荧光光谱的原理与应用 ppt课件

合集下载

《荧光光谱法》PPT课件

《荧光光谱法》PPT课件

O
CC
3b
Counts
60000 40000
O C 2H 5
20000
0 300 350 400 450 500 550 600
Wavelength (nm)
精选课件ppt
8
从图可看出激发光谱同荧光光谱大致成
镜相对称 a.荧光光谱(发射光谱)形状与基态S0振能级的分布情况(即能量间
隔情况)有关 b. 激发光谱(吸收谱)形状与激发态S1振动能级的分布有关 c. S0、、S1态中振动能级的分布是相似的(说明峰形状相 似)
精选课件ppt
33
一般情况下,多采用相对灵敏度来表示。相对灵敏度是以喹啉硫酸氢 盐的0.05mol/L硫酸溶液为标准,并定为1,然后与相同浓度荧光物 质的荧光强度比较,可求该物质的相对灵敏度。
精选课件ppt
34
3. 荧光分析法的选择性 很多分子在紫外可见区有吸收,但其中
只有一部分能再发射荧光或磷光,故荧光法 固有干扰很少,选择性较好。
b. 荧光物质的激发态分子M*与基态分子M形成激发态的二聚体(M*M)。
c. 基态的荧光物质分子的缔合。荧光自猝灭是与浓度有关的效应,因而 通过在荧光测定前稀释溶液的办法,可避免这一现象的发生,或减 小它所产生的影响。
精选课件ppt
23
三、发光强度同浓度的关系
荧光强度If正比于吸收的光量Ia与荧光量子产
11
❖ 3、降落到第一电子激发态的最低振动能级的分子,继续降落到基态 的各个不同振动能级,同时发射出相应的光量子,这就是荧光;
❖ 4、到达基态的各个不同振动能级的分子,再通过无辐射跃迁最后回 到基态的最低振动能级。
精选课件ppt
12
分子产生荧光必须具备两个条件:

X荧光光谱法(XRF)课件PPT

X荧光光谱法(XRF)课件PPT
与其他分析方法相比,X荧光光谱法具 有较高的检测精度和稳定性,操作简 便,对环境和人员无害,尤其适用于 现场快速分析和在线检测等领域。
02 X荧光光谱法的基本原理
原子结构与能级跃迁
01
02
03
原子结构
原子由原子核和核外电子 组成,电子在不同能级上 运动。
能级跃迁
当原子受到外界能量(如 光子)的激发时,电子从 低能级跃迁到高能级,反 之亦然。
环境样品分析
总结词
X荧光光谱法在环境样品分析中具有独特的优势,能够同时测定多种元素,且对样品的 前处理要求较低。
详细描述
X荧光光谱法可用于水质检测,如测定水体中的重金属离子和溶解氧等;还可用于大气 颗粒物分析,了解空气污染物的来源和分布情况。
考古样品分析
ቤተ መጻሕፍቲ ባይዱ
总结词
详细描述
X荧光光谱法在考古样品分析中具有重要作 用,能够快速准确地测定文物中的元素组成, 为文物鉴定和保护提供依据。
现状
随着科技的不断进步,X荧光光谱仪器的性能不断提升,检测精度和稳定性不断 提高,同时新型的仪器和应用也不断涌现,如便携式X荧光光谱仪、在线X荧光 光谱仪等。
特点与优势
特点
X荧光光谱法具有非破坏性、快速、 多元素同时分析等特点,能够同时检 测物质中多种元素的含量,且对样品 形状和大小要求不高。
优势
化合物分析
总结词
X荧光光谱法不仅可以检测元素,还可以对化合物进行分析。
详细描述
通过测量不同元素荧光谱线的能量和强度,可以对化合物的类型和结构进行分析。该方法在化学、制药、生物等 领域有广泛应用,可用于药物成分分析、生物组织成分分析等。
样品制备与处理
总结词
为了获得准确的X荧光光谱分析结果,需要对样品进行适当的制备与处理。

荧光光谱的原理及应用

荧光光谱的原理及应用
荧光探针在药物筛选中的应用
荧光探针也可用于药物筛选过程中,通过标记特定的靶点或 受体,观察药物与靶点或受体之间的相互作用。这种方法有 助于加速新药研发过程,提高药物筛选的效率和准确性。
荧光光谱在环境监测中的实际应用案例
荧光光谱在水质监测中的应用
荧光光谱技术可用于检测水体中的有机污染物,如农药、石油和工业废水等。通过分析水样中的荧光光谱,可以 确定污染物的种类和浓度,为环境保护和治理提供科学依据。
计算机
处理和显示测量数据,控制光 谱仪的操作。
荧光光谱的测量步骤
准备样品
选择适当的荧光物质 样品,并进行必要的 处理和纯化。
安装样品
将样品放入样品池中, 并确保激发光能够照 射到样品上。
调整仪器
根据实验需求,调整 激发光源、单色仪和 检测器的参数。
பைடு நூலகம்
进行测量
启动光谱仪,测量荧 光物质在不同波长下 的荧光强度。
热能等形式散失。
荧光光谱的形状可以反映荧光 物质的分子结构和环境因素,
如溶剂极性、温度等。
02
荧光光谱的测量技术
荧光光谱的测量方法
发射光谱法
通过测量荧光物质发射的光谱,确定荧光物 质的结构和组成。
吸收光谱法
通过测量荧光物质吸收的光谱,研究荧光物 质的能级结构和跃迁过程。
时间分辨光谱法
通过测量荧光物质在不同时间点的光谱,研 究荧光物质的动态过程和寿命。
荧光光谱法可用于研究聚合物的 荧光性质,如荧光量子产率、荧 光寿命等,有助于聚合物的性能 研究和质量控制。
在生物学研究中的应用
生物分子的荧光标记
荧光光谱法可用于标记生物分子,如蛋白质、核酸等, 以研究其结构和功能。
细胞成像

荧光光谱的原理及应用

荧光光谱的原理及应用

30
2 荧光量子产率Φ
物质分子发射荧光的能力用荧光量子产率(Φ)表示:
发射荧光的分子数 发射的光子数 Φ = 激发态的分子数 =吸收的光子数
Φ与失活过程的速率常数k有关:
kf k f k i k ec k ic
凡是使荧光速率常数 kf增大而使其他失活过程(系间窜越、外转
换、内转换)的速率常数减小的因素(环境因素和结构因素)都可使
②能够使荧光物质产生吸收并发射出荧光的激发光的波长并不具 有唯一性; ③在保证激发的前提下,不同激发波长处的荧光发射光谱相同, 但荧光强度不同。 ④在进行荧光测定时,须选择激发光波长以保证荧光强度最大。
25
镜像规则
荧光发射是光吸收的逆过程。荧光发射光谱与吸收光谱有类似镜 影的关系。但当激发态的构型与基态的构型相差很大时,荧光发射 光谱将明显不同于该化合物的吸收光谱。
19
光谱图
荧光发射光谱 荧光激发光谱 磷光光谱
200
260 320 380 440 500 560 室温下菲的乙醇溶液荧(磷)光光谱
620
20
二、主要光谱参量 吸收光谱
化合物的吸收光强度与入射光波长的关系曲线 。
激发光谱
固定发射波长(一般将其固定于发射波段中感兴趣的峰位),扫描 出的化合物的发射光强度(荧光/磷光) 与入射光波长的关系曲线。
23 2
,l 1),产生不同吸收带,但均回到第一激发单重态的最
‘ 2
低振动能级再跃迁回到基态,产生波长一定的荧光(如l
)
斯托克位移 产生斯托克位移的主要原因:
1.跃迁到激发态高振动能级的激发态分子,首先以更快的速 率发生振动弛豫(其速率在1013/s数量级),散失部分能量,

荧光光谱仪的原理及应用

荧光光谱仪的原理及应用

T1 T2 外转换
发 射 磷 振动弛豫 光
l1
l2
l 2
l3
5Байду номын сангаас
主 要 光 谱 参 数
吸收光谱:化合物的吸收光强与入射光波长的关系曲 线 激发光谱:让不同波长的激发光激发荧光物质使之发 生荧光,而让荧光通过固定波长的发射单色器照射到 检测器上,检测荧光强度变化。
发射光谱:固定激发波长(一般将其固定于激发波段 中感兴趣的峰位),扫描出的化合物的发射光强(荧光/ 磷光) 与发射光波长的关系曲线。
激发波 长确定
• 重复2、3步循环扫描得到理想的光谱图
关机
• 保存数据,先关软件,再关光源最后关风扇和电源
10
荧光寿命和量子产率的测试和数据处理
荧光寿命 • 根据发射谱和激发谱选择感兴趣的发射波长和激发波长, 测试荧光强度随时间的衰减曲线,同样需要数据进行校 正,然后应用origin软件进行作图和数据拟合得到寿命 结果
• 光电转化效率,即入射单色光子-电子转化效率 (monochromatic incident photon-to-electron conversion efficiency, 用缩写IPCE表示),定义为单位时间内外电路中产生的电子数 Ne与单位时间内的入射单色光子数Np之比。 • 计算公式:IPCE(λ)=1240 * jp(λ)/Eλ(λ)
IPCE测试系统
Solar Cell Scan100 Crown tech.inc Newport 光源、单色仪、信号放大模 块、光强校准模块、计算机 控制和数据采集处理模块
通过用波长可调的单色光照射样 品,同时测量样品在不同波长的 单色光照射下产生的短路电流, 从而通过计算得到样品的IPCE

(完整版)荧光光谱原理和应用

(完整版)荧光光谱原理和应用

S1








S0
l1
l 2 l 2
外转换
l3
T1 T2 发 射 磷 振动弛豫 光
12
失活的途径
电子处于激发态是不稳定状态,容易返回基态,在这个过程中通过
辐射跃迁(发光)和无辐射跃迁等方式失去能量,这个过程就称为失活。
失活途径
辐射跃迁
无辐射跃迁
荧光
磷光
系间窜越 内转换 外转换 振动弛豫
激发态停留时间短、返回速度快的途径,发生的几率大。
动能级.
17
荧光光谱与磷光光谱
荧光光谱
固定激发光波长物质发射的荧光强度与发 射光波长关系曲线,如右图中曲线II。 荧光本身则是由电子在两能级间不发生自 旋反转的辐射跃迁过程中所产生的光。
磷光光谱
固定激发光波长物质发射的磷光强度与 发射光波长关系曲线,如右图中曲线III。 磷光本身则是由电子在两能级间发生自旋 反转的辐射跃迁过程中所产生的光。
荧光是指一种光致发光的冷发光现象。
当某种常温物质经某种波长的入射光 (通常是紫外线)照射,吸收光能后 进入激发态,并且立即退激发并发出 比入射光的的波长长的出射光(通常 波长在可见光波段);而且一旦停止 入射光,发光现象也随之立即消失。 具有这种性质的出射光就被称之为荧 光。
1
磷光是一种缓慢发光的光致冷发光现象。当某种
常温物质经某种波长的入射光(通常是紫外线)照 射,吸收光能后进入激发态(具有和基态不同的自 旋多重度),然后缓慢地退激发并发出比入射光的 的波长长的出射光,而且与荧光过程不同,当入射 光停止后,发光现象持续存在。发出磷光的退激发 过程是被量子力学的跃迁选择规则禁戒的,因此这 个过程很缓慢。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S1 → S0跃迁),发射波长为 l’2的荧光; 10-7~10-9 s 。 由图可见,发射荧光的能量比分子吸收的能量小,波长长;
l’2 > l 2 > l 1 ;
磷光发射:电子由第一激发三重态的最低振动能级→基态( 多为
T1 → S0跃迁);发射波长为 l3 的磷光; 10-4~100 s 。 电子由 S0 进入 T1 的可能过程:( S0 → T1禁阻跃迁)
特定频率的辐射;量子化;跃迁一次到位;
失活: 激发态 →基态:多种途径和方式(见能级图);速
度最快、激发态寿命最短的途径占优势;
第一、第二、…电子激发单重态 S1 、S2… ; 第一、第二、…电子激发三重态 T1 、T2 … ;
雅布隆斯基分子能级图
内转换
振动弛豫 内转换
S
系间窜越
2
S1

T1 T2
S0 →激发→振动弛豫→内转换→系间窜越→振动弛豫→T1 发光速度很慢,光照停止后,可持续一段时间。
主要光谱参量
吸收谱
化合物的吸收光强与入射光波长的关系曲线 。
激发谱
固定发射波长(一般将其固定于发射波段中感兴趣的峰位),扫描 出的化合物的发射光强(荧光/磷光) 与入射光波长的关系曲线。
发射谱
固定激发波长(一般将其固定于激发波段中感兴趣的峰位),扫描出 的化合物的发射光强(荧光/磷光) 与入射光波长的关系曲线。
4
基态和激发态
基态: 当一ห้องสมุดไป่ตู้分子中的所有电子的排布都遵从构造原理
时,此分子被称为处于基态。
激发态:当一个分子中的电子排布不完全遵从构造原理
时,此分子被称为处于激发态。
构造原理:电子在原子或分子中排布所遵循的规则。
➢ 能量最低原理
➢ 泡利不相容原理
荧光光谱的原理与应用
➢ 洪特规则
5
电子激发态的多重度 电子激发态的多重度:
荧光光谱的原理与应用
荧光光谱的原理与应用
主要内容
1
荧光光谱的基本原理
2 荧光光谱仪的原理、操作及数据处理
3
荧光光谱的应用
4
参考资料
荧光光谱的原理与应用
2
荧光光谱的基本原理
荧光光谱的原理与应用
3
荧光定义
荧光是辐射跃迁的一种,是物质从激发态失活到多重性相同的低 能状态时所释放的辐射。
荧光光谱的原理与应用
无辐射跃迁失活的途径
外转换:激发分子与溶剂或其他分子之间产生相互作用而转 移能量的非辐射跃迁;
外转换使荧光或磷光减弱或“猝灭”。
系间窜越:不同多重态,有重叠的转动能级间的非辐射跃迁。
改变电子自旋,禁阻跃迁,通过自旋—轨道耦合进行。
辐射跃迁失活的途径
荧光发射:电子由第一激发单重态的最低振动能级→基态( 多为
时,吸收不同波长的能量(如
能级图l2 ,l1),产生不同吸 收带,但均回到第一激发单
重态的最低振动能级再跃迁
回到基态,产生波长一定的
荧光(荧如光l光’谱的2原理)与。应因用 此,发射
15
谱的形状与激发波长无关。
斯托克位移
一个化合物的发射光谱常常与其吸收光谱很类似,但总是较相应
的吸收光谱红移,这称为斯托克位移(Stoke’s shift)。
荧光
磷光
系间窜越 内转换 外转换 振动弛豫
激发态停留时间短、返回速度快的途径,发生的几率大。
无辐射跃迁失活的途径
振动弛豫:同一电子能级内以热能量交换形式由高振 动能级至低相邻振动能级间的跃迁。发生振动弛豫的时 间一般为10-12 s。
内转换:多重度相同的电子能级中等能级间的无辐射 能级跃迁。
通过内转换和振动弛豫,高激发单重态的电子跃回第一 激发单重态的最低振动能级。
荧光光谱的原理与应用
14
主要光谱参量
吸收谱反映出的是物质的基态能级与激发态能级之间所有的允许跃迁。 通常状态下的物质的表观颜色大部分时候取决于其吸收特性。
激发谱则反映的是基态与所有与该荧光发射有关的能级之间的跃迁。其所 呈现的关系比吸收谱要有选择性,但有时候又不如吸收谱来的直接。
电子跃迁到不同激发态能级
➢3.发射荧光的激发态多为(π,π*)态,这种激发态较基态
时有更大的极性,因此将在更大程度上为极性溶剂所稳定,使
荧光激光谱发的原态理与的应用能量进一步降低。
17
反斯托克位移
不过,有时在高温下也可观察到反斯托克位移现象,即荧光光谱移向
吸收光谱的短波方向。这是由于高温使更多的激发态分子处于高振动 能级,荧光主要从激发态的高振动能级发出所致。
荧光光谱的原理与应用
16
蒽在溶液中的吸收(虚线)
和发射(实线)光谱
斯托克位移
产生斯托克位移的主要原因:
➢1.跃迁到激发态高振动能级的激发态分子,首先以更快的速 率发生振动弛豫(其速率在1013/s数量级),散失部分能量, 达到零振动能级,一般从零振动能级发射荧光;
➢2.激发态形成后,其分子的构型将很快进一步调整,以达到 激发态的稳定构型,这又损失了部分能量;
既没发生斯托克位移也没发生反斯托克位移的荧光称共振荧光。
荧光光谱的原理与应用
18
镜像规则
荧光发射是光吸收的逆过程。荧光发射光谱与吸收光谱有类似镜影 的关系。但当激发态的构型与基态的构型相差很大时,荧光发射光 谱将明显不同于该化合物的吸收光谱。
荧光光谱的原理与应用
19
荧光光谱与磷光光谱
荧光光谱
固定激发光波长物质发射的荧光强度与发 射光波长关系曲线,如右图中曲线II。 荧光本身则是由电子在两能级间不发生自 旋反转的辐射跃迁过程中所产生的光。





外转换



磷 振动弛豫


S0
l 荧光光谱的原理与应用 1
l 2 l 2
l3
8
跃迁规则
Franck-Condon原理:
在电子跃迁完成的瞬间,分子中原子核的构型是来不及改
变的。
跃迁前后原子核的构型没有发生改变、跃迁过程中电子自旋没有 改变、跃迁前后电子的轨道在空间有较大的重叠和轨道的对映性
M = 2S+1
S为电子自旋量子数的代数和(0或1);
根据洪特规则(平行自旋比成对自旋稳定),三重态能级比相应单重态能级 低;大多数有机分子的基态处于单重态;
分子能级与跃迁
分子能级比原子能级复杂; 在每个电子能级上,都存在振动、转动能级;
激发: 基态(S0)→激发态(S1、S2激发态振动能级):吸收
发生了改变的跃迁是允许的;
跃迁过程中电子自旋发生了改变、跃迁前后电子的轨道在空间不
重叠或轨道的对映性未发生改变的跃迁是禁阻的。
荧光光谱的原理与应用
9
失活的途径
电子处于激发态是不稳定状态,容易返回基态,在这个过程中通过
辐射跃迁(发光)和无辐射跃迁等方式失去能量,这个过程就称为失活。
失活途径
辐射跃迁
无辐射跃迁
相关文档
最新文档