小学五年级奥数题集锦及答案

合集下载

小学五年级奥数题100题(附答案)

小学五年级奥数题100题(附答案)

小学五年级奥数题100题(附答案)五年级奥数题100题(附答案)1. 765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002. (9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1) =9000+9000+…….+9000 (500个9000) =45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。

6.297+293+289+ (209)解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18。

小学五年级奥数题100道及答案(完整版)

小学五年级奥数题100道及答案(完整版)

小学五年级奥数题100道及答案(完整版)1. 一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是()A. 208B. 203C. 200D. 198答案:A解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208。

2. 有一个自然数,被10 除余7,被7 除余4,被4 除余1。

这个自然数最小是()A. 137B. 107C. 131D. 101答案:C解析:这个数加上 3 就能被10、7、4 整除,10、7、4 的最小公倍数是140,所以这个数是140 - 3 = 137。

3. 一筐苹果,2 个一拿,3 个一拿,4 个一拿,5 个一拿都正好拿完而没有余数,这筐苹果最少应有()A. 120 个B. 90 个C. 60 个D. 30 个答案:C解析:苹果数量是2、3、4、5 的公倍数,最小公倍数是60。

4. 把66 分解质因数是()A. 66 = 1×2×3×11B. 66 = 6×11C. 66 = 2×3×11D. 2×3×11 = 66答案:C解析:分解质因数是把一个合数写成几个质数相乘的形式。

5. 两个质数的积一定是()A. 质数B. 奇数C. 偶数D. 合数答案:D解析:两个质数相乘的积,除了1 和它本身以外还有这两个质数作为因数,所以是合数。

6. 一个合数至少有()个因数。

A. 1B. 2C. 3D. 4答案:C解析:合数是指除了能被1 和本身整除外,还能被其他数(0 除外)整除的自然数。

所以一个合数至少有3 个因数。

7. 10 以内既是奇数又是合数的数是()A. 7B. 8C. 9D. 5答案:C解析:9 不能被2 整除是奇数,同时除了1 和9 本身还有3 这个因数,所以是合数。

8. 下面算式中,结果最大的是()A. 300÷8÷6×5B. 300÷(8÷6)×5C. 300÷(8÷6×5)D. 300÷8÷(6×5)答案:C解析:分别计算出每个选项的结果进行比较。

小学五年级数学奥数题100道及答案(完整版)

小学五年级数学奥数题100道及答案(完整版)

小学五年级数学奥数题100道及答案(完整版)题目1:计算:1 + 2 + 3 + 4 + 5 + …+ 99 + 100答案:5050解析:这是一个等差数列求和,公式为(首项+ 末项)×项数÷ 2 ,即(1 + 100)×100 ÷2 = 5050题目2:有三个连续自然数,它们的乘积是60,求这三个数。

答案:3、4、5解析:将60 分解质因数60 = 2×2×3×5 = 3×4×5题目3:一个数除以5 余3,除以6 余4,除以7 余5,这个数最小是多少?答案:208解析:这个数加上 2 就能被5、6、7 整除,5、6、7 的最小公倍数是210,所以这个数是210 - 2 = 208题目4:甲、乙两车同时从A、B 两地相向而行,在距A 地60 千米处第一次相遇。

各自到达对方出发地后立即返回,途中又在距A 地40 千米处相遇。

A、B 两地相距多少千米?答案:110 千米解析:第一次相遇时,两车共行了一个全程,甲行了60 千米。

第二次相遇时,两车共行了三个全程,甲行了60×3 = 180 千米。

此时甲距离 A 地40 千米,所以两个全程是180 + 40 = 220 千米,全程为110 千米。

题目5:鸡兔同笼,共有头48 个,脚132 只,鸡和兔各有多少只?答案:鸡30 只,兔18 只解析:假设全是鸡,有脚48×2 = 96 只,少了132 - 96 = 36 只脚。

每把一只鸡换成一只兔,脚多4 - 2 = 2 只,所以兔有36÷2 = 18 只,鸡有48 - 18 = 30 只。

题目6:小明从一楼到三楼用了18 秒,照这样计算,他从一楼到六楼需要多少秒?答案:45 秒解析:一楼到三楼走了 2 层楼梯,每层用时18÷2 = 9 秒。

一楼到六楼走5 层楼梯,用时5×9 = 45 秒。

五年级奥数精选50(附答案)

五年级奥数精选50(附答案)

五年级奥数精选50(附答案)一、拓展提优试题1.如图,在等腰直角三角形ABC 中,斜边AB 上有一点D ,已知CD =5,BD 比AD 长2,那么三角形ABC 的面积是 .2.已知13411a b -=,那么()20132065b a --=______。

3.(8分)小张有200支铅笔,小李有20支钢笔.每次小张给小李6支铅笔,小李还给小张1支钢笔.经过 次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的11倍.4.如图,正方形的边长是6厘米,AE =8厘米,求OB = 厘米.5.某次入学考试有1000人参加,平均分是55分,录取了200人,录取者的平均分与未录取的平均分相差60分,录取分数线比录取者的平均分少4分.录取分数线是 分.6.小明从家到学校去上课,如果每分钟走60米,可提前10分钟到校;如果每分钟走50米,要迟到4分钟到校.小明家到学校相距 米.7.对于自然数N ,如果在1﹣9这九个自然数中至少有七个数是N 的因数,则称N 是一个“七星数”,则在大于2000的自然数中,最小的“七星数”是 .8.三位偶数A 、B 、C 、D 、E 满足A <B <C <D <E ,若A +B +C +D +E =4306,则A 最小 .9.如图,若每个小正方形的边长是2,则图中阴影部分的面积是 .10.如图,在梯形ABCD中,若AB=8,DC=10,S△AMD=10,S△BCM=15,则梯形ABCD的面积是.11.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需分钟.12.(8分)如果两个质数的差恰好是2,称这两个质数为一对孪生质数.例如3和5是一对孪生质数,29和31也是一对孪生质数.在数论研究中,孪生质数是最热门的研究课题之一.华裔数学家张益唐在该课题的研究中取得了令人瞩目的成就,他的事迹激励着更多的青年学子投身数学研究.在不超过100的整数中,一共可以找到对孪生质数.13.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换多少只鸡?14.(8分)彤彤和林林分别有若干张卡片:如果彤彤拿6张给林林,林林变为彤彤的3倍;如果林林给彤彤2张,则林林变为彤彤的2倍.那么,林林原有张.15.某场考试共有7道题,每道题问的问题都只与这7道题的答案有关,且答案只能是1、2、3、4中的一个.已知题目如下:①有几道题的答案是4?②有几道题的答案不是2也不是3?③第⑤题和第⑥题的答案的平均数是多少?④第①题和第②题的答案的差是多少?⑤第①题和第⑦题的答案的和是多少?⑥第几题是第一个答案为2的?⑦有几种答案只是一道题的答案?那么,7道题的答案的总和是 .【参考答案】一、拓展提优试题1.解:作CE ⊥AB 于E .∵CA =CB ,CE ⊥AB ,∴CE =AE =BE ,∵BD ﹣AD =2,∴BE +DE ﹣(AE ﹣DE )=2,∴DE =1, 在Rt △CDE 中,CE 2=CD 2﹣DE 2=24,∴S △ABC =•AB •CE =CE 2=24,故答案为242.2068[解答]由于13411a b -=,所以()6520513451155a b a b -=⨯-=⨯=,所以()()20132065201365202068b a a b --=+-=3.解:依题意可知:当第一次过后,小张剩余194只铅笔,小李剩余19只钢笔.当第二次过后,小张剩余188只铅笔,小李剩余18只钢笔.当第三次过后,小张剩余182只铅笔,小李剩余17只钢笔.当第四次过后,小张剩余176只铅笔,小李剩余16只钢笔.正好是11倍. 故答案为:四4.解:6×6÷2=18(平方厘米),18×2÷8=4.5(厘米);答:OB 长4.5厘米.故答案为:4.5.5.解:设录取者的平均成绩为X 分,我们可以得到方程,200X+(1000﹣200)×(X﹣60)=55×1000,200X+800(X﹣60)=55000,1000X﹣48000=55000,1000X=103000,X=103;所以录取分数线是103﹣4=99(分).答:录取分数线是99分.故答案为:99.6.解:(60×10+50×4)÷(60﹣50),=(600+200)÷10,=800÷10,=80(分钟),60×(80﹣10),=60×70,=4200(米).答:小明家到学校相距4200米.故答案为:4200.7.解:根据分析,在2000~2020之间排除掉奇数,剩下的偶数还可以排除掉不能被3整除的偶数,最后只剩下:2004、2010、2016,再将三个数分别分解质因数得:2004=2×2×3×167;2010=2×3×5×67;2016=2×2×2×2×2×3×3×7,显然2014和2010的质因数在1~9中不到7个,不符合题意,排除,符合题意的只有2016,此时2016的因数分别是:2、3、4、6、7、8、9.故答案是:2016.8.解:最大的三位偶数是998,要满足A最小且A<B<C<D<E,则E最大是998,D最大是996,C最大是994,B最大是992,4306﹣(998+996+994+992)=4306﹣3980=326,所以此时A最小是326.故答案为:326.9.解:根据分析,如图,将阴影部分进行剪切和拼接后得:此时,图中阴影部分的小正方形个数为:18个,每个小正方形的面积为:2×2=4,故阴影部分的面积=18×4=72.故答案是:72.10.解:△ADM 、△BCM 、△ABM 都等高,所以S △ABM :(S △ADM +S △BCM )=8:10=4:5,已知S △AMD =10,S △BCM =15,所以S △ABM 的面积是:(10+15)×=20,梯形ABCD 的面积是:10+15+20=45;答:梯形ABCD 的面积是45.故答案为:45.11.解:假设每人每分钟修大坝1份洪水冲毁大坝速度:(10×45﹣20×20)÷(45﹣20)=(450﹣400)÷25=50÷25=2(份)大坝原有的份数45×10﹣2×45=450﹣90=360(份)14人修好大坝需要的时间360÷(14﹣2)=360÷12=30(分钟)答:14人修好大坝需30分钟.故答案为:30.12.解:在不超过100的整数中,以下8组:3,5;5,7;11,13;17,19;29,31;41,43;59,61;71,73是孪生质数.故答案为8.13.解:42÷2=21(只)21÷3×26=7×26=182(只)182÷2×3=91×3=273(只)273×3=819(只)答:3头牛可以换819只鸡.14.解:彤彤给林林6张,林林有总数的;林林给彤彤2张,林林有总数的;所以总数:(6+2)÷(﹣)=96,林林原有:96×﹣6=66,故答案为:66.15.解:因为每道题的答案都是1、2、3、4的一个,所以①的答案不宜太大,不妨取1,此时②的答案其实就是7个答案中1和4的个数,显然只能取2、3、4中的一个,若取2,则意味着剩余的题目只能有一道题答案为1,这是④填1,⑦填2,⑤填3,⑥填2,而③无法填整数,与题意矛盾;所以②的答案取3,则剩余的题目答案为1和4各有1道,此时④填2,显然⑦只能填1,那么⑤填2,则4应该是⑥的答案,从而③填3,此时7道题的答案如表;它们的和是1+3+3+2+2+4+1=16.。

小学五年级奥数题100题(附答案)

小学五年级奥数题100题(附答案)

小学五年级奥数题100题(附答案)五年级奥数题100题(附答案)1.765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002.(9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)=9000+9000+…….+9000(500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000.6.297+293+289+ (209)解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18.去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20.求去掉的两个数的乘积.解: 7*18-6*19=126-114=126*19-5*20=114-100=14去掉的两个数是12和14它们的乘积是12*14=16810.有七个排成一列的数,它们的平均数是30,前三个数的平均数是28,后五个数的平均数是33.求第三个数.解:28×3+33×5-30×7=39.11.有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8.问:第二组有多少个数?解:设第二组有x个数,则63+11x=8×(9+x),解得x=3.12.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分.如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分.因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分).13.妈妈每4天要去一次副食商店,每 5天要去一次百货商店.妈妈平均每星期去这两个商店几次?(用小数表示)解:每20天去9次,9÷20×7=3.15(次).14.乙、丙两数的平均数与甲数之比是13∶7,求甲、乙、丙三数的平均数与甲数之比. 解:以甲数为7份,则乙、丙两数共13×2=26(份)所以甲乙丙的平均数是(26+7)/3=11(份)因此甲乙丙三数的平均数与甲数之比是11:7.15.五年级同学参加校办工厂糊纸盒劳动,平均每人糊了76个.已知每人至少糊了70个,并且其中有一个同学糊了88个,如果不把这个同学计算在内,那么平均每人糊74个.糊得最快的同学最多糊了多少个?解:当把糊了88个纸盒的同学计算在内时,因为他比其余同学的平均数多88-74=14(个),而使大家的平均数增加了76-74=2(个),说明总人数是14÷2=7(人).因此糊得最快的同学最多糊了74×6-70×5=94(个).16.甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进.问:甲、乙两班谁将获胜?解:快速行走的路程越长,所用时间越短.甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜.17.轮船从A城到B城需行3天,而从B城到A城需行4天.从A 城放一个无动力的木筏,它漂到B城需多少天?解:轮船顺流用3天,逆流用4天,说明轮船在静水中行4-3=1(天),等于水流3+4=7(天),即船速是流速的7倍.所以轮船顺流行3天的路程等于水流3+3×7=24(天)的路程,即木筏从A城漂到B城需24天.18.小红和小强同时从家里出发相向而行.小红每分走52米,小强每分走70米,二人在途中的A处相遇.若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇.小红和小强两人的家相距多少米?解:因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同.也就是说,小强第二次比第一次少走4分.由(70×4)÷(90-70)=14(分)可知,小强第二次走了14分,推知第一次走了18分,两人的家相距(52+70)×18=2196(米).19.小明和小军分别从甲、乙两地同时出发,相向而行.若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇.甲、乙两地相距多少千米?解:每时多走1千米,两人3时共多走6千米,这6千米相当于两人按原定速度1时走的距离.所以甲、乙两地相距6×4=24(千米)20.甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地.求甲原来的速度.解:因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇.设甲原来每秒跑x米,则相遇后每秒跑(x+2)米.因为甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米.21.甲、乙两车分别沿公路从A,B两站同时相向而行,已知甲车的速度是乙车的1.5倍,甲、乙两车到达途中C站的时刻分别为5:00和16:00,两车相遇是什么时刻?解:9∶24.解:甲车到达C站时,乙车还需16-5=11(时)才能到达C站.乙车行11时的路程,两车相遇需11÷(1+1.5)=4.4(时)=4时24分,所以相遇时刻是9∶24.22.一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米.坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?解:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为1123.甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙.问:两人每秒各跑多少米?解:甲乙速度差为10/5=2速度比为(4+2):4=6:4所以甲每秒跑6米,乙每秒跑4米.24.甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有20米,丙离B还有40米;当乙跑到B时,丙离B还有24米.问:(1) A, B相距多少米?(2)如果丙从A跑到B用24秒,那么甲的速度是多少?解:解:(1)乙跑最后20米时,丙跑了40-24=16(米),丙的速度25.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明.已知公共汽车从始发站每次间隔同样的时间发一辆车,问:相邻两车间隔几分?解:设车速为a,小光的速度为b,则小明骑车的速度为3b.根据追及问题“追及时间×速度差=追及距离”,可列方程10(a-b)=20(a-3b),解得a=5b,即车速是小光速度的5倍.小光走10分相当于车行2分,由每隔10分有一辆车超过小光知,每隔8分发一辆车.26.一只野兔逃出80步后猎狗才追它,野兔跑8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步.猎狗至少要跑多少步才能追上野兔?解:狗跑12步的路程等于兔跑32步的路程,狗跑12步的时间等于兔跑27步的时间.所以兔每跑27步,狗追上5步(兔步),狗要追上80步(兔步)需跑[27×(80÷5)+80]÷8×3=192(步).27.甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过.问:(1)火车速度是甲的速度的几倍?(2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?解:(1)设火车速度为a米/秒,行人速度为b米/秒,则由火车的是行人速度的11倍;(2)从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485-135)÷2=675(秒).28.辆车从甲地开往乙地,如果把车速提高20%,那么可以比原定时间提前1时到达;如果以原速行驶100千米后再将车速提高30%,那么也比原定时间提前1时到达.求甲、乙两地的距离.29.完成一件工作,需要甲干5天、乙干 6天,或者甲干 7天、乙干2天.问:甲、乙单独干这件工作各需多少天?解:甲需要(7*3-5)/2=8(天)乙需要(6*7-2*5)/2=16(天)30.一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完.如果放水管开了2时后再打开排水管,那么再过多长时间池内将积有半池水?31.小松读一本书,已读与未读的页数之比是3∶4,后来又读了33页,已读与未读的页数之比变为5∶3.这本书共有多少页?解:开始读了3/7 后来总共读了5/833/(5/8-3/7)=33/(11/56)=56*3=168页32.一件工作甲做6时、乙做12时可完成,甲做8时、乙做6时也可以完成.如果甲做3时后由乙接着做,那么还需多少时间才能完成?解:甲做2小时的等于乙做6小时的,所以乙单独做需要6*3+12=30(小时)甲单独做需要10小时因此乙还需要(1-3/10)/(1/30)=21天才可以完成.33.有一批待加工的零件,甲单独做需4天,乙单独做需5天,如果两人合作,那么完成任务时甲比乙多做了20个零件.这批零件共有多少个?解:甲和乙的工作时间比为4:5,所以工作效率比是5:4工作量的比也5:4,把甲做的看作5份,乙做的看作4份那么甲比乙多1份,就是20个.因此9份就是180个所以这批零件共180个34.挖一条水渠,甲、乙两队合挖要6天完成.甲队先挖3天,乙队接着解:根据条件,甲挖6天乙挖2天可挖这条水渠的3/5所以乙挖4天能挖2/5因此乙1天能挖1/10,即乙单独挖需要10天.甲单独挖需要1/(1/6-1/10)=15天.35.修一段公路,甲队独做要用40天,乙队独做要用24天.现在两队同时从两端开工,结果在距中点750米处相遇.这段公路长多少米?36.有一批工人完成某项工程,如果能增加8个人,则10天就能完成;如果能增加3个人,就要20天才能完成.现在只能增加2个人,那么完成这项工程需要多少天?解:将1人1天完成的工作量称为1份.调来3人与调来8人相比,10天少完成(8-3)×10=50(份).这50份还需调来3人干10天,所以原来有工人50÷10-3=2(人),全部工程有(2+8)×10=100(份).调来2人需100÷(2+2)=25(天).37.解:三角形AOB和三角形DOC的面积和为长方形的50%所以三角形AOB占32%16÷32%=5038.解:1/2*1/3=1/6所以三角形ABC的面积是三角形AED面积的6倍.39.下面9个图中,大正方形的面积分别相等,小正方形的面积分别相等.问:哪几个图中的阴影部分与图(1)阴影部分面积相等?解:(2)(4)(7)(8)(9)40.观察下列各串数的规律,在括号中填入适当的数2,5,11,23,47,(),……解:括号内填95规律:数列里地每一项都等于它前面一项的2倍减141.在下面的数表中,上、下两行都是等差数列.上、下对应的两个数字中,大数减小数的差最小是几?解:1000-1=999997-995=992每次减少7,999/7=142 (5)所以下面减上面最小是51333-1=1332 1332/7=190 (2)所以上面减下面最小是2因此这个差最小是2.42.如果四位数6□□8能被73整除,那么商是多少?解:估计这个商的十位应该是8,看个位可以知道是6因此这个商是86.43.求各位数字都是 7,并能被63整除的最小自然数.解:63=7*9所以至少要9个7才行(因为各位数字之和必须是9的倍数)44. 1×2×3×…×15能否被 9009整除?解:能.将9009分解质因数9009=3*3*7*11*1345.能否用1,2,3,4,5,6六个数码组成一个没有重复数字,且能被11整除的六位数?为什么?解:不能.因为1+2+3+4+5+6=21,如果能组成被11整除的六位数,那么奇数位的数字和与偶数位的数字和一个为16,一个为5,而最小的三个数字之和1+2+3=6>5,所以不可能组成.46.有一个自然数,它的最小的两个约数之和是4,最大的两个约数之和是100,求这个自然数.解:最小的两个约数是1和3,最大的两个约数一个是这个自然数本身,另一个是这个自然数除以3的商.最大的约数与第二大47.100以内约数个数最多的自然数有五个,它们分别是几?解:如果恰有一个质因数,那么约数最多的是26=64,有7个约数;如果恰有两个不同质因数,那么约数最多的是23×32=72和25×3=96,各有12个约数;如果恰有三个不同质因数,那么约数最多的是22×3×5=60,22×3×7=84和2×32×5=90,各有12个约数.所以100以内约数最多的自然数是60,72,84,90和96.48.写出三个小于20的自然数,使它们的最大公约数是1,但两两均不互质.解:6,10,1549.有336个苹果、252个桔子、210个梨,用这些果品最多可分成多少份同样的礼物?在每份礼物中,三样水果各多少?解:42份;每份有苹果8个,桔子6个,梨5个.50.三个连续自然数的最小公倍数是168,求这三个数.解:6,7,8.提示:相邻两个自然数必互质,其最小公倍数就等于这两个数的乘积.而相邻三个自然数,若其中只有一个偶数,则其最小公倍数等于这三个数的乘积;若其中有两个偶数,则其最小公倍数等于这三个数乘积的一半.51.一副扑克牌共54张,最上面的一张是红桃K.如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?解:因为[54,12]=108,所以每移动108张牌,又回到原来的状况.又因为每次移动12张牌,所以至少移动108÷12=9(次).52.爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍.”你知道爷爷和小明现在的年龄吗?解:爷爷70岁,小明10岁.提示:爷爷和小明的年龄差是6,5,4,3,2的公倍数,又考虑到年龄的实际情况,取公倍数中最小的.(60岁)53.某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?并将它们写出来.解:11,13,17,23,37,47.54.在放暑假的8月份,小明有五天是在姥姥家过的.这五天的日期除一天是合数外,其它四天的日期都是质数.这四个质数分别是这个合数减去1,这个合数加上1,这个合数乘上2减去1,这个合数乘上2加上1.问:小明是哪几天在姥姥家住的?解:设这个合数为a,则四个质数分别为(a-1),(a+1),(2a-1),(2a+1).因为(a-1)与(a+1)是相差2的质数,在1~31中有五组:3,5;5,7;11,13;17,19;21,31.经试算,只有当a =6时,满足题意,所以这五天是8月5,6,7,11,13日.55.有两个整数,它们的和恰好是两个数字相同的两位数,它们的乘积恰好是三个数字相同的三位数.求这两个整数.解:3,74;18,37.提示:三个数字相同的三位数必有因数111.因为111=3×37,所以这两个整数中有一个是37的倍数(只能是37或74),另一个是3的倍数.56.在一根100厘米长的木棍上,从左至右每隔6厘米染一个红点,同时从右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开.问:长度是1厘米的短木棍有多少根?解:因为100能被5整除,所以可以看做都是自左向右染色.因为6与5的最小公倍数是30,即在30厘米处同时染上红点,所以染色以30厘米为周期循环出现.一个周期的情况如下图所示:由上图知道,一个周期内有2根1厘米的木棍.所以三个周期即90厘米有6根,最后10厘米有1根,共7根.57.某种商品按定价卖出可得利润960元,若按定价的80%出售,则亏损832元.问:商品的购入价是多少元?解:8000元.按两种价格出售的差额为960+832=1792(元),这个差额是按定价出售收入的20%,故按定价出售的收入为1792÷20%=8960(元),其中含利润960元,所以购入价为8000元.58.甲桶的水比乙桶多20%,丙桶的水比甲桶少20%.乙、丙两桶哪桶水多?解:乙桶多.59.学校数学竞赛出了A,B,C三道题,至少做对一道的有25人,其中做对A题的有10人,做对B题的有13人,做对C题的有15人.如果二道题都做对的只有1人,那么只做对两道题和只做对一道题的各有多少人?解:只做对两道题的人数为(10+13+15)-25 -2×1=11(人),只做对一道题的人数为25-11-1=13(人).60.学校举行棋类比赛,设象棋、围棋和军棋三项,每人最多参加两项.根据报名的人数,学校决定对象棋的前六名、围棋的前四名和军棋的前三名发放奖品.问:最多有几人获奖?最少有几人获奖?解:共有13人次获奖,故最多有13人获奖.又每人最多参加两项,即最多获两项奖,因此最少有7人获奖.61.在前1000个自然数中,既不是平方数也不是立方数的自然数有多少个?解:因为312<1000<322,103=1000,所以在前1000个自然数中有31个平方数,10个立方数,同时还有3个六次方数(16,26,36).所求自然数共有 1000-(31+10)+3=962(个).62.用数字0,1,2,3,4可以组成多少个不同的三位数(数字允许重复)?解:4*5*5=100个63.要从五年级六个班中评选出学习、体育、卫生先进集体各一个,有多少种不同的评选结果?解:6*6*6=216种64.已知15120=24×33×5×7,问:15120共有多少个不同的约数?解:15120的约数都可以表示成2a×3b×5c×7d的形式,其中a=0,1,2,3,4,b=0,1,2,3,c=0,1,d=0,1,即a,b,c,d的可能取值分别有5,4,2,2种,所以共有约数5×4×2×2=80(个).65.大林和小林共有小人书不超过50本,他们各自有小人书的数目有多少种可能的情况?解:他们一共可能有0~50本书,如果他们共有n本书,则大林可能有书0~n本,也就是说这n本书在两人之间的分配情况共有(n +1)种.所以不超过 50本书的所有可能的分配情况共有1+2+3…+51=1326(种).66.在右图中,从A点沿线段走最短路线到B点,每次走一步或两步,共有多少种不同走法?(注:路线相同步骤不同,认为是不同走法.)解:80种.提示:从A到B共有10条不同的路线,每条路线长5个线段.每次走一个或两个线段,每条路线有8种走法,所以不同走法共有8×10=80(种).67.有五本不同的书,分别借给3名同学,每人借一本,有多少种不同的借法?解:5*4*3=60种68.有三本不同的书被5名同学借走,每人最多借一本,有多少种不同的借法?解:5*4*3=60种69.恰有两位数字相同的三位数共有多少个?解:在900个三位数中,三位数各不相同的有9×9×8=648(个),三位数全相同的有9个,恰有两位数相同的有900—648—9=243(个).70.从1,3,5中任取两个数字,从2,4,6中任取两个数字,共可组成多少个没有重复数字的四位数?解:三个奇数取两个有3种方法,三个偶数取两个也有3种方法.共有3×3×4!=216(个).71.左下图中有多少个锐角?解:C(11,2)=55个72. 10个人围成一圈,从中选出两个不相邻的人,共有多少种不同选法?解:c(10,2)-10=35种73.一牧场上的青草每天都匀速生长.这片青草可供27头牛吃6周,或供23头牛吃9周.那么可供21头牛吃几周?解:将1头牛1周吃的草看做1份,则27头牛6周吃162份,23头牛9周吃207份,这说明3周时间牧场长草207-162=45(份),即每周长草15份,牧场原有草162-15×6=72(份).21头牛中的15头牛吃新长出的草,剩下的6头牛吃原有的草,吃完需72÷6=12(周).74.有一水池,池底有泉水不断涌出.要想把水池的水抽干,10台抽水机需抽 8时,8台抽水机需抽12时.如果用6台抽水机,那么需抽多少小时?解:将1台抽水机1时抽的水当做1份.泉水每时涌出量为(8×12-10×8)÷(12-8)=4(份).水池原有水(10-4)×8=48(份),6台抽水机需抽48÷(6-4)=24(时).75.规定a*b=(b+a)×b,求(2*3)*5.解:2*3=(3+2)*3=1515*5=(15+5)*5=10076.1!+2!+3!+…+99!的个位数字是多少?解:1!+2!+3!+4!=1+2+6+24=33从5!开始,以后每一项的个位数字都是0所以1!+2!+3!+…+99!的个位数字是3.77(1).有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号.在200个信号中至少有多少个信号完全相同?解:4*4*4=64200÷64=3 (8)所以至少有4个信号完全相同.77.(2)在今年入学的一年级新生中有370多人是在同一年出生的.试说明:他们中至少有2个人是在同一天出生的.解:因为一年最多有366天,看做366个抽屉因为370>366,所以根据抽屉原理至少有2个人是在同一天出生的.78.从前11个自然数中任意取出6个,求证:其中必有2个数互质.证明:把前11个自然数分成如下5组(1,2,3)(4,5)(6,7)(8,9)(10,11)6个数放入5组必然有2个数在同一组,那么这两个数必然互质.79.小明去爬山,上山时每时行2.5千米,下山时每时行4千米,往返共用3.9时.小明往返一趟共行了多少千米?80.长江沿岸有A,B两码头,已知客船从A到B每天航行500千米,从B到A每天航行400千米.如果客船在A,B两码头间往返航行5次共用18天,那么两码头间的距离是多少千米?解:800千米. 提示:从A到B与从B到A的速度比是5∶4,从A到B用81.请在下式中插入一个数码,使之成为等式:1×11×111= 111111解答:91*11*111=11111182.甲、乙、丙三数的和是100,甲数除以乙数与丙数除以甲数的结果都是商5余1.问:乙数是多少?解:设乙数是x,那么甲数就是5x+1丙数是5(5x+1)+1=25x+6因此x+5x+1+25x+6=10031x=93 x=3所以乙数是383.12345654321×(1+2+3+4+5+6+5+4+3+2+1)是哪个数的平方解:12345654321=111111的平方1+2+3+4+5+6+5+4+3+2+1=36=6的平方所以原式=666666的平方.84.某剧院有25排座位,后一排比前一排多2个座位,最后一排有70个座位.问:这个剧院一共有多少个座位?解:第一排有70-24*2=22个座位所以总座位数是(22+70)*25/2 =115085.某城市举行小学生数学竞赛,试卷共有20道题.评分标准是:答对一道给3分,没答的题每题给1分,答错一道扣1分.问:所有参赛学生的得分总和是奇数还是偶数?为什么?解:一定是偶数,因为每个人20道题得分都分别是奇数,20个奇数的和一定是偶数.每个人的得分都是偶数,所以无论有多少参赛学生,参赛学生的得分总和一定是偶数.86.可以分解为三个质数之积的最小的三位数是几?解:102=2*3*1787.两个质数的和是39,求这两个质数的积.解:注意到奇偶性可以知道这2个质数分别是2和37它们的乘积是2*37=7488.有1,2,3,4,5,6,7,8,9九张牌,甲、乙、丙各拿了三张.甲说:“我的三张牌的积是48.”乙说:“我的三张牌的和是15.”丙说:“我的三张牌的积是63.”问:他们各拿了哪三张牌?解:63=7*1*9 所以丙拿的1,7,948=2*3*8所以甲拿的2,3,84+5+6=15因此乙拿的是4,5,689.四个连续自然数的积是3024,求这四个数.解:考虑末尾数字,1*2*3*4末尾是46*7*8*9末尾也是4其他情况下末尾都是011*12*13*14=24024太大6*7*8*9=3024刚好所以这4个数是6,7,8,990.证明:任何一个三位数,连着写两遍得到一个六位数,这个六位数一定能被7,11,13整除.解:该数形如ABCABC=ABC*10011001=7*11*13所以这个六位数一定能被7,11,13整除.91.在1~100中,所有的只有3个约数的自然数的和是多少?解:4+9+25+49=8792.有一种电子钟,每到正点响一次铃,每过九分钟亮一次灯.如果中午12点整它既响铃又亮灯,那么下一次既响铃又亮灯是什么时间?解:[60,9]=180180/60=3下次是下午3点钟.93.有一个数除以3余2,除以4余1.问:此数除以12余几?解:除以3余2的数是2,5,8,11,14......除以4余1的数是1,5,9,......所以此数除以12余594.把16拆成若干个自然数的和,要求这些自然数的乘积尽量大,应如何拆?解:16=3+3+3+3+2+2乘积是3*3*3*3*2*2=32495.小明按1~ 3报数,小红按1~ 4报数.两人以同样的速度同时开始报数,当两人都报了100个数时,有多少次两人报的数相同?解:每12次作为一个周期1 2 3 1 2 3 1 2 3 1 2 31 2 3 4 1 2 3 4 1 2 3 4每个周期两人有3次报的数一样100=12*8+4所以两个人有8*3+3=27次报的数相同.96.某自然数加10或减10皆为平方数,求这个自然数.解:设这个数是xx+10=m^2x-10=n^2m^2-n^2=20 (m+n)(m-n)=20m=6,n=4所以x=6^2-10=2697.已知某铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒.求火车的速度和长度.解:120秒行驶的距离是桥长+车长80秒行驶的距离是桥长-车长所以80(1000+车长)=120(1000-车长)车长=200米火车的速度是10米/秒98.甲、乙二人按顺时针方向沿圆形跑道练习跑步,已知甲跑一圈要12分,乙跑一圈要15分,如果他们分别从圆形跑道直径的两端同时出发,那么出发后多少分甲追上乙?解:(1/2)/(1/12-1/15)=(1/2)/(1/60)=30分钟99.甲、乙比赛乒乓球,五局三胜.已知甲胜了第一局,并最终获胜.问:各局的胜负情况有多少种可能?解:甲甲甲甲甲乙甲甲甲乙乙甲甲乙甲甲甲乙甲乙甲甲乙乙甲甲经枚举发现共有6种可能.100.甲、乙二人 2时共可加工 54个零件,甲加工 3时的零件比乙加工4时的零件还多4个.问:甲每时加工多少个零件?解:甲乙二人一小时共可加工零件27个设甲每小时加工x个,那么乙每小时加工27-x个根据条件得3x=4(27-x)+47x=112 x=16答:甲每小时加工零件16个.。

小学五年级奥数题及答案10篇

小学五年级奥数题及答案10篇

小学五年级奥数题及答案10篇1.小学五年级奥数题及答案篇一1、学校有808个同学,分乘6辆汽车去春游,第一辆车已经接走了128人,如果其余5辆车乘的人数相同,最后一辆车乘了几个同学?【解析】学校有808个同学,第一辆车已经接走了128人,那么还剩下的人数为:808-128=680人,而剩下的这些人被平分到了5辆车上,所以最后的一辆车有680÷5=136个同学。

2、学校里组织兴趣小组,合唱队的人数是器乐队人数的3倍,舞蹈队的人数比器乐队少8人,舞蹈队有24人,合唱队有多少人?【解析】因为舞蹈队有24人,舞蹈队的人数比器乐队少8人,所以器乐队有24+8=32人;又因为合唱队的人数是器乐队人数的3倍,所以合唱队的人数是32×3=96人。

2.小学五年级奥数题及答案篇二1、同学们进行广播操比赛,全班正好排成相等的6行。

小红排在第二行,从头数,她站在第5个位置,从后数她站在第3个位置,这个班共有()人【解析】站队问题,要注意不要忽略本身。

从头数,她站在第5个位置,说明她前面有5-1=4个人,从后数她站在第3个位置,说明她后面有3-1=2人,所以这一行的人数为4+2+1=7人,所以这个班的人数为7×6=42人。

2、有一串彩珠,按“2红3绿4黄”的顺序依次排列。

第600颗是()颜色。

【解析】周期循环问题,以2+3+4=9个一循环,600÷9=66……6,余数为6,所以第600颗是黄颜色。

3.小学五年级奥数题及答案篇三甲班有42名学生,乙班有48名学生。

已知在某次数学考试中按百分制评卷,评卷结果各班的数学总成绩相同,各班的平均成绩都是整数,并且平均成绩都高于80分。

那么甲班的平均成绩比乙班高多少分?答案与解析:方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42,48]=336的倍数。

因为乙班的平均成绩高于80分,所以总成绩应高于48×80=3840分。

小学五年级奥数题及答案6篇

小学五年级奥数题及答案6篇

小学五年级奥数题及答案6篇1.小学五年级奥数题及答案一排椅子只有15个座位, 部分座位已有人就座, 乐乐来后一看, 他无论坐在哪个座位, 都将与已就座的人相邻。

问: 在乐乐之前已就座的最少有几人?将15个座位顺次编为1:15号。

如果2号位、5号位已有人就座, 那么就座1号位、3号位、4号位、6号位的人就必然与2号位或5号位的人相邻。

根据这一想法, 让2号位、5号位、8号位、11号位、14号位都有人就座, 也就是说, 预先让这5个座位有人就座, 那么乐乐无论坐在哪个座位, 必将与已就座的人相邻。

因此所求的答案为5人。

2.小学五年级奥数题及答案1.某工车间共有77个工人, 已知每天每个工人平均可加工甲种部件5个, 或者乙种部件4个, 或丙种部件3个。

但加工3个甲种部件, 一个乙种部件和9个丙种部件才恰好配成一套。

问应安排甲、乙、丙种部件工人各多少人时, 才能使生产出来的甲、乙、丙三种部件恰好都配套?解: 设加工后乙种部件有x个。

3/5X+1/4X+9/3X=77x=20甲: 0.6×20=12(人)乙: 0.25×20=5(人)丙: 3×20==60(人)2.哥哥现在的年龄是弟弟当年年龄的三倍, 哥哥当年的年龄与弟弟现在的年龄相同, 哥哥与弟弟现在的年龄和为30岁, 问哥哥、弟弟现在多少岁?解: 设哥哥现在的年龄为x岁。

x-(30-x)=(30-x)-x/3x=18弟弟30-18=12(岁)3.小学五年级奥数题及答案对任意两个不同的自然数, 将其中较大的数换成这两数之差, 称为一次变换。

如对18和42可进行这样的连续变换: 18, 42→18, 24→18, 6→12, 6→6, 6。

直到两数相同为止。

问: 对12345和54321进行这样的连续变换, 最后得到的两个相同的数是几?为什么?如果两个数的公约数是a, 那么这两个数之差与这两个数中的任何一个数的公约数也是a。

(完整版)小学五年级奥数题集锦及答案

(完整版)小学五年级奥数题集锦及答案

小学五年级奥数题集锦及答案1、甲乙两车同时从AB两地相对开出。

甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。

求AB两地相距多少千米?2、一辆客车和一辆货车分别从甲乙两地同时相向开出。

货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。

甲乙两地相距多少千米?3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。

现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。

求乙绕城一周所需要的时间?4、甲乙两人同时从A地步行走向B地,当甲走了全程的1\4时,乙离B地还有640米,当甲走余下的5\6时,乙走完全程的7\10,求AB两地距离是多少米?解:甲走完1/4后余下1-1/4=3/4那么余下的5/6是3/4×5/6=5/8此时甲一共走了1/4+5/8=7/8那么甲乙的路程比=7/8:7/10=5:4所以甲走全程的1/4时,乙走了全程的1/4×4/5=1/5那么AB距离=640/(1-1/5)=800米5、甲,乙两辆汽车同时从A,B两地相对开出,相向而行。

甲车每小时行75千米,乙车行完全程需7小时。

两车开出3小时后相距15千米,A,B两地相距多少千米?解:一种情况:此时甲乙还没有相遇乙车3小时行全程的3/7甲3小时行75×3=225千米AB距离=(225+15)/(1-3/7)=240/(4/7)=420千米一种情况:甲乙已经相遇(225-15)/(1-3/7)=210/(4/7)=367.5千米6、甲,已两人要走完这条路,甲要走30分,已要走20分,走3分后,甲发现有东西没拿,拿东西耽误3分,甲再走几分钟跟已相遇?解:甲相当于比乙晚出发3+3+3=9分钟将全部路程看作单位1那么甲的速度=1/30乙的速度=1/20甲拿完东西出发时,乙已经走了1/20×9=9/20那么甲乙合走的距离1-9/20=11/20甲乙的速度和=1/20+1/30=1/12那么再有(11/20)/(1/12)=6.6分钟相遇7、甲,乙两辆汽车从A地出发,同向而行,甲每小时走36千米,乙每小时走48千米,若甲车比乙车早出发2小时,则乙车经过多少时间才追上甲车?解:路程差=36×2=72千米速度差=48-36=12千米/小时乙车需要72/12=6小时追上甲8、甲乙两人分别从相距36千米的ab两地同时出发,相向而行,甲从a地出发至1千米时,发现有物品以往在a地,便立即返回,去了物品又立即从a地向b地行进,这样甲、乙两人恰好在a,b两地的终点处相遇,又知甲每小时比乙多走0.5千米,求甲、乙两人的速度? 解:甲在相遇时实际走了36×1/2+1×2=20千米乙走了36×1/2=18千米那么甲比乙多走20-18=2千米那么相遇时用的时间=2/0.5=4小时所以甲的速度=20/4=5千米/小时乙的速度=5-0.5=4.5千米/小时9、两列火车同时从相距400千米两地相向而行,客车每小时行60千米,货车小时行40千米,两列火车行驶几小时后,相遇有相距100千米?解:速度和=60+40=100千米/小时分两种情况,没有相遇那么需要时间=(400-100)/100=3小时已经相遇那么需要时间=(400+100)/100=5小时10、甲每小时行驶9千米,乙每小时行驶7千米。

五年级奥数题100题(附答案)

五年级奥数题100题(附答案)

五年级奥数题100题(附答案)五年级奥数题100题(附答案)1.765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002.(9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1) =9000+9000+…….+9000(500个9000) =45000003.×1998×解:(+1)×1998×=×1998×+=1998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。

6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18。

去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。

求去掉的两个数的乘积。

小学五年级奥数题30道(附答案)

小学五年级奥数题30道(附答案)

小学五年级奥数题30道(附答案)1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,求一张桌子和一把椅子的价钱分别是多少元。

设一把椅子的价钱为x元,则一张桌子的价钱为10x元。

根据题意,有10x - x = 288,解得x = 32,因此一把椅子的价钱为32元,一张桌子的价钱为320元。

2.3箱苹果重45千克,一箱梨比一箱苹果多5千克,求3箱梨的重量是多少千克。

设一箱苹果的重量为x千克,则3箱苹果的重量为3x千克。

根据题意,有3x = 45,解得x = 15,因此一箱苹果的重量为15千克,一箱梨的重量为20千克,因此3箱梨的重量为60千克。

3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快10千米,求甲、乙两人的速度分别是多少千米每小时。

设甲的速度为x千米每小时,则乙的速度为x - 10千米每小时。

根据题意,有4x = (4 + 4) * 2,解得x = 4,因此甲的速度为4千米每小时,乙的速度为(4 - 10)千米每小时,即-6千米每小时(表示向相反方向行驶)。

4.XXX和XXX同样多的钱买了同一种铅笔,XXX要了13支,XXX要了7支,XXX又给XXX0.6元钱。

求每支铅笔的价格是多少元。

设每支铅笔的价格为x元,则李军和XXX分别付出的钱数为13x元和7x元。

根据题意,有13x = 7x + 0.6,解得x = 0.1,因此每支铅笔的价格为0.1元。

5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

甲车每小时行40千米,乙车每小时行45千米,求两地相距多少千米。

设两地相距为x千米,则甲车和乙车相遇时,它们共行驶了(x/2)千米。

根据题意,甲车和乙车共用了6个小时,因此它们共行驶了2x千米。

小学五年级奥数题100题(附答案).

小学五年级奥数题100题(附答案).

五年级奥数题100题(附答案)1. 765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002. (9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1) =9000+9000+…….+9000 (500个9000)=45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。

6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18。

五年级小学生奥数题及答案大全

五年级小学生奥数题及答案大全

五年级小学生奥数题及答案大全1.五年级小学生奥数题及答案大全篇一1、火车从甲城到乙城,现已行了200千米,是剩下路程的4倍。

甲乙两城相距多少千米?2、甲港到乙港的航程有210千米,一艘轮船运货从甲港到乙港,用了6小时,返回时每小时比去时多行7千米,返回时用了几小时?3、小方从家到学校,每分钟走60米,要14分钟,如果她每分钟多走10米,需要多少分钟?参考答案:1、200+200÷4=250(千米)2、210÷(210÷6+7)=5(小时)3、60×14÷(60+10)=12(分钟)2.五年级小学生奥数题及答案大全篇二1、一个平行四边形,四条边长度相等,都是5厘米,高是3厘米求这个平行四边形面积是多少?2、一个长方形长是18厘米,宽是长的一半多2厘米,求这个长方形面积和周长分别是多少?3、一个正方形边长9厘米,把它分成四个相等大小的小正方形,请问小正方形的面积是多少?参考答案:1、5×3=15(平方厘米)2、18÷2+2=11(厘米)面积是:18×11=198(平方厘米)周长是:(18+11)×2=58(厘米)3、9×9÷4=20.25(平方厘米)3.五年级小学生奥数题及答案大全篇三1、甲乙两车同时从AB两地相对开出。

甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。

求AB两地相距多少千米?解:AB距离=(4.5×5)/(5/11)=49.5千米2、一辆客车和一辆货车分别从甲乙两地同时相向开出。

货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。

甲乙两地相距多少千米?解:客车和货车的速度之比为5:4那么相遇时的路程比=5:4相遇时货车行全程的4/9此时货车行了全程的1/4距离相遇点还有4/9-1/4=7/36那么全程=28/(7/36)=144千米4.五年级小学生奥数题及答案大全篇四1、将一个四位数的数字顺序颠倒过来,得到一个新的四位数。

五年级经典奥数题及答案50道

五年级经典奥数题及答案50道

五年级经典奥数题及答案50道1. 在数轴上,AB、BC、CD、DE都是长度为1的线段,且它们依次相接,形成的五边形面积是多少?答案:22. 在一个长方形牛肚子里,画一条分割线将牛肚子分成两个小肚子,这条分割线的长度是8,面积相等的两个小肚子面积之和是多少?答案:483. 一个完整的圆披萨可以被等分成8个部分,每个底角为45度的扇形部分面积是多少?答案:1/8 π4. 在一个正方形BILL的内部,画一个面积等于BILL面积一半的正方形,这个正方形的边长是多少?答案:1/4 BILL的边长5. 一个半圆形的花坛直径是4米,花坛的花种在圆弧边上,两个相邻花之间的圆心角大小是45度,整个花坛可以有多少朵花?答案:86. 总和为111的两个正整数互质,这两个数中比较小的一个是多少?答案:377. 在一个长方形的表面上,剪去四个面积相等、四边形形状相同的小正方形,它们的边长分别是2,3,4和6,剩下的部分的面积是多少?答案:308. 在一个三角形ABC中,点D是AB边上的中点,点E是BC边上的中点,点F是CA边上的中点,连接点DEF,这个三角形被DEF分成了几个小三角形?答案:49. 一个正方形牌子上印有四个数字,每个数字都是2,3,4,5中的一个,每个数字只能用一次,求所有可能的四个数字组合方式。

答案:2410. 在一个三角形ABC中,角A是直角,BD是角B的平分线,E是AC上的一点,且角BDE和角BAC相等,求角ABC和角ACB的大小。

答案:45度11. 算式85×21×44×11的个位数字是多少?答案:012. 在一个正方形草坪的四个角上,分别立了四个灯柱,然后把草坪抬起,折成两个三角形,进行了运输。

运输过程中,两个三角形任意一个三角形都不能被折叠成平面,这个时候灯柱的相对位置改变了吗?答案:没有改变13. 一个正六面体每个面被划分成相同的10个小正方形,该六面体中有多少个顶点?答案:814. 给出一个两位数AB,其中A和B分别代表数字百位和个位,如果翻转后得到另一个两位数BA,且AB和BA的和是198,那么AB是多少?答案:9915. 求一个三位数ABC可以整除11的充要条件是什么?答案:A-B+C是11的倍数。

小学五年级数学50道奥数题(附解析答案)

小学五年级数学50道奥数题(附解析答案)

小学五年级数学50道奥数题(附解析答案)小学五年级奥数题一、工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还需要多少小时?2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。

现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?5.师徒俩人加工同样多的零件。

当师傅完成了1/2时,徒弟完成了120个。

当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。

单份给男生栽,平均每人栽几棵?7.一个池上装有3根水管。

甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。

现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完?8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,,问鸡与兔各有几只?三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?2.A和B是小于100的两个非零的不同自然数。

五年级奥数题及答案通用13篇

五年级奥数题及答案通用13篇

五年级奥数题及答案通用13篇五年级小学生奥数题篇一1、某厂有一批煤,原计划每天烧5吨,可以烧45天。

实际每天少烧0.5吨,这批煤可以烧多少天?2、学校买来150米长的塑料绳,先剪下7.5米,做3根同样长的跳绳。

照这样计算,剩下的塑料绳还可以做多少根?3、修一条水渠,原计划每天修0.48千米,30天修完。

实际每天多修0.02千米,实际修了多少天?4、王老师看一本书,如果每天看32页,15天看完。

现在每天看40页,可以提前几天看完?5、一辆汽车4小时行驶了260千米,照这样的速度,又行了2.4小时,前后一共行驶了多少千米?(用两种方法解答)五年级小学生奥数题篇二1、快车和慢车同时从两个城市相对开出,2.5小时后相遇。

快车每小时行42千米,慢车每小时行35千米。

两个城市相距多少千米?2、甲、乙二位同学合打一份资料,甲每分打18个字,乙每分打22个字,两人用了30分打完这份资料,这份资料一共有多少个字?3、甲乙两车分别从两地同时出发,相对开来,甲车每小时行40千米,乙车每小时行50千米,3小时后两车还相距25千米,两地相距多少千米?4、两地相距628千米,甲车每小时行60千米,乙车每小时行80千米。

两车同时从两地相向而行,4小时后两车相遇了吗?两车相距多少千米?5、甲乙两人合做一批零件。

甲每小时做124个,乙每小时做136个。

他们合做了8小时,超额完成120个。

他们原来打算合做多少个零件?6、上午10时一只货船从甲港开往乙港,下午1小时一只客船从乙港开往甲港。

客船开出4小时与货船相遇。

货船每小时行18千米,客船每小时行27千米。

两港相距多远?参考答案1、(42+35)×2.5=192.5(千米)2、(18+22)×30=12003、(50+40)×3+25=295(千米)4、没相遇。

(60+80)×4=560(千米)628-560=68(千米)5、(124+136)×8-120=1960(个)6、18×3+(18+27)×4=234(千米)五年级小学生奥数题篇三1、甲、乙、丙三人赛跑,同时从A地出发向B地跑,当甲跑到终点时,乙离B还有30米,丙离B还有70米;当乙跑到终点时,丙离B还有45米。

五年级奥数题100题(附答案)

五年级奥数题100题(附答案)

五年级奥数题100题(附答案)五年级奥数题100题(附答案)1.765×213÷27+765×327÷27解:原式=765÷27×(213+327)= 765÷27×540=765×20=153002.(9999+9997+...+9001)-(1+3+ (999)解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1) =9000+9000+…….+9000(500个9000) =45000003.19981999×19991998-19981998×19991999解:(19981998+1)×19991998-19981998×19991999=19981998×19991998-19981998×19991999+19991998=19991998-19981998=100004.(873×477-198)÷(476×874+199)解:873×477-198=476×874+199因此原式=15.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1解:原式=1999×(2000-1998)+1997×(1998-1996)+…+3×(4-2)+2×1=(1999+1997+…+3+1)×2=2000000。

6.297+293+289+…+209解:(209+297)*23/2=58197.计算:解:原式=(3/2)*(4/3)*(5/4)*…*(100/99)*(1/2)*(2/3)*(3/4)*…*(98/99)=50*(1/99)=50/998.解:原式=(1*2*3)/(2*3*4)=1/49.有7个数,它们的平均数是18。

五年级奥数题100道及答案

五年级奥数题100道及答案

五年级奥数题100道及答案1. 小明有5个苹果,他给小华2个,自己还剩下多少个苹果?答案:小明还剩下3个苹果。

2. 一个班级有40名学生,如果每2名学生组成一个小组,可以组成多少个小组?答案:可以组成20个小组。

3. 一个数的3倍是45,这个数是多少?答案:这个数是15。

4. 一个长方形的长是15厘米,宽是10厘米,它的周长是多少?答案:周长是50厘米。

5. 一个数加上12等于36,这个数是多少?答案:这个数是24。

6. 如果一个数的一半是18,那么这个数是多少?答案:这个数是36。

7. 一个数的4倍是64,这个数是多少?答案:这个数是16。

8. 一个正方形的边长是8厘米,它的面积是多少?答案:面积是64平方厘米。

9. 一个数的5倍是100,这个数是多少?答案:这个数是20。

10. 一个班级有50名学生,如果每5名学生组成一个小组,可以组成多少个小组?答案:可以组成10个小组。

11. 一个数的6倍是72,这个数是多少?答案:这个数是12。

12. 一个数减去15得到30,这个数是多少?答案:这个数是45。

13. 一个数的7倍是49,这个数是多少?答案:这个数是7。

14. 一个数的8倍是64,这个数是多少?答案:这个数是8。

15. 一个数的9倍是81,这个数是多少?答案:这个数是9。

16. 一个数的10倍是100,这个数是多少?答案:这个数是10。

17. 一个数的11倍是121,这个数是多少?答案:这个数是11。

18. 一个数的12倍是144,这个数是多少?答案:这个数是12。

19. 一个数的13倍是169,这个数是多少?答案:这个数是13。

20. 一个数的14倍是196,这个数是多少?答案:这个数是14。

21. 一个数的15倍是225,这个数是多少?答案:这个数是15。

22. 一个数的16倍是256,这个数是多少?答案:这个数是16。

23. 一个数的17倍是289,这个数是多少?答案:这个数是17。

(完整版)五年级奥数题集锦答案

(完整版)五年级奥数题集锦答案

五年级奥数题集锦1、甲乙两数的和是32,甲数的3倍与乙数的5倍的和是122,求甲、乙二数各是多少?解:设甲数为X,乙数为(32 —X).3X+ (32—X) X5=1223X+ 160 — 5X=1222X=38X=1932 - X=32 — 19=13答:甲数是19,乙数是13.2、弟弟有钱17元,哥哥有钱25元,哥哥给弟弟多少元后,弟弟的钱是哥哥的2倍?解:设哥哥给弟弟X元后,弟弟的钱是哥哥的2倍.(25—X) X2=17+X50 —2X=17 +X3X=33X=11答:哥哥给弟弟11元后,弟弟的钱是哥哥的2倍.3、有两根绳子,长的比短的长1倍,现在把每根绳子都剪掉6分米,那么长的一根就比短的一根长两倍. 问:这两根绳子原来的长各是多少?1+ 1=21 + 2=3解:设原来短绳长X分米,长绳长2X分米.(X —6) X3=2X —63X- 18=2X -6X=122X=2X 12=24答:原来短绳长12分米,长绳长24分米.4、有大、中、小三筐苹果,小筐装的是中筐的一半,中筐比大筐少装16千克,大筐装的是小筐的4倍, 大、中、小筐共有苹果多少千克.解:设小筐装苹果X千克.4X=2X + 162X=16X=88X2=16 (千克)8X4=32 (千克)答:小筐装苹果8千克,中筐装苹果16千克,大筐装苹果32千克.5、30枚硬币,由2分和5分组成,共值9角9分,两种硬币各多少枚?9角9分=99分解:设2分硬币有X枚,5分硬币有(30 —X)枚.2X+5X (30 —X) =992X+ 150 - 5X=993X=51X=1730 - X=30 - 17=136、搬运100只玻璃瓶,规定搬一只得搬运费3分,但打碎一只不但不得搬运费,而且要赔5分,运完后共得运费2.60元,搬运中打碎了几只?2.60 元=260 分解:设搬运中打碎了X只.3X (100 —X) — 5X=260300 -3X- 5X=2608X=40X=5答:搬运中打碎了5只.7、参加校学生运动会团体操表演的运发动排成一个正方形队列,如果要使这个正方形队列减少一行和一列,那么要减少33人,参加表演的运发动有多少人?解:设团体操原来每行X人.2X —1=332X=34X=1717X17=289 (人)答:参加团体操表演的运发动有289人.8、京华小学五年级的学生采集标本,采集昆虫标本的有25人,采集植物标本的有19人,两种标本都采集的有8人,全班学生共有40人,没有采集标本的有多少人?解:设没有采集标本的有X人.25 + 19—8 + X=4036 + X=40X=4答:没有采集标本的有4人.9、一个四位数,最高位上是7,如果把这个数字调动到最后一位,其余的数字依次迁移,那么这个数要减少864 ,求这四位数.解:设四位数的末三位为X.7000 +X=10X + 7 + 8649X=6129X=6817000 +681=7681答:这四位数是7681.10、一辆汽车从甲地出发到300千米外的乙地去,在一开始的120千米内平均速度为每小时40千米,要想使这辆汽车从甲地到乙地的平均速度为每小时50千米,剩下的路程应以什么速度行驶?300+50=6 〔小时〕120+40=3 〔小时〕解:设剩下的路程每小时行X千米.120 + 〔6 — 3〕 X=300120 +3X=3003X=180X=60答:剩下的路程每小时行60千米.11、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加.那么有多少人两个小组都不参加?答案:由于10人2组都参加,所以只参加数学的5人,只参加航模的8人,加上那10人就是23人,40-23=17, 2个小组都不参加的17人12、某班45个学生参加期末测试,成绩公布后,数学得总分值的有10人,数学及语文成绩均得总分值的有3人,这两科都没有得总分值的有29人.那么语文成绩得总分值的有多少人?答案:同理,数学总分值10人,2科都总分值的3人,于是只是数学总分值的7人,45-7-29=9,这个就是语文总分值的人〔如果说只是语文总分值的那么需要减去3〕13、50名同学面向老师站成一行.老师先让大家从左至右按1, 2, 3,……,49, 50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转.问:现在面向老师的同学还有多少名?答案:50%取整12, 50-6取整8,但是要注意,报4倍数的同时可能是6的倍数,所以还要算出 4 和6的公倍数,有50+12 〔4和6的最小公倍数〕=4 〔取整〕,所以,应该是50-12-8+4=3414、在游艺会上,有100名同学抽到了标签分别为1至100的奖券.按奖券标签号发放奖品的规那么如下:〔1〕标签号为2的倍数,奖2支铅笔;〔2〕标签号为3的倍数,奖3支铅笔;〔3〕标签号既是2的倍数, 又是3的倍数可重复领奖;〔4〕其他标签号均奖1支铅笔.那么游艺会为该项活动准备的奖品铅笔共有多少支?答案:100e=50, 100 3=33 〔取整〕,还是算出2和3的公倍数100 6=16〔取整〕,然后找出即没不被2整除,也不被3整除的数的个数100-50-33+16=28,所以,准备铅笔为50X2+33X3+28=22715、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断.问绳子共被剪成了多少段?答案:180与=60, 180F=45,但是可能2个划线划在一起,也就是要算出他们的公倍数, 180与X=15,所以应该为60+45-15=90被除数与除数的和是222,如果被除数与除数都加上6,被除数是除数的8倍求原来的被除数和除数是多少?解:设原来除数是X-6.〔X-6〕 + 〔8X-6〕 =222X=2626-6=20 26 >8=208 208-6=202答:原来的被除数是202,除数是20.16 .买一本日记本和一本笔记本需付10.4元,买两本日记本和一本笔记本需付16元,日记本和笔记本各多少元?16-10.4=5.6 (元) 10.4-5.6=4.8 (元)答:日记本5.6元,笔记本4.8元.17 .果园里共种梨树、橘树、桃树、苹果树255棵.橘树比桃树多种3棵,苹果树是桃树的2倍,梨树比桃树的2倍少18棵.橘树、桃树、苹果树和梨树各有多少棵?解:设桃树有X棵?(3+X) +2X+ (2X-18)+X=255X=4545+3=48 (棵) 45X2=90 (棵) 45X2-18=72 (棵)答:橘树有48棵,桃树有45棵,苹果树有90棵,梨树有72棵.18、三个连续自然数的乘积是210,求这三个数.整除问题答案:・••210=2X3X5X 7,可知这三个数是5、6和7.19、计算:2021X 2021-2021 X 2021+2021 X 2007-2007 X 2006+…+2 X 1解答:原式=2021 X (2021-2021)+2007 X (2021-2006)+…+3 X (4-2)+2 X 1=(2021+2007+ • • •+3+1) X 2=1010025X 2=202105020、一个大于10的数,除以5余3,除以7余1,除以9余8,问满足条件的最小自然数为.根据总结,我们发现三个数中两个数的除数与余数的和都是5+3=7+1=8,这样我们可以把余数都处理成8,所以[5, 7, 9]=315,所以这个数最小为315+8=323.21、如图1,有三个正方形ABCD,BEFG 和CHIJ,其中正方形ABCD的边长是10,正方形BEFG的边长是6,那么三角形DFI的面积是.解:答案20 连接IC,由正方形的对角线易知IC//DF ;等积变换得到:三角形DFI的面积==角形DFC的面积=2022、(小学数学奥林匹克通讯赛决赛试题)梯形ABCD被两条对角线分成了四个三角形S1、S2、S3、S4.S1=2cm2, S2=6cm2.求梯形ABCD的面积.解析:三角形S1和S2都是等高三角形,它们的面积比为 2 : 6=1 : 3;那么:DO : OB=1 : 3. AADB和△ ADC是同底等高三角形,所以, S1=S3=2厘米2. 三角形S4 和S3也是等高三角形,其底边之比为 1 : 3,所以S4: S3=1 : 3,那么S4=2/3厘米2 所以,梯形ABCD 的面积为32/3.23、如图,梯形ABCD中上底为2,下底为3,三角形ADO的面积为12,那么梯形ABCD的面积为多少?三角形ADO的面积为12,那么么梯形ABCD的面积为12+6X25=5024、右图是一块长方形耕地,它由四个小长方形拼合而成,其中三个小长方形的面积分别为15、18、30公顷,问图中阴影局部的面积是多少?解:设定阴影局部面积为X,那么不难由长方形面积公式看出比例关系为:X/30=15/18 ,那么X=25.25、一个三位小数四舍五入后是 5.70,那么原来这个三位小数最大是几?最小是几?解答:这个三位小数最大是 5.704,最小是5.695.这是由于:根据四舍五入的原那么,如果大于 5.704,四舍五入后得到的数将大于 5.70,例如5.705,四舍五入后是 5.71.如果小于5.795,四舍五入后得到的数将小于5.70,例如5.694,四舍五入后是5.69.26、3+7的商是一个循环小数,第1995个数字是几?解答:3 + 7 = 0.428571……,观察左式这个商,是一个由六个数字组成的循环小数. 1995+6=332……3,这说明1995个数字中有:332个“428571〞还余3个数字,可见第1995个数字是8.27、有6堆桃,把第一堆平均分给8个人,还余5个;把第二堆平均分给8个人,还剩4个;把第三堆平均分给8个人,还余3个;把第四堆平均分给8个人,还余7个;把第五堆平均分给8个人,还余1个;第六堆与第二堆的个数一样多;如果把六堆桃子放在一起,平均分给8个人,能不能正好分完?为什么?解答:第六堆与第二堆的桃子个数一样多,说明把第六堆平均分给8个人,也余4个.由于一堆一堆分完后,余下的桃加起来正好是8的倍数,即(5+ 4+3+7+ 1+4) +8=3所以把六堆放在一起分,正好分完.28、为了迎接建国45周年,某街道从东往西根据五面红旗、三面黄旗、四面绿旗、两面粉旗的规律排列,共悬挂1995面彩旗,你能算出从西往东数第100面彩旗是什么颜色的吗?解答:从西往东倒数第100面彩旗,是从东往西正数第几面彩旗呢?这是正确解答此题的关键. 从西往东倒数第100面彩旗相当于从东往西正数第1896面彩旗,由于1995 —100+ 1=1896按“五红、三黄、四绿、两粉〞的规律排列,即每14面彩旗又重复出现.1896+ (5+3+4+2) =135……6余数为6,所以正数第1896面彩旗为黄色. 29、把100块玻璃由甲地运往乙地.按规定,把一块玻璃平安运到,得花运费3元.如果运输途中打碎一块玻璃,那么要赔偿5元.在结算时共得运输费260元,问在运输中打碎了几块玻璃?解答:假设100块玻璃全部运到,应得运费300元,而实际只得260元即少得40元.这说明打碎了玻璃,不但不给运费,还要倒扣赔偿.每打碎一块玻璃,要少得3+5=8 (元).共少得40元,40元中有几个8元就是打碎了几块玻璃.(3X 100-260) + ( 3+5) =40 + 8=5 (块)30、安华里菜站运来84斤黄瓜、105斤西红柿、126斤茄子,售货员把这些菜一份一份地称好了,正好称完,每份的黄瓜、西红柿、茄子都一样多.售货员很快把这些菜卖完了.经理问售货员,这些菜卖给了多少人?每人至少能买多少斤?他一时说不出来,请你帮助算一算.解答:根据题中条件可以看出,买菜人数一定是84、105、126的公约数,又要求每人买的斤数最少,所以买菜人数一定是84、105、126的最大公约数.〔84, 105, 126〕 =21 一共卖给了21人,每人买4斤黄瓜、5斤西红柿、6斤茄子,共买菜:4+5+6=15 〔斤〕31、一个筐里有6个苹果、5个桃、7个梨.〔1〕小华从筐里任取一个水果,有多少种不同的取法?〔2〕小华从这三种水果各取一个,有多少种不同的取法?解答:〔1〕只取苹果,有6种取法;只取桃,有5种取法;只取梨,有7种取法.根据加法原理,一共有6+5+7= 18种不同取法.〔2〕分三步进行,第一步取一个苹果,有6种取法;第二步取一个桃,有5 种取法;第三步取一个梨,有7种取法.根据乘法原理,要取三种不同类的水果,共有6X5X7=210种不同取法.32、在20〜100中所有3的倍数的和是奇数还是偶数?解答:从20〜100中,所有3的倍数按从小到大的顺序排列是:21、24、27、30、33、36、39、 (93)96、99其中奇数为:21、27、33、39、……、93、99这些奇数的个数为:〔99—21〕 +6+1 = 13+1 = 14 这就是说,在20〜100中,所有3的倍数之和是由14个奇数和假设干个偶数相加而得到的. 14个奇数的和为偶数,假设干个偶数的和也为偶数,偶数加偶数仍为偶数.所以,从20〜100中,所有3的倍数的和为偶数.33、筐中有72个苹果,将它们全部取出来,分成偶数堆,使得每堆中苹果的个数相同.一共有多少种分法?解答:72的约数有:1、2、3、4、6、12、18、24、36、72在这些约数中一共有8个偶约数,即可分为:2堆、4堆、6堆、12堆、18堆、24堆、36堆和72堆,一共有8种分法.34、写出所有分母是两位数,分子是1,而且能够化成有限小数的分数.解答:当一个最简分数的分母只含2和5质因数时,这个分数就能化成有限小数.所以,当分母是16、32、64、25、10、20、40、80、50时,这样的分数都能化成有限小数.111111111所要求的分数为工16' 32 ' 64 ' 25 ' 10' 20 ' 40 ' 80' 5035、在一道减法算式中,被减数加减数再加差的和是674,又知减数比差的3倍多17,求减数.解答:根据题中条件,被减数+减数+差= 674.可以推出:减数+差=674+ 2=337 〔由于被减数=减数十差〕.又知,减数比差的3倍多17,就是说,减数=差* 3+17,将其代入:减数+差= 337,得出:差X 3+17+ 差=337 差X 4= 320 差=80 于是,减数=80X 3+17=25736、有一个长方体,正面和上面两个面积的和为209平方厘米,并且长、宽、高都是质数.求它的体积.解答:设长方体的长、宽、高为a、b、c.根据题意:ax b + aXc= 209 ax 〔b + c〕 = 209= 11X 19 11 不能分成两个质数的和, 而19可分成17与2的和.因此,长方体体积为:aXbXc= 11 X 17X 2= 374 〔立方厘米〕37、7位老朋友相约在公园聚会,想照一张照片留念.如果他们站成一排,共有多少种站法?解答:可以这样考虑:最左边的位置7个人都可以站,有7种站法;当这个人确定后,第二个位置就有6种站法;再确定之后,第三个位置就有5种站法;再确定之后,第四个位置就有4种站法;依此类推,到最后一个位置就只有一种站法了.因此, 7个人站队,一共有:7X6X5X4X 3X2X 1 =5040种不同站法38、A、B两站相距28千米,甲车每小时行33千米,乙车每小时行37千米.甲、乙两车分别从A、B两站同时相对开出,往返于两站之间,那么,当两车第三次相遇时〔迎头相遇〕,甲车行了多少千米?解答:要想求出“两车第三次相遇时,甲车行了多少千米?〞就应先求出两车第三次相遇时,甲车行了多长时间.为此,可先求出第三次相遇时两车共同走的路程.第一次相遇两车走了一个全程.第二次相遇两车走了三个全程.第三次相遇两车走了五个全程.这时两车相遇时间为:28X5+ 〔33+37〕 =2 〔小时〕第三次相遇时,甲车行了:33X2=66 〔千米〕39、五〔1〕班有45人,其中有20人参加了球类运动,10人参加了田径运动,只有3人既参加了球类运动又参加了田径运动,那么没有参加这两种运动的有多少人?解答:请看下列图.长方形表示全班人数.影阴局部表示两种运动都未参加的人数.图22由图中不难看出,只参加球类运动的有:20-3=17 〔人〕只参加田径运动的有:10-3=7 〔人〕那么两种运动都没有参加的有:45- 〔17+7+3〕 =18 〔人〕40、牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?答案:设1头牛1天的吃草量为1.头牛吃如天共吃了1.二0 =既0份]15头牛吃10天共吃了1"」0 = L5.份.第一种出去比第二种吃法多吃了200-150 = 50份草, 这50份草是牧场的草二口 - 三1.天生长处来的下斤以每天生长的草量为对-10 = 5 , 那么原有草量为二ZOTUIM.供汨头牛吃』假设有6头牛去吃每天生长的草,剩下20头牛需要1QQ -加=5法〕可将原有牧草吃完」即可供25头牛吃5天.41、一个各条边分别为5厘米、12厘米、13厘米的直角三角形,将它的短直角边对折到斜边上去与斜边相重合,如下图.问:图中的阴影局部〔即折叠的局部〕的面积是多少平方厘米?答案:【分析】设CD - x1吊' 13* =■ 1 2 - X:15 •解得工三二,所以£.口正三二工二工;三—,平万厘米* r 二& r r 1。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学五年级奥数题集锦及答案Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】7-2-2=3小时那么乙独做完成1-1/4×2-1/6×2=1-1/2-1/3=1/6乙的工作效率=(1/6)/3=1/18甲的工作效率=1/4-1/18=7/36丙的工作效率=1/6-1/18=1/9甲单独完成需要1/(7/36)=36/7天=5又1/7天乙单独完成需要1/(1/18)=18天丙单独完成需要1/(1/9)=9天22、一项工程,甲队单独完成需12天,乙队单独完成需18天,现要求在10天内完成,则甲乙两队至少合作多少天解:此题考虑至少一个队工作10天,另一个队作为补充假如甲工作10天,完成1/12×10=5/6那么乙需要帮助(1-5/6)/(1/18)=(1/6)/(1/18)=3天假如乙工作10天,完成1/18×10=5/9甲需要帮助(1-5/9)/(1/12)=(4/9)/(1/12)=48/9天=5又1/3天由此,很明显甲乙至少合作3天就可以了。

23、某市日产垃圾700吨,甲乙合作要7小时,两厂合作小时后,乙厂单独处理要10小时,已知甲每小时550元,乙每小时495元,要求费用不得超过7370元,那么甲至少处理多少小时?解:甲乙的工作效率和=1/7甲乙合作小时完成1/7×5/2=5/14乙的工作效率=(1-5/14)/10=9/140甲的工作效率=1/7-9/140=11/140设甲至少处理a小时那么甲完成a×11/140=11a/140还剩下1-11a/140需要乙完成则乙工作的时间=(1-11a/140)/(9/140)=(140-11a)/9小时根据题意550a+495×(140-11a)/9≤73704950a+69300-5445a≤66330495a≥2970a≥6甲至少要工作6小时24、正在修建中的高速公路要招标,现有甲、乙两个工程队,若甲、乙两队合作,24天可以完成;需费用120万元;若甲单独做20天后,剩下的工程由乙做,还需40天才能完成,这样需费用110万元。

问:(1)甲、乙两队单独完成此项工程各需多少天?(2)甲、乙两队单独完成此项工程,各需费用多少万元?解:甲乙的工作效率和=1/2420天完成1/24×20=5/6乙的工作效率=(1-5/6)/(40-20)=1/120乙单独完成需要1/(1/20)=120天甲的工作效率=1/24-1/120=1/30甲单独完成需要1/(1/30)=30天(2)甲乙工作一天需要费用120/24=5万元合作20天需要5×20=100万元乙单独工作20天需要110-100=10万元乙工作一天需要10/20=万元那么甲工作一天需要=万元甲单独完成需要×30=135万元乙单独完成需要×120=60万元25、生产一批零件,甲每小时可做18个,乙单独做要12小时成。

现在由甲乙二人合做,完成任务时,甲乙生产的数量之比是3:5,甲一共生产零件多少个?解:乙的工作效率=1/12完成任务时乙工作了(5/8)/(1/12)=15/2小时那么甲一共生产18×15/2=135个26、一项工程,甲独做10天完成,乙独做20完成,现在甲乙合作,甲休息一天,乙休息5天,完成这项工程要多少天?解:甲休息1天,乙休息5天,相当于甲乙休息1天后,乙又休息4天那么甲4天完成4/10=2/5甲乙的工作效率和=1/10+1/20=3/20那么剩下的需要(1-2/5)/(3/20)=(3/5)/(3/20)=4天完成全部工程需要4+5=9天27、一条长1200M的小巷进行路面修理,计划由甲乙共同完成,若甲、乙合做24天可完成,若甲乙合做16天后,剩下由乙独做20天完成,求甲乙每天修路多少M若每天用70元,乙每天用40元,要使工程费用不超过2500元,问:甲队至多施工几天?解:甲乙的工作效率和=1/2416天完成1/24×16=2/3那么乙的工作效率=(1-2/3)/20=1/60甲的工作效率=1/24-1/60=1/40甲单独完成需要1/(1/40)=40天乙单独完成需要1/(1/60)=60天甲每天修1200/40=30米乙每天修1200/60=20米设甲至多施工a天那么乙工作(1200-30a)/20=60-3a/2天70a+(60-3a/2)×40≤250070a+2400-60a≤250010a≤100a≤10天甲至多工作10天问题1 如果一个四位数与一个三位数的和是1999,并且四位数和三位数是由7个不同的数字组成的。

那么,这样的四位数最多能有多少个这是北京市小学生第十五届《迎春杯》数学竞赛决赛试卷的第三大题的第4小题,也是选手们丢分最多的一道题。

得到a=1,b+e=9,(e≠0),c+f=9,d+g=9。

为了计算这样的四位数最多有多少个,由题设条件a,b,c,d,e,f,g互不相同,可知,数字b有7种选法(b≠1,8,9),c有6种选法(c≠1,8,b,e),d有4种选法(d≠1,8,b,e,c,f)。

于是,依乘法原理,这样的四位数最多能有(7×6×4=)168个。

在解答完问题1以后,如果再进一步思考,不难使我们联想到下面一个问题。

问题2 有四张卡片,正反面各写有1个数字。

第一张上写的是0和1,其他三张上分别写有2和3,4和5,7和8。

现在任意取出其中的三张卡片,放成一排,那么一共可以组成多少个不同的三位数此题为北京市小学生第十四届《迎春杯》数学竞赛初赛试题。

其解为:后,十位数字b可取其他三张卡片的六种数字;最后个位数c可取剩余两张卡片的四种数字。

综上所述,一共可以组成不同的三位数共(7×6×4=)168个。

如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,原来两仓库各存货物多少吨67×(2+1)-17×(5+1)=201-102=99(吨)99÷〔(5+1)-(2+1)〕=99÷3=33(吨)答:原来的乙有33吨。

(33+67)×2+67=200+67=267(吨)答:原来的甲有267吨。

分析:1、如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;甲和乙总的数量没有变,总的数量包括2+1=3个现在的乙,现在的乙是原来的乙加上67得来。

所以总的数量就包括3个原来的乙和3个67〔67×(2+1)=201〕。

2、如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,理由同上,总的数量包括5+1=6个原来的乙和6个17(即17×(5+1)=102)3、从1和2可看出,原来3个乙和原来6个乙只相差3个乙,而这三个乙正好相差201-102=99吨。

可求出原来的乙是多少,99÷3=33吨。

4、再求原来的甲即可。

甲每小时行12千米,乙每小时行8千米.某日甲从东村到西村,乙同时从西村到东村,以知乙到东村时,甲已先到西村5小时.求东西两村的距离甲乙的路程是一样的,时间甲少5小时,设甲用t小时可以得到1. 12t=8(t+5)t=10所以距离=120千米小明和小芳围绕着一个池塘跑步,两人从同一点出发,同向而行。

小明:280米/分;小芳:220/分。

8分后,小明追上小芳。

这个池塘的一周有多少米280*8-220*8=480这时候如果小明是第一次追上的话就是这样多这时候小明多跑一圈...1.用3.5.7.0组成一个两位数,( )乘( )的积最大.( )乘( )的积最小.2.有一些积木的块数比50多,比70少,每7个一堆,多了一块,每9个一堆,还是多1块,这些积木有多少块盆花要摆成4排,每排3盆,应该怎样摆(1)班有4个人参加4X50米接力赛,问有多少种不同的安排方法5.能否从右图中选出5个数,使它们的和为60为什么 15 25 3525 15 55 25 45饿连续偶数的和是240,这5个偶数分别是多少7.某人从甲地到乙地,先骑12小时摩托车,再骑9小时自行车正好到达.返回时,先骑21小时自行车,再骑8小时摩托车也正好到达.从甲地到乙地如果全骑摩托车需要多少时间1 70*53最大 30*75最小2 64块3 五角星形4 4*3*2*1=245不能,因为都是奇数,奇数个奇数相加不可能得偶数5=48,则其余偶数是:48-2=46,48-4=44,48+2=50,48+4=527.摩托车的速度是xkm/h,自行车速是ykm/h 。

21y+8x=12x+9y4x=12yx=3y所以摩托车共需12+9/3=15小时数出图中含有"*"号的长方形个数(含一个或二个都可以)* * *第1题儿子算出来是8+16+8=32个,答案却是30个.第2题儿子算出来是(12+24+24+12)*2,然后减去2*重复的,9+18+9=36,答案说应该减去48个,为什么呢一、填空题1.有两列火车,一列长102米,每秒行20米;一列长120米,每秒行17米.两车同向而行,从第一列车追及第二列车到两车离开需要几秒2.某人步行的速度为每秒2米.一列火车从后面开来,超过他用了10秒.已知火车长90米.求火车的速度.3.现有两列火车同时同方向齐头行进,行12秒后快车超过慢车.快车每秒行18米,慢车每秒行10米.如果这两列火车车尾相齐同时同方向行进,则9秒后快车超过慢车,求两列火车的车身长.4.一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒.这列火车的速度和车身长各是多少5.小英和小敏为了测量飞驶而过的火车速度和车身长,他们拿了两块跑表.小英用一块表记下了火车从她面前通过所花的时间是15秒;小敏用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是20秒.已知两电线杆之间的距离是100米.你能帮助小英和小敏算出火车的全长和时速吗6.一列火车通过530米的桥需要40秒,以同样的速度穿过380米的山洞需要30秒.求这列火车的速度与车身长各是多少米.7.两人沿着铁路线边的小道,从两地出发,以相同的速度相对而行.一列火车开来,全列车从甲身边开过用了10秒.3分后,乙遇到火车,全列火车从乙身边开过只用了9秒.火车离开乙多少时间后两人相遇8. 两列火车,一列长120米,每秒行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾离开需要几秒钟9.某人步行的速度为每秒钟2米.一列火车从后面开来,越过他用了10秒钟.已知火车的长为90米,求列车的速度.10.甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇二、解答题11.快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向并行,当快车车尾接慢车车尾时,求快车穿过慢车的时间12.快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向并行,当两车车头齐时,快车几秒可越过慢车13.一人以每分钟120米的速度沿铁路边跑步.一列长288米的火车从对面开来,从他身边通过用了8秒钟,求列车的速度.14.一列火车长600米,它以每秒10米的速度穿过长200米的隧道,从车头进入隧道到车尾离开隧道共需多少时间一、填空题120米102米17x米20x米尾尾头头1. 这题是“两列车”的追及问题.在这里,“追及”就是第一列车的车头追及第二列车的车尾,“离开”就是第一列车的车尾离开第二列车的车头.画线段图如下:设从第一列车追及第二列车到两列车离开需要x秒,列方程得:102+120+17 x =20 xx =74.2. 画段图如下:头90米尾10x设列车的速度是每秒x米,列方程得10 x =90+2×10x =11.头尾快车头尾慢车头尾快车头慢车3. (1)车头相齐,同时同方向行进,画线段图如下: \则快车长:18×12-10×12=96(米)(2)车尾相齐,同时同方向行进,画线段图如下:头尾快车头尾慢车头尾快车头尾则慢车长:18×9-10×9=72(米)4. (1)火车的速度是:(440-310)÷(40-30)=13(米/秒)(2)车身长是:13×30-310=80(米)5. (1)火车的时速是:100÷(20-15)×60×60=72000(米/小时)(2)车身长是:20×15=300(米)6. 设火车车身长x米,车身长y米.根据题意,得①②解得7. 设火车车身长x米,甲、乙两人每秒各走y米,火车每秒行z米.根据题意,列方程组,得①②①-②,得:火车离开乙后两人相遇时间为:(秒) (分).8. 解:从车头相遇到车尾离开,两车所行距离之和恰为两列车长之和,故用相遇问题得所求时间为:(120+60)(15+20)=8(秒).9. 这样想:列车越过人时,它们的路程差就是列车长.将路程差(90米)除以越过所用时间(10秒)就得到列车与人的速度差.这速度差加上人的步行速度就是列车的速度.90÷10+2=9+2=11(米)答:列车的速度是每秒种11米.10. 要求过几分钟甲、乙二人相遇,就必须求出甲、乙二人这时的距离与他们速度的关系,而与此相关联的是火车的运动,只有通过火车的运动才能求出甲、乙二人的距离.火车的运行时间是已知的,因此必须求出其速度,至少应求出它和甲、乙二人的速度的比例关系.由于本问题较难,故分步详解如下:①求出火车速度与甲、乙二人速度的关系,设火车车长为l,则:(i)火车开过甲身边用8秒钟,这个过程为追及问题:故 ; (1)(i i)火车开过乙身边用7秒钟,这个过程为相遇问题:故 . (2)由(1)、(2)可得: ,所以, .②火车头遇到甲处与火车遇到乙处之间的距离是:③求火车头遇到乙时甲、乙二人之间的距离.火车头遇甲后,又经过(8+5×60)秒后,火车头才遇乙,所以,火车头遇到乙时,甲、乙二人之间的距离为:④求甲、乙二人过几分钟相遇(秒) (分钟)答:再过分钟甲乙二人相遇.二、解答题11. 1034÷(20-18)=91(秒)12. 182÷(20-18)=91(秒)13. 288÷8-120÷60=36-2=34(米/秒)答:列车的速度是每秒34米.\14. (600+200)÷10=80(秒)答:从车头进入隧道到车尾离开隧道共需80秒.平均数问题1. 蔡琛在期末考试中,政治、语文、数学、英语、生物五科的平均分是 89分.政治、数学两科的平均分是分.语文、英语两科的平均分是84分.政治、英语两科的平均分是86分,而且英语比语文多10分.问蔡琛这次考试的各科成绩应是多少分2. 甲乙两块棉田,平均亩产籽棉185斤.甲棉田有5亩,平均亩产籽棉203斤;乙棉田平均亩产籽棉170斤,乙棉田有多少亩3. 已知八个连续奇数的和是144,求这八个连续奇数。

相关文档
最新文档