2018年黄冈中学预录数学试题 含解析
黄冈市2018年初中毕业生学业水平高中阶段学校招生数学试题含解析
黄冈市2018年初中毕业生学业水平高中阶段学校招生数学试题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项中,有且只有一个答案是正确的) 1. -32的相反数是 A. -23 B. -32 C.32 D. 23 2. 下列运算结果正确的是A. 3a 3·2a 2=6a 6B. (-2a)2= -4a 2C. tan45°=22D. cos30°=233.函数y= 11-+x x 中自变量x 的取值范围是A .x ≥-1且x ≠1 B.x ≥-1 C. x ≠1 D. -1≤x <14.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为A.50°B.70°C.75°D.80°(第4题图)5.如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=A.2B.3C.4D.236.当a ≤x ≤a+1时,函数y=x 2-2x+1的最小值为1,则a 的值为A.-1B.2C.0或2D.-1或2第Ⅱ卷(非选择题 共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16 800 000用科学计数法表示为______________________.8.因式分解:x 3-9x=___________________________.9.化简(2-1)0+(21)-2-9+327 =________________________. 10.若a-a 1=6,则a 2+a21值为_______________________. 11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=___________.(第11题图)12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_________________cm (杯壁厚度不计).(第13题图)14. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax 2+bx+1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题 (本题共10题,满分78分)15.(本题满分5分)求满足不等式组: x-3(x-2)≤8 的所有整数解.21x-1<3 -23x16.(本题满分6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子。
2018年湖北省黄冈市中考数学试卷含答案解析(Word版)
黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数 学 试 题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项中,有且只有一个答案是正确的) 1. -32的相反数是A. -23B. -32C.32 D.232. 下列运算结果正确的是A. 3a 3·2a 2=6a 6B. (-2a)2= -4a 2C. tan45°=22 D. cos30°=233.函数y= 11-+x x 中自变量x 的取值范围是A .x ≥-1且x ≠1 B.x ≥-1 C. x ≠1 D. -1≤x <14.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为A.50°B.70°C.75°D.80°(第4题图)5.如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=A.2B.3C.4D.236.当a ≤x ≤a+1时,函数y=x 2-2x+1的最小值为1,则a 的值为 A.-1 B.2 C.0或2 D.-1或2第Ⅱ卷(非选择题 共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16 800 000用科学计数法表示为______________________. 8.因式分解:x 3-9x=___________________________. 9.化简(2-1)0+(21)-2-9+327 =________________________. 10.若a-a1=6,则a 2+a21值为_______________________. 11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=___________.(第11题图)12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_________________cm (杯壁厚度不计).(第13题图)14. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax 2+bx+1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题 (本题共10题,满分78分)15.(本题满分5分)求满足不等式组: x-3(x-2)≤8 的所有整数解.21x-1<3 -23x16.(本题满分6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子。
黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数学试题
黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数 学 试 题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项中,有且只有一个答案是正确的) 1. -32的相反数是A. -23B. -32C.32 D.232. 下列运算结果正确的是A. 3a 3·2a 2=6a 6B. (-2a)2= -4a 2C. tan45°=22 D. cos30°=233.函数y= 11-+x x 中自变量x 的取值范围是A .x ≥-1且x ≠1 B.x ≥-1 C. x ≠1 D. -1≤x <14.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B=60°,∠C =25°,则∠BAD 为A.50°B.70°C.75°D.80°(第4题图)5.如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=A.2B.3C.4D.23(第5题图)6.当a ≤x ≤a+1时,函数y=x 2-2x+1的最小值为1,则a 的值为 A.-1 B.2 C.0或2 D.-1或2第Ⅱ卷(非选择题 共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16 800 000用科学计数法表示为______________________. 8.因式分解:x 3-9x=___________________________. 9.化简(2-1)0+(21)-2-9+327 =________________________. 10.若a-a1=6,则a 2+a21值为_______________________. 11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=___________.(第11题图)12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_________________cm (杯壁厚度不计).(第13题图)14. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax 2+bx+1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题 (本题共10题,满分78分)15.(本题满分5分)求满足不等式组: x-3(x-2)≤8 的所有整数解.21x-1<3 -23x16.(本题满分6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子。
2018年湖北省黄冈市中考数学试卷(含详细答案)
数学试卷 第1页(共30页) 数学试卷 第2页(共30页)绝密★启用前湖北省黄冈市2018年初中毕业会考、高级中等学校招生考试数 学(考试时间120分钟 满分120分)注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题每小题选出答案后,请用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题卷上无效。
3.非选择题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。
答在试题卷上无效。
4.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷(选择题 共18分)一、选择题(本大题共6小题,每小题3分,共18分.在每小题给出的4个选项中,只有一项是符合题目要求的)1.23-的相反数是( ) A .32-B .23-C .23D .322.下列运算结果正确的是( )A .326=623a a aB . 22(2)=4a a -- C . 452=2tan ︒ D . 303=2cos ︒ 3.函数11y x x =+-中自变量x 的取值范围是( )A .11x x ≥-≠且B .1x ≥-C .1x ≠D .11x -≤<4.如图,在ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为( )A .50°B .70°C .75°D .80°5.如图,在Rt △ABC 中,∠ACB =90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD =2,CE =5,则CD =( )A .2B .3C .4D .23 6.当1a x a ≤≤+时,函数221y x x =-+的最小值为1,则a 的值为( )A .1-B .2C .0或2D .1-或2第Ⅱ卷(非选择题 共102分)二、填空题(本大题共8小题,每小题3分,共24分.把答案填写在题中的横线上) 7.实数16800 000用科学计数法表示为 . 8.因式分解:39x x -== .9.化简0231(21)()9272--+-+-= .10.若16a a -=,则221a a+值为 .11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB =60°,弦AD 平分∠CAB ,若AD =6,则AC = .12.一个三角形的两边长分别为3和6,第三边长是方程210210x x -+=的根,则三角形的周长为 . 13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为 cm (杯壁厚度不计). 14.在-4,-2,1,2四个数中,随机取两个数分别作为函数21y ax bx =++中a ,b 的值, 则该二次函数图象恰好经过第一、二、四象限的概率为 .三、解答题(本大题共10小题,共78分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分5分)求满足不等式组:()133281322x x x x ---≤⎧<-⎪⎨⎪⎩的所有整数解.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共30页)数学试卷 第4页(共30页)16.(本小题满分6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子.A 型粽子28元/千克,B 型粽子24元/千克.若B 型粽子的数量比A 型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.17.(本小题满分8分)央视“经典咏流传”开播以来受到社会广泛关注.我市某校就“中华文化我传承——地方戏曲进校园”的喜爱情况进行了随机调查,对收集的信息进行统计,绘制了下面两副尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:图中A 表示“很喜欢”,B 表示“喜欢”,C 表示“一般”,D 表示“不喜欢”. (1)被调查的总人数是_____________人,扇形统计图中C 部分所对应的扇形圆心角的度数为_______.(2)补全条形统计图;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A 类有__________人;(4)在抽取的A 类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率. 18.(本小题满分7分)如图,AD 是⊙O 的直径,AB 为⊙O 的弦,OP ⊥AD ,OP 与AB 的延长线交于点P ,过B 点的切线交OP 于点C .(1)求证:∠CBP =∠ADB .(2)若OA =2,AB =1,求线段BP 的长.19.(本小题满分6分)如图,反比例函数ky x(x >0)过点A (3,4),直线AC 与x 轴交于点C (6,0),过点C 作x 轴的垂线BC 交反比例函数图象于点B .(1)求k 的值与B 点的坐标;(2)在平面内有点D ,使得以A,B ,C ,D 四点为顶点的四边形为平行四边形,试写出符合条件的所有D 点的坐标.20.(本小题满分8分)如图,在口ABCD中,分别以边BC,CD作等腰△BC F,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证:△ABF≌△EDA;(2)延长AB与CF相交于G,若AF⊥AE,求证BF⊥BC.21.(本小题满分7分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.22.(本小题满分8分)已知直线l:1y kx=+与抛物线24y x x=-(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线两交点为A,B,O为原点,当2k=时,求△OAB的面积.23.(本小题满分9分)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:()(418,20)912,y x x xx x x=+≤≤⎧⎨+≤≤⎩为整数为整数,每件产品的利润z(元)与月份x(月)的关系如下表:(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?24.(本题满分14分)如图,在直角坐标系XOY中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,∠C=120°,边长OA=8,点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边AB—BC—CO以每秒2个单位长的速度作匀速运动.过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动.(1)当t=2时,求线段PQ的长;(2)求t为何值时,点P与N重合;(3)设△APN的面积为S,求S与t的函数关系式及t的取值范围x 123456789101112z191817161514131211101010数学试卷第5页(共30页)数学试卷第6页(共30页)数学试卷第7页(共30页)数学试卷第8页(共30页)5 / 15湖北省黄冈市2018年初中毕业会考、高级中等学校招生考试数学答案解析第Ⅰ卷(选择题 共18分)一、选择题 1.【答案】C 【解析】因为23与23-是符号不同的两个数.所以23-的相反数是23.故选C 2.【答案】D【解析】A .根据同底数幂的乘法,325326a a a =•,故本选项错误;B . 根据幂的乘方,22( )24a a -=,故本选项错误;C .根据特殊角的三角函数值,451tan ︒=,故本选项错误;D .根据特殊角的三角函数值,30cos ︒=故本选项正确. 3.【答案】A解. 4.【答案】B【解析】解:由三角形的内角和定理,得180180602595BAC B C ∠=︒-∠-∠=︒-︒-︒=︒. 又由垂直平分线的性质,知25C DAC ∠∠=︒=,2595BAC BAD DAC BAD C BAD ∴∠=∠+∠=∠+∠=∠+︒=︒ 952570BAD ∴∠=︒-︒=︒故选B . 5.【答案】C【解析】由直角三角形斜边上的中线等于斜边的一半,可得5CE AE ==,又知2AD =,可得523DE AE AD =-=-=,在Rt CDE △中,运用勾股定理可得直角边CD 的长.6.【答案】D【解析】解:∵当21,211a x a y x x ≤≤+=-+时函数的最小值为,数学试卷 第11页(共30页)数学试卷 第12页(共30页)22211,20,y x x x x ∴=-+≥-≥即 20,x x ∴≥≤或2,,2,x a x a ≥≤=当时由可得0,1,10,1x x a a a ≤≤++==-当时由可得即综上,21a -的值为或, 故选D .第Ⅱ卷(非选择题 共102分)二、填空题 7.【答案】71.6810⨯【解析】716 800 000 1.6810=⨯ 8.【答案】()(33)x x x +-【解析】解:3299()()(33.)x x x x x x x -=-=+-9.【答案】1-【解析】解: 022*********(2)(231)--+-+-=+--=- 10.【答案】8【解析】解:1=6a a -,2()61a a ∴-=,2218a a∴+=. 11.【答案】23 【解析】解:BD 连结,60,AB O CAB AD CAB ∠=︒∠为的直径弦平分,30ABC DAB ∴∠=∠=︒,Rt ABC Rt ABD BD AC AB ∴==在△和△中22222212,6(),Rt ABD AB BD AD AB AB =+=+在△中即,43AB ∴=,23AC ∴=.12.【答案】167 / 15AE A E ='12BQ =⨯在Rt A QB '△14.【答案】【解析】解:列表得:一共有数学试卷 第15页(共30页)数学试卷 第16页(共30页)【解析】解:设A 型粽子x 千克,B 型粽子y 千克,由题意得:22028242560y x x y =-⎧⎨+=⎩,解得:4060x y =⎧⎨=⎩,并符合题意. ∴A 型粽子40千克,B 型粽子60千克. 17.【答案】(1)50216︒(2)补全图形如下:(3)180 (4)25【解析】解:(1)被调查的总人数为510%50÷=人,扇形统计图中C 部分所对应的扇形圆心角的度数为3036021650︒⨯=︒, 故答案为:50、216︒;(2)B 类别人数为505305(10)++=﹣人, 补全图形如下:(3)估计该校学生中A 类有180010%180⨯=人, 故答案为:180; (4)列表如下:9 / 15女1 女2 女3 男1 男2 女1 ﹣﹣﹣ 女2女1 女3女1 男1女1 男2女1 女2 女1女2 ﹣﹣﹣ 女3女2 男1女2 男2女2 女3 女1女3 女2女3 ﹣﹣﹣ 男1女3 男2女3 男1 女1男1 女2男1 女3男1 ﹣﹣﹣ 男2男1 男2女1男2女2男2女3男2男1男2﹣﹣﹣所有等可能的结果为20种,其中被抽到的两个学生性别相同的结果数为8, ∴被抽到的两个学生性别相同的概率为82205=.18.【答案】(1)见解析 (2)7【解析】(1)证明:连接OB ,如图,∵AD O 是的直径,∴90ABD ∠=︒, ∴90A ADB ∠+∠=︒, ∵BC 为切线, ∴OB BC ⊥, ∴90OBC ∠=︒, ∴90OBA CBP ∠+∠=︒, 而OA OB =, ∴A OBA ∠=∠, ∴CBP ADB ∠=∠; (2)解:OP AD ⊥, ∴90POA ∠=︒, ∴90P A ∠+∠=︒,数学试卷 第19页(共30页)数学试卷 第20页(共30页)∴P A ∠=∠, ∴AOP ABD △∽△, ∴AP AO AD AB=,即1241PB +=, ∴7BP =.19.【答案】(1)12,k =()6,2B (2)1233,23,()()(69,2)D D D -或或 【解析】解:(1)把点()3,4A 代入(0)ky x x=>,得 3412,k xy ==⨯=故该反比例函数解析式为:12y x=.∵()6,0,C BC x ⊥点轴, ∴把6x =代入反比例函数12y x=,得 126y x==. 则()6,2B .综上所述,12,k =,B 点的坐标是(6,2).(2)①如图,当四边形ABCD 为平行四边形时, AD BC AD BC =∥且. ∵3,46,()(),(2)60A B C 、、,∴点D 的横坐标为3,AD B C y y y y =﹣﹣即420D y =﹣﹣,故2D y =. 所以()3,2D .②如图,当四边形ACBD′为平行四边形时,AD CB AD CB ''=∥且. ∵3,46,()(),(2)60A B C 、、,∴点D 的横坐标为3,D A B C y y y y '=﹣﹣即420D y =﹣﹣,故6D y '=. 所以6()3,D '.③如图,当四边形ACD″B 为平行四边形时,AC BD AC BD ="="且. ∵3,46,()(),(2)60A B C 、、,∴D B C A x x x x "=﹣﹣即663D x "=﹣﹣,故9D x "=.11 / 15D B C A y y y y "=﹣﹣即204D y "=﹣﹣,故2D y "=﹣. 所以)2(9,D "﹣.综上所述,符合条件的点D 的坐标是:3,23,6()()(2)9,或或﹣.20.【答案】(1)见解析(2)见解析【解析】(1)证明:∵四边形ABCD 是平行四边形,∴,,AB CD AD BC ABC ADC ==∠=∠,∵,BC BF CD DE ==,∴,BF AD AB DE ==,∵360,360,ADE ADC EDC ABF ABC CBF EDC CBF ∠+∠+∠=︒∠+∠+∠=︒∠=∠, ∴ADE ABF ∠=∠,∴ABF EDA △≌△.(2)证明:延长FB 交AD 于H .∵AE ⊥AF ,∴∠EAF=90°,∵△ABF ≌△EDA ,∴∠EAD=∠AFB ,∵∠EAD +∠F AH=90°,∴∠F AH +∠AFB=90°,∴90,AHF FB AD ∠=︒⊥即,∵AD BC ∥,∴FB BC ⊥.21.【答案】(1)203(2)80310(2)CD 的长为﹣米数学试卷 第23页(共30页)数学试卷 第24页(共30页) 【解析】(1)在直角ABC 中,90,60,60BAC BCA AB ∠=︒∠=︒=米,则60203603AB AC tan ===︒(米) 答:坡底C 点到大楼距离AC 的值是203米.(2)设2CD x =,则,DE x CE x ==,在,45Rt BDF BDF ∠=︒中,∴BF DF =,∴6020x x =+﹣,∴40360x =﹣,∴2803120CD x ==﹣,∴8031()20CD 的长为﹣米.22.【答案】(1)见解析(2)2【解析】(1) 解:(1)联立214y kx y x x =+=-⎧⎨⎩化简可得:()2410x k x +=﹣﹣,∴()2440k =++>,故直线与该抛物线总有两个交点;(2)当2k =﹣时,∴21y x =+﹣过点,A AF x F B BE x E ⊥⊥作轴于过点作轴于,∴联立2421y x xy x =-=-+⎧⎨⎩解得:12122x y =+=--⎧⎪⎨⎪⎩ 或12221x y =-=-⎧⎪⎨⎪⎩∴12,221,()()12,122A B +﹣﹣﹣﹣∴221,122AF BE ==+﹣易求得:直线21y x =+﹣与x 轴的交点C 为1(2,0)13 / 15∴12OC = ∴AOB AOC BOC S S S =+11••22OC AF OC BE =+ ()12OC AF BE =+ 112211()2222=⨯⨯++﹣ 2=23.【答案】(1)()()2019,101012,x x x z x x ⎧-+≤≤⎪=⎨≤≤⎪⎩取整数取整数 (2)()()()2168018,w 1219102001012,x x x x x x x x ⎧-++≤≤⎪==⎨⎪-+≤≤⎩取整数取整数 (3)当x 为8时,月利润w 有最大值,最大值144万元【解析】解;(1)当19x ≤≤时,设每件产品利润z (元)与月份x (月)的关系式为z kx b =+,19218k b k b +=⎧⎨+=⎩,得120k b =-⎧⎨=⎩, 即当19x ≤≤时,每件产品利润z (元)与月份x (月)的关系式为z =﹣x +20,当1012x ≤≤时,10z =,由上可得,()()2019,101012,x x x z x x ⎧-+≤≤⎪=⎨≤≤⎪⎩取整数取整数;(2)当18x ≤≤时, ()2()4201680w x x x x =++=++﹣﹣,当9x =时,()(9209201)12w =+⨯+=﹣﹣,当1012x ≤≤时,201010(0)20w x x =+⨯=+﹣﹣,由上可得,()()()2168018,w 1219102001012,x x x x x x x x ⎧-++≤≤⎪==⎨⎪-+≤≤⎩取整数取整数; (3)当18x ≤≤时,221680814)4(w x x x =++=+﹣﹣﹣,∴当8x =时,w 取得最大值,此时144w =;数学试卷 第27页(共30页)数学试卷 第28页(共30页)当9x =时,121w =,当1012x ≤≤时,10200w x =+﹣,则当10x =时,w 取得最大值,此时100w =,由上可得,当x 为8时,月利润w 有最大值,最大值144万元.【解析】解:(1)当2,2t OM ==时,在,60Rt OPM POM ∠=︒中, ∴•60PM OM tan =︒=在,30Rt OMQ QOM ∠=︒中,∴•30QM OM tan =︒=, ∴33PQ CN QM ===﹣﹣. (2)由题意:()84224t t ++=﹣,解得203t =. (3)①104,22t S t =••当<<时. ②当2014,842[()(832)]t S tt ≤=⨯⨯=<时﹣﹣﹣﹣. ③当[(2018.4288)32()]t S t t=⨯+⨯=<<时﹣﹣﹣ [(2018.4288)32()]t S t t =⨯+⨯<<时﹣﹣﹣④当812,AON ABP PNC ABCO t S S S S S ≤≤==菱形时﹣﹣﹣2()[11(24284421)]()(6125622)t t t t t t •••••=+﹣﹣﹣﹣﹣﹣﹣﹣﹣.15/ 15。
2018年黄冈市中考数学试题含答案
黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数 学 试 题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项中,有且只有一个答案是正确的) 1. -32的相反数是A. -23B. -32C.32 D.232. 下列运算结果正确的是A. 3a 3·2a 2=6a 6B. (-2a)2= -4a 2C. tan45°=22 D. cos30°=233.函数y= 11-+x x 中自变量x 的取值范围是A .x ≥-1且x ≠1 B.x ≥-1 C. x ≠1 D. -1≤x <14.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为A.50°B.70°C.75°D.80°(第4题图)5.如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=A.2B.3C.4D.236.当a ≤x ≤a+1时,函数y=x 2-2x+1的最小值为1,则a 的值为 A.-1 B.2 C.0或2 D.-1或2第Ⅱ卷(非选择题 共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16 800 000用科学计数法表示为______________________. 8.因式分解:x 3-9x=___________________________. 9.化简(2-1)0+(21)-2-9+327 =________________________. 10.若a-a1=6,则a 2+a21值为_______________________. 11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=___________.(第11题图)12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_________________cm (杯壁厚度不计).(第13题图)14. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax 2+bx+1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题 (本题共10题,满分78分)15.(本题满分5分)求满足不等式组: x-3(x-2)≤8 的所有整数解.21x-1<3 -23x16.(本题满分6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子。
黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数学试题
黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数学试题第Ⅰ卷(共18分)一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.23-的相反数是( ) A .32- B .23- C .23 D .322.下列运算结果正确的是( )A .326326a a a ⋅=B .()2224a a -=- C .2tan 452=D .3cos302=3.函数y =x 的取值范围是( ) A .1x ≥-且1x ≠ B .1x ≥- C .1x ≠ D .11x -≤< 4.如图.在ABC △中.DE 是AC 的垂直平分线.且分别交BC .AC 于点D 和E .60B ∠=.25C ∠=.则BAD ∠为( )A .50B .70 C.75 D .805.如图.在Rt ABC △中.90ACB ∠=.CD 为AB 边上的高.CE 为AB 边上的中线.2AD =.5CE =.则CD =( )A .2B .3 C.4 D .6.当1a x a ≤≤+时.函数221y x x =-+的最小值为1.则a 的值为( ) A .1- B .2 C.0或2 D .1-或2第Ⅱ卷(共102分)二、填空题(每题3分.满分24分.将答案填在答题纸上)7.实数16800000用科学计数法表示为 . 8.因式分解:39x x -= .9.化简)2112-⎛⎫+= ⎪⎝⎭.10.若1a a -=则221a a+值为 . 11.如图.ABC △内接于O .AB 为O 的直径.60CAB ∠=.弦AD 平分CAB ∠.若6AD =.则AC = .12.一个三角形的两边长分別为3和6.第三边长是方程210210x x -+=的根.则三角形的周长为 .13.如图.圆柱形玻璃杯高为14cm .底面周长为32cm .在杯内壁离杯底5cm 的点B 处有一滴蜂蜜.此时一只蚂蚁正好在杯外壁.离杯上沿3cm 与蜂蜜相对的点A 处.则蚂蚁从外壁A 处到内壁B 处的最短距离为 cm (杯壁厚度不计)).14.在4-.2-.1.2四个数中.随机取两个数分別作为函数21y ax bx =++中a .b 的值.则该二次函数图像恰好经过第一、二、四象限的概率为 .三、解答题 (本大题共10小题.共78分.解答应写出文字说明、证明过程或演算步骤.)15. 求满足不等式组()328131322x x x x --≤⎧⎪⎨-<-⎪⎩的所有整数解.16. 在端午节来临之际.某商店订购了A 型和B 型两种粽子.A 型粽子28元/千克.B 型粽子24元/千克.若B 型粽子的数量比A 型粽子的2倍少20千克.购进两种粽子共用了2560元.求两种型号粽子各多少千克.17. 央视“经典咏流传”开播以来受到社会广泛关注.我市某校就“中华文化我传承——地方戏曲进校园”的喜爱情况进行了随机凋查.对收集的信息进行统汁.绘制了下面两副尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:图中A 表示“很喜欢”.B 表示“喜欢”.C 表示“一般”.D 表示“不喜欢”.(1)被调查的总人数是 人.扇形统计图中C 部分所对应的扇形圆心角的度数为 ; (2)补全条形统计图;(3)若该校共有学生1800人.请根据上述调查结果.估计该校学生中A 类有 人; (4)在抽取的A 类5人中.刚好有3个女生2个男生.从中随机抽取两个同学担任两角色.用树形图或列表法求出被抽到的两个学生性别相同的概率. 18. 如图.AD 是O 的直径.AB 为O 的弦.OP AD ⊥.OP 与AB 的延长线交于点P .过B 点的切线交OP 于点C . (1)求证:CBP ADB ∠=∠.(2)若2OA =.1AB =.求线段BP 的长.19. 如图.反比例函数()0ky x x=>过点()3,4A .直线AC 与x 轴交于点()6,0C .过点C 作x 轴的垂线BC 交反比例函数图象于点B . (1)求k 的值与B 点的坐标;(2)在平面内有点D .使得以A .B .C .D 四点为顶点的四边形为平行四边形.试写出符合条件的所有D 点的坐标.20. 如图.在ABCD Y 中.分别以边BC .CD 作等腰BCF △.CDE △.使BC BF =.CD DE =.CBF CDE ∠=∠.连接AF .AE .(1)求证ABF EDA ≌△△;(2)延长AB 与CF 相交于G .若AF AE ⊥.求证BF BC ⊥.21. 如图.在大楼正前方有一斜坡CD .坡角30DCE ∠=.楼高60AB =米.在斜坡下的点C 处测得楼顶B 的仰角为60.在斜坡上的D 处测得楼顶B 的仰角为45.其中点A .C .E 在同一直线上.(1)求坡底C 点到大楼距离AC 的值; (2)求斜坡CD 的长度.22. 已知直线:1l y kx =+与抛物线24y x x =-. (1)求证:直线l 与该拋物线总有两个交点;(2)设直线l 与该抛物线两交点为A .B .O 为原点.当2k =-时.求OAB △的面积. 23. 我市某乡镇在“精准扶贫”活动中销售一农产品.经分析发现月销售量y (万件)与月份x (月)的关系为:()()418,20912,x x x y x x x +≤≤⎧⎪=⎨-+≤≤⎪⎩为整数为整数.每件产品的利润z (元)与月份x (月)的关系如下表:(1)请你根据表格求出每件产品利润z (元)与月份x (月)的关系式;(2)若月利润w (万元)=当月销售量y (万件)⨯当月每件产品的利润z (元).求月利润w (万元)与月份x (月)的关系式;(3)当x为何值吋.月利润w 有最大值.最大值为多少?24. 如图.在直角坐标系XOY 中.菱形OABC 的边OA 在x 轴正半轴上.点B .C 在第一象限.120C ∠=.边长8OA =.点M 从原点O 出发沿x 轴正半轴以每秒1个单位长的速度作匀速运动.点N 从A 出发沿边AB BC CO --以每秒2个单位长的速度作匀速运动.过点M 作直线MP 垂直于x 轴并交折线OCB 于P .交对角线OB 于Q .点M 和点N 同时出发.分別沿各自路线运动.点N 运动到原点O 时.M 和N 两点同时停止运动. (1)当2t =时.求线段PQ 的长; (2)当t 为何值时.点P 与N 重合;(3)设APN △的面积为S .求S 与t 的函数关系式及t 的取值范围.试卷答案一、选择题1-5:CDABC 6:D二、填空题7.71.6810⨯ 8.()()33x x x +- 9.1- 10.811.16 13.20 14.16三、解答题15.解:由①得:1x ≥-; 由②得:2x <;∴不等式组的解为:12x -≤<.所有整数解为:1-.0.1. 16.解:设A 型粽子x 千克.B 型粽子y 千克.由题意得:22028242560y x x y =-⎧⎨+=⎩解得:4060x y =⎧⎨=⎩.并符合题意.∴A 型粽子40千克.B 型粽子60千克. 17.答案:(1)50:216; (2)10人(见图); (3)180; (4)图表略.25(或0.4或40%) 18.证:(1)连接OB .则OB BC ⊥.90OBD DBC ∠+∠=.又AD 为直径.90DBP DBC CBP ∠=∠+∠=.∴OBD CBP ∠=∠又OD OB =.OBD ODB ∠=∠;∴ODB CBP ∠=∠.即ADB CBP ∠=∠ 解:(2)在Rt ADB ∆和Rt APO ∆中.DAB PAO ∠=∠.Rt ADB Rt APO ∆∆∽1AB =.2AO =.4AD =.AB ADAO AP=.8AP =,7BP = 19.解:(1)代入()3,4A 到解析式ky x=得12k =.()6,2B ;(2)()13,2D 或()23,6D 或()39,2D -.20.(1)证:∵ABCD Y .∴AB CD DE ==.BF BC AD == 又ABC ADC ∠=∠.CBF CDE ∠=∠.∴ABF ADE ∠=∠ 在ABF ∆与EDA ∆中.AB DE =,ABF ADE ∠=∠.BF AD = ∴ABF EDA ∆∆≌(2)由(1)知EAD AFB ∠=∠.GBF AFB BAF ∠=∠+∠ 由ABCD Y 可得://AD BC .∴DAG CBG ∠=∠∴90FBC FBG CBG EAD FAB DAG EAF ∠=∠+∠=∠+∠+∠=∠= ∴BF BC ⊥21.解:(1)在Rt ABC ∆中.60AB =米.60ACB ∠=.∴tan 60ABAC ==.(2)过点D 作DF AB ⊥于点F .则四边形AEDF 为矩形.∴AF DE =.DF AE =设CD x =米.在Rt CDE ∆中.12DE x =米.2CE x =(米) 在Rt BDF ∆中.45BDF ∠=.∴1602BF DF AB AF x ==-=-(米)∵DF AE AC CE ==+.∴16022x x =-解得:120x =(米)(或解:作BD 的垂直平分线MN .构造30直角三角形.由BC =120CD =)答:(1)坡地C 处到大楼距离AC 为(2)斜坡CD 的长度()120米.22.(1)证明:令241x x kx -=+.则()2410x k x -+-=∴()2440k ∆=++>.所以直线l 与该抛物线总有两个交点(2)解:设A .B .P 的坐标分别为()11,x y .()22,x y .直线l 与y 轴交点为()0,1C 由(1)知1242x x k +=+=.121x x =-()212448x x -=+=.12x x -=OAB ∆的面积1211122S OC x x=-=⨯⨯= (或解:解方程得1111x y ⎧=-⎪⎨=⎪⎩或2211xy ⎧=+⎪⎨=-⎪⎩或12111224S y y =⨯-=⨯=23.解:(1)根据表格可知:当110x ≤≤的整数时.20z x =-+; 当1112x ≤≤的整数时.10z =.∴z 与x 的关系式为:()()20,110,10,1112,x x x z x x -+≤≤⎧⎪=⎨≤≤⎪⎩为整数为整数(注:()()20,19,10,1012,x x x z x x -+≤≤⎧⎪=⎨≤≤⎪⎩为整数为整数照样给满分)(2)当18x ≤≤时.()()22041680w x x x x =-++=-++; 当910x ≤≤时.()()2202040400w x x x x =-+-+=-+;当1112x ≤≤时.()102010200w x x =-+=-+;∴w 与x 的关系式为:()()()22168018,40400910,102001112,x x x x w x x x x x x x ⎧-++≤≤⎪⎪=-+≤≤⎨⎪-+≤≤⎪⎩为整数为整数为整数(注:()()()22168018,404001219102001012,x x x x w x x x x x x ⎧-++≤≤⎪⎪=-+==⎨⎪-+≤≤⎪⎩为整数为整数一样给满分)(3)当18x ≤≤时.()2216808144w x x x =-++=--+. ∴8x =时.w 有最大值为144.当910x ≤≤时.()224040020w x x x =-+=-.w 随x 增大而减小.∴9x =时.w 有最大值为121.当1112x ≤≤时.10200w x =-+.w 随x 增大而减小.∴11x =时.w 有最大值为90.∵90121144<<.∴8x =时.w 有最大值为144.(注:当18x ≤≤时.w 有最大值为144;当9x =时.121w =;当10x =时.100w =;当11x =时.90w =;当12x =时.80w =.照样给满分)24.解:(1)在菱形OABC 中.60AOC ∠=.30AOQ ∠=.当2t =时.2OM =.PM =.QM =PQ =. (2)当4t ≤时.22AN PO OM t ===.4t =时.P 到达C 点.N 到达B 点.点P .N 在边BC 上相遇.设t 秒时P .N 重合.则()()4248t t -+-=.203t =. 即203t =秒时.P .N 重合.(3)①当04t ≤≤时8PN OA ==.且//PN OA .PM =.18342APN S t ∆==. ②当2043t <≤时.()834203PN t t =--=-. ()12032APN S t ∆=⨯-= ③当2083t <≤时.()348320PN t t =--=-. ()13202APN S t ∆=⨯-=-④当812t <≤时.242ON t =-.N 到OM 距离为.N 到CP 距离为()=-4CP t =-.12BP t =-.APN AON CPN APB S S S S S ∆∆∆∆=---菱形 ()()()1118412222t t =⨯⨯-----⨯2=+-综上S 与t 的函数关系式为()()2,0420,432083812t t s t t ⎧≤≤⎪⎛⎫⎪-<≤ ⎪⎪⎝⎭⎪=-⎨⎛⎫-<≤⎪ ⎪⎝⎭⎪⎪⎪+-<≤⎩ (注:在第-段定义域写为04t <≤.第二段函数的定义域写为2043t <<照样给满分)。
(完整版)2018年湖北省黄冈市中考数学试卷含答案解析(Word版)
黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数 学 试 题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项中,有且只有一个答案是正确的) 1. -32的相反数是A. -23B. -32C.32 D.232. 下列运算结果正确的是A. 3a 3·2a 2=6a 6B. (-2a)2= -4a 2C. tan45°=22 D. cos30°=233.函数y= 11-+x x 中自变量x 的取值范围是A .x ≥-1且x ≠1 B.x ≥-1 C. x ≠1 D. -1≤x <14.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为A.50°B.70°C.75°D.80°(第4题图)5.如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=A.2B.3C.4D.236.当a ≤x ≤a+1时,函数y=x 2-2x+1的最小值为1,则a 的值为 A.-1 B.2 C.0或2 D.-1或2第Ⅱ卷(非选择题 共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16 800 000用科学计数法表示为______________________. 8.因式分解:x 3-9x=___________________________. 9.化简(2-1)0+(21)-2-9+327 =________________________. 10.若a-a1=6,则a 2+a21值为_______________________. 11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=___________.(第11题图)12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_________________cm (杯壁厚度不计).(第13题图)14. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax 2+bx+1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题 (本题共10题,满分78分)15.(本题满分5分)求满足不等式组: x-3(x-2)≤8 的所有整数解.21x-1<3 -23x16.(本题满分6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子。
2018年黄冈中学预录数学试题
绝密★启用前湖北省黄冈中学理科实验班预录考试数学试卷一.选择题(共11小题)1.记号[x]表示不超过x的最大整数,设n是自然数,且.则()A.I>0 B.I<0 C.I=0 D.当n取不同的值时,以上三种情况都可能出现2.对于数x,符号[x]表示不大于x的最大整数.若[]=3有正整数解,则正数a的取值范围是()A.0<a<2或2<a≤3 B.0<a<5或6<a≤7C.1<a≤2或3≤a<5 D.0<a<2或3≤a<53.6个相同的球,放入四个不同的盒子里,每个盒子都不空的放法有()A.4种 B.6种 C.10种D.12种4.有甲、乙、丙三位同学每人拿一只桶同时到一个公用的水龙头去灌水,灌水所需的时间分别为1.5分钟、0.5分钟和1分钟,若只能逐个地灌水,未轮到的同学需等待,灌完的同学立即离开,那么这三位同学花费的时间(包括等待时间)的总和最少是()A.3分钟B.5分钟C.5.5分钟D.7分钟5.已知实数x满足x2++x﹣=4,则x﹣的值是()A.﹣2 B.1 C.﹣1或2 D.﹣2或16.如图,在等边△ABC中,D为AC边上的一点,连接BD,M为BD上一点,且∠AMD=60°,AM交BC于E.当M为BD中点时,的值为()A.B.C.D.7.如图,等腰梯形ABCD中,AD∥BC,∠DBC=45°,翻折梯形ABCD,使点B重合于点D,折痕分别交边AB、BC于点E、F.若AD=2,BC=6,则△ADB的面积等于()A.2 B.4 C.6 D.88.如图,正方形ABCD中,E为CD的中点,EF⊥AE,交BC于点F,则∠1与∠2的大小关系为()A.∠1>∠2 B.∠1<∠2 C.∠1=∠2 D.无法确定9.已知某几何体的三视图如图所示,则该几何体的体积为()A.B.3πC.D.6π10.方程x2+2x+1=的正数根的个数为()A.0 B.1 C.2 D.311.如图,已知∠AOM=60°,在射线OM上有点B,使得AB与OB的长度都是整数,由此称B是“完美点”,若OA=8,则图中完美点B的个数为()A.1 B.2 C.3 D.4二.填空题(共4小题)12.已知x为实数,且,则x2+x的值为.13.满足方程|x+2|+|x﹣3|=5的x的取值范围是.14.多项式6x3﹣11x2+x+4可分解为.15.设整数a使得关于x的一元二次方程5x2﹣5ax+26a﹣143=0的两个根都是整数,则a的值是.三.解答题16.如图,在△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.设点P的运动时间为x(秒).(1)设△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(2)x为何值时,△PBQ的面积最大?并求出最大值;(3)当点Q在BC上运动时,线段PQ上是否存在一个点T,使得在某个时刻△ACT、△ABT、△BCT 的面积均相等(无需计算,说明理由即可).17.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是.参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是.(结果可以不化简)18.某水库大坝的横截面是如图所示的四边形BACD,期中AB∥CD.瞭望台PC正前方水面上有两艘渔船M、N,观察员在瞭望台顶端P处观测渔船M的俯角α=31°,观测渔船N在俯角β=45°,已知NM所在直线与PC所在直线垂直,垂足为点E,PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:0.25.为提高大坝防洪能力,某施工队在大坝的背水坡填筑土石方加固,加固后坝定加宽3米,背水坡FH的坡度为i=1:1.5,施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的1.5倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)19.已知关于x的方程,(1)若两根x1,x2满足x1<0<x2,求m的范围;(2)若,求m的值.20.当m,n是正实数,且满足m+n=mn时,就称点P(m,)为“完美点”,已知点A(0,5)与点M都在直线y=﹣x+b上,点B,C是“完美点”,且点B在线段AM上,若MC=,AM=4,求△MBC的面积.21.设p,q都是实数,且p<q.我们规定:满足不等式p≤x≤q的实数x的所有取值的全体叫做闭区间,表示为[p,q].对于一个函数,如果它的自变量x与函数值y满足:当p≤x≤q时,有p≤y ≤q,我们就称此函数是闭区间[p,q]上的“闭函数”.(1)反比例函数y=是闭区间[1,2014]上的“闭函数”吗?请判断并说明理由;(2)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的解析式;(3)若实数c,d满足c<d,且d>2,当二次函数y=x2﹣2x是闭区间[c,d]上的“闭函数”时,求c,d的值.22.我国是水资源比较贫乏的国家之一,各地采用了价格调控等手段来达到节约用水的目的,某市用水收费的方法是:水费=基本费+超额费+定额损耗费.若每月用水量不超过最低限量a立方米时,只付基本费8元和每月的定额损耗费c元;若用水量超过a立方米时,除了付同上的基本费和定额损耗费外,超过部分每立方米付b元的超额费.已知每户每月的定额费不超过5元.(1)当月用水量为x立方米时,支付费用为y元,写出y关于x的函数关系式;(2)该市一家庭今年一季度的用水量和支付费用见下表,根据表中数据求a、b、c.月份用水量(m3)水费(元)1 9 92 15 193 22 3323.某市将建一个制药厂,但该厂投产后预计每天要排放大约80吨工业废气,这将造成极大的环境污染.为了保护环境,市政府决定支持该厂贷款引进废气处理设备来减少废气的排放:该设备可以将废气转化为某种化工产品和符合排放要求的气体.。
2018年黄冈中学自主招生(理科实验班)预录考试数学模拟试题及参考答案
2018年黄冈中学预录数学模拟试卷时间120分钟满分120分一、选择题(本大题共8小题,每小题3分,共24分.每小题恰有一个正确的答案,请将正确答案的代号填入题中相应的括号内)1、已知实数a 、b 、c 满足2|a+3| +4-b=0,c 2+4b -4c -12 =0,则a+b+c 的值为( ) A .0 B .3 C .6 D .92、若一个三角形的任意两边都不相等,则称之为不规则三角形,用一个正方体上的任意三个顶点构成的所有三角形中,不规则三角形的个数是( )A 、18B 、24C 、30D 、363、已知点A ),(11y x 、B ),(22y x 均在抛物线)30(422<<++=a ax ax y 上,若21x x <,a x x -=+121,则( )(A )21y y > (B )21y y < (C )21y y = (D )1y 与2y 的大小不能确定4、如图,在四边形ABCD 中,AB=AC ,∠ABD=60°,∠ADB=76°,∠BDC=28°,延长BD 至点E ,使得DE=DC ,连结AE ,则∠DBC 的度数为( )A .18°B .16°C .15°D .14° 5、若不等式a x x ≤-+-3312有解,则实数a 最小值是( )A 、1B 、2C 、4D 、66、有n 个人报名参加甲、乙、丙、丁四项体育比赛活动,规定每人至少参加1 项比赛,至多参加2项比赛,但乙、丙两项比赛不能同时兼报,若在所有的报名方式中,必存在一种方式至少有20个人报名,则n 的最小值等于 ( )(A ) 171 (B ) 172 (C ) 180 (D ) 1817、在△ABC 中,120A ∠=,6BC =.若△ABC 的内切圆半径为r ,则r 的最大值为( ).(A ) 4 (B (C )4- (D )6-8、若函数5y x =-+,令1x =,2,3,4,5,可得函数图象上的5个点,在这5个点中随机取两个点11(,)P x y ,22(,)Q x y ,则,P Q 两点在同一个反比例函数图象上的概率是( ).(A )51 (B )25 (C )35 (D )45二、填空题(共8小题,每小题4分,共32分.请将正确答案填在各小题后的横线上) 9、已知点A (0,2)、B (4,0),点C 、D 分别在直线1=x 与2=x 上,且CD x //轴,则AC+CD+DB 的最小值为 .10、已知实数a 、b 、c 满足2|210|)6)(2005(2=-+-++++b b a c b a , 则代数式ab+bc 的值为__________。
湖北黄冈市2018年中考数学试题(word版含解析)
黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数 学 试 题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项中,有且只有一个答案是正确的)1. (2018·湖北黄冈)—32的相反数是A 。
—23B 。
-32 C. 32 D. 23【考点】相反数.【分析】只有符号不同的两个数,我们就说其中一个是另一个的相反数;0的相反数是0。
一般地,任意的一个有理数a ,它的相反数是—a.a 本身既可以是正数,也可以是负数,还可以是零。
本题根据相反数的定义,可得答案. 【解答】解:因为32与—32是符号不同的两个数 所以-32的相反数是32.故选C.【点评】本题考查了绝对值的性质,如果用字母a 表示有理数,则数a 绝对值要由字母a 本身的取值来确定:①当a 是正有理数时,a 的绝对值是它本身a;②当a 是负有理数时,a 的绝对值是它的相反数-a ; ③当a 是零时,a 的绝对值是零.2. (2018·湖北黄冈)下列运算结果正确的是A. 3a 3·2a 2=6a 6 B 。
(—2a)2= -4a 2 C 。
tan45°=22D. cos30°=23【考点】同底数幂的乘法与除法、幂的乘方,以及特殊角的三角函数值。
【分析】根据同底数幂的乘法、幂的乘方的运算法则以及特殊角的三角函数值计算即可. 【解答】解:A. 根据同底数幂的乘法,3a 3·2a 2=6a 5,故本选项错误;B 。
根据幂的乘方,(-2a)2= 4a 2,故本选项错误C .根据特殊角的三角函数值,tan45°=1,故本选项错误;D .根据特殊角的三角函数值,cos30°=23,故本选项正确.故选D .【点评】本题考查了同底数幂的乘法与除法、幂的乘方,以及特殊角的三角函数值,熟知运算法则、熟记特殊角的三角函数值是钥匙的关键。
黄冈市2018年中考数学试卷(含试题解析)(优.选)
黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数学试题(考试时间120分钟满分120分)第Ⅰ卷(选择题共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项中,有且只有一个答案是正确的)1.23-的相反数是A.32- B.23- C.23D.32-2.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=22D. cos30°=233.函数y=x的取值范围是A.x≥-1且x≠1B.x≥-1C.x≠1D.-1≤x<14.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B =60°,∠C=25°,则∠BAD为A.50°B.70°C.75°D.80°5.如图,在R t△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=A.2B.3C.4D.236.当a≤x≤a+1时,函数y=x2-2x+1的最小值为1,则a的值为A.-1B.2C.0或2D.-1或2第Ⅱ卷(非选择题 共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16 800 000用科学计数法表示为______________________.8.因式分解:x 3-9x =___________________________.9.化简0+(12)-2=________________________. 10.若1a a -=,则221a a +值为_______________________.11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=___________.12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x +21=0的根,则三角形的周长为______________. 13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_________________cm (杯壁厚度不计).14. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax 2+bx+1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题(本题共10题,满分78分)15.(本题满分5分)求满足不等式组:()328131322x xx x--≤⎧⎪⎨-<-⎪⎩的所有整数解.16.(本题满分6分)在端午节来临之际,某商店订购了A型和B型两种粽子。
2018年湖北省黄冈市中考数学试题(含答案解析)
黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数 学 试 题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项中,有且只有一个答案是正确的) 1. -32的相反数是A. -23B. -32C. 32D. 232. 下列运算结果正确的是A. 3a 3·2a 2=6a 6B. (-2a)2= -4a 2C. tan45°=22 D. cos30°=233.函数y= 11-+x x 中自变量x 的取值范围是A .x ≥-1且x ≠1 B.x ≥-1 C. x ≠1 D. -1≤x <14.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为A.50°B.70°C.75°D.80°(第4题图)5.如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=A.2B.3C.4D.23(第5题图)6.当a ≤x ≤a+1时,函数y=x 2-2x+1的最小值为1,则a 的值为 A.-1 B.2 C.0或2 D.-1或2第Ⅱ卷(非选择题 共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16 800 000用科学计数法表示为______________________.8.因式分解:x 3-9x=___________________________. 9.化简(2-1)0+(21)-2-9+327 =________________________. 10.若a-a1=6,则a 2+a21值为_______________________.11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=___________.(第11题图)12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_________________cm (杯壁厚度不计).(第13题图)14. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax 2+bx+1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题 (本题共10题,满分78分)15.(本题满分5分)求满足不等式组: x-3(x-2)≤8 的所有整数解.21x-1<3 -23x16.(本题满分6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子。
2018年湖北省黄冈市中考数学试卷(含答案解析)-精品
黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数 学 试 题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项中,有且只有一个答案是正确的) 1. -32的相反数是A. -23B. -32C. 32D. 232. 下列运算结果正确的是A. 3a 3·2a 2=6a 6B. (-2a)2= -4a 2C. tan45°=22 D. cos30°=233.函数y= 11-+x x 中自变量x 的取值范围是A .x ≥-1且x ≠1 B.x ≥-1 C. x ≠1 D. -1≤x <14.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C=25°,则∠BAD 为A.50°B.70°C.75°D.80°(第4题图)5.如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=A.2B.3C.4D.23(第5题图)6.当a ≤x ≤a+1时,函数y=x 2-2x+1的最小值为1,则a 的值为 A.-1 B.2 C.0或2 D.-1或2第Ⅱ卷(非选择题 共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16 800 000用科学计数法表示为______________________.8.因式分解:x 3-9x=___________________________. 9.化简(2-1)0+(21)-2-9+327 =________________________. 10.若a-a1=6,则a 2+a21值为_______________________.11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=___________.(第11题图)12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_________________cm (杯壁厚度不计).(第13题图)14. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax 2+bx+1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题 (本题共10题,满分78分)15.(本题满分5分)求满足不等式组: x-3(x-2)≤8 的所有整数解.21x-1<3 -23x16.(本题满分6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子。
【提前招生】黄冈中学2018年自主招生(理科实验班)预录考试数学模拟试题附答案
4.二次函数y =ax +bx +c (a ≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x =2,下列结论:①4a +b =0;②9a +c >3b ;③8a +7b +2c >0;④当x >﹣1时,y 的值随x 值的增大而增大.其中正确的结论有( )A .1个B .2个C .3个D .4个(第4题图)(第5题图) (第6题图)5.如图,正方形ABCD 中,AB=6,点E 在边CD 上,且CD=3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF .则下列结论:①△ABG ≌△AFG ;②BG=CG ;③AG ∥CF ;④S △EGC =S △AFE ;⑤∠AGB+∠AED=145°.其中正确的个数是( )A . 2B .3C .4D .56.如图,点P (﹣1,1)在双曲线上,过点P 的直线l 1与坐标轴分别交于A 、B 两点,且 tan ∠BAO=1.点M 是该双曲线在第四象限上的一点,过点M 的直线l 2与双曲线只有一个公共点,并与坐标轴分别交于点C 、点D .则四边形ABCD 的面积最小值为( ) A .10 B . 8 C . 6 D . 不确定二、填空题(每小题5分,共30分)7.已知抛物线y=x 2﹣x ﹣1与x 轴的一个交点为(m ,0),则代数式m 2﹣m+2016的值为 _____________.8. 如图,将边长为6cm 的正方形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH ,点C 落在Q 处,EQ 与BC 交于点G ,则△EBG 的周长是 cm9.甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2014时游戏结束,若报出的数是偶数,则该同学得1分.当报数结束时甲同学的得分是 分.11.在△ABC 中,∠A=30°,∠C=90°,以C 为圆心,CB 为半径作圆交AB 于M ,交AC 边于N ,CM 与BN 交于点P ,若AN=1,则S △CPN -S △BPM = .12.设有n 个数n x ,,x ,x 21,它们每个数的值只能取0,1,-2三个数中的一个,且55251215n n x x x ,x x x +++-=+++ 的值是 .三、解答题(共60分)13.(10分)如图,已知AB 是⊙O 的直径,BC 是⊙O 的弦,弦ED ⊥AB 于点F ,交BC 于点G ,过点C 的直线与ED 的延长线交于点P ,PC=PG . (1)求证:PC 是⊙O 的切线;(2)当点C 在劣弧AD 上运动时,其他条件不变,若BG 2=BF •BO .求证:点G 是BC 的中点;(3)在满足(2)的条件下,AB=10,ED=4,求BG 的长.第14题图QH G F E D C B A14.(10分)正数m,n 满足34424=+--+n n m mn m ,求20172232++-+n m n m 的值.15.(10分)已知012=--a a ,且1129322322324-=-++-a xa a xa a ,求x 的值.16(15分).某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A 、B 两类,A 类杨梅包装后直接销售;B 类杨梅深加工后再销售.A 类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y (单位:万元/吨)与销售数量x (x ≥2)之间的函数关系如图;B 类杨梅深加工总费用s (单位:万元)与加工数量t (单位:吨)之间的函数关系是s =12+3t ,平均销售价格为9万元/吨.(1)直接写出A 类杨梅平均销售价格y 与销售量x 之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A 类杨梅有x 吨,经营这批杨梅所获得的毛利润为w 万元(毛利润=销售总收入﹣经营总成本). ①求w 关于x 的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A 类杨梅有多少吨?(3)第二次,该公司准备投入132万元,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.17.(15分)如图,在矩形ABCD中,AB=4,BC=3,点O为对角线BD的中点,点P从点A出发,沿折线AD﹣DO﹣OC以每秒1个单位长度的速度向终点C运动,当点P与点A不重合时,过点P作PQ⊥AB于点Q,以PQ为边向右作正方形PQMN,设正方形PQMN与△ABD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).(1)求点N落在BD上时t的值;(2)直接写出点O在正方形PQMN内部时t的取值范围;(3)当点P在折线AD﹣DO上运动时,求S与t之间的函数关系式;(4)直接写出直线DN平分△BCD面积时t的值.黄冈中学2018年自主招生(理科实验班)预录考试数学模拟试题参 考 答 案一、选择题(每小题5分,共30分)1.D 2.D 3.B 4.B 5.C 6.B 二、填空题(每小题5分,共30分)7. 2017 8. 12 9. 336 10. 6 11. 8112. -125三、解答题(共60分) 13. 解(1)证明:连OC ,如图,∵ED ⊥AB ,∴∠FBG+∠FGB=90°, 又∵PC=PG ,∴∠1=∠2,而∠2=∠FGB ,∠4=∠FBG ,∴∠1+∠4=90°,即OC ⊥PC , ∴PC 是⊙O 的切线;(2)证明:连OG ,如图,∵BG 2=BF •BO ,即BG :BO=BF :BG , 而∠FBG=∠GBO ,∴△BGO ∽△BFG , ∴∠OGB=∠BFG=90°,即OG ⊥BG , ∴BG=CG ,即点G 是BC 的中点;(3)解:连OE ,如图,∵ED ⊥AB ,∴FE=FD , 而AB=10,ED=4,∴EF=2,OE=5, 在Rt △OEF 中,OF===1,∴BF=5﹣1=4,∵BG 2=BF •BO ,∴BG 2=BF •BO=4×5,∴BG=2.14.解:由34424=+--+n n m mn m 变形得01232=++-+)n m )(n m (∵012≠++n m ∴32=+n m ,∴10112017323320172232-=+-=++-+n m n m15.解:由012=--a a 得,11=-a a ,∴3122=+aa 又由已知得,112932131222-=+--+x )aa (x )a a (,即1129321332-=+-⨯x x ,解得1051x16. 解:(1)①当2≤x <8时,如图,设直线AB 解析式为:y =kx +b ,将A (2,12)、B (8,6)代入得:,解得,∴y =﹣x +14;②当x ≥8时,y =6.∴A 类杨梅平均销售价格y 与销售量x 之间的函数关系式为:y =.(2)设销售A 类杨梅x 吨,则销售B 类杨梅(20﹣x )吨. ①当2≤x <8时,wA =x (﹣x +14)﹣x =﹣x 2+13x ; wB =9(20﹣x )﹣[12+3(20﹣x )]=108﹣6x ∴w =wA +wB ﹣3×20=(﹣x 2+13x )+(108﹣6x )﹣60 =﹣x 2+7x +48;当x ≥8时,wA =6x ﹣x =5x ;wB =9(20﹣x )﹣[12+3(20﹣x )]=108﹣6x ∴w =wA +wB ﹣3×20=(5x )+(108﹣6x )﹣60=﹣x +48. ∴w 关于x 的函数关系式为:w =.②当2≤x <8时,﹣x 2+7x +48=30,解得x 1=9,x 2=﹣2,均不合题意; 当x ≥8时,﹣x +48=30,解得x =18.∴当毛利润达到30万元时,直接销售的A 类杨梅有18吨.(3)设该公司用132万元共购买了m 吨杨梅,其中A 类杨梅为x 吨,B 类杨梅为(m ﹣x )吨,则购买费用为3m 万元,A 类杨梅加工成本为x 万元,B 类杨梅加工成本为[12+3(m ﹣x )]万元,∴3m +x +[12+3(m ﹣x )]=132,化简得:x =3m ﹣60. ①当2≤x <8时,wA =x (﹣x +14)﹣x =﹣x 2+13x ; wB =9(m ﹣x )﹣[12+3(m ﹣x )]=6m ﹣6x ﹣12 ∴w =wA +wB ﹣3×m =(﹣x 2+13x )+(6m ﹣6x ﹣12)﹣3m =﹣x 2+7x +3m ﹣12. 将3m =x +60代入得:w =﹣x 2+8x +48=﹣(x ﹣4)2+64 ∴当x =4时,有最大毛利润64万元,此时m =,m ﹣x =;②当x >8时,wA =6x ﹣x =5x ;wB =9(m ﹣x )﹣[12+3(m ﹣x )]=6m ﹣6x ﹣12 ∴w =wA +wB ﹣3×m =(5x )+(6m ﹣6x ﹣12)﹣3m =﹣x +3m ﹣12. 将3m =x +60代入得:w =48 ∴当x >8时,有最大毛利润48万元. 综上所述,购买杨梅共吨,其中A 类杨梅4吨,B 类吨,公司能够获得最大毛利润,最大毛利润为64万元.17. 解:(1)当点N落在BD上时,如图1.∵四边形PQMN是正方形,∴PN∥QM,PN=PQ=t.∴△DPN∽△DQ B.∴.∵PN=PQ=P A=t,DP=3﹣t,QB=AB=4,∴.∴t=.∴当t=时,点N落在BD上.(2)①如图2,则有QM=QP=t,MB=4﹣t.∵四边形PQMN是正方形,∴MN∥DQ.∵点O是DB的中点,∴QM=BM.∴t=4﹣t.∴t=2.②如图3,∵四边形ABCD是矩形,∴∠A=90°.∵AB=4,AD=3,∴DB=5.∵点O是DB的中点,∴DO=.∴1×t=AD+DO=3+.∴t=.∴当点O在正方形PQMN内部时,t的范围是2<t<.(3)①当0<t≤时,如图4.S=S正方形PQMN=PQ2=P A2=t2.②当<t≤3时,如图5,∵tan∠ADB==,∴=.∴PG=4﹣t.∴GN=PN﹣PG=t﹣(4﹣t)=﹣4.∵tan∠NFG=tan∠ADB=,∴.∴NF=GN=(﹣4)=t﹣3.∴S=S正方形PQMN﹣S△GNF=t2﹣×(﹣4)×(t﹣3)=﹣t2+7t﹣6.③当3<t≤时,如图6,∵四边形PQMN是正方形,四边形ABCD是矩形.∴∠PQM=∠DAB=90°.∴PQ∥A D.∴△BQP∽△BA D.∴==.∵BP=8﹣t,BD=5,BA=4,AD=3,∴.∴BQ=,PQ=.∴QM=PQ=.∴BM=BQ﹣QM=.∵tan∠ABD=,∴FM=BM=.∴S=S梯形PQMF=(PQ+FM)•QM=[+]•=(8﹣t)2 =t2﹣t+.综上所述:当0<t ≤时,S =t 2.当<t ≤3时,S =﹣t 2+7t ﹣6. 当3<t ≤时,S =t 2﹣t +.(4)设直线DN 与BC 交于点E , ∵直线DN 平分△BCD 面积, ∴BE =CE =. ①点P 在AD 上,过点E 作EH ∥PN 交AD 于点H ,如图7,则有△DPN ∽△DHE . ∴. ∵PN =P A =t ,DP =3﹣t ,DH =CE =,EH =AB =4,∴.解得;t =.②点P 在DO 上,连接OE ,如图8,则有OE =2,OE ∥DC ∥AB ∥PN . ∴△DPN ∽△DOE . ∴.∵DP =t ﹣3,DO =,OE =2, ∴PN =(t ﹣3).∵PQ =(8﹣t ),PN =PQ , ∴(t ﹣3)=(8﹣t ).解得:t =.③点P 在OC 上,设DE 与OC 交于点S ,连接OE ,交PQ 于点R ,如图9, 则有OE =2,OE ∥D C .∴△DSC ∽△ESO . ∴.∴SC =2SO .∵OC =, ∴SO ==.∵PN ∥AB ∥DC ∥OE , ∴△SPN ∽△SOE . ∴.∵SP =3++﹣t =,SO =,OE =2, ∴PN =.∵PR ∥MN ∥BC , ∴△ORP ∽△OE C . ∴. ∵OP =t ﹣,OC =,EC =, ∴PR =.∵QR =BE =, ∴PQ =PR +QR =. ∵PN =PQ , ∴=.解得:t =.综上所述:当直线DN 平分△BCD 面积时,t 的值为、、.。
【2018中考真题】湖北省黄冈市中考数学试卷(含答案解析)
黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数 学 试 题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项中,有且只有一个答案是正确的) 1. -32的相反数是A. -23B. -32C. 32D. 232. 下列运算结果正确的是A. 3a 3·2a 2=6a 6B. (-2a)2= -4a 2C. tan45°=22 D. cos30°=233.函数y= 11-+x x 中自变量x 的取值范围是A .x ≥-1且x ≠1 B.x ≥-1 C. x ≠1 D. -1≤x <14.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为A.50°B.70°C.75°D.80°(第4题图)5.如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=A.2B.3C.4D.23(第5题图)6.当a ≤x ≤a+1时,函数y=x 2-2x+1的最小值为1,则a 的值为 A.-1 B.2 C.0或2 D.-1或2第Ⅱ卷(非选择题 共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16 800 000用科学计数法表示为______________________.8.因式分解:x 3-9x=___________________________. 9.化简(2-1)0+(21)-2-9+327 =________________________. 10.若a-a1=6,则a 2+a21值为_______________________.11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=___________.(第11题图)12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_________________cm (杯壁厚度不计).(第13题图)14. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax 2+bx+1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题 (本题共10题,满分78分)15.(本题满分5分)求满足不等式组: x-3(x-2)≤8 的所有整数解.21x-1<3 -23x16.(本题满分6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子。
2018年湖北省黄冈市省级示范高中自主招生数学试卷(含答案解析)
2018年湖北省黄冈市省级示范高中自主招生数学试卷副标题题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.||−13|−1|=()A. 13B. 23C. −13D. −232.为遏制中国的经济发展,3月22日美国总统特朗普签署了对中国部分产品征收高额关税的总统备忘录,发动了对华贸易战,中国方面当即回应“奉陪到底”,采取了对等的反制措施.2017年美国对华贸易逆差3372亿美元,用科学记数法表示为()A. 3372×108B. 3.372×1011C. 3.372×108D. 3.372×1093.对每个x,y是y1=2x,y2=x+2,y3=−32x+12三个值中的最大值,则当x变化时,函数y的最小值为()A. 4B. 6C. 8D. 4874.直线a//b,A、B分别在直线a、b上,△ABC为等边三角形,点C在直线a、b之间,∠1=10〫,则∠2=()A. 30〫B. 40〫C. 50〫D. 70〫5.为响应“建设美丽中国”的号召,光明中学青年志愿者服务队的同学们开展了植树活动,统计每个同学的植树量,列表如下,则每个志愿者植树量的中位数是()植树量678910人数14365A. 7B. 8C. 9D. 106.关于x的方程x2−bx+4=0有两个相等的正实数根,则b的值为()A. 4B. −4C. −4或4D. 07.如图,圆O的半径为6,△ABC是圆O的内接三角形,连接OB、OC,BC=6√3,则∠A=()A. 60°B. 45°C. 30°D. 120°8.如图,△ABC是直角三角形,∠B=30〫,∠A=90〫,AC=1,将△ABC绕点C逆时针旋转60〫至△CB1A1,再将△CB1A1沿边B1C翻折至△CB1A2,则△ABC与△CB1A2重叠部分的面积为()A. √312B. √36C. √33D. √329.将一个正方体的各个面涂上红色或蓝色(可以只用一种颜色),则正方体不同的涂色方案总共有()种.A. 6B. 8C. 9D. 1010.正整数构成的数列a1,a2,……,a n,……满足:①数列递增,即a1<a2<⋯…a n<⋯…;②a n=a n−1+a n−2(n≥3),则称为“类斐波拉契数列”,例如:3,4,7,11,18,29,……,则满足a5=59的“类斐波拉契数列”有()种.A. 1B. 2C. 3D. 4二、填空题(本大题共8小题,共32.0分)11.已知3x−4y=−2,则代数式x(y−9)−y(x−12)的值为______.12.方程x2+mx−1=0的两根为x1,x2,且1x1+1x2=−3,则m=______.13.将大小相同的两个白色小球与两个黑色小球混合放入袋中,从中抽取两个小球,恰好颜色是一白一黑的概率为______.14.国内名牌大学每年都会举办竞赛学科夏令营,选拔优秀的竞赛学生,已知某高校举办的夏令营考试,其综合成绩由三部分组成:基础笔试成绩占30%,竞赛笔试成绩占50%,面试成绩占20%,甲、乙两名学生的成绩如下表:测试者基础笔试成绩竞赛笔试成绩面试成绩甲809285乙928288则甲乙两名学生中综合成绩更为优秀的是______.15.如图,圆O的半径为3,点A在圆O上运动,ABCD为矩形,AC与BD交于点M,MO=5,则AB2+AD2的最小值为______.16.如图,圆柱底面半径为2cm,高为9πcm,A、B两点分别在圆柱的两个底面圆周,且在同一母线上,用一根棉线从点A顺着圆柱侧面绕3圈到点B,棉线最短需要______cm(结果保留π).17. 当12≤x ≤2时,函数y =1x 的图象为曲线段CD ,y =−2x −b 的图象分别与x 轴、y 轴交于A 、B 两点,若曲线段CD 在△AOB 的内部(且与三条边无交点),则b 的取值范围为______.18. 黄冈首届半程马拉松于5月6日在遗爱湖公园起跑,小林与小雨两名同学为参加比赛,在学校运动场400米环形跑道上进行训练,两人各自以恒定的速度沿逆时针方向跑步,已知每隔12分钟小林追上小雨一次,小林每圈花费的时间比小雨少10秒,则小林跑步的速度为每秒______米. 三、解答题(本大题共6小题,共58.0分) 19. (1)解方程组:{x −y =33x −2y =8(2)解不等式:x3>2−x−1220. 如图,在▱ABCD 中,AB =3,AD =6,∠ABC =60°,E 为BC 的中点,(1)求∠CED ;(2)求DE 的边长.21. 南海诸岛自古以来都是中国的领土,4月12日,中央军委在南海海域隆重举行海上阅兵,军委主席习近平登上长沙舰检阅海军舰艇编队,包括辽宁号航母在内的48艘舰艇参加了阅兵仪式.如图,A 、B 是两处海港,其中A 在B 东偏南30〫方向30√2千米处,辽宁号航母从海港A 出发,沿东偏北45〫方向,以15千米/小时的速度匀速航行,两小时后,长沙舰从海港B出发,沿东偏北15〫的方向匀速航行,两舰恰好同时到达阅兵地点C.(1)长沙舰从海港出发航行到达阅兵地点用了多少时间?(2)求长沙舰的航行速度.(结果保留根号)22.如图,△ABC是钝角三角形,∠A>90〫,⊙O是△ABC的外接圆,直径PQ恰好经过AB的中点M,PQ与BC的交点为D,∠CDO=45〫,l为过点C圆的切线,作DE⊥l,CF也为圆的直径.(1)证明:△CFB∽△DCE.(2)已知⊙O的半径为3,求AD2+CD2的值.23.阅读理解:如图①,图形l外一点P与图形l上各点连接的所有线段中,若线段PA1最短,则线段PA1的长度称为点P到图形l的距离.例如:图②中,线段P1A的长度是点P1到线段AB的距离;线段P2H的长度是点P2到线段AB的距离.解决问题:如图③,平面直角坐标系xOy中,点A、B的坐标分别为(8,4),(12,7),点P从原点O出发,以每秒1个单位长度的速度向x轴正方向运动了t秒.(1)当t=4时,求点P到线段AB的距离;(2)t为何值时,点P到线段AB的距离为5?(3)t满足什么条件时,点P到线段AB的距离不超过6?(直接写出此小题的结果) 24.抛物线y=ax2+bx+c(a≠0),经过点A(−1,0),B(3,0),C(0,−3),(1)求抛物线的解析式及顶点M的坐标;(2)连接AC、BD,N为抛物线上的点且在第一象限,当S△NBC=S△ABC时,求N点的坐标;(3)我们通常用(a,b)表示整数a,b的最大公约数,例如(8,12)=4,若(a,b)=1,则称a,b互素,关于最大公约数有几个简单的性质:①(a,b)=(a,ka+b),其中k为任意整数;②(a,b)=(a,−b);若点Q(a,b)满足:a,b均为正整数,且(a,b)=1,则称Q点为“互素正整点”,0≤x≤100时,该抛物线上有多少个“互素正整点”?答案和解析1.【答案】B【解析】解:||−13|−1|=1−13=23.故选:B.直接利用绝对值的性质化简得出答案.此题主要考查了有理数的加法,正确掌握绝对值的性质是解题关键.2.【答案】B【解析】解:3372亿=337200000000=3.372×1011,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法−表示较大的数,较小的数,以及近似数与有效数字,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】D【解析】解:分别联立y1、y2,y1、y3,y2、y3,可知y1、y2的交点A(2,4);y1、y3的交点B(247,487);y2、y3的交点C(4,6),∴当x≤2时,y最小=9;当2<x≤247时,y最小=487;当247<x≤4时,y最小=487;当x>4时,y最小=8.故选:D.分别联立三个函数中任意两函数,求出函数的交点坐标,根据此交点坐标即可求解.本题考查的是一次函数的性质,根据题意得出任意两函数的交点坐标是解答此题的关键.4.【答案】C【解析】解:作CE//a.∵a//b,∴CE//b,∴∠2=∠ACE,∠1=∠ECB,∵△ACB是等边三角形,∴∠ACB=60°,∴∠1+∠2=60°,∵∠1=10°,∴∠2=50°,故选:C.作CE//a.证明∠1+∠2=∠ACB=60°,即可解决问题本题考查平行线的性质,等边三角形的性质等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题.5.【答案】C【解析】解:∵共有1+4+3+6+5=19人,∴中位数是排序后位于第10个人的植树量,∴中位数为9,故选:C.利用中位数的定义进行解答即可.考查了中位数的知识,了解定义是解答本题的关键,难度不大.6.【答案】A【解析】解:∵关于x的方程x2+bx+4=0有两个相等的正实数根,∴△=b2−4×1×4=b2−16=0,解得:b=4.故选:A.根据方程有两个相等的实数根结合根的判别式即可得出关于b的一元二次方程,解之即可得出b的值.本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.7.【答案】A【解析】解:过点O作OD⊥BC,∵BC=6√3,∴BD=DC=3√3,∵BO=6,∴sin∠BOD=3√36=√32,∴∠BOD=60°,∴∠BOC=120°,∴∠A=60°.故选:A.直接利用垂径定理得出BD的长,再利用锐角三函数关系得出∠BOD=60°,则∠BOC= 120°,再利用圆周角定理得出答案.此题主要考查了垂径定理以及三角形的外心,正确得出∠BOD=60°是解题关键.8.【答案】C【解析】解:∵∠B=30〫,∠BAC=90〫,AC=1,∴BC=2,AB=√3AC=√3∵将△ABC绕点C逆时针旋转60〫至△CB1A1,再将△CB1A1沿边B1C翻折至△CB1A2,∴A1C=AC=1=A2C,∠BAC=∠A1=∠B1A2C=90°∴A2B=1,且∠B=30°∴A2E=√3 3∴△ABC与△CB1A2重叠部分的面积=12×√3×1−12×1×√33=√33故选:C.由旋转的性质和折叠的性质可得A1C=AC=1=A2C,∠BAC=∠A1=∠B1A2C=90°,由直角三角形的性质可求A2E=√33,由三角形的面积公式可求解.本题考查了旋转的性质,折叠的性质,直角三角形的性质,熟练掌握旋转的性质是本题的关键.9.【答案】D【解析】解:若只涂红色:1种情况;若只涂蓝色:1种情况;若1个面涂红色:1种情况;若2个面涂红色:2种情况;若3个面涂红色:2种情况;若4个面涂红色:2种情况;若5个面涂红色:1种情况;共有:1+1+1+2+2+2+2+1=10.故选:D.分类讨论:只涂红色;只涂蓝色;1个面涂红色;2个面涂红色;3个面涂红色;4个面涂红色;5个面涂红色.考查了认识立体图形,解题时,需要掌握正方体有6个面,还要掌握“分类讨论”的数学思想的应用.10.【答案】D【解析】解:满足a5=59的“类斐波拉契数列”应满足:①数列递增,即a1<a2<a3< a4<a5;②a n=a n−1+a n−2(n≥3),故:①10,13,23,36,59;②7,15,22,37,59;③4,17,21,38,59;④1,19,20,39,59.故选:D.由题可发现数列存在a n=a n−1+a n−2(n≥3)的规律,满足a5=59的“类斐波拉契数列”有多少种.本题考查了规律性的题目,通过题目,找准规律是解答此题的关键.11.【答案】6【解析】解:当3x−4y=−2时,代数式x(y−9)−y(x−12)=−9x+12y,=−3(3x−4y),=−3×(−2).=6.故答案为:6.先将原式化简,然后将3x−4y=−2代入即可求出答案.本题考查整式的混合运算−化简求值,解答本题的关键是明确整式化简求值的方法.12.【答案】−3【解析】解:∵方程x2+mx−1=0的两根为x1,x2,∴△=m2−4×1×(−1)≥0,m2+4>0,由题意得:x1⋅x2=−1;x1+x2=−m,∵1x1+1x2=−3,∴x1+x2x1x2=−3,−m−1=−3,m=−3,故答案为:−3.根据根与系数的关系得出x1⋅x2及x1+x2的值,代入所求代数式得出k的值,再看k的值是否满足△中k的取值范围即可.本题考查的是根与系数的关系及根的判别式,在解答此题时要熟知熟知一元二次方程ax2+bx+c=0中,①当△>0时,方程有两个不相等的两个实数根;②x1+x2=−ba ,x1x2=ca.13.【答案】23【解析】解:画树状图为:共有12种等可能的结果数,其中从中抽取两个小球,恰好颜色是一白一黑的结果数为8,所以从中抽取两个小球,恰好颜色是一白一黑的概率=812=23.故答案为23.画树状图展示所有12种等可能的结果数,找出一白一黑的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.14.【答案】甲【解析】解:∵x 甲−=80×30%+92×50%+85×20%=24+46+17=87分, x 乙−=92×30%+82×50%+88×20%=27.6+41+17.6=86.2分,∴甲乙两名学生中综合成绩更为优秀的是甲; 故答案为:甲.根据加权平均数的计算方法解答.本题考查了加权平均数,权的表现形式,一种是比的形式,如4:3:2,另一种是百分比的形式,如创新占50%,综合知识占30%,语言占20%,权的大小直接影响结果. 15.【答案】36【解析】解:如图,连接OA .∵四边形ABCD 是矩形,∴AC =BD ,AM =MC =BM =MD ,∠BAD =90°, ∴AB 2+AD 2=BD 2,∴BD 的值最小时,AB 2+AD 2的值最小, ∵AM ≥OM −OA ,OM =5,OA =3, ∴AM ≥3,∴AM 的最小值为3, ∴BD 的最小值为6,∴AB 2+AD 2的最小值为36, 故答案为36.如图,连接OA.首先判断出BD 最小时,AB 2+AD 2的值最小,求出AM 的最小值即可解决问题.本题考查点与圆的位置关系,勾股定理,矩形的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型. 16.【答案】15π【解析】解:圆柱体的展开图如图所示:用一棉线从A 顺着圆柱侧面绕3圈到B 的运动最短路线是:AC →CD →DB , 在圆柱体的展开图长方形中,将长方形平均分成3个小长方形,A 沿着3个长方形的对角线运动到B 的路线最短, ∵圆柱底面半径为2cm ,∴长方形的宽即是圆柱体的底面周长:2π×2=4π(cm), ∵圆柱高为9πcm ,∴小长方形的一条边长是9π÷3=3π(cm),根据勾股定理求得AC =CD =DB =√(3π)2+(4π)2=5π(cm),∴AC +CD +DB =15πcm , 故答案为:15π.把圆柱展开,得到棉线最短需要的长度是AC +CD +DB ,根据勾股定理计算即可.本题考查的是圆柱的计算、平面展开--路径最短问题,圆柱的侧面展开图是一个长方形,此长方形的宽等于圆柱底面周长,长方形的长等于圆柱的高.17.【答案】−92<b <−3【解析】解:把x =12代入y =1x 得,y =2,把x =2代入y =1x 得,y =12,把(12,2)代入y =−2x −b 得,b =−3,把(2,12)代入y =−2x −b 得,b =−92,因此,b 的取值范围为−92<b <−3.故答案为:−92<b <−3.求出C 、D 两点坐标,再代入一次函数的关系式求出b 的值,即可确定b 的取值范围. 考查反比例函数、一次函数图象上点的坐标特征,把点的坐标代入是常用的方法,数形结合则更直观.18.【答案】5【解析】解:设小林跑步的速度为x 米/秒,则小雨跑步的速度为(x −40012×60)米/秒, 依题意,得:400x−40012×60−400x =10,解得:x 1=−409,x 2=5,经检验,x 1=−409,x 2=5均为原分式方程的解,x =5符合题意.故答案为:5.设小林跑步的速度为x 米/秒,则小雨跑步的速度为(x −40012×60)米/秒,根据时间=路程÷速度结合小林每圈花费的时间比小雨少10秒,即可得出关于x 的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.【答案】解:(1){x −y =3 ①3x −2y =8 ②, ①×2−②得−x =−2,解得x =2,把x =2代入①得y =−1, 元方程组的解是{x =2y =−1; (2)去分母得:2x >12−3(x −1),去括号得:2x >12−3x +3,移项,合并同类项得:5x >15,系数化为1得:x>3.【解析】(1)根据加减法,可得方程组的解;(2)根据解不等式的步骤,去分母,去括号.移项合并同类项,系数化为1,可得答案.本题考查了解一元一次不等式和解二元一次方程组,加减消元法是解方程组的关键.20.【答案】解:(1)∵四边形ABCD为平行四边形,∴BC=AD=6,∠C=180°−∠B=180°−60°=120°,CD=AB=3,∵E为BC的中点,∴BE=CE=3,∴CE=CD,∴∠CED=∠CDE=12(180°−∠C)=12(180°−120°)=30°;(2)作CH⊥DE于H,如图,∵CE=CD,∴CH=DH,在Rt△CEH中,CH=12CE=32,∴EH=√3CH=3√32,∴DE=2EH=3√3.【解析】(1)根据平行四边形的性质得到BC=AD=6,∠C=120°,CD=AB=3,而CE=3,所以CE=CD,然后根据等腰三角形的性质和三角形内角和可计算出∠CED的度数;(2)作CH⊥DE于H,如图,利用等腰三角形的性质得到CH=DH,然后利用含30度的直角三角形三边的关系计算出EH,从而得到DE的长.本题考查了平行四边形的性质:平行四边形的对边相等.平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的性质.21.【答案】解:(1)由题意得:AB=30√2,∠ABC=30°+15°=45°,∠BAC=(90°−30°)+45°=105°,∴∠C=180°−45°−105°=30°,过点A作AD⊥BC,垂足为D,在Rt△ABD中,AD=BD=√22×30√2=30,在Rt△ADC中,∠C=30°,∴AC=2AD=60,CD=√3AD=30√3,∴BC=30+30√3,∴辽宁号航母从A到C的时间为60÷15=4小时,则长沙舰从B到C所用时间为4−2=2小时,答:长沙舰从海港出发航行到达阅兵地点用了2小时.(2)长沙舰的速度为(30+30√3)÷2=(15+15√3)千米/小时,答:长沙舰的航行速度为(15+15√3)千米/小时.【解析】(1)根据方位角可以得出△ABC的各个内角的度数,根据所给的条件,可以求出三条边的长,于是可以求出辽宁号舰从A到C的时间,进而求出长沙舰从B到C的时间,(2)根据路程除以时间就是速度,即求出BC的长度和长沙舰行驶BC所有时间.考查方位角的意义和解直角三角形等知识,将方位角转化到三角形的内角是关键,正确的解直角三角形是前提.22.【答案】解:(1)∵CF也为圆的直径,∴∠CBF=90°,∵DE⊥l,∴∠DEC=90°,∴∠DEC=∠CBF,∵l为过点C圆的切线,PQ是⊙O的直径,∴CF⊥CE,∴DE//CF,∴∠CDE=∠BCF,∴△CFB∽△DCE;(2)∵PQ是⊙O的直径,直径PQ恰好经过AB的中点M,∴PQ垂直平分AB,∴AD=BD,∴∠ADQ=∠BDQ,∵∠BDQ=∠CDP=45°,∴∠ADB=90°,∴∠ADC=90°,∴AD2+CD2=AC2,∵AD=BD,∠ADB=90°,∴∠ABD=45°,连接AF,∴∠AFC=∠ABC=45°,∴△ACF是等腰直角三角形,CF,∴AC=√22∵⊙O的半径为3,∴CF=6,∴AC=3√2,∴AD2+CD2=AC2=18.【解析】(1)根据切线的性质得到CF⊥CE,根据平行线的性质得到∠CDE=∠BCF,于是得到结论;(2)由垂径定理得到PQ垂直平分AB,根据线段垂直平分线的性质得到AD=BD,求得∠ADB=90°,得到∠ADC=90°,连接AF,推出△ACF是等腰直角三角形,得到AC=√2CF,根据勾股定理即可得到结论.2本题考查了相似三角形的判定和性质,切线的性质,圆周角定理,等腰直角三角形的判定和性质,垂径定理,正确的作出辅助线是解题的关键.23.【答案】解:(1)如图1,作AC⊥x轴于点C,则AC=4、OC=8,当t=4时,OP=4,∴PC=4,∴点P到线段AB的距离PA=√PC2+AC2=√42+42=4√2;(2)如图2,过点B作BD//x轴,交y轴于点D,①当点P位于AC左侧时,∵AC=4、P1A=5,∴P1C=√P1A2−AC2=√52−42=3,∴OP1=5,即t=5;②当点P位于AC右侧时,过点A作AP2⊥AB,交x轴于点P2,∴∠CAP2+∠EAB=90°,∵BD//x轴、AC⊥x轴,∴CE⊥BD,∴∠ACP2=∠BEA=90°,∴∠EAB+∠ABE=90°,∴∠ABE=∠P2AC,在△ACP2和△BEA中,∵{∠ACP2=∠BEA=90°AC=BE=4∠P2AC=∠ABE,∴△ACP2≌△BEA(ASA),∴AP2=BA=√AE2+BE2=√32+42=5,而此时P2C=AE=3,∴OP2=11,即t=11;(3)如图3,①当点P位于AC左侧,且AP3=6时,则P 3C =√AP 32−AC 2=√62−42=2√5,∴OP 3=OC −P 3C =8−2√5;②当点P 位于AC 右侧,且P 3′M =6时,过点P 2作P 2N ⊥P 3′M 于点N ,则四边形AP 2NM 是矩形,∴∠AP 2N =90°,∠ACP 2=∠P 2NP 3′=90°,AP 2=MN =5,∴△ACP 2∽△P 2NP 3′,且NP 3′=1,∴AP 2P 2P 3′=CP 2NP 3′,即5P 2P 3′=31, ∴P 2P 3′=53,∴OP 3′=OC +CP 2+P 2P 3′=8+3+53=383, ∴当8−2√5≤t ≤383时,点P 到线段AB 的距离不超过6.【解析】(1)作AC ⊥x 轴,由PC =4、AC =4,根据勾股定理求解可得;(2)作BD//x 轴,分点P 在AC 左侧和右侧两种情况求解,P 位于AC 左侧时,根据勾股定理即可得;P 位于AC 右侧时,作AP 2⊥AB ,交x 轴于点P 2,证△ACP 2≌△BEA 得AP 2=BA =5,从而知P 2C =AE =3,继而可得答案;(3)分点P 在AC 左侧和右侧两种情况求解,P 位于AC 左侧时,根据勾股定理即可得;点P 位于AC 右侧且P 3M =6时,作P 2N ⊥P 3M 于点N ,知四边形AP 2NM 是矩形,证△ACP 2∽△P 2NP 3得AP 2P 2P 3=CP2NP 3,求得P 2P 3的长即可得出答案. 本题主要考查一次函数的综合问题,理解题意掌握点到线段的距离概念及分类讨论思想的运用、矩形的判定与性质、相似三角形的判定与性质是解题的关键.24.【答案】解:(1)∵抛物线y =ax 2+bx +c(a ≠0)经过点A(−1,0),B(3,0),C(0,−3), ∴{a −b +c =09a +3b +c =0c =−3,解得:{a =1b =−2c =−3,∴y =x 2−2x −3=(x −1)2−4,∴抛物线的顶点M 坐标为:(1,−4),抛物线的解析式为:y =x 2−2x −3;(2)设直线BC 解析式y =mx +n ,将点B(3,0)、C(0,−3)代入,得:{3m +n =0n =−3, 解得:{m =1n =−3, ∴直线BC 解析式为y =x −3,过点A 作AN//BC 交抛物线于点N ,如图所示:则S △BCN =S △ABC ,设直线AN 的解析式为y =x +p ,将点A(−1,0)代入,得:−1+p =0,解得:p =1,∴直线AN 解析式为y =x +1,由{y =x +1y =x 2−2x −3, 解得:{x =−1y =0或{x =4y =5, ∴点N 坐标为(4,5);(3)抛物线上的任意整数点Q(a,b)可表示为(t,t 2−2t −3),t 为正整数,且t ≥4, 由性质①②得:t 与t 2−2t −3的最大公约数为(t,t 2−2t −3)=(t,(t −2)t −3)=(t,−3)=(t,3),即只需要满足(t,3)=1,又∵3是素数,当且仅当t 不是3的倍数时,t 与3互素,在4到100共97个数中,一共有32个数是3的倍数,∴共有65个数不是3的倍数,满足(t,t 2−2t −3)=1,即在0≤x ≤100时,该抛物线上有65个“互素正整点”.【解析】(1)将点A 、B 、C 坐标代入解析式,解关于a 、b 、c 的方程组可得函数解析式,配方成顶点式即可得顶点M 的坐标;(2)过点A 作AN//BC 交抛物线于点N ,则有S △BCN =S △ABC ,求出直线AN 的解析式,构建方程组求出交点坐标即可;(3)抛物线上的任意整数点Q(a,b)可表示为(t,t 2−2t −3),得到(t,t 2−2t −3)=(t,(t −2)t −3)=(t,−3)=(t,3),找到符合条件的值,即可得出答案.本题是二次函数的综合题,考查了待定系数法求函数解析式、三角形面积、解一元二次方程、新定义“互素正整点”等知识;熟练掌握待定系数法求二次函数的解析式,运用数形结合思想是解题的关键.。
2018年湖北黄冈市中考数学模拟试卷二带解析
2018年湖北黄冈市中考数学模拟试卷(二)带解析2018年湖北省黄冈市中考数学全真模拟试卷(二)一.选择题(共6小题,满分15分)1.已知x的取值能使|x﹣3|+|x+2|取得最小值,则所有中整数有()A.1个B.2个C.3个D.4个2.(3分)下列运算正确的是()A.m6÷m2=m3B.(x+1)2=x2+1C.(3m2)3=9m6D.2a3a4=2a73.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC 上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④4.(3分)一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6πB.4πC.8πD.45.(3分)小华五次跳远的成绩如下(单位:m):3.9,4.1,3.9,3.8,4.2.关于这组数据,下列说法错误的是()A.极差是0.4B.众数是3.9C.中位数是3.98D.平均数是3.986.(3分)已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB的弦心距为()A.B.2C.D.二.填空题(共8小题,满分24分,每小题3分)7.(3分)计算:=.8.(3分)分解因式:3x2﹣6x2y+3xy2=.9.(3分)=.10.(3分)现在网购越来越多地成为人们的一种消费方式,刚刚过去的2015年的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为.11.(3分)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果yn=(用含字母x和n的代数式表示).12.(3分)如图,E是正方形ABCD内一点,如果△ABE 为等边三角形,那么∠DCE=度.13.(3分)已知圆锥的底面半径为2cm,母线长是4cm,则圆锥的侧面积是cm2(结果保留π).14.(3分)两个直角三角板如图放置,其中AC=5,BC=12,点D为斜边AB的中点.在三角板DEF绕着点D的旋转过程中,边DE与边AC始终相交于点M,边DF与边BC始终相交于点N,则线段MN的最小值为.三.解答题(共10小题,满分64分)15.(5分)解关于x的不等式组:,其中a为参数.16.(6分)如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.(1)判断BF与AC的数量关系并说明理由;(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC 的数量关系并说明理由.17.(6分)已知x1,x2是方程2x2﹣2nx+n(n+4)=0的两根,且(x1﹣1)(x2﹣1)﹣1=,求n的值.18.(6分)甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?19.(7分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.20.(7分)如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P 从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB﹣BO﹣OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)求直线AB的解析式;(2)在点P从O向A运动的过程中,求△APQ的面积S与t之间的函数关系式(不必写出t的取值范围);(3)在点E从B向O运动的过程中,完成下面问题:①四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,请说明理由;②当DE经过点O时,请你直接写出t的值.21.(7分)如图,反比例函数y=(m≠0)与一次函数y=kx+b(k≠0)的图象相交于A、B两点,点A的坐标为(﹣6,2),点B的坐标为(3,n).求反比例函数和一次函数的解析式.22.(8分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.23.(12分)如图,实验数据显示,一般成年人喝半斤低度白酒后,1.5时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可以近似的用二次函数y=﹣200x2+400x刻画,1.5小时后(包括1.5小时)y与x可近似的用反比例函数y=(k>0)刻画.(1)根据上述数学模型计算;①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按照国家规定,车辆驾驶人员血液中酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早晨7:00能否驾车去上班?请说明理由.24.综合与探究:如图,抛物线y=x2﹣x﹣4与x轴交与A,B两点(点B 在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l 交抛物线于点Q.(1)求点A,B,C的坐标.(2)当点P在线段OB上运动时,直线l分别交BD,BC 于点M,N.试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ 为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.2018年湖北省黄冈市中考数学全真模拟试卷(二)参考答案与试题解析一.选择题(共6小题,满分15分)1.【解答】解:∵已知x的取值能使|x﹣3|+|x+2|取得最小值,∴当x≥3时,有|x﹣3|+|x+2|=x﹣3+x+2=2x﹣1,∴当x=3时有最小值:2×3﹣1=5;∴当﹣2<x<3时,有|x﹣3|+|x+2|=3﹣x+x+2=5,∴其有最小值5;当x≤﹣2时,有|x﹣3|+|x+2|=3﹣x﹣x﹣2=1﹣2x,∴当x=﹣2时有最小值5,∴﹣2≤x≤3可以使|x﹣3|+|x+2|取得最小值,∴﹣1≤≤,∴所有中整数有﹣1,0,1,共3个,故选:C.2.【解答】解:A、原式=m4,不符合题意;B、原式=x2+2x+1,不符合题意;C、原式=27m6,不符合题意;D、原式=2a7,符合题意,故选:D.3.【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.4.【解答】解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,那么它的表面积=2π×2+π×1×1×2=6π,故选A.5.【解答】解:A、极差是4.2﹣3.8=0.4;B、3.9有2个,众数是3.9;C、从高到低排列后,为4.2,4.1,3.9,3.9,3.8.中位数是3.9;D、平均数为(3.9+4.1+3.9+3.8+4.2)÷5=3.98.故选:C.6.【解答】解:如图,设AC与BD的交点为O,过点O作GH⊥CD于G,交AB于H;作MN⊥AB于M,交CD于点N.在Rt△COD中,∠COD=90°,OG⊥CD;∴∠DOG=∠DCO;∵∠GOD=∠BOH,∠DCO=∠ABO,∴∠ABO=∠BOH,即BH=OH,同理可证,AH=OH;即H是Rt△AOB斜边AB上的中点.同理可证得,M是Rt△COD斜边CD上的中点.设圆心为O′,连接O′M,O′H;则O′M⊥CD,O′H⊥AB;∵MN⊥AB,GH⊥CD;∴O′H∥MN,OM∥GH;即四边形O′HOM是平行四边形;因此OM=O′H.由于OM是Rt△OCD斜边CD上的中线,所以OM=O′H=CD=2.故选:B.二.填空题(共8小题,满分24分,每小题3分)7.【解答】解:原式==,故答案为:8.【解答】解:原式=3x(x﹣2xy+y2),故答案为:3x(x﹣2xy+y2)9.【解答】解:∵=﹣,∴原式=(﹣)+(﹣)+…+(﹣),=1﹣,=.故答案为.10.【解答】解:67000000000=6.7×1010,故答案为:6.7×1010.11.【解答】解:将y1=代入得:y2==;将y2=代入得:y3==,依此类推,第n次运算的结果yn=.故答案为:.12.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCD=90°,∵△ABE为等边三角形,∴AE=AB=BE,∠ABE=60°,∴∠EBC=90°﹣60°=30°,BC=BE,∴∠ECB=∠BEC=(180°﹣30°)=75°,∴∠DCE=90°﹣75°=15°.故答案为15.13.【解答】解:底面圆的半径为2,则底面周长=4π,侧面面积=×4π×4=8πcm2.14.【解答】解:当M、N分别为AC、BC的中点时,MN最小.在△ABC中,∵∠C=90°,AC=5,BC=12,∴AB==13.∵M、N分别为AC、BC的中点,∴MN=AB=.故答案为.三.解答题(共10小题,满分64分)15.【解答】解:,解不等式①得:﹣3a<5x≤1﹣3a,﹣a<x≤,解不等式②得:3a<5x≤1+3a,a<x≤,∵当﹣a=a时,a=0,当=时,a=0,当﹣a=时,a=﹣,当a=时,a=,∴当或时,原不等式组无解;当时,原不等式组的解集为:;当时,原不等式组的解集为:.16.【解答】解:(1)BF=AC,理由是:如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,∵∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵∠AFE=∠BFD,∴∠DAC=∠EBC,在△ADC和△BDF中,∵,∴△ADC≌△BDF(AAS),∴BF=AC;(2)NE=AC,理由是:如图2,由折叠得:MD=DC,∵DE∥AM,∴AE=EC,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:△ADC≌△BDF,∵△ADC≌△ADM,∴△BDF≌△ADM,∴∠DBF=∠MAD,∵∠DBA=∠BAD=45°,∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,∴∠ANE=∠NAE=45°,∴AE=EN,∴EN=AC.17.【解答】解:∵x1、x2是方程2x2﹣2nx+n(n+4)=0的两根,∴x1+x2=﹣=n①,x1x2==n(n+4)②,又∵(x1﹣1)(x2﹣1)﹣1=,∴x1x2﹣(x1+x2)=,把①②代入上式得n(n+4)﹣n=,化简得n2=,即n=±.又∵△=b2﹣4ac=4n2﹣4×2×n(n+4)=﹣16n,而原方程有根,∴﹣16n≥0,∴n≤0,∴n=﹣.18.【解答】解:设甲公司人均捐款x元,则乙公司人均捐款x+20元,×=解得:x=80,经检验,x=80为原方程的根,80+20=100(元)答:甲、乙两公司人均捐款分别为80元、100元.19.【解答】解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);补全条形图如图所示:(3)700×=56,所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率==.20.【解答】解:(1)在Rt△AOB中,OA=3,AB=5,由勾股定理得OB==4.∴A(3,0),B(0,4).设直线AB的解析式为y=kx+b.∴解得∴直线AB的解析式为;(2)如图1,过点Q作QF⊥AO于点F.∵AQ=OP=t,∴AP=3﹣t.由△AQF∽△ABO,得.∴=.∴QF=t,∴S=(3﹣t)t,∴S=﹣t2+t;(3)四边形QBED能成为直角梯形.①如图2,当DE∥QB时,∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.此时∠AQP=90°.由△APQ∽△ABO,得.∴=.解得t=;如图3,当PQ∥BO时,∵DE⊥PQ,∴DE⊥BO,四边形QBED是直角梯形.此时∠APQ=90°.由△AQP∽△ABO,得.即=.3t=5(3﹣t),3t=15﹣5t,8t=15,解得t=;(当P从A向0运动的过程中还有两个,但不合题意舍去)②当DE经过点O时,∵DE垂直平分PQ,∴EP=EQ=t,由于P与Q相同的时间和速度,∴AQ=EQ=EP=t,∴∠AEQ=∠EAQ,∵∠AEQ+∠BEQ=90°,∠EAQ+∠EBQ=90°,∴∠BEQ=∠EBQ,∴BQ=EQ,∴EQ=AQ=BQ=AB所以t=,当P从A向O运动时,过点Q作QF⊥OB于F,EP=6﹣t,即EQ=EP=6﹣t,AQ=t,BQ=5﹣t,∴FQ=(5﹣t)=3﹣t,BF=(5﹣t)=4﹣t,∴EF=4﹣BF=t,∵EF2+FQ2=EQ2,即(3﹣t)2+(t)2=(6﹣t)2,解得:t=.∴当DE经过点O时,t=或.21.【解答】解:把点A(﹣6,2)代入中,得m=﹣12.∴反比例函数的解析式为.把点B(3,n)代入中,得n=﹣4.∴B点的坐标为(3,﹣4).把点A(﹣6,2),点B(3,﹣4)分别代入y=kx+b中,得,解得.∴一次函数的解析式为y=﹣x﹣2.22.【解答】解:由题意得:BE=,AE=,∵AE﹣BE=AB=m米,∴﹣=m(米),∴CE=(米),∵DE=n米,[来源:学。
2018年黄冈市中考数学试卷含答案解析
黄冈市2018年初中毕业生学业水平和高中阶段学校招生考试数 学 试 题(考试时间120分钟 满分120分)第Ⅰ卷(选择题 共18分)一、选择题(本题共6小题,每小题3分,共18分。
每小题给出4个选项中,有且只有一个答案是正确的) 1. -32的相反数是A. -23B. -32C.32 D.232. 下列运算结果正确的是A. 3a 3·2a 2=6a 6B. (-2a)2= -4a 2C. tan45°=22 D. cos30°=233.函数y= 11-+x x 中自变量x 的取值范围是A .x ≥-1且x ≠1 B.x ≥-1 C. x ≠1 D. -1≤x <14.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为A.50°B.70°C.75°D.80°(第4题图)5.如图,在Rt △ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=A.2B.3C.4D.236.当a ≤x ≤a+1时,函数y=x 2-2x+1的最小值为1,则a 的值为 A.-1 B.2 C.0或2 D.-1或2第Ⅱ卷(非选择题 共102分)二、填空题(本题共8小题,每小题3分,共24分)7.实数16 800 000用科学计数法表示为______________________. 8.因式分解:x 3-9x=___________________________. 9.化简(2-1)0+(21)-2-9+327 =________________________. 10.若a-a1=6,则a 2+a21值为_______________________. 11.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=___________.(第11题图)12.一个三角形的两边长分别为3和6,第三边长是方程x 2-10x+21=0的根,则三角形的周长为______________.13.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_________________cm (杯壁厚度不计).(第13题图)14. 在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax 2+bx+1中a ,b 的值,则该二次函数图像恰好经过第一、二、四象限的概率为___________.三、解答题 (本题共10题,满分78分)15.(本题满分5分)求满足不等式组: x-3(x-2)≤8 的所有整数解.21x-1<3 -23x16.(本题满分6分)在端午节来临之际,某商店订购了A 型和B 型两种粽子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前湖北省黄冈中学理科实验班预录考试数学试卷一.选择题(共11小题)1.记号[x]表示不超过x的最大整数,设n是自然数,且.则()A.I>0 B.I<0 C.I=0 D.当n取不同的值时,以上三种情况都可能出现2.对于数x,符号[x]表示不大于x的最大整数.若[]=3有正整数解,则正数a的取值范围是()A.0<a<2或2<a≤3B.0<a<5或6<a≤7C.1<a≤2或3≤a<5D.0<a<2或3≤a<53.6个相同的球,放入四个不同的盒子里,每个盒子都不空的放法有()A.4种B.6种C.10种D.12种4.有甲、乙、丙三位同学每人拿一只桶同时到一个公用的水龙头去灌水,灌水所需的时间分别为1.5分钟、0.5分钟和1分钟,若只能逐个地灌水,未轮到的同学需等待,灌完的同学立即离开,那么这三位同学花费的时间(包括等待时间)的总和最少是()A.3分钟B.5分钟C.5.5分钟D.7分钟5.已知实数x满足x2++x﹣=4,则x﹣的值是()A.﹣2B.1C.﹣1或2D.﹣2或16.如图,在等边△ABC中,D为AC边上的一点,连接BD,M为BD上一点,且∠AMD=60°,AM 交BC于E.当M为BD中点时,的值为()A.B.C.D.7.如图,等腰梯形ABCD中,AD∥BC,∠DBC=45°,翻折梯形ABCD,使点B重合于点D,折痕分别交边AB、BC于点E、F.若AD=2,BC=6,则△ADB的面积等于()A.2B.4C.6 D.88.如图,正方形ABCD中,E为CD的中点,EF⊥AE,交BC于点F,则∠1与∠2的大小关系为()A.∠1>∠2B.∠1<∠2C.∠1=∠2D.无法确定9.已知某几何体的三视图如图所示,则该几何体的体积为()A.B.3πC.D.6π10.方程x2+2x+1=的正数根的个数为()A.0B.1C.2D.311.如图,已知∠AOM=60°,在射线OM上有点B,使得AB与OB的长度都是整数,由此称B是“完美点”,若OA=8,则图中完美点B的个数为()A.1B.2C.3D.4二.填空题(共4小题)12.已知x为实数,且,则x2+x的值为.13.满足方程|x+2|+|x﹣3|=5的x的取值范围是.14.多项式6x3﹣11x2+x+4可分解为.15.设整数a使得关于x的一元二次方程5x2﹣5ax+26a﹣143=0的两个根都是整数,则a的值是.三.解答题16.如图,在△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.设点P的运动时间为x(秒).(1)设△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(2)x为何值时,△PBQ的面积最大?并求出最大值;(3)当点Q在BC上运动时,线段PQ上是否存在一个点T,使得在某个时刻△ACT、△ABT、△BCT 的面积均相等(无需计算,说明理由即可).17.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是.参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是.(结果可以不化简)18.某水库大坝的横截面是如图所示的四边形BACD,期中AB∥CD.瞭望台PC正前方水面上有两艘渔船M、N,观察员在瞭望台顶端P处观测渔船M的俯角α=31°,观测渔船N在俯角β=45°,已知NM所在直线与PC所在直线垂直,垂足为点E,PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:0.25.为提高大坝防洪能力,某施工队在大坝的背水坡填筑土石方加固,加固后坝定加宽3米,背水坡FH的坡度为i=1:1.5,施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的1.5倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)19.已知关于x的方程,(1)若两根x1,x2满足x1<0<x2,求m的范围;(2)若,求m的值.20.当m,n是正实数,且满足m+n=mn时,就称点P(m,)为“完美点”,已知点A(0,5)与点M都在直线y=﹣x+b上,点B,C是“完美点”,且点B在线段AM上,若MC=,AM=4,求△MBC的面积.21.设p,q都是实数,且p<q.我们规定:满足不等式p≤x≤q的实数x的所有取值的全体叫做闭区间,表示为[p,q].对于一个函数,如果它的自变量x与函数值y满足:当p≤x≤q时,有p≤y ≤q,我们就称此函数是闭区间[p,q]上的“闭函数”.(1)反比例函数y=是闭区间[1,2014]上的“闭函数”吗?请判断并说明理由;(2)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的解析式;(3)若实数c,d满足c<d,且d>2,当二次函数y=x2﹣2x是闭区间[c,d]上的“闭函数”时,求c,d的值.22.我国是水资源比较贫乏的国家之一,各地采用了价格调控等手段来达到节约用水的目的,某市用水收费的方法是:水费=基本费+超额费+定额损耗费.若每月用水量不超过最低限量a立方米时,只付基本费8元和每月的定额损耗费c元;若用水量超过a立方米时,除了付同上的基本费和定额损耗费外,超过部分每立方米付b元的超额费.已知每户每月的定额费不超过5元.(1)当月用水量为x立方米时,支付费用为y元,写出y关于x的函数关系式;(2)该市一家庭今年一季度的用水量和支付费用见下表,根据表中数据求a、b、c.月份用水量(m3)水费(元)199215193223323.某市将建一个制药厂,但该厂投产后预计每天要排放大约80吨工业废气,这将造成极大的环境污染.为了保护环境,市政府决定支持该厂贷款引进废气处理设备来减少废气的排放:该设备可以将废气转化为某种化工产品和符合排放要求的气体.经测算,制药厂每天利用设备处理废气的综合成本y(元)与废气处理量x(吨)之间的函数关系可近似地表示为:y=,且每处理1吨工业废气可得价值为80元的某种化工产品并将之利润全部用来补贴废气处理.(1)若该制药厂每天废气处理量计划定为20吨时,那么工厂需要每天投入的废气处理资金为多少元?(2)若该制药厂每天废气处理量计划定为x吨,且工厂不用投入废气处理资金就能完成计划的处理量,求x的取值范围;(3)若该制药厂每天废气处理量计划定为x(40≤x≤80)吨,且市政府决定为处理每吨废气至少补贴制药厂a元以确保该厂完成计划的处理量总是不用投入废气处理资金,求a的值.24.如图,菱形ABCD的边长为6且∠DAB=60°,以点A为原点、边AB所在的直线为x轴且顶点D 在第一象限建立平面直角坐标系.动点P从点D出发沿折线DCB向终点B以2单位/每秒的速度运动,同时动点Q从点A出发沿x轴负半轴以1单位/秒的速度运动,当点P到达终点时停止运动,运动时间为t,直线PQ交边AD于点E.(1)求出经过A、D、C三点的抛物线解析式;(2)是否存在时刻t使得PQ⊥DB,若存在请求出t值,若不存在,请说明理由;(3)设AE长为y,试求y与t之间的函数关系式;(4)若F、G为DC边上两点,且点DF=FG=1,试在对角线DB上找一点M、抛物线ADC对称轴上找一点N,使得四边形FMNG周长最小并求出周长最小值.参考答案与试题解析一.选择题1.∴等式成立,∴I=(n+1)2+n﹣(n+1)2=n>0,故选A.2.解:∵[]=3有正整数解,∴3≤<4,即6≤3x+a<8,6﹣a≤3x<8﹣a,∴≤x<,∵x是正整数,a为正数,∴x<,即x可取1、2;①当x取1时,∵6≤3x+a<8,6﹣3x≤a<8﹣3x,∴3≤a<5;②当x取2时,∵6≤3x+a<8,6﹣3x≤a<8﹣3x,∴0<a<2;综上可得a的范围是:0<a<2或3≤a<5.故选D.3.解:∵6个相同的球,放入四个不同的盒子里,∴若有三个盒子里放了1个,一个盒子里放了3个,这种情况下的方法有4种;若有两个盒子里放了2个,两个盒子里放了1个,这种情况下:设四个盒子编号为①②③④,可能放了两个小球的盒子的情况为:①②,①③,①④,②③,②④,③④,所以有6种情况;∴6个相同的球,放入四个不同的盒子里,每个盒子都不空的放法有:4+6=10.故选C.4. 这道题可以采用逆推法,我们可以先分析最后一位会用多长时间,很显然不管是谁最后灌水都得用3分钟,所以只需考虑前两个接水的,怎样能够更加节省时间,显然乙第一个灌水会最省时,因为只需0.5分钟.接着是丙,丙灌水的时间加上等乙的时间,也就是1.5分钟,最后是甲.所以只有按乙,丙,甲安排灌水才最省时.【解答】解:按乙,丙,甲安排灌水最省时,这三位同学花费的时间(包括等待时间)的总和最少是0.5+(0.5+1)+(0.5+1+1.5)=5分钟.故选B.【点评】考查了应用类问题,运用了逆推法,按照灌水所需的时间由少到多的顺序安排灌水花费的时间的总和最少.5.已知实数x满足x2++x﹣=4,则x﹣的值是()A.﹣2B.1C.﹣1或2D.﹣2或1【分析】利用完全平方公式可把原式变为(x﹣)2+x﹣﹣2=0,用十字相乘法可得x﹣的值.【解答】解:x2+﹣2+x﹣﹣2=0∴(x﹣)2+(x﹣)﹣2=0解得x﹣=﹣2或1.故选D【点评】本题的关键是把x﹣看成一个整体来计算,即换元法思想.6.如图,在等边△ABC中,D为AC边上的一点,连接BD,M为BD上一点,且∠AMD=60°,AM 交BC于E.当M为BD中点时,的值为()A.B.C.D.【分析】作DK∥BC,交AE于K.首先证明BE=DK=CD,CE=AD,设BE=CD=DK=a,AD=EC=b,由DK ∥EC,可得=,推出=,即a2+ab﹣b2=0,可得()2+()﹣1=0,求出即可解决问题.【解答】解:作DK∥BC,交AE于K.∵△ABC是等边三角形,∴AB=CB=AC,∠ABC=∠C=60°,∵∠AMD=60°=∠ABM+∠BAM,∵∠ABM+∠CBD=60°,∴∠BAE=∠CBD,在△ABE和△BCD中,,∴△ABE≌△BCD,∴BE=CD,CE=AD,∵BM=DM,∠DMK=∠BME,∠KDM=∠EBM,∴△MBE≌△MDK,∴BE=DK=CD,设BE=CD=DK=a,AD=EC=b,∵DK∥EC,∴=,∴=,∴a2+ab﹣b2=0,∴()2+()﹣1=0,∴=或(舍弃),∴==,故选B.【点评】本题考查全等三角形的判定和性质、等边三角形的性质、平行线分线段成比例定理、一元二次方程等知识,解题的关键是学会添加常用辅助线,学会用方程的思想思考问题,本题体现了数形结合的思想,属于中考选择题中的压轴题.7.如图,等腰梯形ABCD中,AD∥BC,∠DBC=45°,翻折梯形ABCD,使点B重合于点D,折痕分别交边AB、BC于点E、F.若AD=2,BC=6,则△ADB的面积等于()A.2B.4C.6D.8【分析】作AH⊥BC,根据折叠的性质得到BE=DE,∠BDE=∠DBE=45°,则∠DEB=90°,再根据等腰梯形的性质得到BH=CE,可计算出CE=2,DE=BE=4,然后根据三角形面积公式进行计算.【解答】解:作AH⊥BC,如图,∵翻折梯形ABCD,使点B重合于点D,折痕分别交边AB、BC于点E、F,∴BE=DE,∠BDE=∠DBE=45°,∴∠DEB=90°,∴DE⊥BC,∵梯形ABCD为等腰梯形,∴BH=CE,而AD=HE,AD=2,BC=6,∴CE=(6﹣2)=2,∴DE=BE=4,∴△ADB的面积=×2×4=4.故选B.【点评】本题考查了折叠的性质:折叠前后两图象全等,即对应线段相等,对应角相等.也考查了等腰梯形的性质.8.如图,正方形ABCD中,E为CD的中点,EF⊥AE,交BC于点F,则∠1与∠2的大小关系为()A.∠1>∠2B.∠1<∠2C.∠1=∠2D.无法确定【分析】易证△ADE∽△ECF,求得CF的长,可得根据勾股定理即可求得AE、EF的长,即可判定△ADE∽△AEF,即可解题.【解答】解:∵∠AED+∠CEF=90°,∠DAE+∠ADE=90°,∴∠DAE=∠CEF,∵∠ADE=∠ECF=90°,∴△ADE∽△ECF,且相似比为2,∴AE=2EF,AD=2DE,又∵∠ADE=∠AEF,∴△ADE∽△AEF,∴∠1=∠2.【点评】本题考查了相似三角形的判定,相似三角形对应边比值相等的性质,相似三角形对应角相等的性质,本题中求证△ADE∽△AEF是解题的关键.9.已知某几何体的三视图如图所示,则该几何体的体积为()A.B.3πC.D.6π【分析】通过三视图判断几何体的特征,利用三视图的数据,求出几何体的体积即可.【解答】解:由三视图可知几何体是圆柱底面半径为1高为6的圆柱,被截的一部分,如图所求几何体的体积为:×π×12×6=3π.故选B.【点评】本题考查三视图与几何体的关系,正确判断几何体的特征是解题的关键,考查计算能力.10.方程x2+2x+1=的正数根的个数为()A.0B.1C.2D.3【分析】求方程x2+2x+1=的解,可以理解为:二次函数y=x2+2x+1与反比例函数y=的图象交点的横坐标.【解答】解:二次函数y=x2+2x+1=(x+1)2的图象过点(0,1),且在第一、二象限内,反比例函数y=的图象在第一、三象限,∴这两个函数只在第一象限有一个交点.即方程x2+2x+1=的正数根的个数为1.故选B.【点评】本题利用了二次函数的图象与反比例函数图象来确定方程的交点的个数.11.如图,已知∠AOM=60°,在射线OM上有点B,使得AB与OB的长度都是整数,由此称B是“完美点”,若OA=8,则图中完美点B的个数为()A.1B.2C.3D.4【分析】首先过点B作BC⊥OA,交OA于点C,连接AB,可能有两种情况,垂足在OA上或者垂足在OA延长线上,然后设OB=y,AB=x,由勾股定理即可求得:y2﹣(y)2=x2﹣(8﹣y)2或x2﹣(y﹣8)2=y2﹣(y)2,整理可得x2﹣(y﹣4)2=48,然后将原方程转为X2﹣Y2=48,先求(X+Y)(X﹣Y)=48的正整数解,继而可求得答案.【解答】解,过点B作BC⊥OA,交OA于点C,连接AB,可能有两种情况,垂足在OA上或者垂足在OA延长线上.设OB=y,AB=x,∵∠AOM=60°,∴OC=OB•cos60°=y,∴AC=OA﹣OC=8﹣y或AC=OC﹣OA=y﹣8,∵BC2=OB2﹣OC2,BC2=AB2﹣AC2,∴y2﹣(y)2=x2﹣(8﹣y)2或x2﹣(y﹣8)2=y2﹣(y)2,∴x2﹣(y﹣4)2=48,∵x与y是正整数,且y必为正整数,x﹣4为大于等于﹣4的整数,将原方程转为X2﹣Y2=48,先求(X+Y)(X﹣Y)=48的正整数解,∵(X+Y)和(X﹣Y)同奇同偶,∴(X+Y)和(X﹣Y)同为偶数;∴X2﹣Y2=48可能有几组正整数解:,,,解得:,,,∴x的可能值有3个:x=7,x=8或x=13,当x=7时,y﹣4=±1,y=3或y=5;当x=8时,y﹣4=±4,y=8或y=0(舍去);当x=13时,y﹣4=±11,y=15或y=﹣7(舍去);∴共有4组解:或或或.故选D.【点评】此题考查了勾股定理的应用以及整数的综合应用问题.此题难度较大,注意掌握方程思想、分类讨论思想与数形结合思想的应用.二.填空题(共4小题)12.已知x为实数,且,则x2+x的值为1.【分析】本题用换元法解分式方程,由于x2+x是一个整体,可设x2+x=y,可将方程转化为简单的分式方程求y,将y代换,再判断结果能使x为实数.【解答】解:设x2+x=y,则原方程变为﹣y=2,方程两边都乘y得:3﹣y2=2y,整理得:y2+2y﹣3=0,(y﹣1)(y+3)=0,∴y=1或y=﹣3.当x2+x=1时,即x2+x﹣1=0,△=12+4×1=5>0,x存在.当x2+x=﹣3时,即x2+x+3=0,△=12﹣4×3=﹣11<0,x不存在.∴x2+x=1.【点评】当分式方程比较复杂时,通常采用换元法使分式方程简化.需注意换元后得到的根也必须验根.13.满足方程|x+2|+|x﹣3|=5的x的取值范围是﹣2≤x≤3.【分析】分别讨论①x≥3,②﹣2<x<3,③x≤﹣2,根据x的范围去掉绝对值,解出x,综合三种情况可得出x的最终范围.【解答】解:从三种情况考虑:第一种:当x≥3时,原方程就可化简为:x+2+x﹣3=5,解得:x=3;第二种:当﹣2<x<3时,原方程就可化简为:x+2﹣x+3=5,恒成立;第三种:当x≤﹣2时,原方程就可化简为:﹣x﹣2+3﹣x=5,解得:x=﹣2;所以x的取值范围是:﹣2≤x≤3.【点评】解一元一次方程,注意最后的解可以联合起来,难度很大.14.多项式6x3﹣11x2+x+4可分解为(x﹣1)(3x﹣4)(2x+1).【分析】将﹣11x2分为﹣6x2和﹣5x2两部分,原式可化为6x3﹣6x2﹣5x2+x+4,6x3﹣6x2可提公因式,分为一组,﹣5x2+x+4可用十字相乘法分解,分为一组.【解答】解:6x3﹣11x2+x+4,=6x3﹣6x2﹣5x2+x+4,=6x2(x﹣1)﹣(5x2﹣x﹣4),=6x2(x﹣1)﹣(x﹣1)(5x+4),=(x﹣1)(6x2﹣5x﹣4),=(x﹣1)(3x﹣4)(2x+1).【点评】本题考查了用分组分解法进行因式分解,要考虑分组后还能进行下一步分解,把﹣11x2分成﹣6x2和﹣5x2两部分是解题的关键,也是难点.15.设整数a使得关于x的一元二次方程5x2﹣5ax+26a﹣143=0的两个根都是整数,则a的值是18.【分析】首先将方程组5x2﹣5ax+26a﹣143=0左右乘5得25x2﹣25ax+(130a﹣262)﹣39=0,再分解因式.根据39为两个整数的乘积,令两个因式分别等于39分解的整因数.讨论求值验证即可得到结果.【解答】解:∵5x2﹣5ax+26a﹣143=0⇒25x2﹣25ax+(130a﹣262)﹣39=0,即(5x﹣26)(5x﹣5a+26)=39,∵x,a都是整数,故(5x﹣26)、(5x﹣5a+26)都分别为整数,而只存在39=1×39或39×1或3×13或13×3或四种情况,①当5x﹣26=1、5x﹣5a+26=39联立解得a=2.8不符合,②当5x﹣26=39、5x﹣5a+26=1联立解得a=18,③当5x﹣26=3、5x﹣5a+26=13联立解得a=8.4不符合,④当5x﹣26=13、5x﹣5a+26=3联立解得a=12.4不符合,∴当a=18时,方程为5x2﹣90x+325=0两根为13、﹣5.故答案为:18.【点评】本题考查因式分解的应用、一元二次方程的整数根与有理根.解决本题的关键是巧妙利用39仅能分解为整数只存在39=1*39或39*1或3*13*13*3或四种情况,因而讨论量,并不大.三.解答题(共4小题)16.如图,在△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.设点P的运动时间为x(秒).(1)设△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(2)x为何值时,△PBQ的面积最大?并求出最大值;(3)当点Q在BC上运动时,线段PQ上是否存在一个点T,使得在某个时刻△ACT、△ABT、△BCT 的面积均相等(无需计算,说明理由即可).【分析】(1)由在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,设AC=4y,BC=3y,由勾股定理即可求得AC、BC的长;分别从当点Q在边BC上运动与当点Q在边CA上运动去分析,首先过点Q 作AB的垂线,利用相似三角形的性质即可求得△PBQ的底与高,则可求得y与x的函数关系式;(2)由二次函数最值的求法得到两种情况下的△PBQ的面积最大值,进行比较即可得到答案;(3)根据三角形的面积公式得到符合条件的点应该是:到三边的距离之比为12:15:20.【解答】解:(1)设AC=4x,BC=3x,在Rt△ABC中,AC2+BC2=AB2,即:(4x)2+(3x)2=102,解得:x=2,∴AC=8cm,BC=6cm;分两种情况:①如图1,当点Q在边BC上运动时,过点Q作QH⊥AB于H.∵AP=x,∴BP=10﹣x,BQ=2x,∵△QHB∽△ACB,∴=,∴QH=x,y=BP•QH=(10﹣x)•x=﹣x2+8x(0<x≤3),②如图2,当点Q在边CA上运动时,过点Q作QH′⊥AB于H′,∵AP=x,∴BP=10﹣x,AQ=14﹣2x,∵△AQH′∽△ABC,∴=,即:=,解得:QH′=(14﹣2x),∴y=PB•QH′=(10﹣x)•(14﹣2x)=x2﹣x+42(3<x<7);(2)①当0<x≤3时,y=﹣(x﹣5)2+20.∵该抛物线的开口方向向下,对称轴是x=5,∴当x=3时,y取最大值,y最大=.当3<x<7时,y=x2﹣x+42=(x﹣)2+(3<x<7);∵该抛物线的开口方向向上,对称轴是x=,∴当x=3时,y取最大值,但是x=3不符合题意.综上所述,△PBQ的面积的最大值是.(3)存在.理由如下:设点T到AB、AC、BC的距离分别是a、b、c.∵AB=10cm,AC=8cm,BC=6cm,∴AB•a=AC•c=BC•c,即5a=4b=3c,故a:b:c=12:15:20.∴当满足条件的点T到AB、AC、BC的距离之比为12:15:20时,△ACT、△ABT、△BCT的面积均相等.【点评】本题考查了相似三角形的判定与性质,勾股定理,以及最短距离问题.此题综合性很强,难度较大,解题的关键是方程思想与数形结合思想的应用.17.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是6.参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是(或不化简为).(结果可以不化简)【分析】(1)根据旋转的性质知A′A=AB=BA′=2,AP=A′C,所以在△AA′C中,利用三角形三边关系来求A′C即AP的长度;(2)以B为中心,将△APB逆时针旋转60°得到△A'P'B.根据旋转的性质推知PA+PB+PC=P'A′+P'B+PC.当A'、P'、P、C四点共线时,(P'A′+P'B+PC)最短,即线段A'C最短.然后通过作辅助线构造直角三角形A′DC,在该直角三角形内利用勾股定理来求线段A′C的长度.【解答】解:(1)如图2,∵△ABP逆时针旋转60°得到△A′BC,∴∠A′BA=60°,A′B=AB,AP=A′C∴△A′BA是等边三角形,∴A′A=AB=BA′=2,在△AA′C中,A′C<AA′+AC,即AP<6,则当点A′A、C三点共线时,A′C=AA′+AC,即AP=6,即AP的最大值是:6;故答案是:6.(2)如图3,∵Rt△ABC是等腰三角形,∴AB=BC.以B为中心,将△APB逆时针旋转60°得到△A'P'B.则A'B=AB=BC=4,PA=P′A′,PB=P′B,∴PA+PB+PC=P′A′+P'B+PC.∵当A'、P'、P、C四点共线时,(P'A+P'B+PC)最短,即线段A'C最短,∴A'C=PA+PB+PC,∴A'C长度即为所求.过A'作A'D⊥CB延长线于D.∵∠A'BA=60°(由旋转可知),∴∠1=30°.∵A'B=4,∴A'D=2,BD=2,∴CD=4+2.在Rt△A'DC中A'C====2+2;∴AP+BP+CP的最小值是:2+2(或不化简为).故答案是:2+2(或不化简为).【点评】本题综合考查了旋转的性质、等腰直角三角形的性质、勾股定理以及等边三角形的判定与性质.注意:旋转前、后的图形全等.18.某水库大坝的横截面是如图所示的四边形BACD,期中AB∥CD.瞭望台PC正前方水面上有两艘渔船M、N,观察员在瞭望台顶端P处观测渔船M的俯角α=31°,观测渔船N在俯角β=45°,已知NM所在直线与PC所在直线垂直,垂足为点E,PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:0.25.为提高大坝防洪能力,某施工队在大坝的背水坡填筑土石方加固,加固后坝定加宽3米,背水坡FH的坡度为i=1:1.5,施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的1.5倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)【分析】(1)根据已知求出EN,根据正切的概念求出EM,求差得到答案;(2)根据坡度和锐角三角函数的概念求出截面积和土石方数,根据题意列出分式方程,解方程得到答案.【解答】解:(1)在Rt△PEN中,∵∠PNE=45°,∴EN=PE=30米,在Rt△PEM中,∠PME=31°,tan∠PME=,∴ME=≈50(米),∴MN=EM﹣EN=20米,答:两渔船M,N之间的距离约为20米;(2)过点F作FK∥AD交AH于点K,过点F作FL⊥AH交直线AH于点L,则四边形DFKA为平行四边形,∴∠FKA=∠DAB,DF=AK=3,由题意得,tan∠FKA=tan∠DAB=4,tan∠H=,在Rt△FLH中,LH==36,在Rt△FLK中,KL==6,∴HK=30,AH=33,梯形DAHF的面积为:×DL×(DF+AH)=432,所以需填土石方为432×100=43200,设原计划平均每天填x立方米,由题意得,12x+(﹣12﹣20)×1.5x=43200,解得,x=600,经检验x=600是方程的解.答:原计划平均每天填筑土石方600立方米.【点评】本题考查的是解直角三角形和分式方程的应用,掌握锐角三角函数的概念和解直角三角形的一般步骤、根据题意正确列出分式方程是解题的关键,注意分式方程解出未知数后要验根.19.已知关于x的方程,(1)若两根x1,x2满足x1<0<x2,求m的范围;(2)若,求m的值.【分析】(1)由关于x的方程4x2+mx+m﹣4=0 有两根,可知此一元二次方程的判别式△>0,即可得不等式,又由x1<0<x2,可得x1•x2<0,根据根与系数的关系,可得不等式=m﹣1<0,解此不等式组即可求得答案;(2)由一元二次方程根与系数的关系即可得4x12+mx1+m﹣4=0,x1+x2=﹣,x1•x2==m ﹣1,然后将6x12+mx1+m+2x22﹣8=0变形,可得4x12+mx1+m﹣4+2[(x1+x2)2﹣2x1•x2]=4,则可得方程(﹣)2﹣2[m﹣1]=2,解此方程即可求得答案.【解答】解:(1)∵关于x的方程4x2+mx+m﹣4=0 有两根,∴△=m2﹣4×4×(m﹣4)=m2﹣8m+64=(m﹣4)2+48>0,∵两根x1,x2满足x1<0<x2,∴x1•x2==m﹣1<0,∴m<8,(2)∵x1、x2是方程的根,∴4x12+mx1+m﹣4=0,x1+x2=﹣,x1•x2==m﹣1,∵6x12+mx1+m+2x22﹣8=0,∴4x12+mx1+m﹣4+2(x12+x22)﹣4=0∴4x12+mx1+m﹣4+2[(x1+x2)2﹣2x1•x2]=4,∴(x1+x2)2﹣2x1•x2=2,即(﹣)2﹣2[m﹣1]=2,化简得:m2﹣4m=0,解得:m=0 或m=4,∴m的值为0或4.【点评】此题考查了一元二次方程判别式、根与系数的关系等知识.此题难度较大,解题的关键是注意利用根与系数的关系将原方程变形求解,注意方程思想的应用.20.【解答】解:∵m+n=mn且m,n是正实数,∴+1=m,即=m﹣1,∴P(m,m﹣1),即“完美点”B在直线y=x﹣1上,∵点A(0,5)在直线y=﹣x+b上,∴b=5,∴直线AM:y=﹣x+5,∵“完美点”B在直线AM上,∴由解得,∴B(3,2),∵一、三象限的角平分线y=x垂直于二、四象限的角平分线y=﹣x,而直线y=x﹣1与直线y=x平行,直线y=﹣x+5与直线y=﹣x平行,∴直线AM与直线y=x﹣1垂直,∵点B是直线y=x﹣1与直线AM的交点,∴垂足是点B,∵点C是“完美点”,∴点C在直线y=x﹣1上,∴△MBC是直角三角形,∵B(3,2),A(0,5),∴AB=3,∵AM=4,∴BM=,又∵CM=,∴BC=1,∴S△MBC=BM•BC=.【点评】本题考查了一次函数的性质,直角三角形的判定,勾股定理的应用以及三角形面积的计算等,判断直线垂直,借助正比例函数是本题的关键.21.解:(1)反比例函数y=是闭区间[1,2014]上的“闭函数”,理由如下:反比例函数y=在第一象限,y随x的增大而减小,当x=1时,y=2014;当x=2014时,y=1,所以,当1≤x≤2014时,有1≤y≤2014,符合闭函数的定义,故反比例函数y=是闭区间[1,2014]上的“闭函数”;(2)分两种情况:k>0或k<0.①当k>0时,一次函数y=kx+b(k≠0)的图象是y随x的增大而增大,故根据“闭函数”的定义知,,解得.∴此函数的解析式是y=x;②当k<0时,一次函数y=kx+b(k≠0)的图象是y随x的增大而减小,故根据“闭函数”的定义知,,解得.∴此函数的解析式是y=﹣x+m+n;(3)∵y=x2﹣2x=(x2﹣4x+4)﹣2=(x﹣2)2﹣2,∴该二次函数的图象开口方向向上,最小值是﹣2,且当x<2时,y随x的增大而减小;当x>2时,y随x的增大而增大.①当c<2<d时,此时二次函数y=x2﹣2x的最小值是﹣2=c,根据“闭函数”的定义知,d=c2﹣2c或d=d2﹣2d;★)当d=c2﹣2c时,由于d=×(﹣2)2﹣2×(﹣2)=6>2,符合题意;★)当d=d2﹣2d时,解得d=0或6,由于d>2,所以d=6;②当c≥2时,此二次函数y随x的增大而增大,则根据“闭函数”的定义知,,解得,,∵c<d,∴不合题意,舍去.综上所述,c,d的值分别为﹣2,6.【点评】本题综合考查了二次函数图象的对称性和增减性,一次函数图象的性质以及反比例函数图象的性质.解题的关键是弄清楚“闭函数”的定义.解题时,也要注意“分类讨论”数学思想的应用.22.【解答】解:月用水量为x立方米,支付费用为y元,则有:y=;(2)由表知第二、第三月份的水费均大于13元,故用水量15m3,22m3均大于最低限量am3,于是就有,解得b=2,从而2a=c+19,再考虑一月份的用水量是否超过最低限量am3,不妨设9>a,将x=9代入x>a的关系式,得9=8+2(9﹣a)+c,即2a=c+17,这与2a=c+19矛盾.∴9≤a.从而可知一月份的付款方式应选0≤x≤a的关系式,因此就有8+c=9,解得c=1.故a=10,b=2,c=1.23.【解答】解:(1)由题意可知,当废弃处理量x满足0<x<40时,每天利用设备处理废气的综合成本y=40x+1200,∴当该制药厂每天废气处理量计划为20吨,即x=20时,每天利用设备处理废气的综合成本为y=40×20+1200=2000元,又∵转化的某种化工产品可得利润为80×20=1600元,∴工厂每天需要投入废气处理资金为400元;(2)由题意可知,y=,①当0<x<40时,令80x﹣(40x+1200)≥0,解得30≤x<40,②当40≤x≤80时,令80x﹣(2x2﹣100x+5000)≥0,即2x2﹣180x+5000≤0,∵△=1802﹣4×2×5000<0,∴x无解.综合①②,x的取值范围为30≤x<40,故当该制药厂每天废气处理量计划为[30,40)吨时,工厂可以不用投入废气处理资金就能完成计划的处理量;(3)∵当40≤x≤80时,投入资金为80x﹣(2x2﹣100x+5000),又∵市政府为处理每吨废气补贴a元就能确保该厂每天的废气处理不需要投入资金,∴当40≤x≤80时,不等式80x+ax﹣(2x2﹣100x+5000)≥0恒成立,即2x2﹣(180+a)x+5000≤0对任意x∈[40,80]恒成立,令g(x)=2x2﹣(180+a)x+5000,则有,即,即解得,答:市政府只要为处理每吨废气补贴元就能确保该厂每天的废气处理不需要投入资金.【点评】本题主要考查函数模型的选择与应用.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.属于中档题.24.【解答】解:(1)△DAB中,∠DAB=60°,DA=AB=6则:D到y轴的距离=AB=3、D到x轴的距离=DA•sin∠DAB=3;∴D(3,3);由于DC∥x轴,且DC=AB=6,那么将点D右移6个单位后可得点C,即C(9,3);设抛物线的解析式为:y=ax2+bx,有:,解得∴抛物线解析式为:y=﹣x2+x.(2)如图1,连接AC,∵四边形ABCD是菱形,∴AC⊥BD,若PQ⊥DB,则PQ∥AC,∵点P在BC上时,PQ与AC始终相交,和PQ∥AC矛盾,∴点P在BC上时不存在符合要求的t值,当P在DC上时,由于PC∥AQ且PQ∥AC,所以四边形PCAQ是平行四边形,则PC=AQ,有6﹣2t=t,得t=2.(3)①如图1,当点P在DC上,即0<t≤3时,有△EDP∽△EAQ,则===,那么AE=AD=2,即y=2;②如图2,当点P在CB上,即3<t≤6时,有△QEA∽△QPB,则=,即=,得y=,。