煤气化工艺方案的选择

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初探煤气化工艺方案的选择

1 几种煤气化工艺及特点介绍

煤气化是煤化工的龙头技术,是煤洁净利用技术的重要环节,C1化学的基础。煤气化技术是发展煤基化学品、煤基液体燃料、联合循环发电、多联产系统、制氢、燃料电池等过程工业的基础,是这些行业的共性技术、关键技术和龙头技术,对我国经济和保障国家安全具有重要的战略意义。

煤气化过程采用的气化炉炉型,目前主要有以下3种:

固定床﹙UGI、鲁奇﹚;

流化床﹙灰熔聚、UGAS、鲁奇CFB、温克勒、KBR、恩德等﹚;

气流床﹙Texaco、Shell、GSP、PRENFLOW、国产新型水煤浆、二段干煤粉、航天炉等﹚。

1.1固定床制气工艺

1.1.1常压固定床间歇制气工艺

工艺特点是:常压气化,固体加料10-50mm,固体排渣,间歇气化,空气和蒸汽作气化剂,吹风和制气阶段交替进行,适用原料白煤和焦碳,气化温度800~1000℃。代表炉型有美国的U.G.I型和前苏联的U.G.Ⅱ型。工艺过程都比较熟悉,这里从略。

技术优点:历史悠久,技术成熟,设备简单,投资省,生产经验丰富。

技术缺点:技术落后,原料动力消耗高,炭转化率低70~75%,产品成本高,生产强度低,程控阀门多,维修工作量大,废气、废水排放多,污染严重,面临淘汰。

1.1.2常压固定床连续制气

常压固定床连续制气工艺的技术特点:常压气化,固体加料,床体排渣,连续制气,富氧空气﹙氧占50%﹚或氧气加蒸汽做气化剂,无废气排放,适用煤种白煤和焦碳。

技术优点是:连续制气,炉床温度稳定,约为900~1150℃,操作简单,程控阀门少,维修费用低,生产强度大,碳转化率高,约80~84% 。

技术缺点:需要空分装置,投资比较大。

固定床连续制气工艺的技术突破在于以氧气或富氧空气加蒸汽做气化剂,由于气化剂中氧含量的增加,气化反应过程中,燃烧产生的热量与煤的气化和蒸汽分解所需要的热量能够实现平衡,可以得到稳定的反应温度和固定的反应床层,可以实现连续制气,不用专门吹风,无废气排放,生产强度和能源利用率都有了很大的提高。

1.1.3 固定床加压气化工艺:前西德鲁奇公司(Lurgi)开发。

工艺特点:加压气化,固体加料,固体排渣,连续气化,氧气和蒸汽作气化剂,设有加压的煤锁斗和灰储斗,适用煤种:褐煤、次烟煤、活性好的弱粘结煤。

技术优点:加压气化3.1 MPa,生产强度大,碳转化率高约90%。

技术缺点:反应温度略低700~1100 ℃,甲烷含量较高,煤气当中含有焦油和酚类物质,气体净化和废水处理复杂,流程较长,投资比较大。

1.2 流化床工化工艺

流化床气化工艺的总体特点是:以粉煤或小颗粒的碎煤为原料气化,气化剂以一定的速度通过物料层,物料颗粒在气化剂的带动下悬浮起来,形成流化床,由于物料层处于流化状态,煤粉和气化剂之间混合更允分,接触面积更大,煤粉和气化剂迅速地进行气化反应,反应产生的煤气出气化炉后去废热回收和除尘洗涤系统,反应产生的灰渣由炉底排出。气流床反应物料之间的传热和传质速率更快,过程更容易控制,生产能力也有了较大的提高。下面就流化床气化工艺发展过程中的几种工艺的技术特点分别作一下介绍。

1.2.1 温克勒﹙W inkier﹚常压流化床气化工艺:是前西德莱菌褐煤公司和伍德公司20世纪20年代开发的,是世界上最早的流化床气化工艺。

工艺特点:常压气化,粉煤进料粒度小于9.5mm,干法排渣 ,氧气或空气加蒸汽作气化剂,炉体上部有分离空间,使煤气当中夹带的半焦和灰颗粒分离,并且用一次空气加蒸汽进一步气化,气化温度815~1100℃,碳转化率70~73%,适用煤种:褐煤、次烟煤、弱粘结性煤。

主要技术问题:炉底的炉箅经常出现局部高温,结渣,偏炉现象。炉出口气体带出物较多,排灰的含碳量较高。

2.2.2恩德常压流化床气化工艺:是朝鲜恩德郡七.七化工厂20世纪60年代在常压温克勒气化工艺的基础上开发的。

工艺特点:常压气化,粉煤进料粒度小于10mm,干法渣,氧气或空气加蒸汽作气化剂,取消了炉箅,改造为布风喷嘴向炉内送气,解决了炉底结渣的问题,气化温度950~1050 ℃,在炉气出口增设了旋风分离气,返料从炉底入炉循环使用。

技术优点:煤种适从性宽,可气化褐煤、次烟煤、弱粘结性煤,返料循环使用,碳转化率可达76%,极少产生焦油。

技术缺点:气化压力低,难以实现大规模生产,排灰含碳量高。

1.2.3循环流化床粉煤气化工艺CFB:20世纪70年代鲁奇公司开发。

工艺特点:该技术的工艺过程和恩德粉煤气化工艺比常相似,所有不同的是CFB技术的旋风分离器分离的粉尘直接从气化炉上部进入气化炉炉膛,多重循环,使循环物料和新鲜物料之比高达40倍以上,导致碳粒的反复气化,因而碳的转化率很高,可达90%。由于夹带固体物料的速度大大低于气流速度,气体和固体间的滑动速度较大,因而物料和气化剂间的混介更充分,接触时间更长,气化效率较高。可以用蒸气加空气、富氧空气、氧气作气化剂,但产气品质不一样。

技术优点:循环流化床气化,碳的转化率更高了,单炉生产能力大,煤种适应广。

技术缺点:排灰的含碳量仍然比较高。

1.2.4灰熔聚粉煤循环流化床汽化工艺:美国煤气研究所在美国能源部﹙DOE﹚的资助下于20世纪70年代开发。

该技术是在常压循环流化床气化工艺的基础上发展起来的,它的技术突破在于采用了灰聚熔技术,所谓灰聚熔指的是:在炉底中心有一个氧气或空气入口,该处由于氧气或空气的进入,形成一个局部的高温区,在这里灰渣中未反应的碳进一步反应,煤灰则在高温下开始软化并且相互粘结在一起,当熔渣的密度和重量达到一定的程度时灰球就会克服气流的阻力落入炉底。灰熔聚技术极大地降低了排灰的碳含量,大幅度提高了碳的转化率,是循环流化床气化技术发展史上的重要里程碑,灰熔聚技术使循环流化床气化炉的碳转化率提高到96-98%,气化温度954~1038℃。

技术特点:灰熔聚循环流化床气化工艺具有循环流化床工艺的一切优点,而且大大提高了碳的转化率,气化剂分两路进入,从炉底排灰管进入一路气化剂的氧含量较高,以实现灰熔聚,U-Gas炉操作压力为0.69~2.41 MPa,有带压的煤斗和灰斗,煤气中无焦油,无废气排放。目前的问题是出口气带灰较多,不能长周期运行。

1.2.5高压灰熔聚粉煤循环流化床汽化工艺:美国煤气研究所IGT20世纪80年代开发。

该技术是在常压灰熔聚粉煤循环流化床气化工艺的基础上发展起来的,也有进料的煤斗和排灰的灰斗,所不同的是它的操作压力可达2.7~3.4MPa。该技术对设备阀门的要求比较高,尚未广泛推广开来。

1.3 气流床气化工艺

气流床气化工艺的共同特点是:煤进料的粒度比粉煤流化床气化的进料粒度更小,反应物料被气化剂夹带,以气流床的形式进行反应,因而反应进行得更快。一般要求反应的温度和操作的压力都比较高。

1.3.1柯伯斯-托切可粉煤气流床气化工艺:前西德﹙Kopper-Tobek﹚公司20世纪40年代开发。

流程简述:粉碎研磨合格的煤粉用氮气输送到煤储斗当中,再由螺旋给料机送至混合器,在混合器当中,粉煤在氧气和蒸气的携带下经烧嘴进入气化炉,氧气,蒸气和粉煤一起并流进入气化炉,在气化炉内发生强烈的氧化反应,产生高达2000℃的高温,反应后产生的水煤气先进入废热锅炉回收热量,然后进入洗

相关文档
最新文档