三极管放大、开关、判断管脚的原理

合集下载

三极管工作原理图

三极管工作原理图

三极管工作原理图一、引言三极管是一种重要的电子元件,广泛应用于各种电子设备中。

本文将详细介绍三极管的工作原理图及其相关知识。

二、三极管的基本结构三极管由三个掺杂不同的半导体材料构成,分别是发射极(Emitter)、基极(Base)和集电极(Collector)。

发射极和集电极之间存在一个PN结,基极和发射极之间也存在一个PN结。

三极管的工作原理图如下所示:(图1:三极管工作原理图)三、三极管的工作原理1. 放大作用:当基极-发射极之间的电压(Vbe)大于0.7V时,PN结会被正向偏置,此时三极管进入放大区。

在这种情况下,发射极-集电极之间的电压(Vce)大于0.2V,三极管处于饱和状态。

此时,小信号输入到基极,经过放大作用后输出到集电极,实现信号的放大。

2. 开关作用:当基极-发射极之间的电压(Vbe)小于0.7V时,PN结处于截止状态,三极管处于关闭状态。

此时,发射极-集电极之间的电压(Vce)可以取任意值。

当Vce大于0.2V时,三极管处于饱和状态,相当于开关闭合;当Vce小于0.2V时,三极管处于截止状态,相当于开关断开。

三极管的放大作用和开关作用使其在各种电子设备中得到广泛应用。

四、三极管的参数1. 最大耗散功率(PD):表示三极管能够承受的最大功率,通常以瓦特(W)为单位。

2. 最大集电极电流(ICmax):表示三极管能够承受的最大集电极电流,通常以安培(A)为单位。

3. 最大集电极-发射极电压(VCEmax):表示三极管能够承受的最大集电极-发射极电压,通常以伏特(V)为单位。

4. 最大基极-发射极电压(VBEmax):表示三极管能够承受的最大基极-发射极电压,通常以伏特(V)为单位。

五、三极管的应用1. 放大器:三极管可以将输入信号放大,并输出到负载电路中,常用于音频放大器、射频放大器等电子设备中。

2. 开关:三极管可以实现开关功能,常用于电源开关、机电驱动等场合。

3. 振荡器:三极管可以作为振荡器的关键元件,用于产生高频信号。

三极管的放大原理

三极管的放大原理

三极管的放大原理三极管是一种常用的电子器件,它具有放大信号的功能,被广泛应用于各种电子设备中。

三极管的放大原理是指在输入信号的作用下,通过三极管的放大作用,输出信号得到放大。

三极管的放大原理是通过控制输入信号对输出信号的影响来实现的,下面将详细介绍三极管的放大原理。

首先,三极管的放大原理是基于三极管的特性来实现的。

三极管由发射极、基极和集电极组成,通过控制基极电流来实现对输出信号的放大。

当输入信号作用在基极上时,基极电流发生变化,进而影响了集电极电流,从而实现了对输出信号的放大。

这种放大原理是通过控制输入信号对输出信号的影响来实现的。

其次,三极管的放大原理是基于放大器的工作原理来实现的。

三极管作为一种放大器,其放大原理是通过控制输入信号对输出信号的影响来实现的。

当输入信号作用在三极管上时,三极管的放大器工作原理使得输入信号对输出信号产生放大作用,从而实现了对输出信号的放大。

这种放大原理是通过放大器的工作原理来实现的。

最后,三极管的放大原理是基于控制电流的原理来实现的。

三极管通过控制基极电流来实现对输出信号的放大,这是通过控制电流的原理来实现的。

当输入信号作用在基极上时,基极电流发生变化,进而影响了集电极电流,从而实现了对输出信号的放大。

这种放大原理是基于控制电流的原理来实现的。

综上所述,三极管的放大原理是通过控制输入信号对输出信号的影响来实现的,基于三极管的特性、放大器的工作原理和控制电流的原理。

三极管的放大原理是实现电子设备中信号放大的重要原理,对于理解和应用三极管具有重要意义。

希望本文的介绍能够帮助读者更好地理解三极管的放大原理。

如何正确理解三极管的放大区、饱和区、截止区

如何正确理解三极管的放大区、饱和区、截止区

如何正确理解三极管的放⼤区、饱和区、截⽌区转发:三极管的⼯作原理对三极管放⼤作⽤的理解,切记⼀点:能量不会⽆缘⽆故的产⽣,所以,三极管⼀定不会产⽣能量。

但三极管厉害的地⽅在于:它可以通过⼩电流去控制⼤电流。

放⼤的原理就在于:通过⼩的交流输⼊,控制⼤的静态直流。

假设三极管是个⼤坝,这个⼤坝奇怪的地⽅是,有两个阀门,⼀个⼤阀门,⼀个⼩阀门。

⼩阀门可以⽤⼈⼒打开,⼤阀门很重,⼈⼒是打不开的,只能通过⼩阀门的⽔⼒打开。

所以,平常的⼯作流程便是,每当放⽔的时候,⼈们就打开⼩阀门,很⼩的⽔流涓涓流出,这涓涓细流冲击⼤阀门的开关,⼤阀门随之打开,汹涌的江⽔滔滔流下。

如果不停地改变⼩阀门开启的⼤⼩,那么⼤阀门也相应地不停改变,假若能严格地按⽐例改变,那么,完美的控制就完成了。

在这⾥,Ube 就是⼩⽔流,Uce 就是⼤⽔流,⼈就是输⼊信号。

当然,如果把⽔流⽐为电流的话,会更确切,因为三极管毕竟是⼀个电流控制元件。

如果某⼀天,天⽓很旱,江⽔没有了,也就是⼩的⽔流那边是空的。

管理员没有打开⼩阀门,尽因此没有⽔流的存在,简单的讲就是三极管未导通,Ube<打开电压,⼀般是⼩于0.5或者0.7V ,此时Ib=0,Ic=Iceo ≈0.这就是三极管中的截⽌区。

饱和区是⼀样的,因为此时江⽔达到了很⼤很⼤的程度,管理员开的阀门⼤⼩已经没⽤了。

如果不开阀门江⽔就⾃⼰冲开了,这就是⼆极管的击穿。

在模拟电路中,⼀般阀门是半开的,通过控制其开启⼤⼩来决定输出⽔流的⼤⼩。

没有信号的时候,⽔流也会流,所以,不⼯作的时候,也会有功耗。

⽽在数字电路中,阀门则处于开或是关两个状态。

当不⼯作的时候,阀门是完全关闭的,没有功耗。

截⽌状态三极管作为开关使⽤时,仍是处于下列两种状态下⼯作。

1.截⽌(cut off)状态:如图5所⽰,当三极管之基极不加偏压或加上反向偏压使BE 极截⽌时(BE 极之特性和⼆极管相同,须加上⼤于0.7V 之正向偏压时才态导通),基极电流IB=0,因为IC=βIB,所以IC=IE=0,此时CE 极之间相当于断路,负载⽆电流。

晶体三极管的工作原理

晶体三极管的工作原理

晶体三极管的工作原理
晶体三极管是一种常用的电子器件,由PN结组成。

它具有放
大和开关功能,在电子设备中扮演着重要的角色。

晶体三极管的工作原理涉及到两个主要的区域:基区和发射区。

基区位于PN结中间,发射区位于PN结的一侧。

在正常工作
状态下,基区与发射区之间存在两个反向偏置,即两个PN结
的结电位均高于基位。

当施加一个适当的电压到基区时,基区与发射区之间的PN结
被击穿,导致电流流过发射区。

这个电流的大小与施加到基区的电压成正比,因此可以被用来放大电信号。

这个过程也称为晶体三极管的放大作用。

晶体三极管的开关作用也是基于PN结的反向偏置。

当基区施
加的电压小于某个阈值时,PN结不会被击穿,发射区不会导通,晶体三极管处于关闭状态。

相反,当基区施加的电压大于阈值时,PN结被击穿,产生一个连续的电流,晶体三极管处
于开启状态。

基区电压的变化使得发射区的电流随之变化,这允许晶体三极管在电子电路中进行放大或开关操作。

晶体三极管的放大倍数由PN结的性质和电路的设计决定。

总之,晶体三极管利用PN结的特性,在适当的电压和电流下,能够实现电信号的放大和开关功能。

这使得它在各种电子设备中得到广泛应用。

npn和pnp管脚

npn和pnp管脚

npn和pnp管脚npn和pnp管脚是指晶体管的接口,它们是一种常用的电子元件,被广泛应用于电子电路中。

这两种管脚在电路中具有不同的作用和特性,下面我将详细介绍npn和pnp管脚的相关知识。

首先,我们来了解一下npn管脚。

npn管脚是一种三极管,它由三个不同类型的半导体材料组成,即相邻的n型和两个夹住的p型。

其中,中间的n型称为“底座”,两侧的p型称为“发射极”和“集电极”。

npn管脚通常用于放大电路和作为开关的元件,它的特点是:①发射极接入负向的电源,集电极接入正向的电源,使得电流从发射极到集电极流动;②通常情况下,npn管脚的发射极经过极性电阻连接到一悬空电压,通过电阻产生一个非常小的电流,这个电流被称为“基电流”;③通过控制基电流的大小,可以调节管脚的放大倍数,从而实现对电路信号的放大和调节。

接下来,我们了解一下pnp管脚。

pnp管脚也是一种三极管,它的结构与npn管脚相反,即中间的p型为“底座”,夹在两侧的n型为“发射极”和“集电极”。

pnp管脚的特点与npn管脚相似,但是其电流方向与npn管脚相反。

具体来说,pnp管脚的特点是:①发射极接入正向的电源,集电极接入负向的电源,使得电流从集电极到发射极流动;②pnp管脚的基电流也是从发射极到集电极流动,通过控制基电流的大小,可以调节管脚的放大倍数。

npn和pnp管脚的工作原理有所不同,但它们都具有放大信号和开关的功能。

当传入的信号电压大于管脚的饱和电压时,npn和pnp管脚将会进入饱和状态,此时管脚将具有很低的电阻,可以实现较高的电流传输。

相反,当传入的信号电压小于管脚的饱和电压时,管脚将处于截止状态,此时通过管脚的电流非常小。

总之,npn和pnp管脚的饱和状态和截止状态可以通过控制管脚的基电流来实现。

在实际应用中,npn和pnp管脚常常被用于放大电路和开关电路中。

放大电路一般用于信号的放大,如音频放大器、电视机、收音机等。

在这些电路中,通过调控管脚的基电流,可以控制输出信号的幅度和波形。

NPN型三极管的开关作用

NPN型三极管的开关作用

NPN型三极管的开关作用
本篇文章通过图解的方式了解NPN 型三极管的工作原理,以及这种三级管的作用。

电路用途
了解NPN 型三极管加电方向及通、断(开关)作用。

工作原理
三极管除了有对电流放大作用外,还有开关作用(即通、断作用),当基极加上正偏压时,NPN 型三极管即导通处于饱和状态及灯会亮,反之,三极管就不导通,灯不亮。

实验方法
按接线图表5 接好电路,注意三极管e、b、c 三个管脚及发光二极管的极性不要接错。

R1 是基极的偏置电阻,当用红线(W)接到14 号弹簧或8 号弹簧时都可向基极加上偏置电流使三极管导通,(即c、e 极间相当于短路),发光二极管D 导通发光。

当红线(W)接到20 号弹簧时,由于20 号弹簧的电位低,三极管不导通(即c、e 间相当于断路)发光二极管D 不发光。

元件作用
电阻R1 基极偏置用,电阻R2 有限流作用,也是三极管集电极的负载电阻。

发光二极管D 指示作用,三极管T 开关作用,电池E 供电。

实验电路图
接线图
tips:感谢大家的阅读,本文由我司收集整编。

仅供参阅!。

三极管的开关原理

三极管的开关原理

BJT的开关工作原理:形象记忆法:对三极管放大作用的理解,切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量。

它只是把电源的能量转换成信号的能量罢了。

但三极管厉害的地方在于:它可以通过小电流控制大电流。

假设三极管是个大坝,这个大坝奇怪的地方是,有两个阀门,一个大阀门,一个小阀门。

小阀门可以用人力打开,大阀门很重,人力是打不开的,只能通过小阀门的水力打开。

所以,平常的工作流程便是,每当放水的时候,人们就打开小阀门,很小的水流涓涓流出,这涓涓细流冲击大阀门的开关,大阀门随之打开,汹涌的江水滔滔流下。

如果不停地改变小阀门开启的大小,那么大阀门也相应地不停改变,假若能严格地按比例改变,那么,完美的控制就完成了。

在这里,Ube就是小水流,Uce就是大水流,人就是输入信号。

当然,如果把水流比为电流的话,会更确切,因为三极管毕竟是一个电流控制元件。

如果水流处于可调节的状态,这种情况就是三极管中的线性放大区。

如果那个小的阀门开启的还不够,不能打开大阀门,这种情况就是三极管中的截止区。

如果小的阀门开启的太大了,以至于大阀门里放出的水流已经到了它极限的流量,这种情况就是三极管中的饱和区。

但是你关小小阀门的话,可以让三极管工作状态从饱和区返回到线性区。

如果有水流存在一个水库中,水位太高(相应与Uce太大),导致不开阀门江水就自己冲开了,这就是二极管的反向击穿。

PN结的击穿又有热击穿和电击穿。

当反向电流和反向电压的乘积超过PN结容许的耗散功率,直至PN结过热而烧毁,这种现象就是热击穿。

电击穿的过程是可逆的,当加在PN结两端的反向电压降低后,管子仍可以恢复原来的状态。

电击穿又分为雪崩击穿和齐纳击穿两类,一般两种击穿同时存在。

电压低于5-6V的稳压管,齐纳击穿为主,电压高于5-6V 的稳压管,雪崩击穿为主。

电压在5-6V之间的稳压管,两种击穿程度相近,温度系数最好,这就是为什么许多电路使用5-6V稳压管的原因。

使用数字万用表判断三极管管脚

使用数字万用表判断三极管管脚

使用数字万用表判断三极管管脚使用数字万用表判断三极管管脚一、概述三极管是一种常用的电子元件,具有放大和开关的作用。

正确地判断三极管的管脚,对于正确地使用三极管非常重要。

数字万用表是一种现代化的测量仪器,具有测量精度高、测量范围广、操作简便等优点,可以使用数字万用表来判断三极管的管脚。

二、数字万用表判断三极管管脚的原理数字万用表判断三极管管脚的原理是利用三极管的特性,通过测量三极管不同管脚之间的电阻值,来判断各个管脚的极性。

具体来说,数字万用表可以通过以下步骤来判断三极管的管脚:1.确定基极(B):将数字万用表的红表笔接在三极管的其中一个管脚上,黑表笔分别接在其他两个管脚上,测量两次电阻值。

如果两次测量的电阻值都很小(一般小于几百欧),则红表笔所接的管脚为基极(B)。

2.确定集电极(C)和发射极(E):将数字万用表的红表笔接在基极(B)上,黑表笔分别接在其他两个管脚上,测量两次电阻值。

然后,将表笔对调,再次测量两次电阻值。

这四次测量的电阻值中,有一次测量的电阻值应该比其他三次测量的电阻值都大(一般大于几千欧),这一次测量的红表笔所接的管脚为集电极(C),黑表笔所接的管脚为发射极(E)。

三、数字万用表判断三极管管脚的步骤下面是使用数字万用表判断三极管管脚的步骤:1.将数字万用表打到二极管档(一般为二极管和蜂鸣器档)。

2.将红表笔接到三极管的其中一个管脚上,黑表笔分别接到其他两个管脚上,测量两次电阻值。

如果两次测量的电阻值都很小(一般小于几百欧),则红表笔所接的管脚为基极(B)。

3.将红表笔接到基极(B)上,黑表笔分别接到其他两个管脚上,测量两次电阻值。

然后,将表笔对调,再次测量两次电阻值。

这四次测量的电阻值中,有一次测量的电阻值应该比其他三次测量的电阻值都大(一般大于几千欧),这一次测量的红表笔所接的管脚为集电极(C),黑表笔所接的管脚为发射极(E)。

4.确认测量结果:根据以上步骤,可以得到三极管的三个管脚的极性。

三极管开关电路原理

三极管开关电路原理

三极管开关电路原理
三极管开关电路是一种常见的电路,它利用三极管的开关特性实现信号的放大和控制。

三极管有三个引脚,分别是基极(B)、发射极(E)和集电极(C)。

当输入信号施加在基极上时,三极管根据输入信号的大小决定是否将电流通过,从而对输出进行控制。

在三极管开关电路中,输入信号一般被称为控制信号,通过对输入信号的控制,可以实现对输出信号的放大或截断。

当控制信号为低电平时,三极管处于截止状态,输出信号为低电平;当控制信号为高电平时,三极管处于饱和状态,输出信号为高电平。

三极管开关电路的工作原理和普通的开关电路有所不同。

在传统的开关电路中,开关的状态是通过机械开关的打开与关闭来控制的,而在三极管开关电路中,则是通过控制信号的高低电平来实现的。

同时,三极管开关电路由于采用了半导体器件,因此具有体积小、可靠性高、寿命长等优点。

三极管开关电路广泛应用于电子设备、通信设备等领域。

它可以作为信号放大器,将微弱信号放大到较大的幅值;也可以作为开关,对信号进行截断,控制输出信号的开与关。

需要注意的是,三极管开关电路的设计和使用需要合理选择电阻、电容等元件,保证电路的稳定性和可靠性。

同时,应避免过大的输入信号,以免对三极管产生损坏。

如果需要进行更高级的控制,还可以通过多级的。

三极管的原理

三极管的原理

三极管的原理、应用、检测一、三极管半导体三极管也称为晶体三极管,可以说它是电子电路中最重要的器件。

三极管顾名思义具有三个电极。

二极管是由一个PN结构成的,而三极管由两个PN结构成,共用的一个电极成为三极管的基极(用字母b表示)。

其他的两个电极成为集电极(用字母c表示)和发射极(用字母e表示)。

由于不同的组合方式,形成了一种是NPN型的三极管,另一种是PNP型的三极管。

二、晶体三极管的类型晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。

它最主要的功能是电流放大和开关作用。

三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。

三、三极管的材料三极管的材料有锗材料和硅材料。

它们之间最大的差异就是起始电压不一样。

锗管PN结的导通电压为0.2V左右,而硅管PN结的导通电压为0.6~0.7V。

在放大电路中如果用同类型的锗管代换同类型的硅管,或用同类型的硅管代换同类型的锗管一般是可以的,但都要在基极偏置电压上进行必要的调整,因为它们的起始电压不一样。

但在脉冲电路和开关电路中不同材料的三极管是否能互换必须具体分析,不能盲目代换。

四、三极管的封装形式和管脚识别常用三极管的封装形式有金属封装和塑料封装两大类,引脚的排列方式具有一定的规律。

对于小功率金属封装三极管,底视图位置放置,使三个引脚构成等腰三角形的顶点上,从左向右依次为e b c;对于中小功率塑料三极管按图使其平面朝向自己,三个引脚朝下放置,则从左到右依次为ebc。

目前,国内各种类型的晶体三极管有许多种,管脚的排列不尽相同,在使用中不确定管脚排列的三极管,必须进行测量确定各管脚正确的位置,或查找晶体管使用手册,明确三极管的特性及相应的技术参数和资料。

五、晶体三极管的电流放大作用晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。

晶体管(三极管)内部结构、管脚识别及电流放大原理图文说明

晶体管(三极管)内部结构、管脚识别及电流放大原理图文说明

晶体管(三极管)内部结构、管脚识别及电流放大原理图文说明晶体管实物如图2.2 所示。

图2.2晶体管实物1.晶体管的结构与电路符号半导体晶体管由于在工作时半导体中的电子和空穴两种载流子都起作用,所以属于双极型器件,也称双极结型晶体管(Bipolar Junction Transistor,BJT)。

晶体管的种类很多,按照半导体材料的不同,可分为硅管、锗管;按功率分为小功率管、中功率管和大功率管;按照频率分为高频管和低频管;按照制造工艺分为合金管和平面管等。

通常按照结构的不同分为两种类型:NPN型管和PNP 型管。

图2.3给出了NPN和PNP 管的结构示意图及其图形和文字符号,符号中的箭头方向是晶体管的实际电流方向。

文字符号有时也采用大写。

图2.3晶体管的结构示意与图形和文字符号2.晶体管的判别要准确地了解一只晶体管的类型、性能与参数,可用专门的测量仪器进行测试,但一般粗略判别晶体管的类型和引脚,可直接通过晶体管的型号简单判断,也可利用万用表测量的方法判断。

下面具体介绍其型号的意义及利用万用表简单测量的方法。

⑴晶体管型号的意义晶体管的型号一般由五大部分组成,如3AX31A、3DG12B、3CG14G等。

下面以3DG110B 为例来说明各部分的命名含义。

3D G110B电极数材料与类型功能序号规格号①第一部分由数字组成,表示电极数。

“3”代表晶体管。

②第二部分由字母组成,表示晶体管的材料与类型。

A表示PNP型锗管,B表示NPN 型锗管,C表示PNP型硅管,D表示NPN型硅管。

③第三部分由字母组成,表示晶体管的类型,即表明管子的功能。

④第四部分由数字组成,表示晶体管的序号。

⑤第五部分由字母组成,表示晶体管的规格号。

⑵判别晶体管的引脚、管型及好坏晶体管的引脚必须正确辨认,否则,不但接入电路不能正常工作,还可能烧坏晶体管。

当晶体管上标记不清楚时,可以用万用表来初步确定晶体管的类型(NPN型还是PNP 型),并辨别出e、b、c三个电极。

三极管的工作原理

三极管的工作原理

三极管的工作原理标题:三极管的工作原理引言概述:三极管是一种重要的半导体器件,广泛应用于电子电路中。

它具有放大、开关和稳压等功能,是现代电子技术中不可或缺的元件之一。

本文将详细介绍三极管的工作原理。

一、三极管的结构1.1 发射极:三极管的发射极是控制电流流动的地方,它通常是N型材料。

1.2 基极:基极是控制三极管导通的关键,它通常是P型材料。

1.3 集电极:三极管的集电极是输出端,用于接受电流,通常是N型材料。

二、三极管的工作原理2.1 放大作用:当在基极加上一个微小的电流时,会引起发射极和集电极之间的电流增加,从而实现信号的放大。

2.2 开关作用:通过控制基极电流的大小,可以控制三极管的导通和截止,实现开关功能。

2.3 稳压作用:在一定的工作区域内,三极管的输出电流与输入电流之间的关系是近似线性的,可以实现稳压功能。

三、三极管的工作状态3.1 截止状态:当基极电流为零时,三极管处于截止状态,无法导通电流。

3.2 饱和状态:当基极电流足够大时,三极管会进入饱和状态,此时发射极和集电极之间的电流达到最大值。

3.3 放大状态:在基极电流较小的情况下,三极管可以实现信号的放大。

四、三极管的工作原理与晶体管的区别4.1 结构不同:三极管有三个电极,而晶体管只有两个。

4.2 工作原理不同:三极管是通过控制基极电流来控制输出电流的,而晶体管是通过控制栅极电压来控制输出电流的。

4.3 应用领域不同:三极管主要用于功率放大和开关控制,而晶体管更多地用于集成电路和高频电路中。

五、三极管的应用5.1 放大器:三极管可以作为放大器来放大信号。

5.2 开关:三极管可以作为开关来控制电路的通断。

5.3 稳压器:三极管可以作为稳压器来维持电路的稳定输出。

结论:通过本文的介绍,我们了解了三极管的结构、工作原理、工作状态、与晶体管的区别以及应用领域。

三极管作为一种重要的半导体器件,在电子技术中有着广泛的应用,对于理解和应用电子电路具有重要意义。

三极管管脚判断图详解

三极管管脚判断图详解

三极管管脚判断图详解对于三极管管脚还有其判断问题其实是电⼦上的基础知识,不过相信有很多朋友都已经忘记如何判断的了,我们都知道三极管是有管芯、三个电极和管壳组成的,这三个电极分别叫做集电极c、发射极e和基极b。

⽽⽬前我们常见的三极管有锗合⾦管和硅平⾯管两种,⽽每种有分为PNP和NPN两类,⽽这⾥我们就教⼤家⽤万⽤表测试三极管管脚,⾄于图⽚的话⼩编就不给⼤家上相关的了没打架仔细看就是。

找出基极对于PNP型三极管,C,E极分别是内部的两个PN结的正极,B极作为他们共同的负极,⽽对于NPN型三极管,则刚好相反:C,E极均为两个PN结的负极,B极则是他们共同的正极,根据PN结的正向电阻的特征电阻⼩反向电阻⼤的特性就可以很⽅便的判断基极和管⼦的类型。

⽅法具体⽅法如下:⽤万⽤表R*100或R *1K档拨号。

⼀个红⾊的笔接触针,⽤⿊表笔分别与另外两个引脚连接,这样你就可以得到三个组(每组两次)的读数,当⼀组两个测量⼏百欧的低电阻引脚是红表笔接触的基础,三极管管型管是PNP型;如⽤上述⽅法测定⼀组⼆次都是⼏⼗⾄上百千欧的⾼阻值时,则红表笔所接触的管脚即为基极管型和NPN型三极管。

判别发射极和集电极由于三极管在制作时,两个P区或两个N区的掺杂浓度不同,如果发射极、集电极使⽤正确,三极管具有很强的放⼤能⼒,反之,如果发射极、集电极互换使⽤,则放⼤能⼒⾮常弱,由此即可把管⼦的发射极、集电极区别开来。

在判别出管型和基极b后,可⽤下列⽅法之⼀来判别集电极和发射极。

1、⽤万⽤表拨在R *1档。

⽤⼿将与另⼀销压紧碱⼀起(不要让电极直接接触),以便使测量的现象很明显,⼀个⼿指可以是湿润的,红⾊探头与碱在管脚⼀起连接在捏,⿊笔的另⼀针,观察万⽤表指针摆动的权利的⼤⼩。

然后两个销掉,重复测量的上述步骤。

在⼿两次测量摆动到右边缘的⽐较,发现摆动的⼤振幅。

PNP型三极管在⿊笔和基座夹紧在管脚连接在⼀起,重复上述实验,找出⼀个⼿摆动范围⼤时,则⿊⾊笔串联连接在集电极中,红⾊笔与连接发射器。

三极管的电流放大原理

三极管的电流放大原理

三极管的电流放大原理一、三极管的电流放大原理晶体三极管(以下简称三极管)按材料分有两种:锗管和硅管。

而每一种又有NPN和PNP两种结构形式,但使用最多的是硅NPN和PNP两种三极管,两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。

图一:晶体三极管(NPN)的结构图一是NPN管的结构图,它是由2块N型半导体中间夹着一块P型半导体所组成,从图可见发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极。

当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。

在创造三极管时,故意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正确,发射区的多数载流子(电子)及基区的多数载流子(控穴)很容易地截越过发射结构互相向反方各扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流Ie。

由于基区很薄,加之集电结的反偏,注入基区的电子大部份越过集电结进入集电区而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补记念给,从而形成为了基极电流Ibo根据电留连续性原理得:Ie=Ib+Ic 这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即:β1=Ic/Ib 式中:β--称为直流放大倍数,集电极电流的变化量△Ic与基极电流的变化量△Ib之比为:β= △Ic/△Ib式中β--称为交流电流放大倍数,由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为几十至一百多。

三极管是一种电流放大器件,但在实际使用中往往利用三极管的电流放大作用,通过电阻转变为电压放大作用。

npn三极管管脚定义

npn三极管管脚定义

npn三极管管脚定义npn三极管管脚定义简介npn三极管是一种常用的电子元件,用于电路的放大和开关控制。

了解npn三极管管脚的定义对于正确使用它是非常重要的。

本文将介绍npn三极管管脚的定义及相关理由,并推荐一本相关书籍。

npn三极管管脚定义在理解npn三极管管脚定义之前,我们需要了解npn三极管的结构。

npn三极管由三个区域组成:Emitter(发射极)、Base(基极)和Collector(集电极)。

1. Emitter(发射极)Emitter是npn三极管的一个区域,通常被标记为”E”。

在正常工作状态下,Emitter区域会放出电子流。

对于npn三极管来说,Emitter一般与负极(Ground)相连接。

2. Base(基极)Base是npn三极管的另一个区域,通常被标记为”B”。

Base区域一般用来控制电流的流动,它决定了Collector到Emitter的电流是否能够通过。

在常用配置中,Base电极往往会与一定的电阻相连。

3. Collector(集电极)Collector是npn三极管的第三个区域,通常被标记为”C”。

Collector区域负责收集从Base流出的电子流,它与负极(Ground)相连。

理由了解npn三极管管脚的定义很重要,因为它直接影响到npn三极管的使用。

准确地连接npn三极管的管脚可以确保电路正常工作。

同时,理解npn三极管管脚的定义也是学习电子原理和设计电路的基础。

推荐书籍《电子元器件数据手册》该书籍是一本权威的电子元器件数据参考手册,其中包括各种常用的电子元件的参数、管脚定义等信息。

在该书中,你可以找到npn三极管以及其他各种常见电子元件的详细管脚定义和使用方法。

这本书非常适合作为电子工程师和创作者的参考书籍。

该书的作者是多名资深电子工程师和学者,对电子元器件的研究和应用有着丰富的经验。

这本书内容详尽,结构清晰,非常适合初学者和专业人士阅读。

在阅读《电子元器件数据手册》时,你可以快速找到npn三极管的管脚定义,以及其他有关npn三极管的重要信息,帮助你更好地理解和应用npn三极管。

三极管放大原理正解

三极管放大原理正解

三极管放大原理正解(转载)2009-07-06 02:08随着科学技的发展,电子技术的应用几乎渗透到了人们生产生活的方方面面。

晶体三极管作为电子技术中一个最为基本的常用器件,其原理对于学习电子技术的人自然应该是一个重点。

三极管原理的关键是要说明以下三点:1、集电结为何会发生反偏导通并产生Ic,这看起来与二极管原理强调的PN 结单向导电性相矛盾。

2、放大状态下集电极电流Ic为什么会只受控于电流Ib而与电压无关;即:Ic与Ib之间为什么存在着一个固定的放大倍数关系。

虽然基区较薄,但只要Ib 为零,则Ic即为零。

3、饱和状态下,Vc电位很弱的情况下,仍然会有反向大电流Ic的产生。

很多教科书对于这部分内容,在讲解方法上处理得并不适当。

特别是针对初、中级学者的普及性教科书,大多采用了回避的方法,只给出结论却不讲原因。

即使专业性很强的教科书,采用的讲解方法大多也存在有很值得商榷的问题。

这些问题集中表现在讲解方法的切入角度不恰当,使讲解内容前后矛盾,甚至造成讲还不如不讲的效果,使初学者看后容易产生一头雾水的感觉。

笔者根据多年的总结思考与教学实践,对于这部分内容摸索出了一个适合于自己教学的新讲解方法,并通过具体的教学实践收到了一定效果。

虽然新的讲解方法肯定会有所欠缺,但本人还是怀着与同行共同探讨的愿望不揣冒昧把它写出来,以期能通过同行朋友的批评指正来加以完善。

一、传统讲法及问题:传统讲法一般分三步,以NPN型为例(以下所有讨论皆以NPN型硅管为例),如示意图A。

1.发射区向基区注入电子;2.电子在基区的扩散与复合;3.集电区收集由基区扩散过来的电子。

”(注1)问题1:这种讲解方法在第3步中,讲解集电极电流Ic的形成原因时,不是着重地从载流子的性质方面说明集电结的反偏导通,从而产生了Ic,而是不恰当地侧重强调了Vc的高电位作用,同时又强调基区的薄。

这种强调很容易使人产生误解。

以为只要Vc足够大基区足够薄,集电结就可以反向导通,PN结的单向导电性就会失效。

十分易懂的BJT和场效应管的开关工作原理

十分易懂的BJT和场效应管的开关工作原理

BJT的开关工作原理:形象记忆法:对三极管放大作用的理解,切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量。

它只是把电源的能量转换成信号的能量罢了。

但三极管厉害的地方在于:它可以通过小电流控制大电流。

假设三极管是个大坝,这个大坝奇怪的地方是,有两个阀门,一个大阀门,一个小阀门。

小阀门可以用人力打开,大阀门很重,人力是打不开的,只能通过小阀门的水力打开。

所以,平常的工作流程便是,每当放水的时候,人们就打开小阀门,很小的水流涓涓流出,这涓涓细流冲击大阀门的开关,大阀门随之打开,汹涌的江水滔滔流下。

如果不停地改变小阀门开启的大小,那么大阀门也相应地不停改变,假若能严格地按比例改变,那么,完美的控制就完成了。

在这里,Ube就是小水流,Uce就是大水流,人就是输入信号。

当然,如果把水流比为电流的话,会更确切,因为三极管毕竟是一个电流控制元件。

如果水流处于可调节的状态,这种情况就是三极管中的线性放大区。

如果那个小的阀门开启的还不够,不能打开大阀门,这种情况就是三极管中的截止区。

如果小的阀门开启的太大了,以至于大阀门里放出的水流已经到了它极限的流量,这种情况就是三极管中的饱和区。

但是你关小小阀门的话,可以让三极管工作状态从饱和区返回到线性区。

如果有水流存在一个水库中,水位太高(相应与Uce太大),导致不开阀门江水就自己冲开了,这就是二极管的反向击穿。

PN结的击穿又有热击穿和电击穿。

当反向电流和反向电压的乘积超过PN结容许的耗散功率,直至PN结过热而烧毁,这种现象就是热击穿。

电击穿的过程是可逆的,当加在PN结两端的反向电压降低后,管子仍可以恢复原来的状态。

电击穿又分为雪崩击穿和齐纳击穿两类,一般两种击穿同时存在。

电压低于5-6V的稳压管,齐纳击穿为主,电压高于5-6V的稳压管,雪崩击穿为主。

电压在5-6V之间的稳压管,两种击穿程度相近,温度系数最好,这就是为什么许多电路使用5-6V稳压管的原因。

在模拟电路中,一般阀门是半开的,通过控制其开启大小来决定输出水流的大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三极管的工作原理
三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。

分成NPN和PNP两种。

我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。

一、电流放大
下面的分析仅对于NPN型硅三极管。

如上图所示,我们把从基极B流至发射极E 的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流 Ic。

这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。

三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。

如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。

如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式 U=R*I 可以算得,这电阻上电压就会发生很大的变化。

我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。

二、偏置电路
三极管在实际的放大电路中使用时,还需要加合适的偏置电路。

这有几个原因。

首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。

当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。

但实际中要放大的信号往往远比 0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。

如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。

另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,
不能再减小了)。

而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。

这样减小的信号和增大的信号都可以被放大了。

三、开关作用
下面说说三极管的饱和情况。

像上面那样的图,因为受到电阻 Rc的限制(Rc
是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无限增加下去的。

当基极电流的增大,不能使集电极电流继续增大时,三极管就进入了饱和状态。

一般判断三极管是否饱和的准则是:Ib*β〉Ic。

进入饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为一个开关闭合了。

这样我们就可以拿三极管来当作开关使用:当基极电流为0时,三极管集电极电流为0(这叫做三极管截止),相当于开关断开;当基极电流很大,以至于三极管饱和时,相当于开关闭合。

如果三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把它叫做开关管。

四、工作状态
如果我们在上面这个图中,将电阻Rc换成一个灯泡,那么当基极电流为0时,集电极电流为0,灯泡灭。

如果基极电流比较大时(大于流过灯泡的电流除以三极管的放大倍数β),三极管就饱和,相当于开关闭合,灯泡就亮了。

由于控制电流只需要比灯泡电流的β分之一大一点就行了,所以就可以用一个小电流来控制一个大电流的通断。

如果基极电流从0慢慢增加,那么灯泡的亮度也会随着增加(在三极管未饱和之前)。

对于PNP型三极管,分析方法类似,不同的地方就是电流方向跟NPN的刚好相反,因此发射极上面那个箭头方向也反了过来——变成朝里的了。

检测三极管的口诀
三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。

”下面让我们逐句进行解释吧。

一、三颠倒,找基极
大家知道,三极管是含有两个PN结的半导体器件。

根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管,图1是它们的电路符号和等效电路。

测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位。

图2绘出了万用电表欧姆挡的等效电路。

由图可见,红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。

假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。

测试的第一步是判断哪个管脚是基极。

这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。

在这三次颠倒测量中,必然有两次测量结果相近:
即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基极(参看图1、图2不难理解它的道理)。

二、 PN结,定管型
找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的导电类型(图1)。

将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被测管即为PNP型。

三、顺箭头,偏转大
找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO的方法确定集电极c和发射极e。

(1) 对于NPN型三极管,穿透电流的测量电路如图3所示。

根据这个原理,用万用电表的黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转角度
都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c极→b极→e极→红表笔,电流流向正好与三极管符号中的箭头方向一致(“顺箭头”),所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。

(2) 对于PNP型的三极管,道理也类似于NPN型,其电流流向一定是:黑表笔→e 极→b极→c极→红表笔,其电流流向也与三极管符号中的箭头方向一致,所以此时黑表笔所接的一定是发射极e,红表笔所接的一定是集电极c(参看图1、图3可知)。

四、测不出,动嘴巴
若在“顺箭头,偏转大”的测量过程中,若由于颠倒前后的两次测量指针偏转均太小难以区分时,就要“动嘴巴”了。

具体方法是:在“顺箭头,偏转大”的两次测量中,用两只手分别捏住两表笔与管脚的结合部,用嘴巴含住(或用舌头抵住)基电极b,仍用“顺箭头,偏转大”的判别方法即可区分开集电极c与发射极e。

其中人体起到直流偏置电阻的作用,目的是使效果更加明显。

相关文档
最新文档