人教版高一年级数学上册期末考试卷(附答案)
高一数学第一学期期末试卷及答案5套
高一数学第一学期期末试卷及答案5套完卷时间:120分钟 满分:150分第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题意要求的) 1、若角终边经过点,则( )A.B.C. D.2、函数的一条对称轴是( ) A.B.C.D.3、已知集合}1{>=x x A ,11{|()}24xB x =>,则A B ⋂=( ) A .R B .),1(+∞C .)2,(-∞D .)2,1( 4、( ) A.B.C.D.5、已知⎪⎩⎪⎨⎧>+-≤=0,1)1(0,2cos )(x x f x x x f π,则=)2(f ( ) A . 1- B .1 C . 3- D . 36、已知,则()()3sin 2cos 2sin sin 2πθπθπθπθ⎛⎫+++ ⎪⎝⎭⎛⎫--- ⎪⎝⎭等于( )A. 23—B. C. D. 7、若向量,,则在方向上的投影为( ) A. -2 B. 2 C.D.8、若()f x 对于任意实数x 都有12()()21f x f x x-=+,则(2)f =( )A.0B.1C.83D.49、若向量,i 为互相垂直的单位向量,—j 2=j m +=且与的夹角为锐角,则实数m 的取值范围是 ( )A .⎝ ⎛⎭⎪⎫12,+∞B .(-∞,-2)∪⎝ ⎛⎭⎪⎫-2,12C .⎝ ⎛⎭⎪⎫-2,23∪⎝ ⎛⎭⎪⎫23,+∞D .⎝⎛⎭⎪⎫-∞,1210、已知函数2(43)3,0,()log (1)1,0,a x a x a x f x x x ⎧+-+<⎪=⎨++≥⎪⎩在R 上单调递减,则实数a 的取值范围是( )A. 13[,]34B.1334⎛⎤ ⎥⎝⎦,C. 103⎛⎤ ⎥⎝⎦,D.30,4⎛⎫⎪⎝⎭11、已知,函数在(,)上单调递减,则的取值范围是( )A. (0,]B. (0,2]C. [,]D. [,]12、将函数()⎪⎭⎫⎝⎛=x 2cos 4x f π和直线()1x x g —=的所有交点从左到右依次记为,若P 点坐标为()30,=++A P 2....( )A. 0B. 2C. 6D. 10二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡的相应位置上) 13、已知角θ的终边经过点(39,2)a a -+,且θsin >0,θcos <0则a 的取值范围是 14、已知函数3()2,(0,1)x f x a a a -=+>≠且,那么其图象经过的定点坐标是15、已知2cos ,63πα⎛⎫-=⎪⎝⎭则2sin 3πα⎛⎫-= ⎪⎝⎭________. 16、已知关于的方程0a cos 3sin =+θθ—在区间()π,0上有两个不相等的实数根,则=+2cosβα__________.三、解答题:(本大题共6小题,共70分.解答写出文字说明,写明过程或演算步骤) 17、(本题满分10 分)已知四点A (-3,1),B (-1,-2),C (2,0),D ()(1)求证:;(2) ,求实数m 的值.18、(本题满分12 分) 已知是的三个内角,向量,,且.(1) 求角; (2)若,求.19、(本题满分12 分)已知函数()log (2)log (3),a a f x x x =++-其中01a <<. (1)求函数()f x 的定义域;(2)若函数()f x 的最小值为4-,求a 的值20、(本题满分12 分)已知函数()sin()f x A x ωϕ=+,其中0,0,0A ωϕπ>><<,函数()f x 图像上相邻的两个对称中心之间的距离为4π,且在3x π=处取到最小值2-. (1)求函数()f x 的解析式;(2)若将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将向左平移6π个单位,得到函数()g x 图象,求函数()g x 的单调递增区间。
人教版一年级上册数学期末考试试卷带答案(完整版)
人教版一年级上册数学期末考试试卷一.选择题(共8题, 共16分)1.小朋友们站成一列做游戏, 从前面数小兰是第6, 从后面数小兰是第8, 这些小朋友一共有()人。
A.14B.13C.122.同学们排队做操, 我的前面有6人, 后面有12人, 这一排一共有几人?()A.18B.19C.203.那哪个计数器上的数是20?()A. B. C.4.一个数, 十位和个位上的数都是1, 这个数是几?()A.11B.105.比较上下两根铅笔, ( )根长。
A.B.6.红、黄、蓝三种颜色的小旗各有5面, 一共有多少面小旗?列式计算正确的是()A.5+5=10(面)B.5+3=8(面)C.5+5+5=15(面) D.5+2=7(面)7.小红家住在一座高楼上, 她上面有7层, 下面有8层, 小红家的楼房一共()层。
A.1........B.1........C.148.从8到16, 最中间的数是( ).A.1.....B.1.....C.13二.判断题(共8题, 共16分)1.从右边起, 第一位是个位, 第二位是十位。
()2.小猫吃了7条鱼, 盘子里还剩下6条鱼, 它一共钓了13条鱼。
()3.下图是正方体。
()4.10位同学排成一列队伍在操场上向前走, 小丹排在第4个, 老师发出口令“向后转”, 这时小丹排第7。
()5.下图可列式为5-4=1。
()6.老师用的粉笔是圆柱形的。
()7.15十位上的1表示1个十, 个位上的1表示5个一。
()8.把从左数第6个☆涂上颜色。
()三.填空题(共8题, 共31分)1.按题意填空。
○○○○△△△△△△△△△△△△△△(1)○和△一共有()个。
(2)○比△少()个, △比○多()个。
2.小胖回忆过去相似的题。
3.写出计算器上表示的数。
()()4.一共有6架飞机, 飞走了2架飞机, 还剩()架飞机。
5.(1)4号车排第( ), 2号车排第( )。
(2)2号车的前面有( )辆车, 后面有( )辆车。
(人教版A版2017课标)高中数学高一年级上册期末测试试卷(含答案)01
期末测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}12,3,4,5U =,,集合{}1,2A =,则U A = ( ) A .{}12,B .{}3,4,5C .{}1,2,3,4,5D .∅2.已知角α的终边上有一点)5M-,则sin α等于( )A .57-B .56-C .58-D .3.命题“存在一个无理数,它的平方是有理数”的否定是( ) A .任意一个有理数,它的平方是有理数 B .任意一个无理数,它的平方不是有理数 C .存在一个有理数,它的平方是有理数 D .存在一个无理数,它的平方不是有理数4.函数223y x x =-+,12x -≤≤的值域是( ) A .RB .[]36,C .[]26,D .[)2+∞,5.已知tan 32α=,则cos α的值为( )A .45B .45-C .415D .35-6.已知()f x 是定义在R 上的偶函数,且以2为周期,则“()f x 为[]01,上的增函数”是“()f x 为[]34, 上的减函数”的( ) A .既不充分也不必要条件 B .充分不必要条件 C .必要不充分条件D .充要条件7.函数()y f x =的图象如图所示,则()y f x =的解析式为( )A .sin 22y x =-B .2cos31y x =-C .πsin 215y x ⎛⎫=-- ⎪⎝⎭D .π1sin 25y x ⎛⎫=-- ⎪⎝⎭8.下列函数中,既是偶函数又在区间()0+∞,上单调递减的是( ) A .1y x=B .x y e -=C .21y x =-+D .lg y x =9.已知集合1|282x A x ⎧⎫=∈⎨⎬⎩⎭R <<,{}|11B x x m =∈-+R <<,若x B ∈成立的一个充分不必要条件是x A ∈,则实数m 的取值范围是( )A .2m ≥B .2m ≤C .2m >D .22m -<<10.若函数()()()101x x f x k a a a a -=-->,≠在R 上既是奇函数,又是减函数,则()()log a g x x k =+的图象是( )ABCD11.已知 5.10.9m =,0.95.1n =,0.9log 5.1p =,则这三个数的大小关系是( ) A .m n p <<B .m p n <<C .p m n <<D .p n m <<12.具有性质()1f f x x ⎛⎫=- ⎪⎝⎭的函数,我们称为满足“倒负”变换的函数.给出下列函数:①1ln 1xy x -=+;②2211x y x -=+;③010111.x x y x x x⎧⎪⎪==⎨⎪⎪-⎩,<<,,,>其中满足“倒负”变换的函数是( ) A .①②B .①③C .②③D .①二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知幂函数()f x 的图象过点182⎛⎫⎪⎝⎭,,则()27f =________.14.若关于x 的不等式()21230a x x -+->有解,则实数a 的取值范围是________. 15.给出下列命题:①()72cos π22f x x ⎛⎫=-- ⎪⎝⎭是奇函数;②若α,β都是第一象限角,且αβ>,则tan tan αβ>;③直线3π8x =-是函数33sin 2π4y x ⎛⎫=- ⎪⎝⎭的图象的一条对称轴;④已知函数()2π3sin 12f x x =+,使()()f x c f x +=对任意x ∈R 都成立的正整数c 的最小值是2. 其中正确命题的序号是________.16.已知函数()f x 是R 上的奇函数,且()()2f x f x +=-,当()02x ∈,时,()212f x x =,则()7f =________. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知角α终边上一点()43P -,,求()πcos sin π211π9πcos sin 22αααα⎛⎫+-- ⎪⎝⎭⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭.18.(本小题满分12分)已知函数()22sin cos 2cos f x x x x =+. (1)求函数()f x 的单调递增区间;(2)将函数()y f x =的图象向右平移π4个单位长度后,得到函数()y g x =的图象,求方程()1g x =在[]0πx ∈,上的解集.19.(本小题满分12分)设a 是实数,()2221x x a a f x ⋅+-=+.(1)证明:()f x 是增函数.(2)试确定a 的值,使()f x 为奇函数.20.(本小题满分12分)已知函数()2π4sin 214f x x x ⎛⎫=+-- ⎪⎝⎭,且给定条件p :“ππ42x ≤”.(1)求()f x 的最大值及最小值;(2)若条件q :“()2f x m -<”,且p 是q 的充分条件,求实数m 的取值范围.21.(本小题满分12分)自2018年10月1日起,《中华人民共和国个人所得税》新规定,公民月工资、薪金所得不超过5 000元的部分不必纳税,超过5 000元的部分为全月应纳税所得额,此项税款按下表分段累计计算:全月应纳税所得额 税率/% 不超过1 500元的部分 3 超过1 500元不超过4 500元的部分 10 超过4 500元不超过9 000元的部分 20 超过9 000元不超过35 000元25 …………(1)如果小李10月份全月的工资、薪金为7 000元,那么他应该纳税多少元?(2)如果小张10月份交纳税金425元,那么他10月份的工资、薪金是多少元?(3)写出工资、薪金收入()014000x x <≤(元/月)与应缴纳税金y (元)的函数关系式.22.(本小题满分12分)已知函数()22f x x mx =-+的两个零点为1x =和x n =. (1)求m ,n 的值;(2)若函数()()22g x x ax a =-+∈R 在(]1-∞,上单调递减,解关于x 的不等式()log 20a nx m +-<.期末测试 答案解析一、 1.【答案】B【解析】因为{}12,3,4,5U =,,集合{}12A =,,所以{}3,4,5U A = . 2.【答案】B 【解析】6OM == ,5sin 6α∴=-.3.【答案】B【解析】量词“存在”否定后为“任意”,结论“它的平方是有理数”否定后为“它的平方不是有理数”,故选B . 4.【答案】C【解析】函数()222312y x x x =-+=-+,对称轴为直线1x =.由12x -≤≤可得,当1x =时,函数取得最小值为2,当1x =-时,函数取得最大值为6,故函数的值域为[]26,,故选C . 5.【答案】B【解析】2222222222cos sin 1tan 134222cos cossin22135cos sin 1tan 222ααααααααα---=-====-+++. 6.【答案】D【解析】由已知()f x 在[]10-,上为减函数,∴当34x ≤≤时,140x --≤≤,∴函数()f x 在[]34,上是减函数,反之也成立,故选D . 7.【答案】D【解析】由函数()f x 的图象得,函数()f x 的最大值为2,最小值为0,周期7ππ4π2010T ⎛⎫=⨯-= ⎪⎝⎭,得2ω=.又函数()f x 过点π110⎛⎫ ⎪⎝⎭,和7π020⎛⎫⎪⎝⎭,,所以只有选项D 符合题意,故选D . 8.【答案】C 【解析】由于1y x=为奇函数,故排除A ;由于()x y f x e -==,不满足()()f x f x -=-,也不满足()()f x f x -=,故它是非奇非偶函数,故排除B ;由于21y x =-+是偶函数,且在区间()0+∞,上单调递减,答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
人教A版新教材高一上学期数学期末试卷(含答案解析)
化简得 ,解得 ;
当 时,不等式 ,即 ,
化简得 ,解得 ,
综上所述, ,故选B.
第Ⅱ卷
二、填空题:本大题共4小题,每小题5分.
13.【答案】
【解析】原式=
.
14.【答案】
【解析】当 ,即 ,解得 .
15.【答案】
【解析】设 ,
则由题意知:函数 的一个零点在 内,另一个零点在 内,
(2) 的定义域为 ,
且 ,
所以 是奇函数.
(3)又 ,即 ,
有 .
当 时,上述不等式 ,解得 .
19.【答案】(1) ;(2) 时, ; 时, .
【解析】(1)
,
所以 的最小正周期为 .
(2)∵ ,∴ ,
当 ,即 时, ,
当 , 时, .
20.【答案】(1) , ;(2) ;(3) .
【解析】(1) , .
【解析】根据题意,当 时, , ,
则 ,
又 或 ,则 .
(2)根据题意,若 ,则 ,
分2种情况讨论:
①当 时,有 ,解可得 ;
②当 时,
若有 ,必有 ,解可得 ,
综上可得: 的取值范围是 .
18.【答案】(1) ;(2)奇函数,证明见解析;(3) .
【解析】 ,若要式子有意义,
则 ,即 ,所以定义域为 .
19.(12分)已知函数 .
(1)求 的最小正周期;
(2)求 在区间 上的最大值和最小值,并分别写出相应的 的值.
20.(12分)已知函数 是定义在 上的偶函数,且当 时, .
(1)求 及 的值;
(2)求函数 在 上的解析式;
(3)若关于 的方程 有四个不同的实数解,求实数 的取值范围.
人教版一年级上册数学期末考试试卷含答案【完整版】
人教版一年级上册数学期末考试试卷一.选择题(共8题,共16分)1.学校里有9个,挂出去了4个,现在还有()个。
A.1B.3C.5D.72.淘气有8支铅笔,笑笑和他同样多,那么他们一共有()支铅笔。
A.2B.4C.10D.163.数一数,图中表示()。
A.4B.5C.7D.84.小明第一天做了7道题,第二天做了8道题,两天一共做了多少道题?正确的列式计算是()。
A.8-7=1(道)B.8+7=13(道)C.8-1=7(道)D.7+8=15(道)5.小明住在小刚楼上,小强住在小刚楼下,三人中( ) 住在最下面。
A.小明B.小刚C.小强6.比多()个。
A.1B.2C.37.熊猫住在狮子的( ) 面。
A.右B.左C.上8.看图列式计算,正确的是()A. 8+7=15B. 8-7=1C. 15-8=7二.判断题(共8题,共16分)1.1个十和10个一同样大。
()2.12时整,时针和分针重合。
()3.和同样多。
()4.下图是否正确?()5.比16大且比20小的数有3个。
()6.车厢、粉笔盒、文具盒的形状都是长方体。
()7.阳光下的人影与人的左右是相同的。
()8.同学们排队做操,小明前面有4个人,后面有4个人,这一队一共有8个人。
()三.填空题(共8题,共32分)1.看图回答。
(1)从右边数,圈起3只小鸟。
(2)黄鸟的前面有________只小鸟,后面有________只小鸟。
2.看图写出算式。
□+□=□□+□=□3.填一填:4.给数字找家。
(把数字填在对应的方格里)①20的上面是2,9在20的下面。
②12在20的左边,20的右边是14。
③12的下面是8,8在9的()边。
5.运动场上真热闹,小朋友们比赛跑.小明前面有5个,小明身后有4个.猜猜小明跑第________.跑步一共有________人。
6.写出钟面上的时刻。
7.辨位置。
小青的前面是(),后面是()。
小冬在小青的()面,小利在小青的()面。
8.在8+6=(),这道算式中()是第一个加数,6是第二个()数,和是()。
人教版一年级上册数学期末考试试卷附答案(完整版)
人教版一年级上册数学期末考试试卷一.选择题(共8题,共16分)1.如果把球切成两半,它的切面是()形。
A.三角B.正方C.长方D.圆2.小亮做了10只纸船,送给同学6只,小亮还剩()只纸船。
A.16B.4C.6D.123.与其他三行不同的那一行是()。
A. 1、2、3B. 2、3、4C. 3、4、5D. 4、3、24.光头强的家在第( )层。
A.4B.7C.95.少的是()。
A. B.6.数一数,下图中表示数字()。
A. 2B. 3C. 4D. 57.小红去商店买东西,牛奶4元,面包10元,她一共要付()元。
A.13B.14C.15D.178.下图的物体中,为正方体图形是()。
A. B. C. D.二.判断题(共8题,共16分)1.钟面上一共有12个大格,100个小格。
()2.8个苹果和第八个苹果意思一样。
()3.苹果比梨多,梨就比苹果少。
()4.16是6个十和1个一组成的。
()5.下图中,一共有3朵花。
()6.和一样多。
()7.小明今年6岁,小强今年4岁,2年后,小明比小强大2岁。
()8.15和18中间有3个数。
()三.填空题(共8题,共30分)1.饭店买来8袋大米,7袋面粉,大米和面粉一共()袋。
2.秒针从12走到5,走了( )个大格,是( )秒。
3.写数。
十一_____ 二十_____ 七_____ 十三_____4.点的运动形成(),线的运动形成(),面的运动形成()。
5.16、8、15、3、10、18中,最大的数是________,最小的数是________。
6.猴子夺红旗。
7.把算式按得数的大小顺序排列起来。
9+3 5+10 7+9 3+8 7+7 8+5> > > > >8.写出比10大比15小的数:()、()、()、()。
四.计算题(共2题,共26分)1.算一算。
2+1= 1+5= 10-4= 5-5= 3+5=7+2= 6-5= 7-5= 5+5= 1+6=8-5= 4+3= 9-5= 3+7= 2+8=0+9= 1+1= 9+0= 10-5= 0+8=2.算一算。
高一数学上学期期末考试试卷(含解析)-人教版高一全册数学试题
某某省某某第一中学2015-2016学年高一上学期期末考试数学一、选择题:共10题1.下列说法中,正确的是A.幂函数的图象都经过点(1,1)和点(0,0)B.当a=0时,函数y=xα的图象是一条直线C.若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大而增大D.幂函数y=xα,当a<0时,在第一象限内函数值随x值的增大而减小【答案】D【解析】本题主要考查幂函数的图象与性质.由幂函数的图象与性质可知,A错误;当x=0时,y=0,故B错误;令a=-1,则y=x-1,显然C错误;故D正确.2.如图所示,则这个几何体的体积等于A.4B.6C.8D.12【答案】A【解析】由三视图可知所求几何体为四棱锥,如图所示,其中SA⊥平面ABCD,SA=2,AB=2,AD=2,CD=4,且四边形ABCD为直角梯形,∠DAB=90°,∴V=SA×(AB+CD)×AD=×2××(2+4)×2=4,故选A.3.下列关于函数y=f(x),x∈[a,b]的叙述中,正确的个数为①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,f(x)=0的根也一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是根的近似值.A.0B.1C.3D.4【答案】B【解析】本题主要考查方程与根、二分法.由零点的定义知,零点是曲线与x轴交点的横坐标,故①错误;当f(a)=0时,无法用二分法求解,故②错误;显然,③正确;若f(x)=2x-x-1,在区间(-1,1)上的零点,用二分法,可得f(0)=0,显然,④错误.4.如图,在三棱锥S-ABC中,E为棱SC的中点,若AC=,SA=SB=SC=AB=BC=2,则异面直线AC与BE所成的角为A.30°B.45°C.60°D.90°【答案】C【解析】本题主要考查异面直线所成的角.取SA的中点D,连接BD、DE,则,是异面直线AC与BE所成的角或补角,由题意可得BD=BE=,DE=,即三角形BDE是等边三角形,所以5.如图,正方体ABCDA1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是A.AC⊥BEB.EF∥平面ABCDC.直线AB与平面BEF所成的角为定值D.异面直线AE、BF所成的角为定值【答案】D【解析】本题主要考查线面平行与垂直的判定定理、线面所成的角、异面直线所成的角,考查了空间想象能力.易证AC⊥平面BDD1B1,则AC⊥BE,A正确,不选;易知平面A1B1C1D1∥平面ABCD,则EF∥平面ABCD,B正确,不选;因为平面BEF即是平面BDD1B1,所以直线AB 与平面BEF所成的角为定值,故C正确,不选;故选D.6.若函数且)有两个零点,则实数a的取值X围是A. B. C. D.【答案】B【解析】本题主要考查函数的性质与零点.当时,函数是减函数,最多只有1个零点,不符合题意,故排除A、D;令,易判断函数在区间上分别有一个零点,故排除C,所以B正确.7.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则A.α∥β且l∥α B.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】D【解析】本题涉及直线与平面的基本知识,意在考查考生的空间想象能力、分析思考能力,难度中等偏下.由于m,n为异面直线,m⊥平面α,n⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m,n,又直线l满足l⊥m,l⊥n,则交线平行于l ,故选D.8.已知直线(1+k)x+y-k-2=0过定点P,则点P关于直线x-y-2=0的对称点的坐标是A.(3,﹣2)B.(2,﹣3)C.(3,﹣1)D.(1,﹣3)【答案】C【解析】本题主要考查直线方程、两条直线的位置关系.将(1+k)x+y-k-2=0整理为:k(x-1)+x+y-2=0,则x-1=0且x+y-2=0,可得P(1,1),设点P的对称点坐标为(a,b),则,则x=3,y=-1,故答案:C.9.如图,平面⊥平面与两平面所成的角分别为和.过分别作两平面交线的垂线,垂足为,则=A. B. C. D.【答案】A【解析】本题主要考查线面与面面垂直的判定与性质、直线与平面所成的角,考查了空间想象能力.根据题意,由面面垂直的性质定理可得,,则,则AB=2,则10.经过点P(1,4)的直线在两坐标轴上的截距都是正值,若截距之和最小,则直线的方程为A.x+2y-6=0 B.2x+y-6=0 C.x-2y+7=0 D.x-2y-7=0【答案】B【解析】本题主要考查直线方程、基本不等式.由直线的斜率为k(k<0),则y-4=k(x-1),分别令x=0、y=0求出直线在两坐标轴上的截距为:4-k,1-,则4-k+1-,当且仅当-k=-,即k=-2时,等号成立,则直线的方程为2x+y-6=0二、填空题:共5题11.已知直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,则经过点A(3,2)且与直线垂直的直线方程为________.【答案】2x-y-4=0【解析】本题主要考查直线方程、两条直线的位置关系.因为直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,所以(m+1)m-2=0,且8-(m-2),则m=1,直线: x+2y-1=0,根据题意,设所求直线方程为2x-y+t=0,将点A(3,2)代入可得t=-4,即:2x-y-4=012.用斜二测画法得到的四边形ABCD是下底角为45°的等腰梯形,其下底长为5,一腰长为,则原四边形的面积是________.【答案】8【解析】本题主要考查平面直观图.根据题意,直观图中,梯形的下底长为5,一腰长为,则易求上底为3,高为1,面积为,所以原四边形的面积是13.已知三棱锥A-BCD的所有棱长都为,则该三棱锥的外接球的表面积为________.【答案】3π【解析】本题主要考查空间几何体的表面积与体积,考查了空间想象能力.将正方体截去四个角可得到一个正四面体,由题意,可将该三棱锥补成一个棱长为1的正方体,所以该三棱锥的外接球的直径即为正方体的对角线,所以2r=,则该三棱锥的外接球的表面积为S=14.已知关于x的方程有两根,其中一根在区间内,另一根在区间内,则m的取值X围是________.【答案】【解析】本题主要考查二次函数的性质与二元一次方程的根.设,由题意可知:,求解可得15.甲、乙、丙、丁四个物体同时以某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,,,,有以下结论:①当时,甲走在最前面;②当时,乙走在最前面;③当时,丁走在最前面,当时,丁走在最后面;④丙不可能走在最前面,也不可能走在最后面;⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为_________(把正确结论的序号都填上,多填或少填均不得分).【答案】③④⑤【解析】①错误.因为,,所以,所以时,乙在甲的前面.②错误.因为,,所以,所以时,甲在乙的前面.③正确.当时,,的图象在图象的上方.④正确.当时,丙在甲乙前面,在丁后面,时,丙在丁前面,在甲、乙后面,时,甲、乙、丙、丁四人并驾齐驱.⑤正确.指数函数增长速度越来越快,x充分大时,的图象必定在,,上方,所以最终走在最前面的是甲.三、解答题:共5题16.如图(1)所示,在直角梯形中,BC AP,AB BC,CD AP,又分别为线段的中点,现将△折起,使平面平面(图(2)).(1)求证:平面平面;(2)求三棱锥的体积.【答案】证明:(1)分别是的中点,∵平面,AB平面.∴平面.同理,平面,∵,EF平面平面∴平面平面.(2)=.【解析】本题主要考查面面与线面平行与垂直的判定与性质、空间几何体的表面积与体积,考查了空间想象能力与等价转化.(1)根据题意,证明、,再利用线面与面面平行的判定定理即可证明;(2)由题意易知,则结果易得.17.已知两点,直线,求一点使,且点到直线的距离等于2.【答案】设点的坐标为.∵.∴的中点的坐标为.又的斜率.∴的垂直平分线方程为,即.而在直线上.∴.①又已知点到的距离为2.∴点必在于平行且距离为2的直线上,设直线方程为,由两条平行直线之间的距离公式得:∴或.∴点在直线或上.∴或②∴①②得:或.∴点或为所求的点.【解析】本题主要考查直线方程与斜率、两条直线的位置关系、中点坐标公式.设点的坐标为,求出统一线段AB的垂直平分线,即可求出a、b的一个关系式;由题意知,点必在于平行且距离为2的直线上, 设直线方程为,由两条平行直线之间的距离公式得:,求出m的值,又得到a、b的一个关系式,两个关系式联立求解即可.18.(1)已知圆C经过两点,且被直线y=1截得的线段长为.求圆C的方程;(2)已知点P(1,1)和圆过点P的动直线与圆交于A,B两点,求线段AB的中点M的轨迹方程.【答案】(1)设圆方程为.因为点O,Q在圆上,代入:又由已知,联立:解得:由韦达定理知:.所以:.即即:.即:.则.所以所求圆方程为:.(2)设点M (x ,y ), 圆的圆心坐标为C (0,2). 由题意:,又.所以: 化简:所以M 点的轨迹方程为【解析】本题主要考查圆的方程、直线与圆的位置关系、圆的性质、直线的斜率公式、方程思想.(1)设圆方程为,将y =1代入圆的方程,利用韦达定理,求出D 、E 、F 的一个关系式,再由点O 、Q 在圆上,联立求出D 、E 、F 的值,即可得到圆的方程;(2) 设点M (x ,y ), 圆的圆心坐标为C (0,2),由题意:,又,化简求解即可得到结论.19.如图,在四棱锥P —ABCD 中,PA ⊥底面ABCD , AB ⊥AD , AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.C A PB D E(1)求PB 和平面PAD 所成的角的大小;(2)证明:AE ⊥平面PCD ;(3)求二面角A-PD-C的正弦值.【答案】(1)在四棱锥P—ABCD中,∵PA⊥底面ABCD,AB⊂平面ABCD,∴PA⊥A B.又AB⊥AD,PA∩AD=A,从而AB⊥平面PAD,∴PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.在Rt△PAB中,AB=PA,故∠APB=45°.所以PB和平面PAD所成的角的大小为45°.(2)证明:在四棱锥P—ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴CD⊥PA.由条件CD⊥AC,PA∩AC=A∵CD⊥平面PA C.又AE⊂平面PAC,∴AE⊥C D.由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥P C.又PC∩CD=C,综上得AE⊥平面PCD.(3)过点E作EM⊥PD,垂足为M,连接AM,如图所示.由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD.因此∠AME是二面角A—PD—C的平面角.由已知,可得∠CAD=30°.设AC=a,可得PA=a,AD=a,PD=a,AE=在Rt△ADP中,∵AM⊥PD,∴AM·PD=PA·AD,则AM==.在Rt△AEM中,sin∠AME==.所以二面角A—PD—C的正弦值为.【解析】本题主要考查线面垂直的判定定理与性质定理、线面角与二面角,考查了空间想象能力.(1)根据题意,证明AB⊥平面PAD,即可得证∠APB为PB和平面PAD所成的角,则易求结果;(2)由题意,易证CD⊥平面PA C,可得AE⊥C D,由题意易知AC=PA,又因为E是PC 的中点,所以AE⊥P C,则结论易证;(3) 过点E作EM⊥PD,垂足为M,连接AM,如图所示,由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD,因此∠AME是二面角A—PD—C的平面角,则结论易求.20.诺贝尔奖的奖金发放方式为:每年一发,把奖金总额平均分成6份,分别奖励给在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半;另一半利息计入基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%.资料显示:1999年诺贝尔发放后基金总额约为19 800万美元.设f(x)表示第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依次类推)(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29≈1.32)【答案】(1)由题意知:f(2)=f(1)(1+6.24%)-f(1)·6.24%=f(1)×(1+3.12%),f(3)=f(2)×(1+6.24%)-f(2)×6.24%=f(2)×(1+3.12%)=f(1)×(1+3.12%)2,∴f(x)=19800(1+3.12%)x-1(x∈N*).(2)2008年诺贝尔奖发放后基金总额为f(10)=19800(1+3.12%)9=26136,故2009年度诺贝尔奖各项奖金为·f(10)·6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.【解析】本题主要考查指数函数、函数的解析式与求值,考查了分析问题与解决问题的能力、计算能力.(1)由题意知: f(2)=f(1)(1+6.24%)-f(1)·6.24%,f(3)=f(2)×(1+6.24%)-f(2)×6.24%,化简,即可归纳出函数f(x)的解析式;(2)根据题意,求出2008年诺贝尔奖发放后基金总额为f(10),再求出2009年度诺贝尔奖各项奖金为·f(10)·6.24%,即可判断出结论.。
新课标人教版高一数学上学期期末试卷及答案
上学期期末考试卷年级:高一科目:英语注意事项: 1.答第I卷前,考生务必将自己的姓名、考生号填写在答题卡上。
2.选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在本试卷上,否则无效。
(试卷总分:150分;考试时间:120分钟)第I卷第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
听力结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10称钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt?A. £19.15.B. £9.15.C. £9.18.答案是B。
1. What would the man like?A. A cold drink.B. Sleeping pills.C. A cup of coffee.2. Where is the bus station?A. Opposite a stadium.B. Next to a car park.C. On the left of a bridge.3. What does the man dislike about the sweater?A. The price.B. The material.C. The color.4. What does the man think of the course?A. Easy.B. Interesting.C. Difficult.5. What are the speakers mainly talking about?A. A sports game.B. An animal.C. An actor.第二节 (共15小题; 每小题1.5分, 满分22.5分)听下面5段对话或独白。
人教A版高一数学上学期期末测试卷(带答案)
高一数学本卷共三大题,时量120分钟,满分120分,试卷总页4页一.选择题:(本大题共10个小题,每小题4分,共40分,每小题都有四个不同的答案,其中只有一个是正确的,请把正确的答案选出来) 1.函数f(x)=x x ln 1+-的定义域为( )A.]1,(-∞B.(0,+∞)C.(0,1]D.(0,1)),1(+∞⋃2.下列函数中,既是奇函数,又是增函数的是( )A . y=-2xB . x y 2= C. x y lg = D . 3x y = 3. 已知空间直角坐标系中一点A(-3,1,-4),则点A 关于x 轴对称点的坐标为( )A .(-3,-1,4) B.(-3,-1,-4) C.(3,1,4) D.(3,-1,-4) 4.函数()3log 82f x x x =-+的零点一定位于区间( ) A. ()5,6 B. ()3,4 C. ()2,3 D. ()1,2 5.下列几何体中,正视图、侧视图、俯视图都相同的几何体的序号是( )A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)6.半径为R 的球的内接正方体的表面积是( )A.234R B.22R C.24R D.28R7.已知,αβ,γ是三个不同的平面, m,n 是两条不同的直线 ,下列命题中正确..的是( ) A.若m//α,n//α,则m//n B. 若m//α,m//β,则α//β C.若γα⊥,γβ⊥则α//βD .若α⊥β,m ⊥β,m ⊄α,则m ∥α8、若0,0ac bc <<,则直线0ax by c ++=不经过( ) A .第一象限 B.第二象限 C.第三象限 D.第四象限 9、若直线L :ax+by=1与圆C :122=+y x 相切,则点P (a,b)与圆C 的位置关系是 ( )A.在圆上B.在圆外C.在圆内D.以上皆有可能 10、如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( )A.3B.5C.5D.5二.填空题(本大题共5个小题,每小题4分,共20分) 11.圆心在(2,-1)且与y 轴相切的圆的标准方程为 。
人教A版(2019)必修第一册2020-2021学年第一学期高一数学期末考试复习试题及答案解析
新人教A 版2020~2021学年度第一学期期末复习高一数学一、单项选择题1.设集合A={x |x 2−2x−3≤0},B ={x |y =ln(2−x) } ,则A∩B =( ) A. [−3,2) B. (2,3] C. (−1,2) D. [−1,2) 2.已知0.20.3a =,0.23b =,3log 0.3c =,则A. a c b >>B. c a b >>C. b a c >>D. c b a >> 3.“”是“21cos =α”的( ) A .充分而不必要条件 B 必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 4.已知角α的终边上一点P (5)-,则sin tan αα+= (A )2253--(B )253-(C )5(D )55. ︒︒-+︒︒15sin )105cos(15cos 75sin 等于(A )0(B )12(C 3 (D )16.函数()23xf x x =+的零点所在的一个区间是( )(A )(-2,-1) (B )(-1,0) (C )(0,1) (D )(1,2) 7.函数⎩⎨⎧≤>=ππx x x x x f ,cos ,sin )(,则=︒)240(f(A )23-(B )23 (C )21- (D )21 8.已知函数()⎩⎨⎧>≤=1,log 1,22x x x x f x ,若函数()a x x f y ++=2有两个零点,则实数a 的取值范围是A .(]1,2B .[)2,1--C .[)4,2--D .[]2,49. 已知函数()x f y =是R 上的偶函数,且()x f 在),0[+∞上是减函数,若()()2-≥f a f ,则a 的取值范围是(A )2≤a (B )2≥a (C )22≥-≤a a 或 (D )22≤≤-a二、多项选择题10、设,0<<b a 则下列不等式中成立的是A .b a 11> B . ab a 11>- C . b a -> D . b a ->- 11、下列函数为奇函数的是A.tan y x = B .sin y x x =- C .cos y x x =- D .e e xxy -=- 12.函数π()3sin 23f x x ⎛⎫=- ⎪⎝⎭的图象为C ,如下结论中正确的是( ). A 、图象C 关于直线11π12x =对称 B 、图象C 关于点2π03⎛⎫⎪⎝⎭,对称 C 、()f x 在区间π5π1212⎛⎫- ⎪⎝⎭,是增函数 D 、由3sin 2y x =图象向右平移π3个单位长度可得图象C .三、填空题13.命题p :“2,10∃∈+<x R x ”的否定是 14.若x 、y ∈R +,20=+y x ,则xy 的最大值为 .15.化简:sin(90)cos()cos(180)ααα︒-⋅-︒-= .(填最简形式)16.已知2)4πtan(-=+α,则=-αα2cos 2sin 117.已知132a =,则()2log 2a = .18.若“满足x :20x p +<”是“满足x :022>--x x ”的充分条件,求实数p 的取值范围. . 四、解答题19.已知,αβ都是锐角,35cos ,cos(),513ααβ=+=- (1)求sin α和αtan 的值;(2)求)sin(βα+ 和cos β的值.20、已知函数()4sin()cos 16f x x x π=-+.(Ⅰ)求)(x f 的最小正周期; (Ⅱ)求)(x f 在区间[,44ππ-]上的最大值和最小值.21.某大型专卖店经营一种耐用消费品.已知该种消费品的进价为每件40元;该店每月销售量q (百件)与销售价p (元/件)之间的关系用右图中的一条折线(实线)表示;职工每人每月平均工资为1200元,该店应交付的其它费用为每月13200元.若当销售价p 为52元/件时,该店正好收支平衡,求该店的职工人数。
人教版高一上学期期末数学试卷(有答案)
人教版高一(上)期末数学试卷一、选择题:本大题12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)函数f(x)=log(2x﹣1)的定义域是()A.(,+∞)B.(,1)∪(1,+∞)C.(,+∞)D.(,1)∪(1,+∞)2.(5分)直线x+2ay﹣1=0与(a﹣1)x﹣ay+1=0平行,则a的值为()A.B.或0 C.0 D.﹣2或03.(5分)设f(x)是定义在R上单调递减的奇函数,若x1+x2>0,x2+x3>0,x3+x1>0,则()A.f(x1)+f(x2)+f(x3)>0 B.f(x1)+f(x2)+f(x3)<0C.f(x1)+f(x2)+f(x3)=0 D.f(x1)+f(x2)>f(x3)4.(5分)如图,一个平面图形的斜二测画法的直观图是一个边长为a的正方形,则原平面图形的面积为()A.a2B.a2C.2a2D.2a25.(5分)设α、β、γ为三个不同的平面,m、n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有()A.①或③B.①或②C.②或③D.①或②或③6.(5分)已知一空间几何体的三视图如题图所示,其中正视图与左视图都是全等的等腰梯形,则该几何体的体积为()A.17 B.C.D.187.(5分)如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E、F为CD上两点,且EF的长为定值,则下面四个值中不是定值的是()A.点P到平面QEF的距离B.直线PQ与平面PEF所成的角C.三棱锥P﹣QEF的体积D.△QEF的面积8.(5分)如图,在三棱锥P﹣ABC中,∠APB=∠BPC=∠APC=90°,O在△ABC内,∠OPC=45°,∠OPA=60°,则∠OPB的余弦值为()A.B.C.D.9.(5分)已知函数+2,则关于x的不等式f(3x+1)+f(x)>4的解集为()A.(﹣,+∞)B.(﹣,+∞)C.(﹣,+∞)D.(﹣,+∞)10.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)11.(5分)已知函数f(x)=x2+e x﹣(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是()A.(﹣,)B.(﹣,)C.(﹣∞,)D.(﹣∞,)12.(5分)若x1满足2x+2x=5,x2满足2x+2log2(x﹣1)=5,x1+x2=()A.B.3 C.D.4二、填空题:本大题共4小题,每小题5分,共20分13.(5分)已知函数f(x)=(a>0),若x1+x2=1,则f(x1)+f(x2)=,并求出=.14.(5分)如图所示几何体的三视图,则该几何体的表面积为.15.(5分)点M(x1,y1)在函数y=﹣2x+8的图象上,当x1∈[2,5]时,则的取值范围.16.(5分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2,PD=CD=2,则二面角A﹣PB﹣C的正切值为.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)过点(3,2)的直线l与x轴的正半轴,y轴的正半轴分别交于A,B两点,当△AOB的面积最小时,求直线l的方程及△AOB面积.18.(12分)已知一四棱锥P﹣ABCD的三视图如图所示,E是侧棱PC上的动点.(Ⅰ)求四棱锥P﹣ABCD的体积.(Ⅱ)若点E为PC的中点,AC∩BD=O,求证:EO∥平面PAD;(Ⅲ)是否不论点E在何位置,都有BD⊥AE?证明你的结论.19.(10分)设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.20.(12分)如图,在棱长为1的正方体中,P是侧棱CC1上的一点,CP=m(1)试确定m,使直线AP与平面BDD1B1所成角的正切值为;(2)在线段A1C1上是否存在一个定点Q,使得对任意的m,D1Q在平面APD1上的射影垂直于AP,并证明你的结论.21.(12分)已知平行四边形ABCD(如图1),AB=4,AD=2,∠DAB=60°,E为AB的中点,把三角形ADE沿DE折起至A1DE位置,使得A1C=4,F是线段A1C的中点(如图2).(1)求证:BF∥面A1DE;(2)求证:面A1DE⊥面DEBC;(3)求二面角A1﹣DC﹣E的正切值.22.(12分)已知函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=.(1)求a,b的值;(2)不等式f(2x)﹣k•2x≥0在x∈[﹣1,1]上恒成立,求实数k的取值范围;(3)方程f(|2x﹣1|)+k(﹣3)有三个不同的实数解,求实数k的取值范围.参考答案与试题解析一、选择题:本大题12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)函数f(x)=log(2x﹣1)的定义域是()A.(,+∞)B.(,1)∪(1,+∞)C.(,+∞)D.(,1)∪(1,+∞)【解答】解:由,解得x>且x≠1.的定义域是(,1)∪(1,+∞).∴函数f(x)=log(2x﹣1)故选:B.2.(5分)直线x+2ay﹣1=0与(a﹣1)x﹣ay+1=0平行,则a的值为()A.B.或0 C.0 D.﹣2或0【解答】解:当a=0时,两直线重合;当a≠0时,由,解得a=,综合可得,a=,故选:A.3.(5分)设f(x)是定义在R上单调递减的奇函数,若x1+x2>0,x2+x3>0,x3+x1>0,则()A.f(x1)+f(x2)+f(x3)>0 B.f(x1)+f(x2)+f(x3)<0C.f(x1)+f(x2)+f(x3)=0 D.f(x1)+f(x2)>f(x3)【解答】解:∵x1+x2>0,x2+x3>0,x3+x1>0,∴x1>﹣x2,x2>﹣x3,x3>﹣x1,又f(x)是定义在R上单调递减的奇函数,∴f(x1)<f(﹣x2)=﹣f(x2),f(x2)<f(﹣x3)=﹣f(x3),f(x3)<f(﹣x1)=﹣f(x1),∴f(x1)+f(x2)<0,f(x2)+f(x3)<0,f(x3)+f(x1)<0,∴三式相加整理得f(x1)+f(x2)+f(x3)<0故选B4.(5分)如图,一个平面图形的斜二测画法的直观图是一个边长为a的正方形,则原平面图形的面积为()A.a2B.a2C.2a2D.2a2【解答】解:由斜二测画法的规则知与x′轴平行的线段其长度不变以及与横轴平行的性质不变,正方形对角线在y′轴上,可求得其长度为a,故在平面图中其在y轴上,且其长度变为原来的2倍,长度为2a,∴原平面图形的面积为=故选:C.5.(5分)设α、β、γ为三个不同的平面,m、n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有()A.①或③B.①或②C.②或③D.①或②或③【解答】解:由面面平行的性质定理可知,①正确;当n∥β,m⊂γ时,n和m在同一平面内,且没有公共点,所以平行,③正确.故选A.6.(5分)已知一空间几何体的三视图如题图所示,其中正视图与左视图都是全等的等腰梯形,则该几何体的体积为()A.17 B.C.D.18【解答】解:由已知中的三视图,可知该几何体是一个四棱台切去一个三棱锥所得的几何体,棱台的上下底面的棱长为2和4,故棱台的上下底面的面积为4和16,侧高为,故棱台的高h==2,故棱台的体积为:=,棱锥的底面是棱台上底面的一半,故底面面积为2,高为2,故棱锥的体积为:×2×2=,故组合体的体积V=﹣=,故选:B7.(5分)如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E、F为CD上两点,且EF的长为定值,则下面四个值中不是定值的是()A.点P到平面QEF的距离B.直线PQ与平面PEF所成的角C.三棱锥P﹣QEF的体积D.△QEF的面积【解答】解:A.∵平面QEF即为对角面A1B1CD,点P为A1D1的中点,∴点P到平面QEF即到对角面A1B1CD的距离=为定值;D.∵点Q到直线CD的距离是定值a,|EF|为定值,∴△QEF的面积=为定值;C.由A.D可知:三棱锥P﹣QEF的体积为定值;B.直线PQ与平面PEF所成的角与点Q的位置有关系,因此不是定值,或用排除法即可得出.综上可得:只有B中的值不是定值.故选:B.8.(5分)如图,在三棱锥P﹣ABC中,∠APB=∠BPC=∠APC=90°,O在△ABC内,∠OPC=45°,∠OPA=60°,则∠OPB的余弦值为()A.B.C.D.【解答】解:已知如图所示:过O做平面PBA的垂线,交平面PBC于Q,连接PQ则∠OPQ=90°﹣45°=45°.∵cos∠OPA=cos∠QPA×cos∠OPQ,∴cos∠QPA=,∴∠QPA=45°,∴∠QPB=45°∴cos∠OPB=cos∠OPQ×cos∠QPB=.故选C.9.(5分)已知函数+2,则关于x的不等式f(3x+1)+f(x)>4的解集为()A.(﹣,+∞)B.(﹣,+∞)C.(﹣,+∞)D.(﹣,+∞)【解答】解:设g(x)=2016x+log2016(+x)﹣2016﹣x,g(﹣x)=2016﹣x+log2016(+x)﹣2016x+=﹣g(x);g′(x)=2016x ln2016++2016﹣x ln2016>0;∴g(x)在R上单调递增;∴由f(3x+1)+f(x)>4得,g(3x+1)+2+g(x)+2>4;∴g(3x+1)>g(﹣x);∴3x+1>﹣x;解得x>﹣;∴原不等式的解集为(﹣,+∞).故选:D.10.(5分)当0<x≤时,4x<log a x,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)【解答】解:∵0<x≤时,1<4x≤2要使4x<log a x,由对数函数的性质可得0<a<1,数形结合可知只需2<log a x,∴即对0<x≤时恒成立∴解得<a<1故选B11.(5分)已知函数f(x)=x2+e x﹣(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是()A.(﹣,)B.(﹣,)C.(﹣∞,)D.(﹣∞,)【解答】解:由题意,存在x<0,使f(x)﹣g(﹣x)=0,即e x﹣﹣ln(﹣x+a)=0在(﹣∞,0)上有解,令m(x)=e x﹣﹣ln(﹣x+a),则m(x)=e x﹣﹣ln(﹣x+a)在其定义域上是增函数,且x→﹣∞时,m(x)<0,若a≤0时,x→a时,m(x)>0,故e x﹣﹣ln(﹣x+a)=0在(﹣∞,0)上有解,若a>0时,则e x﹣﹣ln(﹣x+a)=0在(﹣∞,0)上有解可化为e0﹣﹣ln(a)>0,即lna<,故0<a<.综上所述,a∈(﹣∞,).故选:C12.(5分)若x1满足2x+2x=5,x2满足2x+2log2(x﹣1)=5,x1+x2=()A.B.3 C.D.4【解答】解:由题意①2x2+2log2(x2﹣1)=5 ②所以,x1=log2(5﹣2x1)即2x1=2log2(5﹣2x1)令2x1=7﹣2t,代入上式得7﹣2t=2log2(2t﹣2)=2+2log2(t﹣1)∴5﹣2t=2log2(t﹣1)与②式比较得t=x2于是2x1=7﹣2x2即x1+x2=故选C二、填空题:本大题共4小题,每小题5分,共20分13.(5分)已知函数f(x)=(a>0),若x1+x2=1,则f(x1)+f(x2)=1,并求出=.【解答】解:∵函数f(x)=(a>0),x1+x2=1,∴f(x1)+f(x2)=f(x1)+f(1﹣x1)=+=+==1,∴=1007+f()=1007+=.故答案为:1,.14.(5分)如图所示几何体的三视图,则该几何体的表面积为16+2.【解答】解:由已知中的三视图,可得该几何体是一个以俯视图为底面的四棱锥,其直观图如下图所示:E和F分别是AB和CD中点,作EM⊥AD,连接PM,且PD=PC,由三视图得,PE⊥底面ABCD,AB=4,CD=2,PE═EF=2在直角三角形△PEF中,PF==2,在直角三角形△DEF中,DE==,同理在直角梯形ADEF中,AD=,根据△AED的面积相等得,×AD×ME=×AE×EF,解得ME=,∵PE⊥底面ABCD,EM⊥AD,∴PM⊥AD,PE⊥ME,在直角三角形△PME中,PM==,∴该四棱锥的表面积S=×(4+2)×2+×4×2+×2×2+2×××=16+2.故答案为:16+2.15.(5分)点M(x1,y1)在函数y=﹣2x+8的图象上,当x1∈[2,5]时,则的取值范围.【解答】解:当x1∈[2,5]时,可得A(2,4),B(5,﹣2).设P(﹣1,﹣1),则k PA==,k PB==,∴的取值范围是.16.(5分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2,PD=CD=2,则二面角A﹣PB﹣C的正切值为.【解答】解:以D为原点,DA为x轴,DC为y轴,过D作平面ABCD的垂直线为z轴,建立空间直角坐标系,在△PDC中,由于PD=CD=2,PC=2,可得∠PCD=30°,∴P到平面ABCD的距离为PCsin30°=.∴A(1,0,0),P(0,﹣1,),B(1,2,0),C(0,2,0),=(1,1,﹣),=(1,3,﹣),=(0,3,﹣),设平面PAB的法向量=(x,y,z),则,取z=1,得=(),设平面PBC的法向量=(a,b,c),则,取c=,得=(2,1,),设二面角A﹣PB﹣C的平面角为θ,则cosθ===,sinθ==,tanθ==.∴二面角A﹣PB﹣C的正切值为.故答案为:.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)过点(3,2)的直线l与x轴的正半轴,y轴的正半轴分别交于A,B两点,当△AOB的面积最小时,求直线l的方程及△AOB面积.【解答】解:设A(a,0),B(0,b),则直线l的方程为:+=1.把点P(3,2)代入可得:+=1.(a,b>0).∴1≥2,化为ab≥24,当且仅当a=6,b=4时取等号.=ab≥12,l的方程为:+=1,即4x+6y﹣24=0∴S△AOB18.(12分)已知一四棱锥P﹣ABCD的三视图如图所示,E是侧棱PC上的动点.(Ⅰ)求四棱锥P﹣ABCD的体积.(Ⅱ)若点E为PC的中点,AC∩BD=O,求证:EO∥平面PAD;(Ⅲ)是否不论点E在何位置,都有BD⊥AE?证明你的结论.【解答】(Ⅰ)解:由该四棱锥的三视图可知,该四棱锥P﹣ABCD的底面是边长为1的正方形,侧棱PC⊥底面ABCD,且PC=2.…(1分)∴V P=S▱ABCD•PC=.…(3分)﹣ABCD(Ⅱ)证明:∵E、O分别为PC、BD中点∴EO∥PA,…(4分)又EO⊄平面PAD,PA⊂平面PAD.…(6分)∴EO∥平面PAD.…(7分)(Ⅲ)不论点E在何位置,都有BD⊥AE,…(8分)证明如下:∵ABCD是正方形,∴BD⊥AC,…(9分)∵PC⊥底面ABCD且BD⊂平面ABCD,∴BD⊥PC,…(10分)又∵AC∩PC=C,∴BD⊥平面PAC,…(11分)∵不论点E在何位置,都有AE⊂平面PAC,∴不论点E在何位置,都有BD⊥AE.…(12分)19.(10分)设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.【解答】解:(1)令x=0,得y=a﹣2.令y=0,得(a≠﹣1).∵l在两坐标轴上的截距相等,∴,解之,得a=2或a=0.∴所求的直线l方程为3x+y=0或x+y+2=0.(2)直线l的方程可化为y=﹣(a+1)x+a﹣2.∵l不过第二象限,∴,∴a≤﹣1.∴a的取值范围为(﹣∞,﹣1].20.(12分)如图,在棱长为1的正方体中,P是侧棱CC1上的一点,CP=m(1)试确定m,使直线AP与平面BDD1B1所成角的正切值为;(2)在线段A1C1上是否存在一个定点Q,使得对任意的m,D1Q在平面APD1上的射影垂直于AP,并证明你的结论.【解答】解:(1)连AC,设AC与BD相交于点O,AP与平面BDD1B1相交于点G,连接OG,因为PC∥平面BDD1B1,平面BDD1B1∩平面APC=OG,故OG∥PC,所以,OG=PC=.又AO⊥BD,AO⊥BB1,所以AO⊥平面BDD1B1,故∠AGO是AP与平面BDD1B1所成的角.在Rt△AOG中,tan∠AGO=,即m=.所以,当m=时,直线AP与平面BDD1B1所成的角的正切值为4.(2)可以推测,点Q应当是A I C I的中点,当是中点时因为D1O1⊥A1C1,且D1O1⊥A1A,A1C1∩A1A=A1,所以D1O1⊥平面ACC1A1,又AP⊂平面ACC1A1,故D1O1⊥AP.那么根据三垂线定理知,D1O1在平面APD1的射影与AP垂直.21.(12分)已知平行四边形ABCD(如图1),AB=4,AD=2,∠DAB=60°,E为AB的中点,把三角形ADE沿DE折起至A1DE位置,使得A1C=4,F是线段A1C的中点(如图2).(1)求证:BF∥面A1DE;(2)求证:面A1DE⊥面DEBC;(3)求二面角A1﹣DC﹣E的正切值.【解答】解:(1)证明:如图,取DA1的中点G,连FG,GE;F为A1C中点;∴GF∥DC,且;∴四边形BFGE是平行四边形;∴BF∥EG,EG⊂平面A1DE,BF⊄平面A1DE;∴BF∥平面A1DE;(2)证明:如图,取DE的中点H,连接A1H,CH;AB=4,AD=2,∠DAB=60°,E为AB的中点;∴△DAE为等边三角形,即折叠后△DA1E也为等边三角形;∴A1H⊥DE,且;在△DHC中,DH=1,DC=4,∠HDC=60°;根据余弦定理,可得:HC2=1+16﹣4=13,在△A1HC中,,,A1C=4;∴,即A1H⊥HC,DE∩HC=H;∴A1H⊥面DEBC;又A1H⊂面A1DE;∴面A1DE⊥面DEBC;(3)如上图,过H作HO⊥DC于O,连接A1O;A1H⊥面DEBC;∴A1H⊥DC,A1H∩HO=H;∴DC⊥面A1HO;∴DC⊥A1O,DC⊥HO;∴∠A1OH是二面角A1﹣DC﹣E的平面角;在Rt△A1HO中,,;故tan;所以二面角A1﹣DC﹣E的正切值为2.22.(12分)已知函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设f(x)=.(1)求a,b的值;(2)不等式f(2x)﹣k•2x≥0在x∈[﹣1,1]上恒成立,求实数k的取值范围;(3)方程f(|2x﹣1|)+k(﹣3)有三个不同的实数解,求实数k的取值范围.【解答】附加题:(本题共10分)解:(1)g(x)=a(x﹣1)2+1+b﹣a,当a>0时,g(x)在[2,3]上为增函数,故,可得,⇔.当a<0时,g(x)在[2,3]上为减函数.故可得可得,∵b<1∴a=1,b=0即g(x)=x2﹣2x+1.f(x)=x+﹣2.…(3分)(2)方程f(2x)﹣k•2x≥0化为2x+﹣2≥k•2x,k≤1+﹣令=t,k≤t2﹣2t+1,∵x∈[﹣1,1],∴t,记φ(t)=t2﹣2t+1,∴φ(t)min=0,∴k≤0.…(6分)(3)由f(|2x﹣1|)+k(﹣3)=0得|2x﹣1|+﹣(2+3k)=0,|2x﹣1|2﹣(2+3k)|2x﹣1|+(1+2k)=0,|2x﹣1|≠0,令|2x﹣1|=t,则方程化为t2﹣(2+3k)t+(1+2k)=0(t≠0),∵方程|2x﹣1|+﹣(2+3k)=0有三个不同的实数解,∴由t=|2x﹣1|的图象(如右图)知,t2﹣(2+3k)t+(1+2k)=0有两个根t1、t2,且0<t1<1<t2或0<t1<1,t2=1,记φ(t)=t2﹣(2+3k)t+(1+2k),则或∴k>0.…(10分)。
高一数学上册期末考试试卷及答案解析(经典,通用)
高一数学上册期末考试试卷及答案解析一、单选题 1.设全集2,1,0,1,2U,集合{}{}0,1,21,2A =-,B=,则()U A B =( )A .{}01, B .{}0,1,2 C .{}1,1,2- D .{}0,1,1,2-2.“5x >”是“3x >”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件3.下列命题中正确的( ) ①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}; ③方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2}; ④集合{x |4<x <5}可以用列举法表示. A .只有①和④ B .只有②和③ C .只有②D .以上语句都不对 4.下列命题中,既是全称量词命题又是真命题的是( ) A .矩形的两条对角线垂直 B .对任意a ,b ∈R ,都有a 2 + b 2≥ 2(a ﹣b ﹣1) C .∃x ∈R , |x | + x = 0 D .至少有一个x ∈Z ,使得x 2 ≤2成立5.已知02x <<,则y = )A .2B .4C .5D .66.若110a b <<,则下列结论不正确的是( ) A .22a b <B .1ba <C .2b aa b +>D .2ab b <7.命题p :“2R,240x ax ax ∃∈+-≥”为假命题的一个充分不必要条件是( ) A .40aB .40a -≤<C .30a -≤≤D .40a -≤≤8.集合{1,2,4}A =,{}2B x x A =∈,将集合A ,B 分别用如图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为4的是( ) A .B .C .D .二、多选题9.已知集合222{2,1,4},{0,2}A a a a B a a =+-=--,5A ∈,则a 为( ) A .2B .2-C .5D .1-10.若正实数,a b 满足1a b +=,则下列说法正确的是( ) A .ab 有最小值14 B C .1122a b a b +++有最小值43D .22a b +有最小值1211.下列命题为真命题的是( ). A .若a b >,则11b a >B .若0a b >>,0c d <<,则abd c < C .若0a b >>,且0c <,则22cc a b > D .若a b >,且11a b>,则0ab < 12.若“x M x x ∀∈>,”为真命题,“3x M x ∃∈>,”为假命题,则集合M 可以是( )A .()5-∞-,B .(]31--,C .()3+∞,D .[]03,三、填空题13.若命题2:0,30p x x ax ∀≥-+>,则其否定为p ⌝:__________________.14.已知:282p x -≤-≤,:1q x >,:2r a x a <<.若r 是p 的必要不充分条件,且r 是q 的充分不必要条件,则实数a 的取值范围为______. 15.设集合{}{}21,2,R (1)0A B x x a x a ==∈-++=,若集合C = A B ,且C 的子集有4个,则实数a 的取值集合为______________. 16.若a ∈R ,0b >,3a b +=,则当=a ______时,1||3||a a b +取得最小值.四、解答题17.求解下列问题:(1)已知0b a <<,比较1a 与1b 的大小; (2)比较()()37x x ++和()()46x x ++的大小.18.已知集合{|15}A x x =<≤,{}|04B x x =<<,{}|121C x m x m =+<<-. (1)求A B ,R ()A B ⋃: (2)若BC C =,求实数m 的取值范围.19.已知不等式20x ax b -+<的解集为{}17x x <<. (1)求实数,a b 的值.(2)求不等式101ax bx +>-的解集.20.已知0,0x y >>,且280x y xy +-=,求(1)xy 的最小值; (2)x y +的最小值. 21.22.“绿水青山就是金山银山”,为了保护环境,某工厂在政府部门的鼓励下进行技术改进,把二氧化碳化为某种化工产品,经测算,该处理成本y (单位:万元)与处理量x (单位:吨)之间的函数关系可近似表示为2401600y x x =-+,3050x ≤≤,已知每处理一吨二氧化碳可获得价值20万元的某种化工产品.(1)当处理量为多少吨时,每吨的平均处理成本最少?(2)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?参考答案:1.A 【分析】先求出UB ,再根据交集的定义可求()U A B ∩.【详解】{}2,0,1UB =-,故(){}0,1UAB =,故选:A.2.A 【分析】根据集合与充分必要条件的关系,判断选项. 【详解】{}5x x > {}3x x >,所以“5x >”是“3x >”的充分不必要条件. 故选:A3.C 【分析】由集合的表示方法判断①,④;由集合中元素的特点判断②,③.【详解】①{0}表示元素为0的集合,而0只表示一个元素,故①错误;②符合集合中元素的无序性,正确; ③不符合集合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示. 故选:C .4.B 【分析】根据全称量词和特称量词命题的定义判断,全称量词命题要为真命题必须对所以的成立,对选项逐一判断即可.【详解】A 选项为全称量词命题,却是假命题,矩形的两条对角线相等,并不垂直,故A 错误.C,D 选项是特称量词命题,故错误. B 选项是全称量词命题,用反证法证明, 因为()()2222222110a b a b a b +-++=-++≥所以对,a b ∀∈R ,()2221a b a b +--≥,故B 正确.故选:B. 5.【答案】A 【分析】设直角三角形的两个直角边为x ,y ,由此可得2225x y +=,又面积1=2S xy ,利用基本不等式可求面积的最大值. 【详解】设直角三角形的两个直角边为x ,y ,则2225x y +=, 又1=2S xy由基本不等式可得221125=2224x y S xy ⎛⎫+≤= ⎪⎝⎭(当且仅当x =y 立) 故选:A.6.B 【分析】由110a b <<得出0b a <<,再利用不等式的基本性质和基本不等式来判断各选项中不等式的正误. 【详解】110a b<<,0b a ∴<<,0b a ∴->->,22a b ∴<,A 选项正确;1b b a a-=>-,B 选项错误;由基本不等式可得2baa b +≥=,当且仅当1b a =时等号成立,1b a >,则等号不成立,所以2baa b +>,C 选项正确;0b a <<,2b ab ∴>,D选项正确.故选:B.【点睛】本题考查不等式正误的判断,涉及不等式的基本性质和基本不等式,考查推理能力,属于基础题.7.C 【分析】由题意,p ⌝为真命题,进而可得p ⌝为真命题时的充要条件,再根据充分与必要条件的性质判断选项即可. 【详解】命题2:R,240p x ax ax ∃∈+-≥为假命题,即命题2:R,240p x ax ax ⌝∀∈+-<为真命题.首先,0a =时,40-<恒成立,符合题意; 其次0a ≠时,则0a <且2(2)160a a ∆=+<,即40a ,综上可知,40a .结合选项可得,{}{}3040a a a a -≤≤⊆-<≤,即:30a -≤≤是40a 的一个充分不必要条件. 故选:C8.C 【分析】记U A B =⋃,然后分析每个选项对应的集合的运算并求解出结果进行判断即可.【详解】因为{}1,2,4A =,{}2B x x A=∈,所以{}2,B =--,记{}2,U AB ==--,对于A 选项,其表示(){}4U A B =,不满足;对于B 选项,其表示(){}2,U A B =--,不满足;对于C 选项,其表示(){2,U A B =--,满足;对于D 选项,其表示{}1,2A B =,不满足;故选:C.9.BC 【分析】结合元素与集合的关系,集合元素的互异性来求得a 的值.【详解】依题意5A ∈,当215a+=时,2a =或2a =-,若2a =-,则{}{}2,5,12,0,4A B ==,符合题意;若2a =,则220a a --=,对于集合B ,不满足集合元素的互异性,所以2a =不符合.当245a a -=时,1a =-或5a =,若1a =-,则212a +=,对于集合A ,不满足集合元素的互异性,所以1a =-不符合.若5a =,则{}{}2,26,5,0,18A B ==,符合题意. 综上所述,a 的值为2-或5. 故选:BC10.BCD 【分析】由已知结合基本不等式及其变形形式分别检验各选项即可判断.【详解】由正实数,a b 满足1a b +=,则2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以ab 的最大值为14,故A 选项错误;由()222a b a b =+++=12a b ==时,,故B 选项正确;由11111(33)22322a b a b a b a b a b ⎛⎫+=++ ⎪++++⎝⎭111[(2)(2)]3221222322a b a b a b a b a b a b a b a b ⎛⎫=++++ ⎪++⎝⎭++⎛⎫=++ ⎪++⎝⎭14233⎛≥+= ⎝,当且仅当12a b ==时,等号成立,所以1122a b a b +++有最小值43,故C 选项正确;由222222()1()2()2222a b a b a b a b ab a b ++⎛⎫+=+-≥+-⨯== ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以22a b +有最小值12,故D 选项正确. 故选:BCD.11.BCD 【解析】举反例说明选项A 错误;利用不等式的性质证明出选项B ,C 正确;利用作差法证明出选项D 正确.【详解】选项A :当取1a =,1b =-时,11b a <,∴本命题是假命题. 选项B :已知0a b >>,0cd <<,所以110dc->->,∴abd c ->-,故abd c <,∴本命题是真命题. 选项C :222211000a b a b a b >>⇒>>⇒<<,∵0c <,∴22cca b >,∴本命题是真命题. 选项D :111100b aa b a b ab->⇒->⇒>, ∵a b >,∴0b a -<,∴0ab <,∴本命题是真命题. 故选:BCD【点睛】本题考查不等式的性质,考查命题的真假,属于基础题. 12.AB 【解析】根据假命题的否定为真命题可知3x M x ∀∈≤,,又x M x x ∀∈>,,求出命题成立的条件,求交集即可知M 满足的条件.【详解】3x M x ∃∈>,为假命题,3x M x ∴∀∈≤,为真命题,可得(,3]M ⊆-∞,又x M x x ∀∈>,为真命题, 可得(,0)M ⊆-∞, 所以(,0)M ⊆-∞,故选:AB【点睛】本题主要考查了含量词命题的真假,集合的包含关系,属于中档题.13.20,30x x ax ∃≥-+≤【分析】直接利用存在量词写出其否定即可. 【详解】因为命题2:0,30p x x ax ∀≥-+>, 所以其否定p ⌝:20,30x x ax ∃≥-+≤.故答案为:20,30x x ax ∃≥-+≤.14.()5,6【分析】根据充分与必要条件,可得p ,q ,r 中集合的包含关系,再根据区间端点列式求解即可.【详解】易得:610p x ≤≤.记p ,q ,r 中x 的取值构成的集合分别为A ,B ,C ,由于r 是p 的必要不充分条件,r 是q 的充分不必要条件,则AC ,CB ,则016210a a a >⎧⎪≤<⎨⎪>⎩,解得56a <<,即实数a 的取值范围是()5,6.故答案为:()5,615.{}1,2【分析】先求出集合B 中的元素,再由C 的子集有4个,可知集合C 中只有2个元素,然后分1,2a a ==和1a ≠且2a ≠三种情况求解即可.【详解】由2(1)0x a x a -++=,得1x =或x a =, 因为集合C = A B ,且C 的子集有4个, 所以集合C 中只有2个元素, ①当1a =时,{}1B =,因为{}1,2A =,所以{}1,2A B ⋃=,即{}1,2C =,所以1a =满足题意,②当2a =时,{}1,2B =,因为{}1,2A =,所以{}1,2A B ⋃=,即{}1,2C =,所以2a =满足题意, ③当1a ≠且2a ≠时,{}1,B a =, 因为{}1,2A =,所以{}1,2,A B a =,即{}1,2,C a =,不合题意,综上,1a =或2a =,所以实数a 的取值集合为{}1,2, 故答案为:{}1,216.32-【分析】由题知3a <,进而分0<<3a 和0a <两种情况,结合基本不等式求解即可.【详解】解:因为3a b +=,0b >,所以30b a =->,即3a <.当0<<3a 时,11173||99999a ab a b a a b a b a b ++=+=++≥+, 当且仅当34a =时取等号,所以当34a =时,13a a b+取得最小值79;当0a <时,11139999a a b a b a a ba b a b ++=--=---≥-+59=, 当且仅当32a =-时取等号,所以当32a =-时,13a a b+取得最小值59.综上所述,当32a =-时,13a a b+取得最小值.故答案为:32-17.(1)11a b <(2)()()()()3746x x x x ++<++【分析】(1)利用差比较法比较大小. (2)利用差比较法比较大小.(1)11110,0,0,0,b a b a ab b a a b ab a b-<<>-<-=<<.(2)()()()()()()()()4630,737634x x x x x x x x ++=-<-+<+++++.18.(1){|05}A B x x ⋃=<≤;R(){05}A B x x x ⋃=≤>∣或;(2)52m ≤. 【分析】(1)由并集的定义及补集的定义进行计算即可; (2)BC C =等价于C B ⊆,按B =∅和B ≠∅讨论,分别列出不等式,解出实数m 的取值范围. (1)∵集合{|15}A x x =<≤,{}|04B x x =<<, ∴{|05}A B x x ⋃=<≤;R(){05}A B x x x ⋃=≤>∣或.(2) 因为BC C =,所以C B ⊆,当B =∅时,则121m m +≥-,即2m ≤;当B ≠∅时,则12110214m m m m +<-⎧⎪+≥⎨⎪-≤⎩,解得522m <≤;综上,实数m 的取值范围为52m ≤.19.(1)8,7a b ==;(2)11(,)(,)87-∞-⋃+∞【分析】(1)由解集得到方程20x ax b -+=的根,利用韦达定理可求,a b .(2)利用(1)中的结果并把分式不等式转化为一元二次不等式可求解集.【详解】(1)因为不等式20x ax b -+<的解集是{}17x x <<. 所以20x ax b -+=的解是1和7.故1771ab +=⎧⎨⨯=⎩,解得 87a b =⎧⎨=⎩. (2)由101ax bx +>-得81071x x +>-,即()()81710x x +->, 解得18x <-或17x >,故原不等式的解集为11(,)(,)87-∞-⋃+∞. 20.(1)64;(2)18.【解析】(1)由280x y xy +-=,得到821x y +=,利用基本不等式,即可求解. (2)由280x y xy +-=,得821x y +=,根据8282()()10y xx y x y x y x y +=++=++,结合不等式,即可求解.【详解】(1)由280x y xy +-=,可得821x y +=,又由0,0x y >>,可得821x y =+≥,当且仅当82x y =,即4x y =时,等号成立,即64xy ≥, 所以xy 的最小值为64. (2)由280x y xy +-=,得821x y +=,因为0,0x y >>,可得8282()()101018y x x y x y x y x y +=++=++≥+, 当且仅当82y xx y =,即12,6x y ==时等号成立,所以x y +的最小值为18.【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”:(1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 21.(1)[0,254] (2){}|2a a <【分析】(1)首先求解集合A ,再求二次函数的值域;(2)首先将不等式,参变分离得2452x x a x -+-<-,转化为求函数的最值,即可求解. (1)2230x x --≤等价于()()2310x x -⋅+≤,.解得312x -≤≤所以3|12A x x ⎧⎫=-≤≤⎨⎬⎩⎭. ∴二次函数223253424y x x x ⎛⎫=-++=--+ ⎪⎝⎭, 函数在区间31,2⎡⎤-⎢⎥⎣⎦单调递增,所以当32x =时,y 取最大值为254, 当1x =-时,y 取最小值为0,所以二次函数234y x x =-++.x A ∈的值域是[0,254]. (2)由(1)知3|12A x x ⎧⎫=-≤≤⎨⎬⎩⎭ ∵()24520x a x a +-+->恒成立. 即24520x ax x a +-+->恒成立.∴()2245x a x x -⋅>-+-恒成立. .∵312x -≤≤.∴20x -<.()()222214545122222x x x x x a x x x x x-+-+--+∴<===-+----∵20x ->,∴()1222x x-+≥-.. 当且仅当122x x -=-且312x -≤≤时,即1x =时,等号成立,. ∴2a <,故a 的取值范围为{}|2a a < 22.(1)31a b ==, (2)32a -≤<-或45a <≤ (3)53a ≥-【分析】(1)根据二次函数与对应不等式和方程的关系,利用根与系数的关系,即可求出a 、b 的值;(2)由()1f x b <-得()23220x a x a -+++<,令()()2322h x x a x a =-+++,求出()0h x <解集中恰有3个整数时a 的取值范围即可.(3)由()f x b ≥在[]31x ∈--,上恒成立,知()23210x a x a -+++在[]31x ∈--,上恒成立,化简得()()222213122x x x x a x x -+---+=--,设[]253t x =-∈--,,()2111t t g t t t t+-==-+,求出()g t 的最大值,进一步求出实数a 的取值范围;(1)解:因为函数()()2321f x x a x a b =-++++,a ,b R ∈,又()0f x >的解集为{2|x x <或4}x >,所以2,4方程()23210x a x a b -++++=的两根,由()2432421a a b ⎧+=+⎨⨯=++⎩, 解得31;a b ==, (2)由()1f x b <-得()23220x a x a -+++<, 令()()2322h x x a x a =-+++,则()()()()12h x x a x =-+-,知()20h =,故()0h x <解集中的3个整数只能是3,4,5或1-,0,1;①若解集中的3个整数是3,4,5,则516a <+≤,得45a <≤;②解集中的3个整数是1-,0,1;则211a -≤+<-,得32a -≤<-;综上,由①②知,实数a 的取值范围为32a -≤<-或45a <≤. (3)因为函数()()2321f x x a x a b =-++++,a ,b R ∈,由()f x b 在[]31x ∈--,上恒成立,知()23210x a x a -+++在[]31x ∈--,上恒成立, 化简得()()222213122x x x x a x x -+---+=--,设[]253t x =-∈--,, 设()2111t t g t t t t +-==-+,因为在()g t 在[]53--,上单调递增, 即()153133g t --+=--,所以53a ≥-. 23.(1)40吨(2)不会获利,700万元【分析】(1)根据已知条件,结合基本不等式的公式,即可求解.(2)当3050x ≤≤时,该工厂获利S ,则()2220401600(30)700S x x x x =--+=---,再结合二次函数的性质,即可求解. (1)由题意可得,二氧化碳的平均处理成本1600()40yP x x x x==+-,3050x ≤≤,当3050x ≤≤时,1600()404040P x x x =+-≥=, 当且仅当1600x x=,即40x =等号成立, 故()P x 取得最小值为(40)40P =,故当处理量为40吨时,每吨的平均处理成本最少. (2)当3050x ≤≤时,该工厂获利S , 则()2220401600(30)700S x xx x =--+=---,当3050x ≤≤时,max 7000S =-<,故该工厂不会获利,国家至少需要补贴700万元,该工厂不会亏损.。
(人教版A版2017课标)高中数学高一年级上册期末测试03含答案解析
加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!期末测试一、选择题1.设集合2{|7120}A x x x =-+-<,{|(6)0}B x x x =∈-N ,则A B = ( ) A .[0,3)(4,6] B .(0,3)(4,6) C .{1,2,5,6}D .{0,1,2,5,6}2.若4tan 3α=,且α为第三象限角,则πcos 2α⎛⎫+= ⎪⎝⎭( ) A .45B .35C .35-D .45-3.已知角α的终边经过点(1,,则sin α=( )A .B .CD 4.若x y >,则下列不等式正确的是( ) A .22x y >B .11x y<C .1199x y⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭< D .ln ln x y >5.下列函数中,不能用二分法求函数零点的是( ) A .()31f x x =- B .2()21f x x x =-+ C .3()log f x x =D .()2x f x e =-6.《九章算术》是我国算术名著,其中有这样一个问题:今有碗田,下周三十步,径十六步,问为田几何?意思是说现有扇形田,弧长三十步,直径十六步,问面积多少?书中给出计算方法,以径乘周,四而一,即扇形的面积等于直径乘以弧长再除以4,在此问题中,扇形的圆心角的弧度数是( ) A .415B .154C .158D .1207.非零向量a,b 互相垂直,则下面结论正确的是( )A .||||a b =B .a b a b +=-C .||||a b a b +=-D .()()0a b a b +⋅-=8.设1ln2a =,lg3b =,1215c -⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( ) A .a b c <<B .c a b <<C .c b a <<D .b c a <<9.函数20.6()log (67)f x x x =+-的单调递减区间是( ) A .(,7)-∞-B .(,3)-∞-C .(3,)-+∞D .(1,)+∞10.函数π()sin()0,0,||2f x A x A ωϕωϕ⎛⎫=+ ⎪⎝⎭>><的部分图象如图所示,则以下关于()f x 性质的叙述正确的是( )A .最小正周期为2π3B .是偶函数C .π12x =-是其一条对称轴D .π,04⎛⎫- ⎪⎝⎭是其一个对称中心 11.已知函数()f x 是定义在R 上的奇函数,对于任意的1x ,2(0,)x ∈+∞,且12x x ≠,有1212()[()()]0x x f x f x -->,若2=0f (),则(2)()0x f x ->的解集为( )A .(2,0)(0,)-+∞B .(,2)(0,2)-∞-C .(2,0)(0,2)-D .(,2)(0,2)(2,)-∞-+∞12.设函数2()|5|(4)f x x x a x =--+,若函数()f x 恰有4个零点,则实数a 的取值范围为( )A .250,26⎛⎫ ⎪⎝⎭B .(0,1)C .252526⎛⎫ ⎪⎝⎭, D .(1,25)二、填空题:本题共4小题,每小题5分,共20分.13.已知命题p 为[0,)x ∀∈+∞,10ax + ,则p ⌝为__________.14.函数()f x __________.15.已知向量(1,)a λ=,(2,3)b =- ,若a b - 与b 共线,则λ=__________.16.设函数2()24f x mx mx =--,若对于[2x ∈,3],()4f x m -<恒成立,则实数m 的取值范围为__________. 三、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知函数()log a f x x =(0a >且1a ≠)的图象过点1,24⎛⎫ ⎪⎝⎭.(Ⅰ)求(2)f 的值; (Ⅱ)计算12lg lg5a a --+.18.如图,在平行四边形ABCD 中,M 为DC 的中点,13BN BC =,设,AB a AD b == .(Ⅰ)用向量,a b表示向量,,AM AN MN ;(Ⅱ)若||2,||3a b == ,a与b 的夹角为π3,求AM MN ⋅ 的值.19.已知函数()f x 是奇函数,当(0,1]x ∈时,()21x f x =-. (Ⅰ)求[1,0)x ∈- 时,()f x 的解析式;(Ⅱ)当[1,0)x ∈-时,判断()f x 的单调性并加以证明.20.已知函数2π()2sin(23f x x =+,将()f x 的图象向右平移π6单位长度,再向下平移1个单位长度得到函数()g x 的图象.(Ⅰ)求函数()g x 的递增区间;(Ⅱ)当π0,4x ⎡⎤∈⎢⎥⎣⎦时,求()g x 的最小值以及取得最小值时x 的集合.21.美国对中国芯片的技术封锁,这却激发了中国“芯”的研究热潮.某公司研发的A ,B 两种芯片都已经获得成功.该公司研发芯片已经耗费资金2千万元,现在准备投入资金进行生产,经市场调查与预测,生产A 芯片的毛收入与投入的资金成正比,已知每投入1千万元,公司获得毛收入0.25千万元;生产B 芯片的毛收入y (千万元)与投入的资金x (千万元)的函数关系为(0)a y kx x =>,其图象如图所示. (Ⅰ)试分别求出生产A ,B 两种芯片的毛收入y (千万元)与投入资金x (千万元)的函数关系式; (Ⅱ)如果公司只生产一种芯片,生产哪种芯片毛收入更大?(Ⅲ)现在公司准备投入4亿元资金同时生产A ,B 两种芯片,设投入x 千万元生产B 芯片,用()f x 表示公司所获利润,当x 为多少时,可以获得最大利润?并求最大利润.(利润A =芯片毛收入B +芯片毛收入-研发耗费资金)22.已知向量(1,)x m a -= ,,(1)x n a =-,其中0a >,且1a ≠,设函数()f x m n =⋅ ,且80(2)9f =.(Ⅰ)求a 的值;(Ⅱ)当[0,1]x ∈时,是否存在实数λ使22()2()x x g x a a f x λ-=+-的最小值为2-?若存在,求出λ的值;若不存在,请说明理由.期末测试 答案解析一、 1.【答案】D【解析】{}|34A x x x =∵<或>,{}{|06}0,1,2,3,4,5B x x =∈=N ,∴{0,1,2,5,6}A B = . 故选:D . 2.【答案】A【解析】4sin tan 3cos ααα==∵,且α为第三象限角,4sin 5α=-∴,3cos 5α=-,则π4cos()sin 25αα+=-=,故选:A . 3.【答案】B【解析】∵角α的终边经过点(1,,∴sin α=,故选:B . 4.【答案】C 【解析】x y >.A .取1x =,2y =-,可知:22x y <,因此不正确.B .取1x =,2y =-,可知:11x y,因此不正确.C .根据函数19x y ⎛⎫= ⎪⎝⎭在R 上单调递减,可得:1199x y⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<,因此正确.D .取1x =-,2y =-,可知:ln x ,ln y 不存在,因此不正确. 故选:C . 5.【答案】B【解析】22()21(1)f x x x x =-+=-, 所以(1)0f =, 当1x <时,()0f x >; 当1x >时,()0f x >,在零点两侧函数值同号,不能用二分法求零点,其余的零点两侧函数值异号. 故选:B . 6.【答案】B【解析】扇形中,弧长为30l =,直径为16d =, 面积为30164120S =⨯÷=;扇形的圆心角弧度数是301584l r α===. 故选:B . 7.【答案】C【解析】非零向量a,b 互相垂直,则0a b = ; ∴22222()2a b a a b b a b +=+⋅+=+ , 22222()2a b a a b b a b -=-⋅+=+ ; ∴||||a b a b +=-,C 正确.故选:C . 8.【答案】A【解析】1ln 02a =,lg3(0,1)b =∈,12115c -⎛⎫== ⎪⎝⎭,∴a b c <<.故选:A . 9.【答案】D【解析】由2670x x +->,解得7x -<或1x >,20.6()log (67)f x x x =+-∴的定义域为(,7)(1,)-∞-⋃+∞.令267t x x =+-,此内层函数在(,7)-∞-上单调递减,在(1,)+∞上单调递增, 而0.6log y t =是定义域内的减函数,20.6()log (67)f x x x =+-∴的单调递减区间是(1,)+∞.故选:D . 10.【答案】C【解析】由图象知2A =,5πππ41264T =-=, 则πT =,即2ππω=,得2ω=,即()2sin(2)f x x ϕ=+,由五点对应法得5ππ2122ϕ⨯+=得π5ππ263ϕ=-=-, 即π()2sin(2)3f x x =-.则函数的周期2ππ2T ==,故A 错误, ()f x 为非奇非偶函数,故B 错误,ππππ(2sin[2()2sin()2121232f -=⨯--=-=-为最小值,则π12x =-是函数的一条对称轴,故C 正确, πππ5π()2sin[2()]2sin()04436f -=⨯--=-≠,则π,04⎛⎫- ⎪⎝⎭不是函数的对称中心,故D 错误,故选:C . 11.【答案】D【解析】对于任意的1x ,2(0,)x ∈+∞,且12x x ≠,有1212()[()()]0x x f x f x -->, 即()f x 在(0,)+∞上单调递增,且(2)0f =,∵函数()f x 是定义在R 上的奇函数,∴(2)0f -=,(0)0f =,且在(,0)-∞上单调递增, 则(2)()0x f x ->等价于2()0x f x ⎧⎨⎩>>或2()0x f x ⎧⎨⎩<<,解可得,2x >或2x -<或02x <<,故不等式的解集为{}|2202x x x x ->或<或<<. 故选:D . 12.【答案】B【解析】记2()|5|g x x x =-,()(4)h x a x =+,函数()f x 恰有4个零点, 等价于函数()g x 与函数()h x 的图象恰有4个不同的交点, 作出两个函数的图象,易知0a >,因为()y h x =的图象过点(4,0)-,由2(5)(4)y x x y a x ⎧=--⎨=+⎩得,2(5)40x a x a +-+=,由2(5)160a a ∆=-->,解得1a <或25a >(舍去), 故01a <<, 故选:B .二、13.【答案】[0,)x ∃∈+∞,10ax +<【解析】命题为全称命题,则命题p 为[0,)x ∀∈+∞,10ax + 的否定为[0,)x ∃∈+∞,10ax +<,故答案为:[0,)x ∃∈+∞,10ax +<.14.【答案】(5,6]【解析】函数()f x =令19log (5)0x - ,所以051x -< , 解得56x < ;所以函数()f x 的定义域为(5,6]. 故答案为:(5,6].15.【答案】32-【解析】向量(1,)a λ=,(2,3)b =- ,则(3,3)a b λ-=-, 又a b - 与b共线,则2(3)330λ---⨯=,解得32λ=-. 故答案为:32-.16.【答案】(,2)-∞【解析】函数2()24f x mx mx =--, 即2244mx mx m ---<,[2,3]x ∈恒成立,[2,3]x ∈,()4max f x m -<;当0m =时,()44f x =-<,不等式恒成立, 当0m ≠时,22()24(1)4f x mx mx m x m =--=---∵二次函数的对称轴为1x =. ∴若0m >,()max ()334f x f m ==-由344m m --<,得02m <<; 若0m <,()max ()24f x f ==-; 由44m --<,得8m <,0m ∴<;综上,可得实数m 的取值范围为(,2)-∞.故答案为:(,2)-∞.三、17.【答案】(Ⅰ)∵()log (0,1)a f x x a a =≠>的图象过点1,24⎛⎫⎪⎝⎭,1log 24a=∴, 214a =∴,且0a >,12a =∴,∴12()log f x x =,则12(2)log 21f ==-;(Ⅱ)12a =∵,∴112211lg lg5lg lg5lg2lg5122aa --⎛⎫-+=-+=+=+ ⎪⎝⎭.18.【答案】(Ⅰ)因为在平行四边形ABCD 中,M 为DC 的中点,13BN BC =,又AB a = ,AD b = ,故1122AM AD DM AD AB a b =+=+=+ ,1133AN AB BN AB AD a b =+=+=+ ,11123223MN AN AM a b a b a b ⎛⎫⎛⎫=-=+-+=- ⎪ ⎪⎝⎭⎝⎭.(Ⅱ)2211212192234362AM MN a b a b a b a b ⎛⎫⎛⎫⋅=+⋅-=-+⋅=- ⎪ ⎪⎝⎭⎝⎭ ,故答案为:92-.19.【答案】(Ⅰ)设[1,0)x ∈-,则(0,1]x -∈,[1,0)x ∈-时,()21x f x =-. ()21()x f x f x --=-=-,1()12xf x ⎛⎫=-+ ⎪⎝⎭∴,(Ⅱ)函数()f x 在[1,0)-上单调递增, 设1210x x -<< ,2111022x x⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭∴<, 则211211()()022x xf x f x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭<, ()f x 在(1,1)-上单调递增.20.【答案】(Ⅰ)把函数2π()2sin 23f x x ⎛⎫=+ ⎪⎝⎭的图象向右平移π6单位长度, 可得π2ππ2sin 22sin 2333y x x ⎛⎫⎛⎫=-+=+ ⎪ ⎪⎝⎭⎝⎭的图象; 再向下平移1个单位长度得到函数π()sin 213g x x ⎛⎫=+- ⎪⎝⎭的图象. 令πππ2π22π232k x k -++ ,求得5ππππ1212k x k -+ , 可得函数()g x 的递增区间为5πππ,π1212k k ⎡⎤-+⎢⎥⎣⎦,k ∈Z . (Ⅱ)当π0,4x ⎡⎤∈⎢⎥⎣⎦时,ππ5π2,336x ⎡⎤+∈⎢⎥⎣⎦, 当π5π236x +=时,函数()g x 取得最小值为0,此时,x 的取值集合为π{|}4x x =. 21.【答案】(Ⅰ)因为生产A 芯片的毛收入与投入的资金成正比,所以设为0y k x =,且1x =时,14y =,代入解得014k =,则生产A 芯片的毛收入(0)4x y x =>; 将(1,1),(4,2)代入a y kx =,得142a k k =⎧⎨⨯=⎩,解得112k a =⎧⎪⎨=⎪⎩,所以,生产B芯片的毛收入为0)y x =>. (Ⅱ)由(1)知,当4x 时,解得16x >,可知 当投入资金大于16千万元时,生产A 芯片的毛收入大;当投入资金等于16千万元时,生产A 、B 两种芯片的毛收入相等;当投入资金小于16千万元时,生产B 芯片的毛收入大.(Ⅲ)公司投入4亿元资金同时生产A 、B 两种芯片,设投入x 千万元生产B 芯片,则投入(40)x -千万元资金生产A芯片,公司所获利润)2401()22944x f x -=+=--+2=,即4x =千万元时,公司所获利润最大,最大利润为9千万元.22.【答案】(Ⅰ)()x x f x m n a a -=⋅=- ,2280(2)9f a a -=-=, ∴4298090a a --=,解得29a =,即3a =;(Ⅱ)当3a =时,222()332(33)(33)2(33)2x x x x x x x x g x λλ----=+--=---+, 当[0,1]x ∈时,假设存在实数λ,使()g x 的最小值2-,令33x x t -=-, ∵[0,1]x ∈,33x x t -=-在[0,1]是增函数,8[0,]3t ∈∴, 函数()g x 可化为222()22()2h t t t t λλλ=-+=-+-,8[0,]3t ∈, 若8[0,]3λ∈,当t λ=时,2()22min g x λ=-=-,解得2λ=; 若0λ<,当0t =时,()(0)22min g x h ==≠-,舍去; 若83λ>,当83t =时,8648()222393min g x h λ⎛⎫==-⨯+=- ⎪⎝⎭,解得258123λ=,舍去; 故当[0,1]x ∈时,存在实数2λ=时()g x 的最小值为2-.。
人教版一年级上册数学期末测试卷含答案【完整版】
人教版一年级上册数学期末测试卷一.选择题(共8题,共16分)1.商店里有10只,卖出6只,商店里还剩()只杯子。
A.16B.4C.6D.142.有2排小树,一排有6棵,一排有7棵,一共有多少棵?()A.2+6B.2+7C.6+73.大象在猴子的( )边。
A.左B.右C.下4.比一比,哪根铅笔最短?( )A. B. C.5.一共有()个苹果。
A.7B.8C.96.现在是7:00,最准的是()。
A. B. C.7.看图列式计算,正确的是()A. 8+7=15B. 8-7=1C. 15-8=78.一个计数器十位上有两个珠子,个位上一个都没有,这个数是()。
A.9B.10C.20二.判断题(共8题,共16分)1.聪聪比明明大1岁,也就是明明比聪聪小1岁。
()2.淘气比妙想多做11道口算题,妙想说:“我再做11道口算题就和淘气一样多。
”()3.同学们排队做操,小明前面有4个人,后面有4个人,这一队一共有8个人。
()4.分针从一个数字走到下个数字,经过的时间是1分。
()5.我晚上睡觉的时间如图所示,妈妈比我晚睡1小时,妈妈睡觉的时间是晚上10时。
()6.一共有4只小蜜蜂,列式为2+2=4。
()7.老师用的粉笔是圆柱体。
()8.比16大且比20小的数有3个。
()三.填空题(共8题,共34分)1.小明家住14楼,他已经到了3楼,还剩()层楼。
2.认一认,写一写。
3.在横线上填上“>”、“<”或“=”。
10-8_______9-7 2+6_______10 6+4_______7+24.填一填。
(1)8在3的()面,在0的()边。
(2)2在()的左边,在()的下面。
(3)4的右边是(),0的()是8。
(4)3的()面是6。
5.写出三个比6大,比12小的数:()、()、()。
6.给数字找家。
(把数字填在对应的方格里)①20的上面是2,9在20的下面。
②12在20的左边,20的右边是14。
③12的下面是8,8在9的()边。
2024年最新人教版一年级数学(上册)期末试卷及答案(各版本)
2024年最新人教版一年级数学(上册)期末试卷及答案(各版本)一、选择题(每题10分,共100分)1. 下列哪个数字最大?A. 5B. 10C. 15D. 202. 小明有3个苹果,小红比小明多2个苹果,小红有多少个苹果?A. 1B. 3C. 5D. 63. 4 + 5 = ?A. 8B. 9C. 10D. 114. 下列哪个是偶数?A. 3B. 4C. 55. 下列哪个是加法运算?A. 5 3B. 4 + 2C. 6 2D. 8 / 46. 小华有10个糖果,他吃掉了3个,还剩几个糖果?A. 3B. 7C. 10D. 137. 下列哪个数字最小?A. 8B. 9C. 10D. 118. 下列哪个是减法运算?A. 5 + 3B. 4 2C. 6 2D. 8 / 49. 下列哪个是奇数?A. 2B. 3D. 610. 小刚有15个球,他给小明5个球,小刚还剩几个球?A. 10B. 15C. 20D. 25二、判断题(每题10分,共50分)1. 2 + 2 = 4 ( )2. 5 3 = 2 ( )3. 10是偶数 ( )4. 7是奇数 ( )5. 3 + 4 = 7 ( )三、填空题(每题10分,共50分)1. 6 + 4 = __2. 9 5 = __3. 8是偶数还是奇数?答:8是 __ 数。
4. 7 + 3 = __5. 10 6 = __四、解答题(每题20分,共100分)1. 小李有8个橘子,他吃掉了3个,还剩几个橘子?请写出计算过程。
2. 小王有5个铅笔,他又买了4个铅笔,现在小王有多少个铅笔?请写出计算过程。
3. 下列数字中,哪些是偶数?请列出所有偶数。
数字:2, 3, 4, 5, 6, 7, 8, 9, 104. 下列数字中,哪些是奇数?请列出所有奇数。
数字:2, 3, 4, 5, 6, 7, 8, 9, 105. 小赵有12个石头,他给小钱6个石头,小赵还剩几个石头?请写出计算过程。
人教A版新教材高一上学期期末考试数学试卷(共五套)
人教版新教材高一上学期期末考试数学试卷(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}210A x x =-<,{}01B x x =≤≤,那么A B 等于( ) A .{}0x x ≥B .{}1x x ≤C .102x x ⎧⎫<<⎨⎬⎩⎭D .102x x ⎧⎫≤<⎨⎬⎩⎭2.若12cos 13x =,且x 为第四象限的角,则tan x 的值等于( ) A .125 B .125-C .512D .512-3.若2log 0.5a =,0.52b =,20.5c =,则,,a b c 三个数的大小关系是( ) A .a b c << B .b c a << C .a c b <<D .c a b <<4.已知1(1)232f x x -=+,且()6f m =,则m 等于( )A .14B .14-C .32D .32-5.已知5()tan 3,(3)7f x a x bx cx f =-+--=,则(3)f 的值为( ) A .13-B .13C .7D .7-6.已知()f x 是定义在R 上的偶函数,且有(3)(1)f f >.则下列各式中一定成立的是( ) A .(1)(3)f f -< B .(0)(5)f f < C .(3)(2)f f >D .(2)(0)f f >7.已知()f x 是定义在R 上的奇函数,当0x ≥时,()5x f x m =+(m 为常数),则5(log 7)f -的值为( ) A .4 B .4-C .6D .6-8.函数11y x=-的图象与函数2sin π(24)y x x =-≤≤的图象所有交点的横坐标之和等于( ) A .8B .6C .4D .29.已知tan α,1tan α是关于x 的方程2230x kx k -+-=的两个实根,73ππ2α<<, 则cos sin αα+=( ) ABC.D.10.若函数,1()(4)2,12x a x f x ax x ⎧≥⎪=⎨-+<⎪⎩,且满足对任意的实数12x x ≠都有1212()()0f x f x x x ->-成立,则实数a 的取值范围是( )A .(1,)+∞B .(1,8)C .(4,8)D .[4,8)11.已知ππ()sin(2019)cos(2019)63f x x x =++-的最大值为A ,若存在实数12,x x ,使得对任意实数x 总有12()()()f x f x f x ≤≤成立,则12A x x -的最小值为( )A .π2019B .2π2019C .4π2019D .π403812.已知()f x 是定义在[4,4]-上的奇函数,当0x >时,2()4f x x x =-+,则不等式[()]()f f x f x <的解集为( ) A .(3,0)(3,4]-B .(4,3)(1,0)(1,3)---C .(1,0)(1,2)(2,3)-D .(4,3)(1,2)(2,3)--第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.5log 30.75333322log 2log log 825169-+-+=_______. 14.已知()1423x x f x +=--,则()0f x <的解集为_______.15.方程22210x mx m -+-=的一根在(0,1)内,另一根在(2,3)内,则实数m 的取值范围是______.16.若实数a ,b 满足0a ≥,0b ≥,且0ab =,则称a 与b 互补.记(,)a b a b ϕ=-,那么“(,)0a b ϕ=”是“a 与b 互补”的 条件.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)已知集合{}123A x m x m =-≤≤+,函数2()lg(28)f x x x =-++的定义域为B .(1)当2m =时,求A B 、()A B R ;(2)若A B A =,求实数m 的取值范围.18.(12分)已知函数()log (1)log (1)a a f x x x =+--,0a >且1a ≠. (1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明; (3)当1a >时,求使()0f x >的x 的解集.19.(12分)已知函数()2πcos sin()1()3f x x x x x =+∈R .(1)求()f x 的最小正周期;(2)求()f x 在区间ππ[,]44-上的最大值和最小值,并分别写出相应的x 的值.20.(12分)已知函数()f x 是定义在R 上的偶函数,且当0x ≥时,2()2f x x x =-. (1)求(0)f 及((1))f f 的值;(2)求函数()f x 在(,0)-∞上的解析式;(3)若关于x 的方程()0f x m -=有四个不同的实数解,求实数m 的取值范围.21.(12分)设函数()y f x =的定义域为R ,并且满足()()()f x y f x f y -=-,且()21f =,当0x >时,()0f x >. (1)求(0)f 的值;(2)判断函数()f x 的奇偶性;(3)如果()(2)2f x f x ++<,求x 的取值范围.22.(12分)已知定义域为R 的函数12()22x x b f x +-+=+是奇函数.(1)求b 的值;(2)判断函数()f x 的单调性,并用定义证明;(3)当1[,3]2x ∈时,2()(21)0f kx f x +->恒成立,求实数k 的取值范围.【答案解析】 第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】D【解析】因为12A x x ⎧⎫=<⎨⎬⎩⎭,{}01B x x =≤≤,所以102A B x x ⎧⎫=≤<⎨⎬⎩⎭.2.【答案】D【解析】因为x 为第四象限的角,所以5sin 13x =-,于是5tan 12x =-,故选D . 3.【答案】C【解析】2log 0.50a =<,0.521b =>,200.51c <=<,则a c b <<,故选C . 4.【答案】B【解析】因为1(1)232f x x -=+,设112x t -=,则22x t =+,所以()47f t t =+,因为()6f m =,所以476m +=,解得14m =-,故选B .5.【答案】A 【解析】5()tan 3f x a x bx cx =-+-,()()6f x f x ∴+-=-,(3)7f -=,(3)6713f ∴=--=-.故选A . 6.【答案】A【解析】∵()f x 是定义在R 上的偶函数,∴(1)(1)f f =-, 又(3)(1)f f >,∴(3)(1)f f >-,故选A . 7.【答案】D【解析】由奇函数的定义可得(0)10f m =+=,即1m =-,则5log 755(log 7)(log 7)51716f f -=-=-+=-+=-.故选D .8.【答案】A 【解析】函数111y x=-,22sin π(24)y x x =-≤≤的图象有公共的对称中心(1,0), 如图在直角坐标系中作出两个函数的图象,当14x <≤时,10y <,而函数2y 在(1,4)上出现1.5个周期的图象,且在3(1,)2和57(,)22上是减函数,在35(,)22和7(,4)2上是增函数.∴函数1y 在(1,4)上函数值为负数,且与2y 的图象有四个交点E 、F 、G 、H , 相应地,1y 在(2,1)-上函数值为正数,且与2y 的图象有四个交点A 、B 、C 、D , 且2A H B G C F D E x x x x x x x x +=+=+=+=, 故所求的横坐标之和为8,故选A . 9.【答案】C 【解析】∵tan α,1tan α是关于x 的方程2230x kx k -+-=的两个实根, ∴1tan tan k αα+=,21tan 31tan k αα⋅=-=, ∵73ππ2α<<,∴0k >, ∵24k =,∴2k =,∴tan 1α=,∴π3π4α=+,则cos α=,sin α=,则cos sin αα+=C . 10.【答案】D【解析】∵对任意的实数12x x ≠都有1212()()0f x f x x x ->-成立, ∴函数,1()(4)2,12x a x f x ax x ⎧≥⎪=⎨-+<⎪⎩在R 上单调递增, 1114021(4)122a a a a ⎧⎪>⎪⎪∴->⎨⎪⎪≥-⨯+⎪⎩,解得[4,8)a ∈,故选D . 11.【答案】B【解析】ππ()sin(2019)cos(2019)63f x x x =++-,112019cos 2019cos 201920192222x x x x =+++2019cos 2019x x =+π2sin(2019)6x =+,∴()f x 的最大值为2A =, 由题意得,12x x -的最小值为π22019T =, ∴12A x x -的最小值为2π2019,故选B . 12.【答案】B【解析】∵()f x 是定义在[4,4]-上的奇函数,∴当0x =时,(0)0f =,先求出当[4,0)x ∈-时()f x 的表达式, 当[4,0)x ∈-时,则(0,4]x -∈,又∵当0x >时,2()4f x x x =-+,∴22()()4()4f x x x x x -=--+-=--, 又()f x 是定义在[4,4]-上的奇函数,∴2()()4f x f x x x =--=-+,∴224,[4,0]()4,(0,4]x x x f x x x x ⎧+∈-⎪=⎨-+∈⎪⎩,令()0f x =,解得4x =-或0或4,当[4,0]x ∈-时,不等式[()]()f f x f x <,即2222(4)4(4)4x x x x x x +++<+, 化简得222(4)3(4)0x x x x +++<,解得(4,3)(1,0)x ∈---;当(0,4]x ∈时,不等式[()]()f f x f x <,即2222(4)4(4)4x x x x x x --++-+<-+, 化简得222(4)3(4)0x x x x --++-+<,解得(1,3)x ∈, 综上所述,(4,3)(1,0)(1,3)x ∈---,故选B .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.【答案】1【解析】原式=253log 94433332log 4log log 825(2)9-+-+ 339log (48)98log 91132=⨯⨯-+=-=.14.【答案】2{|log 3}x x <【解析】当()0f x <,即14230,023x x x +--<<<,解得2log 3x <. 15.【答案】(1,2)【解析】设22()21f x x mx m =-+-,则由题意知:函数()f x 的一个零点在(0,1)内,另一个零点在(2,3)内,则有222210(0)0(1)020(2)0430(3)0680m f f m m f m m f m m ⎧->>⎧⎪⎪<-<⎪⎪∴⇒⎨⎨<-+<⎪⎪⎪⎪>⎩-+>⎩,解得12m <<,m 的取值范围是(1,2).16.【答案】充要条件【解析】若(,)0a b ϕ=,a b =+,两边平方整理,得0ab =,且0a ≥,0b ≥,所以a 与b 互补;若a 与b 互补,则0a ≥,0b ≥,且0ab =,所以0a b +≥,此时有(,)()()()0a b a b a b a b ϕ=+=+-+=, 所以“(,)0a b ϕ=”是“a 与b 互补”的充要条件.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1){}27A B x x =-<≤,{}()21A B x x =-<<R ;(2)1(,4)(1,)2-∞--.【解析】根据题意,当2m =时,{}17A x x =≤≤,{}24B x x =-<<, 则{}27A B x x =-<≤, 又{1A x x =<R或}7x >,则{}()21A B x x =-<<R .(2)根据题意,若A B A =,则A B ⊆, 分2种情况讨论:①当A =∅时,有123m m ->+,解可得4m <-; ②当A ≠∅时,若有A B ⊆,必有12312234m m m m -≤+⎧⎪->-⎨⎪+<⎩,解可得112m -<<,综上可得:m 的取值范围是1(,4)(1,)2-∞--.18.【答案】(1){}11x x -<<;(2)奇函数,证明见解析;(3)(0,1)x ∈. 【解析】()log (1)log (1)a a f x x x =+--,若要式子有意义,则1010x x +>⎧⎨->⎩,即11x -<<,所以定义域为{}11x x -<<.(2)()f x 的定义域为(1,1)-,且()log (1)log (1)[log (1)log (1)]()a a a a f x x x x x f x -=-+-+=-+--=-, 所以()f x 是奇函数.(3)又()0f x >,即log (1)log (1)0a a x x +-->, 有log (1)log (1)a a x x +>-.当1a >时,上述不等式101011x x x x +>⎧⎪->⎨⎪+>-⎩,解得(0,1)x ∈.19.【答案】(1)πT =;(2)π4x =时,max 3()4f x =-;π12x =-时,min 3()2f x =-. 【解析】(1)2π()cos sin()13f x x x x=+-+21cos (sin )12x x x x =+-2111cos2sin cos 1sin21242x x x x x +==+-11πsin2cos21sin(2)14423x x x =--=--, 所以()f x 的最小正周期为2ππ2T ==. (2)∵[,]4ππ4x ∈-,∴5π2[,]6ππ36x -∈-, 当ππ236x -=,即π4x =时,max 113()1224f x =⨯-=-, 当ππ232x -=-,π12x =-时,()min 13()1122f x =⨯--=-. 20.【答案】(1)0(0)f =,((1))1f f =-;(2)()22f x x x =+;(3)10m -<<. 【解析】(1)0(0)f =,((1))(1)(1)1f f f f =-==-. (2)设0x <,则0x ->,22()()2()2f x x x x x -=---=+,∵()f x 偶函数,2()()2f x f x x x -==+,∴当0x <时,()22f x x x =+.(3)设函数1()y f x =及2y m =,方程()0f x m -=的解的个数,就是函数1()y f x =与2y m =图象交点的个数. 作出简图利用数形结合思想可得10m -<<.21.【答案】(1)(0)0f =;(2)奇函数;(3){|1}x x <. 【解析】(1)令0x y ==,则(00)(0)(0)f f f -=-,∴(0)0f =. (2)∵()()()f x y f x f y -=-,∴()()()00f x f f x -=-,由(1)知(0)0f =,()()f x f x -=-, ∴函数()f x 是奇函数.(3)设12,x x ∀∈R ,且12x x >,则120x x ->,()()()1212f x x f x f x -=-,∵当0x >时,()0f x >,∴()120f x x ->,即()()120f x f x ->, ∴()()12f x f x >,∴函数()f x 是定义在R 上的增函数,()()()f x y f x f y -=-, ∴()()()f x f x y f y =-+,211(2)(2)(2)(42)(4)f f f f f =+=+=+-=, ∵()(2)2f x f x ++<,∴()(2)(4)f x f x f ++<, ∴()()()(2)44f x f f x f x +<-=-,∵函数()f x 是定义在R 上的增函数,∴24x x +<-,∴1x <, ∴不等式()(2)2f x f x ++<的解集为{|1}x x <.22.【答案】(1)1b =;(2)单调递减,证明见解析;(3)(,1)-∞-. 【解析】(1)因为()f x 是定义在R 上的奇函数, 所以(0)0f =,即1022b-+=+,则1b =, 经检验,当1b =时,12()22x x bf x +-+=+是奇函数,所以1b =.(2)11211()22221x x x f x +-==-+++,()f x 在R 上是减函数,证明如下:在R 上任取12,x x ,且12x x <,则122121211122()()2121(21)(21)x x x x x x f x f x --=-=++++,因为2x y =在R 上单调递增,且12x x <,则12220x x -<, 又因为12(21)(21)0x x ++>,所以21()()0f x f x -<, 即21()()f x f x <,所以()f x 在R 上是减函数.(3)因为2()(21)0f kx f x +->,所以2()(21)f kx f x >--, 而()f x 是奇函数,则2()(12)f kx f x >-, 又()f x 在R 上是减函数,所以212kx x <-, 即221212()x k x x x -<=-在1[,3]2上恒成立, 令1t x =,1[,2]3t ∈,2()2g t t t =-,1[,2]3t ∈, 因为min ()(1)1g t g ==-,则1k <-. 所以k 的取值范围为(,1)-∞-.人教版新教材高一上学期期末考试数学试卷(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
word完整版人教版高小学一年级教学数学上册--期末考习题附答案
最新人教版高一年级数学上册期末考试卷(附答案)本试卷共100分,考试时长120分钟。
第一部分(选择题共39分)一、选择题:本大题共 13小题,每题3分,共39分。
在每个小题给出的四个备选答案中,只有一个是切合题目要求的。
1.设全集是小于9的正整数},A={1,2,3},则等于A. B.C. D.2.函数的最小正周期是A. B. C. D.3.已知函数是奇函数,它的定义域为,则a的值为A.-1 C.4.在同一平面直角坐标系内,与的图象可能是5.函数的零点的个数是A.0B.1C.2D.36.以下图,角的终边与单位圆交于点P,已知点P的坐标为,则=第1页共10页A. B. C. D.7.函数是A.增函数B.减函数C.偶函数D.奇函数8.把可化简为A. B. C. D.9.函数的单一递减区间是A. B. C. D.10.若,则等于A. B. C. D.11.已知,则的大小关系为A. B. C. D.12.已知,当时,为增函数,设,则的大小关系是A. B. C. D.13.渔民出海捕鱼,为了保证获取的鱼新鲜,鱼被打登岸后,要在最短的时间内将其分拣、冷藏,若不实时办理,打上来的鱼会很快地失掉新鲜度(以鱼肉里第2页共10页含有三甲胺量的多少来确立鱼的新鲜度。
三甲胺是一种挥发性碱性氨,是胺的近似物,它是由细菌分解作用产生的,三甲胺量聚集就表示鱼的新鲜度降落,鱼体开始变质从而腐败)。
已知某种鱼失掉的新鲜度h与其出海后时间t(分)知足的函数关系式为h(t)=m·a t,若出海后10分钟,这类鱼失掉的新鲜度为10%,出海后20分钟,这类鱼失掉的新鲜度为20%,那么若不实时办理,打上来的这种鱼会在多长时间后开始失掉所有新鲜度(已知lg2=,结果取整数)A.33分钟B.43分钟C.50分钟D.56分钟第二部分(非选择题共61分)二、填空题:本大题共4小题,每题3分,共12分。
14.函数的最小值是____________。
2024年最新人教版一年级数学(上册)期末试卷及答案(各版本)
2024年最新人教版一年级数学(上册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 下列哪个数是4的倍数?()A. 3B. 5C. 8D. 72. 下列哪个数是5的倍数?()A. 2B. 6C. 9D. 103. 下列哪个数是10的倍数?()A. 7B. 8C. 9D. 114. 下列哪个数是3的倍数?()A. 4B. 5C. 6D. 7二、填空题(每题5分,共20分)1. 5+3=()2. 84=()3. 9+2=()4. 73=()三、判断题(每题5分,共20分)1. 3+4=7,这个等式是正确的。
()2. 52=3,这个等式是正确的。
()3. 6+5=11,这个等式是正确的。
()4. 87=1,这个等式是正确的。
()四、简答题(每题10分,共40分)1. 请用数字和加号、减号填空,使得等式成立:3()4=72. 请用数字和加号、减号填空,使得等式成立:5()2=33. 请用数字和加号、减号填空,使得等式成立:6()5=114. 请用数字和加号、减号填空,使得等式成立:8()7=1五、应用题(每题15分,共60分)1. 小明有3个苹果,小红有4个苹果,他们一共有多少个苹果?2. 小华有5个橘子,吃掉了2个,还剩下多少个橘子?3. 小丽有8个气球,给了小明3个,还剩下多少个气球?4. 小强有9个糖果,分给小红和小丽,每人分到4个,还剩下多少个糖果?六、综合题(20分)1. 小明有3个苹果,小红有4个苹果,小丽有5个苹果,他们一共有多少个苹果?2. 小华有7个橘子,吃掉了3个,小红吃掉了2个,他们一共吃掉了多少个橘子?3. 小丽有8个气球,小明给了她2个,小红给了她3个,她现在有多少个气球?4. 小强有10个糖果,分给小明和小红,每人分到3个,还剩下多少个糖果?5. 小明有6个苹果,小红有7个苹果,小丽有8个苹果,他们一共有多少个苹果?6. 小华有9个橘子,吃掉了4个,小红吃掉了3个,他们一共吃掉了多少个橘子?7. 小丽有10个气球,小明给了她1个,小红给了她2个,她现在有多少个气球?8. 小强有11个糖果,分给小明和小红,每人分到5个,还剩下多少个糖果?9. 小明有7个苹果,小红有8个苹果,小丽有9个苹果,他们一共有多少个苹果?10. 小华有10个橘子,吃掉了5个,小红吃掉了4个,他们一共吃掉了多少个橘子?一、选择题(每题5分,共20分)1. C2. D3. A4. C二、填空题(每题5分,共20分)1. 82. 43. 114. 4三、判断题(每题5分,共20分)1. 正确2. 正确3. 正确4. 正确四、简答题(每题10分,共40分)1. 72. 33. 114. 1五、应用题(每题15分,共60分)1. 7个2. 5个3. 11个4. 2个六、综合题(20分)1. 16个2. 7个3. 13个4. 1个5. 22个6. 9个7. 15个8. 1个9. 24个10. 9个本试卷涵盖了小学一年级数学上册的主要内容,包括数数、加减法、倍数等基础知识点。
(人教版A版2017课标)高中数学高一年级上册期末测试试卷(含答案)02
期末测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}12A =,,22B k ⎧⎫=⎨⎬⎩⎭,,若B A ⊆,则实数k 的值为( ) A .1或2B .12C .1D .22.设U 是全集,M ,P ,S 是U 的三个子集,则阴影部分所示的集合为( )A .()M P S ∩∩B .()()U M P S ∩∪C .()M P S ∩∪D .()()U M P S ∩∩3.12ln 211lg 2lg 54e -⎛⎫---+⎪⎝⎭) A .1-B .12C .3D .5-4.已知方程23log kx x +=的根0x 满足()012x ∈,,则( ) A .3k -<B .1k ->C .31k --<<D .3k -<或1k ->5.设a ,b ,c 均为正数,且122log aa =,121log 2bb ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭,则( )A .a b c <<B .c b a <<C .c a b <<D .b a c <<6.中文“函数(function )”一词,最早由近代数学家李善兰翻译而来,之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,即函数指一个量随着另一个量的变化而变化.下列选项中两个函数相等的是( ) A .lg 10x y =,y x =B .y =,y x =C .y =,y =D .y x =,ln x y e =7.设函数()32log 0220x x f x x x x ⎧⎪=⎨+-⎪⎩,>,,≤,若()1f a =,则a =( )A .3B .3±C .3-或1D .3±或18.若关于x 的方程()20f x -=在()0-∞,内有解,则()y f x =的图像可以是( )ABCD9.若函数()()lg 101xf x ax =++是偶函数,()42x xbg x -=是奇函数,则a b +的值是( )A .12B .1C .12- D .1- 10.若函数()()212log 3f x x ax a =-+在区间()2+∞,上是减函数,则a 的取值范围为( ) A .()[)42-∞-+∞,∪, B .(]44-,C .[)44-,D .[]44-,11.定义在R 上的偶函数()f x 在[)0+∞,上递增,且103f ⎛⎫= ⎪⎝⎭,则满足18log 0f x ⎛⎫⎪⎝⎭>的x 的取值范围是( )A .()0+∞,B .()1022⎛⎫+∞ ⎪⎝⎭,∪,C .110282⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,∪D .102⎛⎫⎪⎝⎭, 12.函数()f x 具有性质()1f f x x ⎛⎫=- ⎪⎝⎭,我们称()f x 满足“倒负”变换.给出下列函数:①1ln 1xy x -=+;②2211x y x -=+;③01111.x x y x x x⎧⎪⎪==⎨⎪⎪-⎩,<<,0,,>其中满足“倒负”变换的是( ) A .①②B .①③C .②③D .①二、填空题:本大题共4小题,每小题5分,共20分. 13.函数y =的定义域是________.14.若函数()()1a f x m x =-是幂函数,则函数()()log a g x x m =-(其中0a >,1a ≠)的图像过定点A 的坐标为_______.15.设函数()220log 0x x f x x x ⎧=⎨⎩,≤,,>,那么函数()1y f f x =⎡⎤-⎣⎦的零点的个数为_______.16.给出以下四个命题:①若集合{}A x y =,,{}20B x =,,A B =,则1x =,0y =;②若函数()f x 的定义域为()11-,,则函数()21f x +的定义域为()10-,; ③函数()1f x x=的单调递减区间是()()00-∞+∞,∪,; ④若()()()f x y f x f y +=,且()11f =,则()()()()()()()()242014201620161320132015f f f f f f f f +++=…+.其中正确的命题有_______.(写出所有正确命题的序号)三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知指数函数()g x 的图像经过点()38P ,. (1)求函数()g x 的解析式;(2)若()()2223125g x x g x x -++->,求x 的取值范围.18.(本小题满分12分)已知函数()20log 0ax x f x x x +⎧=⎨⎩,≤,,>,且点()42,在函数()f x 的图像上.(1)求函数()f x 的解析式,并在平面直角坐标系中画出函数()f x 的图像;(2)求不等式()1f x <的解集;(3)若方程()20f x m -=有两个不相等的实数根,求实数m 的取值范围.19.(本小题满分12分)已知函数()()()22log 3log 3f x x x =+--. (1)求()1f 的值;(2)判断并证明函数()f x 的奇偶性;(3)已知()2lg log 5f a =,求实数a 的值.20.(本小题满分12分)已知函数()21f x x x =-是定义在()0+∞,上的函数. (1)用定义法证明函数()f x 的单调性;(2)若关于x 的不等式220x x m f x ⎛⎫++ ⎪⎝⎭<恒成立,求实数m 的取值范围.21.(本小题满分12分)某工厂现有职工320人,平均每人每年可创利20万元.该工厂打算购进一批智能机器人(每购进一台机器人,将有一名职工下岗).据测算,如果购进智能机器人不超过100台,每购进一台机器人,所有留岗职工(机器人视为机器,不作为职工看待)在机器人的帮助下,每人每年多创利2千元,每台机器人购置费及日常维护费用折合后平均每年2万元,工厂为体现对职工的关心,给予下岗职工每人每年4万元补贴;如果购进智能机器人数量超过100台,则工厂的年利润8202lg y x =+万元(x 为机器人台数且320x <).(1)写出工厂的年利润y 与购进智能机器人台数x 的函数关系.(2)为获得最大经济效益,工厂应购进多少台智能机器人?此时工厂的最大年利润是多少? (参考数据:lg 20.3010=)22.(本小题满分12分)已知函数()(2210g x ax ax b a =-++≠,)1b <在区间[]23,上有最大值4,最小值1,设()()g x f x x=.(1)求a ,b 的值;(2)若不等式()220x x f k -⋅≥在[]11x ∈-,上恒成立,求实数k 的取值范围.期末测试 答案解析一、 1.【答案】D【解析】 集合{}12A =,,22B k ⎧⎫=⎨⎬⎩⎭,,B A ⊆,∴由集合元素的互异性及子集的概念可知21k =,解得2k =.故选D . 2.【答案】D【解析】由题图知,阴影部分在集合M 中,在集合P 中,但不在集合S 中,故阴影部分所表示的集合是()()U M P S ∩∩ .3.【答案】A【解析】原式lg 2lg5222lg102121=+--+=-=-=-.故选A . 4.【答案】C【解析】令()23log f x kx x =+-,()012x ∈ ,,()()120f f ∴⋅<,即()()3220k k ++<,31k ∴--<<. 5.【答案】A【解析】因为a ,b ,c 均为正数,所以由指数函数和对数函数的单调性得121log 2102a a a =⇒><<,()1211log 01122bb b ⎛⎫=∈⇒ ⎪⎝⎭,<<,21log 012cc c ⎛⎫=⇒ ⎪⎝⎭>>,所以a b c <<,故选A .6.【答案】D【解析】A 中虽然lg 10x x =,但是两函数的定义域不同,故两个函数不相等;B 中两函数定义域不同,故两个函数不相等;C 中函数的值域不同,故两个函数不相等;D 中两函数满足相等的条件,故两个函数相等,故选D . 7.【答案】D【解析】 函数()32log 0220x x f x x x x ⎧⎪=⎨+-⎪⎩,>,,≤,且()1f a =,∴当0a >时,()3log 1f a a ==,解得3a =;当0a ≤时,()2221f a a a =+-=,解得3a =-或1a =(舍去). 综上可得,3a =±. 8.【答案】D【解析】因为关于x 的方程()20f x -=在()0-∞,内有解,所以函数()y f x =与2y =的图像在()0-∞,内有答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新人教版高一年级数学上册期末考试卷(附答案)本试卷共100分,考试时长120分钟。
第一部分(选择题 共39分)一、选择题:本大题共13小题,每小题3分,共39分。
在每个小题给出的四个 备选答案中,只有一个是符合题目要求的。
1.设全集 "’是小于9的正整数} , A = {1 , 2, 3},贝U -’等于 A. 2^67同 B. {0455了均 C.D.卩 56739〕3.已知函数「’是奇函数,它的定义域为::1- =-,则a 的值为A. — 1 5. 函数八' ;"■'的零点的个数是 A. 0B. 1C. 2D. 3(-洎6. 如图所示,角二的终边与单位圆交于点P ,已知点P 的坐标为-则 tan 2a2.函数的最小正周期是B. 04.在同一平面直角坐标系内,' 与I 的图象可能是/ 二 (盂 + —\x e [一疋 JT ]7.函数」 是sin(x —— j — sin( T + —)8.把一 「 「可化简为A.庞 cosz11.已知',则;「的大小关系为 A a >b> cr :'- ■ ■,贝U的大小关系是13.渔民出海打鱼,为了保证获得的鱼新鲜,鱼被打上岸后,要在最短的时间内将其分拣、冷藏,若不及时处理,打上来的鱼会很快地失去新鲜度(以鱼肉里24 A.-D.24A.增函数B.减函数C. 偶函数D. 奇函数9.函数一+ ;…―的单调递减区间是7T U TTA.二底]B.7T 5zrC .::n 4TT D.—10 若2^/5sin (尢+@)= 狗如 工一 3匚眈工,®匚(一兀町 ,则二等于STA.B. D.D c >b > a12已知=当氓仙他)时 了㈤为增函数,A a >b> cB b >a > cD c >b > aB.含有三甲胺量的多少来确定鱼的新鲜度。
三甲胺是一种挥发性碱性氨,是胺的类似物,它是由细菌分解作用产生的,三甲胺量积聚就表明鱼的新鲜度下降,鱼体开始变质进而腐败)。
已知某种鱼失去的新鲜度h 与其出海后时间t (分)满足的 函数关系式为h (t )= m • a t ,若出海后10分钟,这种鱼失去的新鲜度为10%, 出海后20分钟,这种鱼失去的新鲜度为20%,那么若不及时处理,打上来的这 种鱼会在多长时间后开始失去全部新鲜度(已知Ig2二0.3,结果取整数)A. 33分钟B. 43分钟C. 50分钟D. 56分钟第二部分(非选择题共61分)、填空题:本大题共4小题,每小题3分,共12分15. 已知幕函数/⑴,它的图象过点丁 ,那么了⑹ 的值为 _________________________ 。
16. 函数3的定义域用集合形式可表示为 _______________ 。
17. 红星学校高一年级开设人文社科、英语听说、数理竞赛三门选修课,要求 学生至少选修一门。
某班40名学生均已选课,班主任统计选课情况如下表,由 选择英语听说的人数 25 选择人文社科的人数 21 选择数理竞赛的人数16 选择英语听说及数理竞赛的人数 8 选择英语听说及人文社科的人数 11 选择人文社科及数理竞赛的人数5三、解答题:本大题共5小题,共49分。
解答应写出文字说明、证明过程或演 算步骤。
18. (本题满分10分)14.函数「的最小值是4儿2 J1 *j -2 -1 O 1■ -1 |-・ -2(u )作出函数」-■■:的简图;(川)由简图指出函数「的值域。
19. (本题满分10分)/W = 3m (兀—已知函数1f (x )二 sm 〔2工 +—),0 -已知函数••::(I )列表,描点画出函数」 八二的简图,并由图象写出函数-■调区间及最值;(u )若畑)=心烟“),求畑+巧)的值已知函数(I)求「「'J 的值;(I)若匸 §二二-::j :二的值.(U )设函数—―二,求函数亠的值域。
20.(本题满分10 分)的单21.(本题满分10分)珠宝加工匠人贾某受命单独加工某种珠宝首饰若干件,要求每件首饰都按统一规格加工,单件首饰的原材料成本为25 (百元),单件首饰设计的越精致,做工要求就越高,耗时也就越多,售价也就越高,单件首饰加工时间t (单位:时,t € N)与其售价间的关系满足图1 (由射线AB上离散的点构成),首饰设计得越精致,就越受到顾客喜爱,理应获得的订单就越多,但同时,价格也是一个不可忽视的制约顾客选择的因素,单件首饰加工时间t (时)与预计订单数的关系满足图2 (由线段MN和射线NP上离散的点组成)。
原则上,单件首饰的加工时间不能超过55小时,贾某的报酬为这批首饰销售毛利润的5%,其他成本概不计算。
(I)如果贾某每件首饰加工12小时,预计会有多少件订单;(U)设贾某生产这批珠宝首饰产生的利润为S,请写出加工时间t (时)与利润S之间的函数关系式,并求利润S最大时,预计的订单数。
注:利润S=(单件售价—材料成本)X订单件数—贾某工资毛利润=总销售额-材料成本22.(本题满分9分)(I)判断并证明函数的奇偶性;(U)判断并证明函数在「"二上的单调性;(川)若「成立,求实数m 的取值范围【试题答案】」、选择题:本大题共小题,每小题分,共分 题号 1 2 3 4 5 6 7 8 9 10 11 12 13 答案AADBCCDDDABDB、填空题:本大题共小题,每小题分,共分题号141516 17 答案-屆A1 642三、解答题:本大题共5小题,共49分(U)简图如下图所示:已知函数"'一K -2 + A-1Z-1X19.解:(I )即二 二 -,2sin df — costr =—g (盂)=2sin 3 (x- —) + cos(2^ + —)(n) _二1二 1— c os(2x — —) + cos(2x + —)2 6=1- ain 2r + — cos 2^- —sin 2兌 2 2=^/§cos(2x+—) +1y〔2 ■-1[/ ,■2- 2O 1 2 :\(川)由(U )的图象知,函数的值域是[—2, 1)。
10分sin + 1J? 3-——ccs 2x —sin 2z+1•••函数丄的值域为―⑴。
10分20. 解:(I)列表如下:2x+-577T25JF67rr63TF2 X07T7托35托127F2r-2rr3/W121121—㊁-1作出函数:"的简图如图所示:[0,—] [兰,丝]函数「八的单调递增区间是一",单调递减区间是二「一;当-’时,「‘取得最大值1;当-时,」「取得最小值一1。
7")若- 「,由(I)中简图知,点7T■it —也Jg)关于直线6对称。
由图象可知,21. 解:(I)预计订单函数;、为4^±5?0 <i <10. /(£) = ■•T + 口10 <1^55../(12) = - 12 + 55 = 43。
(U)预计订单函数为+5,0 <1 <10, f(t)=--f + 口 10 <1^55售价函数为-■ …•••利润函数为(25/ -+50-2匀(牡 +5X1-5%\0 <£<10, (25( + 50 - 25)(-i + 55)(1 -5%),10 55—(;/ +!X4i + 5X0 <10? 55-id^+iy £-55)J0<i <55. 4 —+9£ + 5)r 0 <2 <10r-兰护一%-5»」o 和§554故利润最大时,,此时预计的订单数为28件。
22. 解:(I )八’为奇函数。
证明如下:函数八■-丄丄-1,二…、 二吕O) = /(A ) - 3-1 -1 -1---- +——+ ----X —1 蛊 蛊+1于是10分10分的定义域为-11-l :,故宀为奇函数。
3分(u )丄 在■' IJ :: 上单调递增,任取< ■--'-:),且「I , -1 -1 - 1一1 - 1 -1gon —+—+—_(—+—+—) 则r ■. 1 ■ i ■_ ■._ 町—花I 町—心I(珀-1)(忑-1)也(巧 + DE +1)仇_可 %-1)(心-1〕十百十(码+i )(花+J..■ ]「- I I T : |‘ _x, - x. < 0, --------- ! ------- > 0, —-— > Q, ------------ --------- > 0(心-1)显-1) 起也 01 ■+1)(可 +1)1:',即八「,故:二在-:Ir-上单调递增。
6(川)由1■ ■-■-,故」在-■|>::上单调递增, 又"一 :"一 ;「:一’"亠:恒成立 故 v_ - v:1:-注:若学生有其他解法,可参考给分。
+1x-l~sW =1 1- -------- J 还+ 1。