⋅-+利用倒数法可得如下结论:三 化积约分法:有些函数()f x 在0x x =处无定义,这时不能用代入求值法求极限,但当0x x =时,()f x 的极限存在与否与()f x 在点0x 处是否有定义无关,所以常将()f x 先作适当变形,如分解因式约去极限为零的分母等,转化为在0x x =处有定义的新函数()g x ,再用代入求值法.例6、计算3113lim()11x x x →--++ 解:因为()f x 在1x =-处无定义,先将分式通分,化成最简分式后再求极限. 例7、233lim9x xx→--求 四 因式有理化法:这种方法实质上同化积约分法一样,如果()f x 的表达式是一个无理式,而求极限的四那么运算又不能适用,可先将分子或分母有理化,再求极限.例8、计算limx →- 解:()f x 在8x =-处无定义,故先将分子、分母同乘以它们有理化因式,再取极限.例9、计算x →∞解:当x →∞时,每项的极限均不存在,所以不能用差的极限运算法那么,为此先设法有理化.所以,x →∞五 公式法:运用两个重要极限:0sin 1lim1,lim(1)x x x x e x x →→∞=+=例10、计算30sin lim x tgx xx→- 例11、求lim()1xx x x→∞+例12、计算32lim(1)xx x →∞+六 变量代换法:这是在计算较复杂的函数极限时常用的技巧,通过适当的变量代换,可使复杂的极限问题转化为较简单的极限问题.例13、求2221lim()1x x x x →∞+-例14、求1lim(1)2x x x tg→π- 七 夹挤法:此法利用极限准那么Ⅰ即夹挤定理. 例15、计算01lim sinx x x→ 例16、21n n →∞+++计算八 单调有界法:用单调有界原理判断极限存在,再求其极限. 例17(0).a >的极限解:显然,此数列是单调上升的,下面证明数列有上界11.,1,1,k x x =<事实上设,1.n n x 由数学归纳法:对任何自然数恒有成立所以此数列有上界.例18、设0a >,数列{}n x 满足条件:1110,()()2n n nax x x n N x +>=+∈,计算lim n n x →∞.解:显然对任何n ,都有0n x >,故{}n x 有下界,由于11()2n n n a x x x +=+≥=所以2111()0{}22n n n n n n n na x a x x x x x x x +--=+-=⋅<所以是单调递减的,故{}n x 的极限存在.设11lim ,()2n n n n nax A x x x +→∞==+对等式两边取极限,得 注:例17与例18这一类数列,应在数列极限存在的前提下才能使用此种方法.九 用洛必塔法那么求极限:当极限为待定型时,可用洛必塔法那么求之.例19求201cos 0lim()0x x x →-型例20、求ln lim ()(0)x x x α→+∞∞α>∞型解:11ln 1lim lim lim 0x x x x x x x x αα-α→+∞→+∞→+∞===αα其它还有00,,0,1,∞⋅∞∞-∞∞均为待定型.这五种类型都可转化为00∞∞型或型 例21求0lim ln (0)(0)nx x x n +→>⋅∞型解:10001lim ln lim ln lim lim 010n n n x x x nx x x x x x nx nx ++++--→→→-====-- 例22、求2lim(sec )()x x tgx π→-∞-∞解:2221sin cos lim(sec )limlim 0cos sin x x x x xx tgx x x πππ→→→---===-例23、求0lim ()xx ox o +→ 例24、求2lim ()(1)x x arctgx ∞→+∞π型解:2ln()2lim ()lim x arctgx xx x arctgx e π→+∞→+∞=π221212ln()21limlim11x x arctgx arctgx x xxee→+∞→+∞π⋅⋅π+π-==例25、求1ln 0lim()()xx ctgx +→∞型 本方法可解:〔1〕求20cos limxx t dt x→⎰〔2〕22220()limxt x x t e dt e dt→∞⎰⎰十 积分法:有些极限用定积分定义计算较为简便. 例26、求12(1)lim(sin sin sin)n n nn nn→∞ππ-π++ 例27、求limn n→∞例28、求111lim()122n n n n→∞+++++例29、求2222111lim ()122nn n n n →∞+++++例30、求1(2nn n →∞+解:原式=11lim1n nn →∞+++十一 利用等价无穷小求极限:例31、利用等价无穷小数极限求4303lim 1(sin )2x x x x →+解:3311(sin )()22x x 4343033limlim 81(sin )()22x x x x x x x x →∞→++∴== 例如当0,sin tan ln(1)arcsin arctan x x xxx xx →+时十二 利用级数收敛的必要条件求极限: 由正项级数的达朗贝尔判别法,级数!1(2)!n n n a ∞=∑收敛,再由级数收敛的必要条件知 十三 利用泰勒公式求极限。

求函数极限的方法和技巧

求函数极限的方法和技巧

求函数极限的方法和技巧在数学剖析和微积分学中 , 极限的观点据有主要的地位并以各样形式出现而贯串所有内容 , 所以掌握好极限的求解方法是学习数学剖析和微积分的重点一环。

本文就对于求函数极限的方法和技巧作一个比较全面的归纳、综合 , 力争在方法的正确灵巧运用方面 , 对读者有所助益。

一、求函数极限的方法 1、运用极限的定义:例 : 用极限制义证明: lim x 2 3x 2 1x 2x 2x23 x 2x24 x 42证 : 由1x 2x2x2x x 220 ,取,则当 0x 2时 , 就有 x23x 2 1x 2由函数极限定义有 :x 2 3x 2 1。

limx2x 22、利用极限的四则运算性质:若 lim f ( x) A lim g (x) Bx x 0x x 0(I) limf (x) g( x)lim f ( x)lim g( x)A Bx x 0xx 0x x 0lim f ( x ) g x )lim f x ) lim g x ) A B(II)x x 0x x 0x x 0f (x) lim f ( x)A(III)若 B ≠0则: limx x 0g (x)lim g( x) Bx x 0xx 0( IV ) lim c f ( x)c lim f ( x) cA( c 为常数)xx 0x x 0上述性质对于 x, x, x时也相同建立例:求 lim x23x 5x 2 x 4解 :lim x 2 3x 5 223255x 4 = 242x 23、约去零因式(此法合用于xx 0时 , 0型 )x3x 2例 :求 lim16x 20x2 x37 x 2 16 x 12解 : 原式 = lim x 33x 210x ( 2x 2 6x 20)x2x 3 5x 26x (2x 210x 12)=lim (x 2)( x 2 3x 10)x 2 (x2)( x 25x 6)= lim(x23x 10)= lim ( x 5)( x 2)= lim x57x 2 (x2 5x 6) x 2 ( x 2)( x 3) x2x 3 4、通分法(合用于型)例 :求 lim (44 2 1 )x 2 x 2x解 :原式 = lim 4 (2 x)= lim ( 2 x) 1 1 x) (2 x)( 2 = lim4x2 ( 2 x) x 2 (2 x) x 2 2 x 5、利用无量小量性质法(特别是利用无量小量和有界量之乘积仍为无量小量的性质)设函数 f(x) 、 g(x) 知足:( I ) lim f (x)0 (II)g( x) M (M 为正整数 )x x 0则: lim( ) f( x ) 0x x 0 g x例 : 求 lim x1sinx 0x解: 由lim x 0 而x 06、利用无量小量和无量大批的关系。

16种求极限的方法总结

16种求极限的方法总结

说起考研数学,你觉得最难的是哪个?据调查,数学中求极限的问题一直困扰着广大考生,2015年的考研马上就要到了,海文考研专门为大家梳理了16种求极限的方法,相信肯定对你有帮助。

解决极限的方法如下:1、等价无穷小的转化只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。

全部熟记(x趋近无穷的时候还原成无穷小2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。

首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。

洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。

对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。

3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x 展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。

4、无穷大比上无穷大面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母!!!看上去复杂,处理很简单!5、无穷小于有界函数无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。

求极限的方法与技巧

求极限的方法与技巧

求极限的方法与技巧求极限是微积分中的基本问题,它在解决实际问题中起着关键作用。

在高等数学中,求极限的方法有多种。

下面将介绍一些常见的求极限的方法与技巧。

一、代入法:当极限中存在一些点,可以通过直接将该点代入函数中来求得极限。

二、化简法:当题目给出的函数比较复杂时,可以通过化简来求极限。

比如,利用封闭函数性质、基本运算法则等进行化简。

三、夹逼法:夹逼法也叫夹定理法,是一种常用的求极限方法。

其基本思想是给出两个函数,找到一个中间函数,使得中间函数的极限等于极限所求的值。

通过夹定理可得:若函数f(x)、g(x)、h(x)满足f(x)≤g(x)≤h(x),当x趋于其中一值a时,f(x)和h(x)的极限都等于L,则g(x)的极限也等于L。

四、间断分解法:当函数在其中一点存在间断时,可以将函数分解开来,单独求解每一段函数的极限,然后再进行综合得出最后的极限。

五、无穷小量替换法:当给出的函数极限不好求解时,可以通过将其替换为一个相等的无穷小量来简化计算。

比如,将极限中的分子或分母替换为无穷小量,或者将函数替换为等价的无穷小量。

六、洛必达法则:洛必达法则是求解一些形如$\displaystyle\frac{0}{0}$ 或$\displaystyle\frac{\pm\infty }{\pm\infty }$型极限的常用方法。

其基本思想是将函数的极限转化为分数的形式,然后对分子和分母同时求导,最后将得到的导数值带入原函数中。

如果在求导之后依然得到一个$\displaystyle\frac{0}{0}$形式的极限,可以继续应用洛必达法则,直到得到非$\displaystyle\frac{0}{0}$形式的极限。

七、级数展开法:对于一些无穷级数的极限求解,可以通过级数展开来计算。

例如,利用泰勒级数展开,将函数展开成无穷级数的形式,然后利用级数的性质进行计算。

八、极限换元法:有时候对于一些较为复杂的函数,可以通过对变量进行换元简化问题。

求函数极限的方法介绍

求函数极限的方法介绍

求函数极限的方法介绍15601极限理论是整个微极分学的基础,下面介绍求函数极限的方法。

一.定义法例求分析:可以看出,自变量x从大于和小于2的方向趋近于2,函数f(x)=2x-1的函数值都无限接近于常数3。

所以极限值是3.解: =3二.单侧极限法例设函数f(x)=解:三.ε–δ语言法例求极限,其中x R .分析:当x→x时,f(x)=的函数值无限接近于。

解: = =,则当0 .即因此,取四。

极限的四则运算法则法例求解:=五.去零法例求分析:当x时,分母的极限为零(实际上,分子的极限也为零),不能直接用商的极限的运算法则,注意到分子与分母有公因式x-2(这是引起分子与分母当x 时极限都为零x时,x可以约去这个不等于零的公因式,再求极限。

的原因)。

而当解:六.分子(或分母)有理化法例求x时,分子,分母的极限都为零,不能直接用商的极限的运算法则。

分析:当但是函数在x=3的去心邻域内有定义,在此范围内,可以通过分子有理化,即分子与分母都乘以使分子成为有理式,再求出极限值。

解:七。

变量代换法例求极限解:令即当x 3时,u 0.且x 3时,u 0.将u=代入函数得由复合函数求极限的运算法则,有八.等价无穷小替换法例求x→1时,sin(x-1)∽(x-1),而与它自身等价。

所以解:当九.两边夹法(夹逼准则)(a>0)例求解:令有a=有 < ,亦即有0< <因为由夹逼准则,由此得十.单调有界法例求极限解:先考虑x取正整数n并且趋近于+的情形。

设证明数列单调增加并且有界,由二项式定理,有类似的比较与的展开式,可以看出除了前两项外,的每一项小于的对应项,并且还多了最后的一项,其值大于零,因此 <,这就说明了数列是单调增加的。

另外,还可以看出的展开式中各项括号内的数都小于1,于是就有故数列是有界的。

所以数列的极限存在。

可以证明这个极限值为e,即借助于以上结果.可以证明,当x取实数且x或x时,函数极限都存在且都等于e,即证明:先证x的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求函数极限的八种方法
下面我们来讲解一下具体求极限方法
1.利用函数的连续性求函数的极限(直接带入即可)
如果是初等函数,且点在的定义区间内,那么,因此计算当时的极限,只要计算对应的函数值就可以了。

2.利用有理化分子或分母求函数的极限
a.若含有,一般利用去根号
b.若含有,一般利用,去根号
3.利用两个重要极限求函数的极限
()
4.利用无穷小的性质求函数的极限
性质1:有界函数与无穷小的乘积是无穷小
性质2:常数与无穷小的乘积是无穷小
性质3:有限个无穷小相加、相减及相乘仍旧无穷小
5.分段函数的极限
求分段函数的极限的充要条件是:
6.利用抓大头准则求函数的极限
其中为非负整数.
7.利用洛必达法则求函数的极限
(可向,转换)
对于未定式“ ”型,“ ”型的极限计算,洛必达法则是比较简单快捷的方法。

8.利用定积分的定义求函数的极限利用公式:
以上就求函数极限的方法。

相关文档
最新文档